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A Multi-Scan Labeled Random Finite Set Model for

Multi-Object State Estimation
Ba-Ngu Vo and Ba-Tuong Vo

Abstract—State-space models in which the system state is a
finite set–called the multi-object state–have generated considerable
interest in recent years. Smoothing for state-space models pro-
vides better estimation performance than filtering. In multi-object
state estimation, the multi-object filtering density can be efficiently
propagated forward in time using an analytic recursion known as
the generalized labeled multi-Bernoulli (GLMB) recursion. In this
paper, we introduce a multi-scan version of the GLMB model to
accommodate the multi-object posterior recursion, and develop
efficient numerical algorithms for computing this so-called multi-
scan GLMB posterior.

Index Terms—State estimation, filtering, smoothing, random
finite sets, multi-dimensional assignment, Gibbs sampling.

I. INTRODUCTION

I
N BAYESIAN estimation for state-space models, smoothing
yields significantly better estimates than filtering by using

the history of the states rather than the most recent state [6],
[13], [36]. Conditional on the observation history, filtering only
considers the current state via the filtering density, whereas
smoothing considers the entire history of the states up to the
current time via the posterior density. Numerical computation
of the filtering and posterior densities have a long history and is
still an active area of research [1], [12], [13], [48].

A generalization of state-space models that has attracted sub-
stantial interest in recent years is Mahler’s Finite Set Statistics
(FISST) framework for multi-object system [32]–[35]. Instead
of a vector, the state of a multi-object system–the multi-object
state–is a finite set. Numerically, multi-object state estimation
[34], [35] is far more complex than traditional state estima-
tion due to additional challenges such as false measurements,
misdetection and data association uncertainty. Several tractable
multi-object filters have been developed, including the Proba-
bility Hypothesis Density (PHD) [32], Cardinalized PHD [33],
multi-Bernoulli [34], [53], Dirac delta mixture random finite set
[9], hybrid Poisson multi-Bernoulli [21], [60], and second-order
PHD [49] filters. These filters, however, are not formulated for
estimating (multiple) trajectories. Using labels (or identities),
the history of the multi-object states, or the multi-object trajec-
tory, is equivalent to the set of object trajectories [55], [56]. Con-
sequently, multi-object trajectory estimation can be achieved via
estimation (including filtering) of labeled multi-object states.
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In multi-object trajectory estimation, the labeled multi-object
filtering recursion admits an analytic solution via the Gen-
eralized Labeled Multi-Bernoulli (GLMB) model [54], [56],
which can be efficiently approximated [57]. Recent research on
parametric approximations and extensions [17], [28], [31], [44],
[47], as well as applications such as track-before-detect [44],
[45], multi-object sensor control [3], [22], [42], simultaneous
localization and mapping [11], [38], multi-object data fusion
[18], [23], [29], [30], [59], etc., demonstrate the versatility of
the GLMB model, and suggest that it is an important tool for
multi-object systems.

Since the filtering density only considers information on the
current multi-object state, earlier estimates cannot be updated
with current data. Consequently, apart from poorer performance
compared to smoothing, an important drawback in a multi-target
tracking context is track fragmentation, where terminated tra-
jectories are picked up again as new evidence from the data
emerges. In contrast, the posterior captures all information on
the multi-object trajectory and eliminates track fragmentation
as well as improving earlier estimates.

Similar to its single-object counterpart, computing the multi-
object posterior is a problem of fundamental importance. Even in
the single-object case, computing the posterior and its marginals,
or smoothing densities, is still an active area of research [7], [19],
[25], [41], [43]. The multi-object posterior density is essential
for characterizing other variables/parameters pertaining to the
underlying set of objects, other than their trajectories. For exam-
ple, in cell biology experiments, variables such as cell lifetime,
birth rate, death rate, migration pattern, say after a drug is
administered, are more useful to biologists than cell tracks [14],
[15], [37]. The multi-object posterior enables complete statisti-
cal characterization of these variables (e.g. in terms of their dis-
tributions, moments), whereas the estimated trajectories cannot.

In this paper, we present a multi-scan version of the GLMB
model to accommodate the (labeled) multi-object posterior,
and develop an efficient numerical algorithm for multi-object
smoothing. Interestingly, the (multi-scan) GLMB posterior re-
cursion takes on an even simpler and more intuitive form than
the GLMB filtering recursion. In implementation, however, the
GLMB posterior recursion is far more challenging. Preliminary
results on the multi-scan GLMB recursion have been reported
in [58]. The current work provides a comprehensive treatment,
and more importantly algorithms for computing the multi-scan
GLMB posterior.

Like the GLMB recursion, the multi-scan GLMB recursion
needs to be truncated, and as shown in this article, truncation
by retaining components with highest weights minimizes the
L1 truncation error. Unlike the GLMB filtering density, finding
the significant components of a GLMB posterior is an NP-hard
multi-dimensional assignment problem. To solve this problem,
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we extend the Gibbs sampler for the 2-D assignment problem in
[57] to higher dimensions. The resulting technique, capable of
solving large-scale multi-dimensional assignment problems, can
be applied to compute the GLMB posterior off-line in one batch,
or recursively as new observations arrive, thereby performing
smoothing-while-filtering [6].

The remainder of this article is divided into 5 sections. Sec-
tion II summarizes relevant concepts in Bayesian multi-object
state estimation and the GLMB filter. Section III introduces the
multi-scan GLMB model and recursion. Section IV presents an
implementation of the multi-scan GLMB recursion using Gibbs
sampling. Numerical studies are presented in Section V and
conclusions are given in Section VI.

II. BACKGROUND

Following the convention in [54], the list of variables Xm,
Xm+1, . . . , Xn is abbreviated as Xm:n, and the inner product∫
f(x)g(x)dx is denoted by 〈f, g〉. For a given set S, 1S(·)

denotes the indicator function of S, and F(S) denotes the class
of finite subsets ofS. For a finite setX , its cardinality (or number
of elements) is denoted by |X|, and the product

∏

x∈X f(x), for

some function f , is denoted by the multi-object exponential fX ,

with f ∅ = 1. In addition we use

δY [X] �

{
1, if X = Y
0, otherwise

for the generalized Kroneker-δ that takes arbitrary arguments.

A. Multi-Object States and Trajectories

This subsection summarizes the representation of trajectories
via labeled multi-object states.

At time1k, an existing object is described by a vector x ∈ X

and a unique label ℓ = (s, α), where s is the time of birth, and α
is a unique index to distinguish objects born at the same time (see
Fig. 1 in [56]). Let Bs denote the label space for objects born at
time s, then the label space for all objects up to time k (including

those born prior to k) is the disjoint union L k =
⊎k

s=0 Bs (note
that Lk = Lk−1 ⊎ Bk). Hence, a labeled statex = (x, ℓ) at time
k is an element of X×Lk.

A trajectory is a sequence of labeled states with a common
label, at consecutive times [54], i.e. a trajectory with label ℓ =
(s, α) and states xs, xs+1, . . . , xt ∈ X, is the sequence

τ = [(xs, ℓ), (xs+1, ℓ), . . . , (xt, ℓ)]. (1)

A multi-object state X is a finite subset of X, and a labeled
multi-object state at time i is a finite subset X of X × Li con-
structed by augmenting the elements of X with distinct labels.
Specifically, let L : X × Li → Li be the projection defined by
L((x, ℓ)) = ℓ , thenXhas distinct labels if and only if the distinct

label indicator ∆(X) � δ|X|[|L(X)|] equals one.
The labeled states, at time i, of a set S of trajectories defined

to have distinct labels and kinematic states at each time, form
the labeled multi-object state Xi = {τ (i) : τ ∈S}, where τ (i)
denotes the labeled state of trajectory τ at time i.

Consider a sequence Xj:k of such labeled multi-object states

in the interval {j : k}. Let x
(ℓ)
i = (x

(ℓ)
i , ℓ) denote the element

of Xi with label ℓ ∈ L(Xi), and unlabeled state x
(ℓ)
i . Then the

trajectory with label ℓ ∈ ∪k
i=jL(Xi) is the sequence of states

1This work considers discrete time indices rather than actual times.

with label ℓ:

x
(ℓ)
s(ℓ):t(ℓ) = [(x

(ℓ)
s(ℓ), ℓ), . . . , (x

(ℓ)
t(ℓ), ℓ)], (2)

where

s(ℓ) � max{j, ℓ[1, 0]T } (3)

is the start time, in the interval {j : k}, of label ℓ, and

t(ℓ) � s(ℓ) +

k∑

i=s(ℓ)+1

1L(Xi)(ℓ) (4)

is the latest time in {s(ℓ) : k} such that label ℓ still exists. Note
that s(ℓ) and t(ℓ) are also functions of j and k . The multi-object
state sequence Xj:k can thus be equivalently represented by the
set of all such trajectories, i.e.

Xj:k ≡

⎧

⎨

⎩
x
(ℓ)
s(ℓ):t(ℓ) : ℓ ∈

k⋃

i=j

L(Xi)

⎫

⎬

⎭
. (5)

The left and right hand sides of (5) are simply different groupings
of the labeled states on the interval {j : k}. The multi-object state
sequence groups the labeled states according to time while the
set of trajectories groups according to labels (see also Fig. 1 of
[56]). Since the (unlabeled) multi-object state is a finite subset
of X, no two trajectories in Xj:k share the same kinematic state
at any time.

Hereon, single-object states are represented by lowercase
letters (e.g. x, x), multi-object states are represented by up-
percase letters (e.g. X , X), symbols for labeled states and their
distributions are bolded to distinguish them from unlabeled ones
(e.g. x, X, π, etc.). The term multi-object state refers to both
unlabeled or label multi-object states (the context is clear from
the bolded or unbolded symbols). Given a sequence of sets Ij:k,

with a slight abuse of notation, the union∪k
i=jIi is written as Ij:k.

The context should be clear when we write I ⊆ Ij:k, ℓ ∈ Ij:k, and

F (Ij:k). Similarly, we use L(Xj:k) � (L(Xj), . . . ,L(Xk)) in

place of ∪k
i=jL(Xi).

B. Bayes Recursion

Following the Bayesian paradigm, each labeled multi-object
state is modeled as a labeled random finite set (RFS) [54],
characterized by the Finite Set Statistics (FISST) multi-object
density [32], [51]. A labeled RFS is defined as a marked RFS
with distinct marks [54], i.e., a labeled RFS with state space X

and label space L is an RFS of X × L, constructed by marking
the elements of an RFS of X with distinct labels from L (note
that the 2nd clause is implicit from Definition 1 of [54]).

Given the observation history Z1:k, all information on the
set of objects is captured in the multi-object posterior density

π0:k(X0:k) � π0:k(X0:k|Z1:k). Note that the dependence on
Z1:k is omitted for notational compactness. Similar to standard
Bayesian state estimation [6], [13], the (multi-object) posterior
density can be propagated forward recursively by

π0:k(X0:k) =
gk(Zk|Xk)fk|k−1(Xk|Xk−1)π0:k−1(X0:k−1)

hk(Zk|Z1:k−1)
,

(6)
where gk(·|·) is the multi-object likelihood function at time k,
fk|k−1(·|·) is the multi-object transition density to time k, and

hk(Zk|Z1:k−1) is the normalizing constant or predictive like-
lihood. A well-defined fk|k−1(·|·) ensures that the multi-object
history X0:k represents a set of trajectories [54].
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Markov Chain Monte Carlo (MCMC) approximations of the
multi-object posterior have been proposed in [55] for detection
measurements using Particle MCMC [2], and in [10] for image
measurements using reversible jump MCMC.

A cheaper alternative is the multi-object filtering density,

πk(Xk) �
∫
π0:k(X0:k)δX0:k−1, which can be propagated by

the multi-object Bayes filter [32], [34]

πk(Xk)

=
gk(Zk|Xk)

∫
fk|k−1(Xk|Xk−1)πk−1(Xk−1)δXk−1

hk(Zk|Z1:k−1)
.

The GLMB filter is an analytic solution to this recursion under
the standard multi-object system model [54]. For more general
models, the multi-object particle filter [45] can be used.

C. Multi-Object System Model

Given a multi-object state Xk−1 (at time k − 1), each state
xk−1 = (xk−1, ℓk−1) ∈ Xk−1 either survives with probability
PS,k−1(xk−1) and evolves to a new state (xk, ℓk) with prob-
ability density fS,k|k−1(xk|xk−1, ℓk−1)δℓk−1

[ℓk] or dies with

probability QS,k−1(xk−1) = 1− PS,k−1(xk−1). Further, for
each ℓk in a (finite) birth label space Bk at time k, either a
new object with state (xk, ℓk) is born with probability PB,k(ℓk)
and density fB,k(xk, ℓk), or unborn with probability QB,k(ℓk)
= 1− PB,k(ℓk). The multi-object state Xk (at time k ) is the
superposition of surviving states and new born states. The multi-
object transition density fk|k−1(Xk|Xk−1), given by equation
(6) of [56], is constructed from Mahler’s multi-object transition
density by marking (unlabeled) multi-object states with distinct
labels. Hence, no two elements of a multi-object state shares the
same kinematic or unlabeled state.

Given a multi-object state Xk, each xk ∈ Xk is either de-
tected with probability PD,k(xk) and generates a detection z
with likelihoodgD,k(z|xk)or missed with probabilityQD,k(xk)
= 1− PD,k(xk). The multi-object observation Zk is the super-
position of the observations from detected objects and Poisson
clutter with intensity κk. Assuming that, conditional on Xk,
detections are independent of each other and clutter, the multi-
object likelihood function is given by [54], [56]

gk(Zk|Xk) ∝
∑

θk∈Θk

1Θk(L(Xk))(θk)
[

ψ
(θk◦L(·))
k,Zk

(·)
]Xk

(7)

where Θk denotes the set of maps θk : Lk → {0:|Zk|} that are
positive 1-1 (i.e. θk never map distinct arguments to the same
positive value), Θk(I) denotes the subset of Θk with domain I ,
θk ◦ L(x) = θk(L(x)), and

ψ
(i)
k,{z1:m}(x, ℓ) =

{
PD,k(x,ℓ)gD,k(zi|x,ℓ)

κk(zi)
, i > 0

QD,k(x, ℓ), i = 0
, (8)

The map θk assigns a detected label ℓ to measurement zθk(ℓ) ∈
Zk, while for an undetected label θk(ℓ) = 0.

D. GLMB Filtering Recursion

A generalized labeled multi-Bernoulli (GLMB) density on
F(X × L) has the form [54]:

π(X) = ∆(X)
∑

ξ∈Ξ

w(ξ)(L(X))
[

p(ξ)
]X

, (9)

where Ξ is a discrete index set, each p(ξ)(·, ℓ) is a probability

density on X, i.e.,
∫
p(ξ)(x, ℓ)dx = 1, and each w(ξ)(L) is non-

negative with
∑

L⊆L

∑

ξ∈Ξ w(ξ)(L) = 1. The GLMB density
(9) can be interpreted as a mixture of multi-object exponentials,
where the weights are functions of the labels.

The GLMB family is closed under the Bayes multi-object
filtering recursion and an explicit expression relating the filtering
density at time k to that at time k − 1 is given by (14) of [57].
This recursion can be expressed as follows.

Given the GLMB filtering density at time k − 1,

πk−1(Xk−1) = ∆(Xk−1)
∑

ξ∈Ξ

w
(ξ)
k−1(L(Xk−1))[p

(ξ)
k−1]

Xk−1 ,

(10)
the GLMB filtering density at time k is

πk(Xk) ∝ (11)

∆(Xk)
∑

ξ,θk,Ik−1

ω
(ξ,θk)
k (Ik−1)δD(θk)[L(Xk)][p

(ξ,θk)
k ]Xk ,

where θk ∈ Θk, Ik−1 ∈ F(Lk−1), D(θk) is the domain of θk,

ω
(ξ,θk)
k (Ik−1)

= 1F(Bk⊎Ik−1)(D(θk))[ω
(ξ,θk)
k|k−1 ]

Bk⊎Ik−1w
(ξ)
k−1(Ik−1) (12)

ω
(ξ,θk)
k|k−1 (ℓ) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Λ̄
(θk(ℓ))
B,k (ℓ), ℓ ∈ D(θk) ∩ Bk

Λ̄
(ξ,θk(ℓ))
S,k|k−1 (ℓ), ℓ ∈ D(θk)− Bk

QB,k(ℓ), ℓ ∈ D(θk) ∩ Bk

Q̄
(ξ)
S,k−1(ℓ), ℓ ∈ D(θk)− Bk

, (13)

p
(ξ,θk)
k (x, ℓ) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Λ
(θk(ℓ))

B,k
(x,ℓ)

Λ̄
(θk(ℓ))

B,k
(ℓ)

, ℓ ∈ D(θk) ∩ Bk

〈

Λ
(θk(ℓ))

S,k|k−1
(x|·,ℓ),p

(ξ)
k−1(·,ℓ)

〉

Λ̄
(ξ,θk(ℓ))

S,k|k−1
(ℓ)

, ℓ ∈ D(θk)− Bk

,

(14)

Λ
(j)
B,k(x, ℓ) = ψ

(j)
k,Zk

(x, ℓ)fB,k(x, ℓ)PB,k(ℓ), (15)

Λ
(j)
S,k|k−1(x|ς, ℓ) = ψ

(j)
k,Zk

(x, ℓ)fS,k|k−1(x|ς, ℓ)PS,k−1(ς, ℓ),

(16)

Q̄
(ξ)
S,k−1(ℓ) =

〈

QS,k−1(·, ℓ), p
(ξ)
k−1(·, ℓ)

〉

, (17)

Λ̄
(j)
B,k(ℓ) =

〈

Λ
(j)
B,k(·, ℓ), 1

〉

, (18)

Λ̄
(ξ,j)
S,k|k−1(ℓ) =

∫ 〈

Λ
(j)
S,k|k−1(x|·, ℓ), p

(ξ)
k−1(·, ℓ)

〉

dx. (19)

III. GLMB POSTERIOR RECURSION

This section presents a multi-scan version of the GLMB
model, and subsequently a multi-scan GLMB recursion.

A. Multi-Scan GLMB

Recall the equivalence between the multi-object state se-

quenceXj:k and the set {x
(ℓ)
s(ℓ):t(ℓ) : ℓ ∈ L(Xj:k)} of trajectories

in (5). Noting from (2) that x
(ℓ)
s(ℓ):t(ℓ) is completely characterized
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by ℓ and its kinematic states x
(ℓ)
s(ℓ):t(ℓ), we use

x
(ℓ)
s(ℓ):t(ℓ) ≡ (x

(ℓ)
s(ℓ):t(ℓ), ℓ).

For any function h taking the trajectories to the non-negative re-
als, we introduce the following so-called multi-scan exponential
notation:

[h]Xj:k � [h]

{

x
(ℓ)

s(ℓ):t(ℓ)
:ℓ∈L(Xj:k)

}

=
∏

ℓ∈L(Xj:k)

h(x
(ℓ)
s(ℓ):t(ℓ))

(20)
This notation is quite suggestive of the exponential property in
the following Lemma (see Appendix B for the proof).

Lemma 1: Let Xj:k be a sequence of multi-object states
(generated by a set of trajectories) and g, h be two functions
taking trajectories to the reals. Then:

i) [g h]Xj:k = [g]Xj:k [h]Xj:k

ii) For a multi-object state sequenceYj:k with labels disjoint
from those of Xj:k,

[h]Xj:k⊎Yj:k = [h]Xj:k [h]Yj:k

iii) For any i in {j:k}

[g]Xj:i [h]Xi:k = [g ⊙ h]Xj:k ,

where

(g ⊙ h)(x
(ℓ)
s(ℓ):t(ℓ))

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

h(x
(ℓ)
s(ℓ):t(ℓ)), i < s(ℓ)

g(x
(ℓ)
s(ℓ):i)h(x

(ℓ)
i:t(ℓ)), s(ℓ) ≤ i ≤ t(ℓ)

g(x
(ℓ)
s(ℓ):t(ℓ)), t(ℓ) < i

,

s(ℓ) and t(ℓ), given by (3) and (4) are, respectively, the starting
and terminating times on {j : k} for label ℓ.

Using multi-scan exponential notation, the multi-object tran-
sition density given in [54] can be written tersely as follows (for
completeness the proof is given in Appendix C).

Proposition 2: For the multi-object dynamic model de-
scribed in Subsection II-C, the multi-object transition density is

fk|k−1 (Xk|Xk−1) = (21)

∆(Xk)1F(Bk⊎L(Xk−1))(L(Xk))Q
Bk−L(Xk)
B,k [φk−1:k]

Xk−1:k

where

φk−1:k(x
(ℓ)
s(ℓ):t(ℓ), ℓ) = (22)

⎧

⎪⎪⎨

⎪⎪⎩

PB,k(ℓ)fB,k(x
(ℓ)
k , ℓ), s(ℓ) = k

PS,k−1(x
(ℓ)
k−1, ℓ)fS,k|k−1(x

(ℓ)
k |x

(ℓ)
k−1, ℓ), t(ℓ) = k>s(ℓ)

QS,k−1(x
(ℓ)
k−1, ℓ), t(ℓ) = k−1

Definition 1: A density on F(X × Lj)× · · · × F(X × Lk)
is multi-scan GLMB if it has the form

π(Xj:k) = ∆(Xj:k)
∑

ξ∈Ξ

w
(ξ)
j:k(L(Xj:k))

[

p
(ξ)
j:k

]Xj:k

(23)

where: Ξ is a discrete set; ∆(Xj:k) �
∏k

i=j ∆(Xi); w
(ξ)
j:k(Ij:k),

(ξ, Ij:k) ∈ Ξ×F(Lj)× · · · × F(Lk) is non-negative with
∑

ξ,Ij:k

w
(ξ)
j:k(Ij:k) = 1; (24)

and p
(ξ)
j:k(·, ℓ), ξ ∈ Ξ, ℓ ∈ L(Xj:k), defined on X

t(ℓ)−s(ℓ)+1 with

starting and terminating times s(ℓ) and t(ℓ) on {j : k}, given by

(3) and (4), satisfies
∫

p
(ξ)
j:k(xs(ℓ):t(ℓ), ℓ)dxs(ℓ):t(ℓ) = 1, (25)

Similar to the GLMB, the multi-scan GLMB (23) can be
expressed in the so-called δ-form:

π(Xj:k) = ∆(Xj:k)
∑

ξ,Ij:k

w
(ξ)
j:k(Ij:k)δIj:k [L(Xj:k)][p

(ξ)
j:k]

Xj:k

(26)
Each term or component of a multi-scan GLMB consists of a

weight w
(ξ)
j:k(Ij:k) and a multi-scan exponential [p

(ξ)
j:k]

Xj:k with

label history that matches Ij:k. The weight w
(ξ)
j:k(Ij:k) can be

interpreted as the probability of hypothesis (ξ, Ij:k), and for

each ℓ ∈ Ij:k, p
(ξ)
j:k(·, ℓ) is the joint probability density of its

(trajectory) kinematic states, given hypothesis (ξ, Ij:k).
Proposition 3: For a function f : F(Lj)× · · · × F(Lk) →

R, its integral with respect to the multi-scan GLMB (23) is
∫

f(L(Xj:k))π(Xj:k)δXj:k =
∑

ξ,Ij:k

f(Ij:k)w
(ξ)
j:k(Ij:k) (27)

where (ξ, Ij:k) ∈ Ξ×F(Lj)× · · · × F(Lk). See Appendix D
for proof.

By setting f to 1 in the above proposition, the multi-
scan GLMB integrates to 1, and hence, is a FISST density.
Some useful statistics from the multi-scan GLMB follow from
the above proposition for suitably defined functions of the
labels.

Corollary 4: The cardinality distribution, i.e. distribution of
the number of trajectories is given by

Pr (|L(Xj:k)| = n) =
∑

ξ,Ij:k

δn [|Ij:k|]w
(ξ)
j:k(Ij:k) (28)

Corollary 5: The joint probability of existence of a non-
empty set of trajectories with labels L is given by

Pr (L exist) =
∑

ξ,Ij:k

1F(Ij:k)(L)w
(ξ)
j:k(Ij:k), (29)

and as a special case

Pr (ℓ exists) =
∑

ξ,Ij:k

1Ij:k(ℓ)w
(ξ)
j:k(Ij:k). (30)

Corollary 6: The distribution of trajectory lengths is given
by

Pr (a trajectory has length m)

=
∑

ξ,Ij:k

w
(ξ)
j:k(Ij:k)

|Ij:k|

∑

ℓ∈Ij:k

δm [t(ℓ)− s(ℓ) + 1] , (31)

and the distribution of the length of trajectory with label ℓ is

Pr (length(ℓ) = m)

=
∑

ξ,Ij:k

δm [t(ℓ)− s(ℓ) + 1] 1Ij:k(ℓ)w
(ξ)
j:k(Ij:k). (32)

Corollary 7: The cardinality distributions of births and
deaths at time u ∈ {j : k} are given by

Pr (n births at time u)

=
∑

ξ,Ij:k

w
(ξ)
j:k(Ij:k)δn

⎡

⎣
∑

ℓ∈Ij:k

δu(s(ℓ))

⎤

⎦ , (33)
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Pr (n deaths at time u)

=
∑

ξ,Ij:k

w
(ξ)
j:k(Ij:k)δn

⎡

⎣
∑

ℓ∈Ij:k

δu(t(ℓ))

⎤

⎦ , (34)

Similar to its single-scan counterpart, a number of estima-
tors can be constructed for a multi-scan GLMB. The simplest
would be to find the multi-scan GLMB component with the

highest weight w
(ξ)
j:k(Ij:k) and compute the most probable or

expected trajectory estimate from p
(ξ)
j:k(·, ℓ) for each ℓ ∈ Ij:k.

Alternatively, instead of the most significant, we can use the
most significant amongst components with the most probable
cardinality n∗ (determined by maximizing (28)).

Another class of estimators, based on existence probabilities,
can be constructed as follows. Find the set of labels L∗ with
highest joint existence probability by maximizing (29). Alter-
natively, we can choose L∗ as the label set of cardinality n∗ with
highest joint existence probability, or the set of n∗ labels with
highest individual existence probabilities. For each ℓ ∈ L∗, we
determine the most probable length m∗ by maximizing (32) and
compute the trajectory density

pj:k(·, ℓ)

∝
∑

ξ,Ij:k

δm∗ [t(ℓ)− s(ℓ) + 1] 1Ij:k(ℓ)w
(ξ)
j:k(Ij:k)p

(ξ)
j:k(·, ℓ),

from which the mode or mean trajectory can be determined.

B. Closure Under Bayes Recursion

Conceptually, a multi-scan GLMB is simply a GLMB where
the argument is a set of labeled trajectories represented by Xj:k,
and hence is closed under the Bayes recursion [54].

Multiplying the multi-scan GLMB

π(Xj:k−1) = (35)

∆(Xj:k−1)
∑

ξ∈Ξ

w
(ξ)
j:k−1(L(Xj:k−1))

[

p
(ξ)
j:k−1

]Xj:k−1

,

by fk|k−1(Xk|Xk−1) in (21), and using Lemma 1 (iii) to “stitch”

[p
(ξ)
j:k−1]

Xj:k−1 and [φk−1:k]
Xk−1:k together, yields a multi-scan

GLMB prediction density of the form (23), with

p
(ξ)
j:k = p

(ξ)
j:k−1 ⊙ φk−1:k, (36)

w
(ξ)
j:k(Ij:k) = w

(ξ)
j:k−1(Ij:k−1)1F(Bk⊎Ik−1)(Ik)Q

Bk−Ik
B,k . (37)

Further, the measurement likelihood for Xj:k has the same
exponential-mixture form as (54) in [54], i.e.

gk(Zk|Xj:k) ∝
∑

θk∈Θk

1Θk(L(Xk))(θk)
[

ψ
(θk◦L(·))
j:k,Zk

(·)
]Xj:k

,

with

ψ
(i)
j:k,Zk

(xs(ℓ):t(ℓ), ℓ) =

{

ψ
(i)
k,Zk

(xt(ℓ), ℓ), t(ℓ) = k
1, t(ℓ) < k

,

where θk ◦ L(τ) = θk(L(τ)), and t(ℓ), given by (4), is the termi-
nating time on {j : k} for label ℓ (since trajectories terminated
before time k do not contribute to Zk). Thus, the multi-scan
GLMB prior (23) is closed under Bayes update, and its posterior

given by (19) of [54], i.e.,

π(Xj:k|Zk) ∝ ∆(Xj:k)
∑

ξ,θk

w
(ξ,θk)
j:k (L(Xj:k))

[

p
(ξ,θk)
j:k

]Xj:k

(38)
where ξ ∈ Ξ, θk ∈ Θk,

p
(ξ,θk)
j:k (·, ℓ) =

p
(ξ)
j:k(·, ℓ)ψ

(θk(ℓ))
j:k,Zk

(·, ℓ)

ψ̄
(ξ,θk)
j:k,Zk

(ℓ)
(39)

ψ̄
(ξ,θk)
j:k,Zk

(ℓ) =
〈

p
(ξ)
j:k(·, ℓ), ψ

(θk(ℓ))
j:k,Zk

(·, ℓ)
〉

(40)

w
(ξ,θk)
j:k (Ij:k) = 1Θk(Ik)(θk)w

(ξ)
j:k(Ij:k)

[

ψ̄
(ξ,θk)
j:k,Zk

]Ij:k
(41)

Remark: A similar version of the GLMB Bayes update (38)
was derived in [20] using a sophisticated approach based on
probability density of random sets of trajectories. Interestingly,
[20] is the first to undertake the development of probability
densities on the space of all finite subsets of the disjoint union
of Cartesian products of X × L (or X). This is fundamentally
different from the standard state-space estimation paradigm fol-
lowed in our work, where densities are defined on the Cartesian
product of the state-space [6], [13], [27]. Other main differences
from (38) are: sample sets of trajectories do not necessarily
have distinct labels; and the weights in the posterior probability
density are independent of the argument.

C. Multi-Scan GLMB Posterior Recursion

Setting j = 0 in the GLMB update (38)–(41) and expanding
the parameters (for completeness see Appendix VI-E) yields an
explicit multi-scan GLMB posterior recursion.

Proposition 8: Under the standard multi-object system
model, if the multi-object posterior at time k − 1 is

π0:k−1(X0:k−1)

= ∆(X0:k−1)
∑

ξ∈Ξ

w
(ξ)
0:k−1(L(X0:k−1))[p

(ξ)
0:k−1]

X0:k−1 , (42)

then the multi-object posterior at time k is

π0:k(X0:k) ∝ (43)

∆(X0:k)
∑

ξ,θk

ω
(ξ,θk)
0:k (L(X0:k−1))δD(θk)[L(Xk)][p

(ξ,θk)
0:k ]X0:k

where ξ ∈ Ξ, θk ∈ Θk, D(θk) is the domain of θk,

ω
(ξ,θk)
0:k (I0:k−1) = (44)

1F(Bk⊎Ik−1)(D(θk))
[

ω
(ξ,θk)
k|k−1

]Bk⊎Ik−1

w
(ξ)
0:k−1(I0:k−1)

ω
(ξ,θk)
k|k−1 (ℓ) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ̄
(θk(ℓ))
B,k (ℓ), ℓ ∈ D(θk) ∩ Bk

Λ̄
(ξ,θk(ℓ))
S,k|k−1 (ℓ), ℓ ∈ D(θk)− Bk

QB,k(ℓ), ℓ ∈ D(θk) ∩ Bk

Q̄
(ξ)
S,k−1(ℓ), ℓ ∈ D(θk)− Bk

, (45)
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p
(ξ,θk)
0:k (xs(ℓ):t(ℓ), ℓ) = (46)
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ
(θk(ℓ))

B,k
(xk,ℓ)

Λ̄
(θk(ℓ))

B,k
(ℓ)

, s(ℓ) = k

Λ
(θk(ℓ))

S,k|k−1
(xk |xk−1,ℓ)p

(ξ)
0:k−1(xs(ℓ):k−1,ℓ)

Λ̄
(ξ,θk(ℓ))

S,k|k−1
(ℓ)

, t(ℓ) = k > s(ℓ)

QS,k−1(xk−1,ℓ)p
(ξ)
0:k−1(xs(ℓ):k−1,ℓ)

Q̄
(ξ)
S,k−1(ℓ)

, t(ℓ) = k − 1

p
(ξ)
0:k−1(xs(ℓ):t(ℓ), ℓ), t(ℓ) < k − 1

.

The multi-scan GLMB posterior recursion (42)–(46) bears
remarkable resemblance to the GLMB filtering recursion (10)–
(15). In essence, it is the GLMB filtering recursion without the
marginalization of past labels and kinematic states. Indeed, the
weight increments for multi-scan GLMB and GLMB compo-
nents are identical. Arguably, the multi-scan GLMB recursion
is more intuitive because it does not involve marginalization over
previous label sets nor past states of the trajectories.

The multi-scan GLMB recursion initiates new born trajec-
tories, updates surviving trajectories, terminates disappearing
trajectories, and stores trajectories that disappeared earlier. Not-
ing that ℓ ∈ D(θk) ∩ Bk is equivalent to s(ℓ) = k, initiation of
new trajectories is identical to that of the GLMB filter. Noting
ℓ ∈ D(θk)− Bk is equivalent to t(ℓ) = k > s(ℓ), the update of
surviving trajectories is the same as the GLMB filter, but without
marginalization of past kinematic states. On the other hand,
termination/storing of disappearing/disappeared trajectories are
not needed in the GLMB filter.

IV. COMPUTING MULTI-SCAN GLMB POSTERIORS

The number of terms of the multi-scan GLMB posterior
grows super-exponentially in time and it is necessary to find a
tractable approximation. Functional approximation criteria, e.g.
Lp-norm, or divergences such as Kullback-Leibler [44], Renyi,
Cauchy-Schwarz [3], [26], can be extended to the multi-scan
case. The main challenge is: given a prescribed number of
terms, what is the best multi-scan GLMB approximation of the
posterior, without exhaustive enumeration?

Using the same lines of arguments as Proposition 5 of [56],
the L1-error between a multi-scan GLMB and its truncation is
given by the following result.

Proposition 9: Let ‖f‖1 �
∫
|f(Xj:k)| δXj:k denote theL1-

norm of f : F(X × Lj)× · · ·×F(X × Lk) → R, and for a

given H ⊆ Ξ×F(Lj)× · · ·×F(Lk) let

fH(Xj:k)

� ∆(Xj:k)
∑

(ξ,Ij:k)∈H

w(ξ)(Ij:k)δIj:k [L(Xj:k)][p
(ξ)]Xj:k

be an unnormalized multi-scan GLMB density. If T ⊆ H then

‖fH − fT‖1 =
∑

(ξ,Ij:k)∈H−T

w(ξ)(Ij:k),

∥
∥
∥
∥

fH

||fH||1
−

fT

||fT ||1

∥
∥
∥
∥
1

≤ 2
||fH||1 − ||fT ||1

||fH||1
.

Hence, given a multi-scan GLMB posterior, the minimumL1-
norm approximation for a prescribed number of terms can be ob-
tained by keeping only those with highest weights. Furthermore,
this can be accomplished, without exhaustive enumeration, by
solving the multi-dimensional assignment problem [46]. This
problem is NP-hard for more than two scans, and state-of-the-art

algorithms cannot handle more than 10 scans with about 20 mea-
surements per scan; see for example [39] and references therein.

This section presents efficient techniques for computing
multi-scan GLMB posteriors by Gibbs sampling. Subsection IV-
A formulates multi-scan GLMB posterior truncation as a multi-
dimensional assignment problem, while solutions are developed
in Subsection IV-B and IV-C.

A. Canonical Multi-Scan GLMB Posterior

To express the multi-scan GLMB posterior in canonical form,
we represent each θk ∈ Θk by an extended association map γk :
Lk → {−1:|Zk|} defined by

γk(ℓ) =

{
θk(ℓ), if ℓ ∈ D(θk)
−1, otherwise

. (47)

LetΓk denote the set of positive 1-1 maps from Lk to {−1:|Zk|},
and (with a slight abuse of notation) denote the live labels of γk,
i.e. the domain D(θk), by

L(γk) � {ℓ ∈ Lk : γk(ℓ) ≥ 0}.

Then for anyγk ∈ Γk, we can recover θk ∈ Θk by θk(ℓ) = γk(ℓ)
for each ℓ ∈ L(γk). Hence, there is a bijection between Θk and
Γk, and θ1:k can be completely represented by γ1:k.

Starting with the initial prior π0(X0) = δ0[L(X0)], and
iteratively applying Proposition 8, the posterior at time k is:

π0:k(X0:k) ∝ (48)

∆(X0:k)
∑

γ0:k

w
(γ0:k)
0:k δL(γ0:k)[L(X0:k)]

[

τ
(γ0:k◦L(·))
0:k (·)

]X0:k

where L(γ0) � ∅,

w
(γ0:k)
0:k = (49)

w
(γ0:k−1)
0:k−1 1Γk

(γk)1F(Bk⊎L(γk−1))(L(γk))[η
(γ0:k(·))
k|k−1 (·)]Bk⊎L(γk−1)

η
(js(ℓ):k)

k|k−1 (ℓ) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Λ̄
(jk)
B,k (ℓ), ℓ ∈ Bk, jk ≥ 0

Λ̄
(js(ℓ):k)

S,k|k−1(ℓ), ℓ ∈ Lk−1, jk ≥ 0

QB,k(ℓ), ℓ ∈ Bk, jk < 0

Q̄
(js(ℓ):k−1)

S,k−1 (ℓ), ℓ ∈ L k−1, jk < 0

(50)

τ
(js(ℓ):k)

0:k (xs(ℓ):t(ℓ), ℓ) (51)

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ
(jk)

B,k
(xk,ℓ)

Λ̄
(jk)

B,k
(ℓ)

, s(ℓ) = k

Λ
(jk)

S,k|k−1
(xk |xk−1,ℓ)τ

(js(ℓ):k−1)

0:k−1 (xs(ℓ):k−1,ℓ)

Λ̄
(js(ℓ):k)

S,k|k−1
(ℓ)

, t(ℓ) = k > s(ℓ)

QS,k−1(xk−1,ℓ)τ
(js(ℓ):k−1)

0:k−1 (xs(ℓ):k−1,ℓ)

Q̄
(js(ℓ):k−1)

S,k−1 (ℓ)
, t(ℓ) = k − 1

τ
(js(ℓ):t(ℓ))

0:t(ℓ) (xs(ℓ):t(ℓ), ℓ), t(ℓ) < k − 1,

Λ̄
(js(ℓ):i)

S,i|i−1 (ℓ) = (52)

∫

Λ
(ji)
S,i|i−1(xi|xi−1, ℓ)τ

(js(ℓ):i−1)

0:i−1 (xs(ℓ):i−1, ℓ)dxs(ℓ):i

Q̄
(js(ℓ):i−1)

S,i−1 (ℓ) = (53)
∫

QS,t(ℓ)(xi−1, ℓ)τ
(js(ℓ):i−1)

0:i−1 (xs(ℓ):i−1, ℓ)dxs(ℓ):i−1
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Note that the weight (49) can be written explicitly as

w
(γ0:k)
0:k

=
k∏

i=1

1Γi
(γi)1F(Bi⊎L(γi−1))(L(γi))[η

(γ0:i(·))
i|i−1 (·)]Bi⊎L(γi−1).

Also, instead of using τ
(js(ℓ):i−1)

0:i−1 (·, ℓ) in (52) and (53), we only
need its marginal

τ
(js(ℓ):i−1)

i−1 (xi−1, ℓ) =

∫

τ
(js(ℓ):i−1)

0:i−1 (xs(ℓ):i−1, ℓ)dxs(ℓ):i−2.

Computing τ
(js(ℓ):k)

0:k (·, ℓ) and η
(js(ℓ):k)

k|k−1 (ℓ) is discussed in Ap-

pendix F.
The multi-scan GLMB (48) is completely parameterized by

the components (w
(γ0:k)
0:k , τ

(γ0:k)
0:k ), and we seek (without exhaus-

tive enumeration) components with significant weights. This is
a multi-dimensional assignment problem, which is NP-hard for
more than two scans [39]. Our solution is based on sampling
γ0:k’s from some discrete probability distribution π such that
components with high weights are more likely to be chosen than
those with low weights. A natural choice is to set

π(j)(γj |γ0:j−1)

∝ 1Γj
(γj)1F(Bj⊎L(γj−1))(L(γj))[η

(γ0:j(·))
j|j−1 (·)]Bj⊎L(γj−1)

(54)

with L(γj) = ∅, so that

π(γ1:k) =

k∏

j=1

π(j)(γj |γ0:j−1) ∝ w
(γ0:k)
0:k (55)

Metropolis-Hasting MCMC (MH-MCMC) is a popular tech-
nique for sampling from complex distributions, and has been
applied to solve the data association problem for multi-object
tracking in [40]. We seek to minimize the L1 error between an
approximate multi-scan GLMB and the multi-object posterior,
by sampling GLMB components from (55). MH-MCMC could
take some time for a new sample to be accepted, depending
on the proposal, not to mention the time it takes for the chain
to converge. Designing a proposal to have high acceptance
probability is still an open area of research. Furthermore, the
actual distribution of the samples and the convergence time
depend on the starting value. Usually, an MCMC simulation
is divided into two parts: the pre-convergence samples, known
as burn-ins, are discarded; and the post-convergence samples are
used for inference [16]. The key issue is that there are no bounds
on the burn-in time nor reliable techniques for determining when
convergence has occurred; see e.g. [16] and references therein.

The Gibbs sampler is a computationally efficient MCMC
algorithm, in which proposed samples are always accepted [8],
[24]. Further, for approximating multi-scan GLMB, the distribu-
tion of the samples is not relevant. Regardless of their distribu-
tion, all distinct samples will reduce the L1 approximation error.
However, Gibbs sampling requires the conditionals of (55), to
be easily computed and sampled.

In the following, we present two techniques for sampling from
(55). The first, detailed in Subsection IV-B , is based on sampling

from the factors (54), i.e., γj ∼ π(j)(·|γ0:j−1), for j = 1 : k. The
second, detailed in Subsection IV-C, is a full Gibbs sampler with
(55) as the stationary distribution.

B. Sampling From the Factors

Sampling from (54) using the Gibbs sampler [8], [24] involves
constructing a Markov chain where a new state γ′

j is generated

from state γj by sampling the values of γ′
j(ℓn), ℓn ∈ {ℓ1:|Lj |} �

Lj from the distribution π
(j)
n given by

π(j)
n (α|γ′

j(ℓ1:n−1), γj(ℓn+1:|Lj |), γ0:j−1)

∝ π(j)(γ′
j(ℓ1:n−1), α, γj(ℓn+1:|Lj |)|γ0:j−1)

where

γj(ℓu:v) � [γj(ℓu), . . . , γj(ℓv)],

γj(ℓn̄) � [γj(ℓ1:n−1), γj(ℓn+1:|Lj |)].

For a valid γj , i.e. π(j)(γj |γ0:j−1) > 0, it is necessary that
1F(Bj⊎L(γj−1))(L(γj)) = 1, i.e. L(γj) ⊆ Bj ⊎ L(γj−1). This
amounts to disregarding any γj that takes on a non-negative
value outside Bj ⊎ L(γj−1), and consider only those that take
on -1 everywhere outside of Bj ⊎ L(γj−1). In this case

π(j)
n (γj(ℓn)|γj(ℓn̄), γ0:j−1) ∝ 1Γj

(γj)η
(γ0:j(ℓn))

j|j−1 (ℓn)

for ℓn ∈ {ℓ1:|Bj⊎L(γj−1)|} � Bj ⊎ L(γj−1). Further, applying
Proposition 3 of [57] gives:

π(j)
n (γj(ℓn)|γj(ℓn̄), γ0:j−1) ∝ η

(γ0:j(ℓn))

j|j−1 (ℓn)M
(γj(ℓn̄))(γj(ℓn))

where

M (S)(α) =

{
1, α ≤ 0
(1− 1S(α)), α > 0

.

Hence, to generate γ′
j from a valid γj , we set γ′

j(ℓ) =
−1 for all ℓ ∈ Lj − Bj ⊎ L(γj−1) and sample γ′

j(ℓn) for

ℓn ∈ {ℓ1:|Bj⊎L(γj−1)|} from

π(j)
n (α|γ′

j(ℓ1:n−1), γj(ℓn+1:|Lj |), γ0:j−1)

∝ η
(γ0:j−1(ℓn),α)

j|j−1 (ℓn)M
(γ ′

j(ℓ1:n−1),γj(ℓn+1:|Lj |
))(α). (56)

Note that in implementation, we only need the values of γj
on Bj ⊎ L(γj−1). The pseudo code for sampling from (55) by
sampling from the factors is given in Algorithm 1.

This approach ensures that the sample γ1:k is a valid associ-
ation history. However, to guarantee that γ1:k is a sample from
(55), it is necessary to run each Gibbs sampler for sufficiently
long at each time j ∈ {1 : k}, to ensure that γj is a sample from

π(j)(·|γ0:j−1). Nonetheless, sampling from the factors can be
used to generate a good starting point for the full Gibbs sampler.

C. Gibbs Sampling

Sampling from (55) using the Gibbs sampler [8], [24] involves
constructing a Markov chain where a new state γ′

1:k is generated
from state γ1:k by sampling the values of γ′

j(ℓn), j = 1 : k,

ℓn ∈ {ℓ1:|Lj |} according to the conditional distribution πj,n

defined by

πj,n(α|

past
︷ ︸︸ ︷

γ′
0:j−1,

current (processed)
︷ ︸︸ ︷

γ′
j(ℓ1:n−1) ,

current (unprocessed)
︷ ︸︸ ︷

γj(ℓn+1:|Lj |) ,

future
︷ ︸︸ ︷
γj+1:k)

∝ π(γ′
0:j−1, γ

′
j(ℓ1:n−1), α, γj(ℓn+1:|Lj |), γj+1:k).

We also use the notation γj̄ � (γ0:j−1, γj+1:k) to denote the past
and future association maps.

Observe from (54) and (55) that for a valid γ1:k, i.e. π(γ1:k) >
0, it is necessary that 1Γi

(γi) = 1 (i.e. γi is positive 1-1), and
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Algorithm 1a: SampleJointFactors.

• input: R (no. samples)
• output: G0:k

initialize G0 := (γ0, w0, τ0);
for j = 1 : k

[G
(r)
0:j ]

R
r=1 := SampleFactors(G0:j−1, R); G0:j := G

(R)
0:j ;

end

Algorithm 1b: SampleFactors.

• input: G0:k−1 = (γ0:k−1, w0:k−1, τ0:k−1);R

• output: [G
(r)
0:k]

R

r=1 = [(γ
(r)
0:k, w

(r)
0:k, τ

(r)
0:k )]

R
r=1

Pk := |Bk ⊎ L(γk−1)|;Mk := |Zk|; c := [−1];Mk];
γk := zeros(Pk, 1); (or any valid state)

for r = 1 : R
γ′
k := [ ];
for n = 1 : Pk

for α = −1 : Mk

κ(α) := π
(k)
n (α|γ′

k(ℓ1:n−1), γk(ℓn+1:Pk
), γ0:k−1);

via (56)

end

γ′
k(ℓn) ∼ Categorical(c,κ); γ′

k := [γ′
k, γ

′
k(ℓn)];

end

γk := γ′
k; γ0:k := [γ0:k−1, γk];

compute w0:k, τ0:k from γ0:k via (49)x,(51);

G
(r)
0:k := (γ0:k, w0:k, τ0:k);

end

1F(Bi⊎L(γi−1))(L(γi)) = 1 (i.e. dead labels at i− 1 cannot be
live at i, or equivalently, a live label at i cannot be dead at
i− 1) for i = 1 : k. Thus, in addition to being positive 1-1,
consecutive elements of a valid γ1:k must be such that dead
labels remains dead at the next time. Closed form expressions
for the conditionals are given in the following Proposition (see
Appendix G for proof).

Proposition 10: Suppose γj : Lj→{−1: |Zj |}, j ∈{1: k},
is an element of a valid association history γ1:k, and let

η
(γj̄(ℓn))

j:n (α) �

t(ℓn)∏

i=j

η
(γ0:j−1(ℓn),α,γj+1:i(ℓn))

i|i−1 (ℓn)

M
(S)
β (α) �

{
δβ [α], α < 0
1, α = 0
(1− 1S(α)), α > 0

Then, for ℓn ∈ {ℓ1:|Bj⊎L(γj−1)|} � Bj⊎L(γj−1),

πj,n(γj(ℓn)|γj(ℓn̄), γj̄)

∝ η
(γj̄(ℓn))

j:n (γj(ℓn))M
(γj(ℓn̄))

γmin{j+1,k}(ℓn)
(γj(ℓn)) (57)

and for ℓn ∈ {ℓ|Bj⊎L(γj−1)|+1:|Lj |} � Lj − Bj⊎L(γj−1)

πj,n(γj(ℓn)|γj(ℓn̄), γj̄) = δ−1[γj(ℓn)]δγmin{j+1,k}(ℓn)[γj(ℓn)].
(58)

To generate γ′
j , from a valid γ1:k, we sample γ′

j(ℓn), ℓn ∈
{ℓ1:|Bj⊎L(γj−1)|} from

πj,n(α|γ
′
0:j−1, γ

′
j(ℓ1:n−1), γj(ℓn+1:|Lj |), γj+1:k) ∝ (59)

η
(γ ′

0:j−1(ℓn),γj+1:k(ℓn))

j:n (α)M
(γ ′

j(ℓ1:n−1),γj(ℓn+1:|Lj |
))

γmin{j+1,k}(ℓn)
(α)

Algorithm 2: MultiScanGibbs.

• input: G0:k = (γ0:k, w0:k, τ0:k);T (no. samples)

• output:[G
(t)
0:k]

T
t=1

for t = 1 : T
for j = 1 : k
γ′
j := [];

Pj := |Bj ⊎ L(γj−1)|; Mj := |Zj |; c := [−1:Mj ];
for n = 1 : Pj

for α = −1 : Mj

κ(α) :=
πj,n(α|γ′

0:j−1, γ
′
j(ℓ1:n−1), γj(ℓn+1:Pj

), γj+1:k);
via (57)

end

γ′
j(ℓn) ∼ Categorical(c,κ); γ′

j := [γ′
j ; γ

′
j(ℓn)];

end

γj := γ′
j ; γ0:j := [γ0:j−1, γj ];

compute w0:k, τ0:k from γ0:j via (49),(51);
end

G
(t)
0:k := (γ0:k, w0:k, τ0:k);

end

and set γ′
j(ℓn) = −1 for the remaining ℓn. This last step is

omitted in actual implementation and it is understood that γ′
j

is negative outside of {ℓ1:|Bj⊎L(γj−1)|}. The Gibbs sampler with
stationary distribution (55) is given in Algorithm 2.

Starting with a valid association history, it follows from
Proposition 10 that all iterates of the Gibbs sampler (Al-
gorithm 2) are also valid association histories. The value

η
(γ ′

0:j−1(ℓn),γj+1:k(ℓn))

j:n (α) can be interpreted as the unnormalized

probability that the trajectory with label ℓn has the sequence of
measurements with indices γ′

0:j−1(ℓn), α, γj+1:k(ℓn). The value

M
(γ ′

j(ℓ1:n−1),γj(ℓn+1:|Lj |
))

γmin{j+1,k}(ℓn)
(α) is simply a binary mask which

ensures that if ℓn is live at the next time, j + 1, then it cannot
be dead at the current time j, or that if ℓn is live at the current
time j, then it cannot take on a measurement assigned to other
labels at the current time. The product of these values is thus
the unnormalized conditional probability that the trajectory with
label ℓn has measurement index α at the current time, given
γ′
0:j−1, γ

′
j(ℓ1:n−1), γj(ℓn+1:|Lj |), γj+1:k, i.e. all of the other la-

bels and associations from all other times. Notice (58) implies
that if label ℓn is dead at the previous time j − 1, then it must
remain dead for all subsequent times.

Let Pj = |Bj ⊎ L(γj−1)| and Mj = |Zj | then Algorithm 2

has complexity O(T ·
∑k

j=1 P
2
j Mj), where T is the number

of iterations of the Markov chain. Thus if P̄ = maxj∈{1:k} Pj

and M̄ = maxj∈{1:k} Mj then indicatively Algorithm 2 has

complexity O(kT P̄ 2M̄).
Remark: Algorithm 2 can also be implemented as a block

Gibbs sampler. Instead of sampling every element of γ′
j from

the conditionals (59), we draw the entire γ′
j from

πj(γ
′
j |γ

′
0:j−1, γj+1:k) ∝ π(γ′

0:j−1, γ
′
j , γj+1:k).

Proposition 11: Starting from any valid initial state, the
Gibbs sampler defined by the conditionals (57) converges to the
target distribution (55) at an exponential rate. More concisely,
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Algorithm 3: Batch.

• input: R;T

• output: [G
(h)
0:k ]

H
h=1

G0:k := SampleJointFactors(R);

[G
(t)
0:k]

T̃
t=1 := Unique(MultiScanGibbs(G0:k, T ));

keep H best[G
(h)
0:k ]

H
h=1;

let πj denote the jth power of the transition kernel, then

max
γ1:k,γ

′
1:k∈Γk

(|πj(γ′
1:k|γ1:k)− π(γ′

1:k)|) ≤ (1− 2β)⌊
j
h⌋,

where,h = k + 1, β � minγ1:k,γ
′
1:k∈Γk

πh(γ′
1:k|γ1:k) > 0 is the

least likely h-step transition probability.
The proof follows along the same lines as Proposition 4 of

[57], with the 2-step transition probability replaced by the (k +
1)-step transition probability. Instead of going from one arbitrary
state of the chain to another via the all-zeros state in 2 steps as
in [57], we go to the all-negative state (consisting of all −1)
in k steps or less, and from this state to the other state in one
additional step.

For batch smoothing, Algorithm 1b can be used to initialize
the chain and Algorithm 2 can be used to generate samples
from (55). The pseudocode for batch smoothing is given in
Algorithm 3, where we enumerate the sum over γ0:k in (48)

as a sum over {γ
(h)
0:k}

H
h=1 and use the shorthand w

(h)
0:k = w

(γ
(h)
0:k )

0:k ,

τ
(h)
0:k (·) = τ

(γ
(h)
0:k ◦L(·))

0:k (·). Recall that one of the proposed esti-
mators is based on the most significant γ1:k. In this case, the
multi-scan Gibbs sampler can be used in a simulated annealing
setting to find the best γ1:k. The complexity of Algorithm 3 is
consequently O(kT P̄ 2M̄).

To perform smoothing-while-filtering which propagates (48)
recursively, Algorithm 1a can be used to propose a new ensemble
of γk on-the-fly, and Algorithm 2 can be used to generate an
ensemble of significant γ0:k. Algorithm 4 presents the steps
of a possible implementation of a smoothing-while-filtering
iteration. Due the parallelizability of the for loops, the time
complexity of Algorithm 4 is also O(kT P̄ 2M̄).

V. NUMERICAL EXPERIMENTS

A. Smoothing vs Filtering

This subsection demonstrates the performance of the multi-
scan GLMB smoother proposed in Section IV. For benchmark-
ing against GLMB filtering, we adopt the scenario in [57]
Section IV(A)2 , a summary of which is given here. The duration
is 100 time steps over which the number of objects is unknown
and varies with time due to births and deaths. Births occur around
times 1, 10, 60, 70 (with respectively 3, 4, 2, 2 births) and
multiple deaths occur around times 30, 50 (2 deaths at both
times). The 3 objects born at the beginning of the scenario cross
at the origin around time 20, and another two pairs of objects
cross, respectively on the left and right of the horizontal axis
around time 40. A peak number of 9 objects occur simultane-
ously towards the end of the scenario.

2Errata: the conference version [58] used the scenario from [52] and not the
scenario from [57] as originally quoted.

Algorithm 4: Smoothing-while-Filtering.

• input: [G
(h)
0:k−1]

Hk−1

h=1 ; [T (h)]Hk−1

h=1 ;T

• output:[G
(h)
0:k ]

Hk

h=1

for h = 1 : Hk−1

[G
(h,t)
0:k ]T̃

(h)

t=1 := Unique(SampleFactors(G
(h)
0:k−1, T

(h)));
end

keep H̄k best [G
(h)
0:k ]

H̄k

h=1;
for h = 1 : H̄k

[G
(h,t)
0:k ]Tt=1 := MultiScanGibbs(G

(h)
0:k , T );

end

[G
(h)
0:k ]

H̃k

h=1 := Unique([G
(h,t)
0:k ]

(H̄k,T )
h,t=(1,1)) ;

keep Hk best [G
(h)
0:k ]

Hk

h=1;

normalize weights [w
(h)
0:k ]

Hk

h=1

Individual object dynamics and observations are linear Gaus-
sian. The kinematic state of each object is a 4D state vector
[px, vx, py, vy] of 2D position and velocity, which follows a
constant velocity model with a sampling period of1s and process
noise standard deviation σν = 5 m/s2. The survival probability
PS for each object is 0.99. Objects are born according to an
LMB model with parameters {(rB,k(ℓi), pB,k(ℓi))}

3
i=1, where

ℓi = (k, i), rB,k(ℓi) = 0.04, and pB(x, ℓi) = N (x;m
(i)
B , PB)

with

m
(1)
B = [0, 0, 100, 0]T , m

(2)
B = [−100, 0,−100, 0]T ,

m
(3)
B = [100, 0,−100, 0]T , PB = diag([10, 10, 10, 10]T )2.

Observations are 2D position vectors [zx, zy] on the region
[−1000, 1000]m × [−1000, 1000]m with Gaussian noise stan-
dard deviation σε = 10 m. The detection probability PD =
0.66 is considerably lower than the original value of 0.88 in
[57]. Clutter follows a Poisson model with a uniform intensity
κk(z) = 1.93× 10−5 m−2 on the observation region, resulting
in an average count of 77 false alarms per scan, which is higher
than the original value of 66 in [57].

The multi-scan GLMB smoother (Algorithm 4) is run with
a maximum H = 1000 components and for T = 100 iterations
of the Markov chain, which is initialized by sampling from the
factors (Algorithm 1a). To improve efficiency, we employed a
block Gibbs sampling strategy. The single-scan GLMB filter
[57] is also run with a maximum of 1000 components.

Figure 1 plots the GLMB smoother estimate and the true
tracks in the x-y plane. Observe that the smoother initiates and
terminates all pertinent tracks. By design of the smoother, there
are no fragmented tracks. The estimates of the individual states
and labels are consistent. In the presence of low detection prob-
ability and high clutter rate, there is however some increase in
the positional errors during object crossings. The corresponding
output for the GLMB filter is shown in Fig. 2. In comparison
there is a significant incidence of false, dropped and broken
tracks, and even where a track has been declared, the positional
errors are noticeably larger.

At each time, the smoother updates the entire multi-object
history. Thus, for each multi-object trajectory estimate, it is
important to consider the tracking errors at every instant of this

history. Fig. 3 plots the OSPA [50] and OSPA(2) [5] errors of the
smoother’s (and filter’s) final estimate against time. 100 Monte
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Fig. 1. Ground truths and estimated tracks from multi-scan GLMB smoothing.
Starting and stopping positions are indicated with © and △ respectively.

Fig. 2. Ground truths and estimated tracks for single-scan GLMB filtering.
Starting and stopping positions are indicated with © and △ respectively.

Fig. 3. OSPA and OSPA(2) error curves for the final estimates from the GLMB
filter and multi-scan smoother over 100 Monte Carlo runs.

Fig. 4. Posterior distributions of number and lengths of trajectories.

Carlo trials are used with OSPA parameters c = 100 m, and

p = 1. The OSPA(2) error at time k is computed over a 10-scan
window ending at time k and assesses tracking performance
over this 10-scan window (see [4], [5] for details). Due to
the smoother’s ability to correct earlier estimates, its error is
significantly below the filtering error for the entire duration of
the estimate, albeit at higher computational cost.

Remark: The latest technique for large scale multi-
dimensional problems can handle up to 5 dimensions with
20 measurements per dimension, which translates to a linear
program with 3.2 million binary variables [39]. Our 100-scan
smoothing window example involves 100 dimensions with about
80 measurements per dimension, demonstrates the scalability
of the proposed multi-dimensional assignment solution. In most
multi-object tracking applications, such large smoothing win-
dows are not needed. The longer the smoothing window, the
more accurate the estimates, but the longer the computation
time. A good trade-off for a multi-object a tracker is to use a
moving smoothing window with shorter length.

B. Posterior Statistics Demonstration

This subsection considers a severe scenario to stress-test the
multi-scan GLMB model and illustrate its capability to provide
useful information even when tracking results are not reliable.
The setting is a cell-biology application, where the user is inter-
ested in cell lifetime, birth rate, death rate, and cell migration
patterns. The scenario duration is 1000 mins with data arriving
at 10-min intervals. To simulate variations in cell lifetimes: at
the 1st min 4 cells appear and live for 100 mins; at the 200th
min another 4 cells appear and live for 200 mins; at the 500th
min another 4 cells appear and live for 400 mins. The cells are
initiated at the centres of the 4 quadrants of the region, with a
common speed towards the origin and terminate before reaching
the origin.

The cells have survival probability of 0.95, and their states
are 4D vectors (planar position/velocity) that follow a constant
velocity model with sampling period ∆ = 10 mins, and pro-
cess noise with standard deviation σν = 0.01 mm/∆2. The birth
model is an LMB with parameters {(rB,k(ℓi), pB,k(ℓi))}4i=1,
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Fig. 5. Posterior cardinality distributions of births and deaths at each time.

Fig. 6. Smoothed PHD in velocity space at various times.

where rB,k(ℓi) = 0.03 and pB(x, ℓi) = N (x;m
(i)
B , PB) with

m
(1)
B = [5, 0, 5, 0]T , m

(2)
B = [5, 0,−5, 0]T ,

m
(3)
B = [−5, 0,−5, 0]T , m

(3)
B = [−5, 0, 5, 0]T ,

and PB = diag([0.15, 0.15, 0.15, 0.15]T )2. Observations are
2D positions on the region [−10, 10]mm × [−10, 10]mm, with
additive Gaussian noise standard deviation σε = 0.3 mm. Clut-
ter is uniform Poisson with a rate of 0.3 per scan, and the
detection probability is 0.33. In practice data with such low
detection probability will be discarded, we only use this sce-
nario to demonstrate the capability of the proposed model. The
multi-scan GLMB smoother is run with the sameH,T and block
sampling strategy as in the previous subsection.

Fig. 4 shows the posterior distributions of the number of
trajectories and cell lifetimes. Observe that the smoother
correctly estimates 12 trajectories (with negligible modes at
13, . . . , and 19), and the 3 modes of cell lifetimes (100, 200,
and 400 mins). Note that shorter lifetime estimates have larger
uncertainty. From Fig. 5, showing the cardinality distributions
of births and deaths in time, note that the smoother correctly
identifies the instances of 4 births (at 1, 200, and 500 mins),
and 4 deaths (at 100, 400, and 900 mins). There is however
considerable uncertainty in the estimates of the death times due
to the high uncertainty in the data.

Figure 6 shows the smoothed unlabeled PHD (or first
moment) in the velocity space at 100, 200, 500, and 900 mins.
The first 3 plots correctly confirm the presence of 4 modes of
velocity (radially through the centre). The last plot correctly
confirms the onset of cell deaths. Even with some uncertainty
in the drift, these plots indicate overall migration of the cells
diagonally across the region.

VI. CONCLUSIONS

By introducing a multi-scan version of the GLMB model,
we developed a multi-scan version of the GLMB filter to
perform multi-object smoothing. We showed that computing
the multi-scan GLMB posterior with minimal L1 -error
(from its exact value) requires solving a multi-dimensional
assignment problem with very high dimensions. Further, we
developed an efficient and highly parallelizable algorithm
for solving such multi-dimensional assignment problems
using Gibbs sampling, and subsequently a novel multi-object
smoothing-while-filtering algorithm. Numerical multi-object
tracking examples demonstrated that the proposed algorithm
significantly improves tracking performance as well as
eliminating track fragmentation, a problem often found in
multi-object filters. In addition, statistical characterization of
variables/parameters pertaining to the underlying objects, can
provide useful information, even for severe scenarios where
multi-object trajectory estimates are no longer meaningful.

APPENDIX

A. Properties of Multi-Scan Exponentials

To present relevant properties of multi-scan exponentials, we

introduce some useful partitionings for the labels of the multi-

object state sequence Xj:k. Given a time i in {j : k}, a label

ℓ ∈ ∪k
r=jL(Xr) is alive at i iff ℓ ∈ L(Xi), terminates at t(ℓ) < i

(before i) iff ℓ ∈ L(Xt)− L(Xt+1), and born at time s(ℓ) > i
(after i) iff ℓ ∈ L(Xs) ∩ Bs. The set of labels in Xj:k can be

partitioned into labels terminated before i, live labels at i, and

labels born after i, i.e.

k⋃

r=j

L(Xr) =
←−−−−
L(Xi)⊎L(Xi)⊎

−−−−→
L(Xi) (60)

where

←−−−−
L(Xi) �

{

ℓ ∈
k
∪

r=j
L(Xr) : t(ℓ) < i

}

=
i⋃

r=j

L(Xr)−L(Xi) =
i−1⊎

t=j

(L(Xt)− L(Xt+1))

(61)

−−−−→
L(Xi) =

{

ℓ ∈
k
∪

r=j
L(Xr) : s(ℓ) > i

}

=

k⋃

r=i

L(Xr)−L(Xi) =

k⊎

s=i+1

L(Xs) ∩ Bs. (62)

When i = k,
−−−−→
L(Xk) = ∅ and the set of labels in Xj:k can be

partitioned into labels terminated before k and live labels at k,

i.e. (61 ) becomes

k⋃

r=j

L(Xr) =
←−−−−
L(Xk)⊎L(Xk). (63)
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In addition, if j = k − 1, then
←−−−−
L(Xk) = L(Xk−1)− L(Xk),

and using the decomposition L(Xk) = (L(Xk−1) ∩ L(Xk))
⊎(Bk ∩ L(Xk)), the set of labels in Xk−1:k can be partitioned

into labels terminated at k − 1, labels survived to k, and labels

born at k, i.e. (63) becomes

k⋃

r=k−1

L(Xr) = (64)

(L(Xk−1)− L(Xk))⊎(L(Xk−1) ∩ L(Xk))⊎(Bk ∩ L(Xk)).

When i = j,
←−−−−
L(Xj) = ∅ and the set of labels in Xj:k can be

partitioned into live labels at j and labels born after j, i.e. (62)

becomes

k⋃

r=j

L(Xr) =L(Xj)⊎
−−−−→
L(Xj). (65)

B. Proof of Lemma 1

Parts (i) and (ii) follows straight from the definition of multi-

scan exponential.

To prove (iii), noting from (60) that the set of labels ∪k
r=j

L(Xr) can be partitioned into those terminated before i, live

at i, and born after i , we partition the set Xj:k of trajectories

accordingly, i.e.

Xj:k =

{

x
(ℓ)
s(ℓ):t(ℓ) : ℓ ∈

k
∪

r=j
L(Xr)

}

= {x
(ℓ)
s(ℓ):t(ℓ) : ℓ ∈

←−−−−
L(Xi)}⊎{x

(ℓ)
s(ℓ):t(ℓ) : ℓ ∈ L(Xi)}

⊎{x
(ℓ)
s(ℓ):t(ℓ) : ℓ ∈

−−−−→
L(Xi)}.

Hence, using (ii) gives

[h]Xj:k = [h]
{x

(ℓ)

s(ℓ):t(ℓ)
:ℓ∈

←−−−−
L(Xi)} [h]

{x
(ℓ)

s(ℓ):t(ℓ)
:ℓ∈L(Xi)}

× [h]
{x

(ℓ)

s(ℓ):t(ℓ)
:ℓ∈

−−−−→
L(Xi)} . (66)

and setting i to k, and i to j we have

[h]Xj:k = [h]
{x

(ℓ)

s(ℓ):t(ℓ)
:ℓ∈

←−−−−
L(Xk)} [h]

{x
(ℓ)

s(ℓ):k
:ℓ∈L(Xk)} , (67)

[h]Xj:k = [h]
{x

(ℓ)

j:t(ℓ)
:ℓ∈L(Xj)} [h]

{x
(ℓ)

s(ℓ):t(ℓ)
:ℓ∈

−−−−→
L(Xj)} . (68)

Using (67) and (68), we partition [g]Xj:i and [h]Xi:k , and then

combine them as follows

[g]Xj:i [h]Xi:k = [g]
{x

(ℓ)

s(ℓ):t(ℓ)
:ℓ∈

←−−−−
L(Xi)} [g]

{x
(ℓ)

s(ℓ):i
:ℓ∈L(Xi)}

× [h]
{x

(ℓ)

i:t(ℓ)
:ℓ∈L(Xi)} [h]

{x
(ℓ)

s(ℓ):t(ℓ)
:ℓ∈

−−−−→
L(Xi)}

= [g]
{x

(ℓ)

s(ℓ):t(ℓ)
:ℓ∈

←−−−−
L(Xi)}

∏

ℓ∈L(Xi)

g(x
(ℓ)
s(ℓ):i)

×
∏

ℓ∈L(Xi)

h(x
(ℓ)
i:t(ℓ)) [h]

{x
(ℓ)

s(ℓ):t(ℓ)
:ℓ∈

−−−−→
L(Xi)}

= [g ⊙ h]
{x

(ℓ)

s(ℓ): t(ℓ)
:ℓ∈

←−−−−
L(Xi)}

× [g ⊙ h]
{x

(ℓ)

s(ℓ):t(ℓ)
:ℓ∈L(Xi)}

× [g ⊙ h]
{x

(ℓ)

s(ℓ):t(ℓ)
:ℓ∈

−−−−→
L(Xi)}

= [g ⊙ h]Xj:k .

C. Proof of Proposition 2 (Multi-Object Transition)

Using (64) to partition L(Xk−1) ∪ L(Xk) into disappearing

labels at time k − 1, surviving labels at time k, and new born

labels at time k, and noting that

{x
(ℓ)
k : ℓ ∈ Bk ∩ L(Xk)} = {x

(ℓ)
k : s(ℓ) = k}

{x
(ℓ)
k−1:k : ℓ ∈ L(Xk−1) ∩ L(Xk)} = {x

(ℓ)
k−1:k : t(ℓ) = k}

{x
(ℓ)
k−1 : ℓ ∈ L(Xk−1)− L(Xk)} = {x

(ℓ)
k−1 : t(ℓ) = k − 1}

we have

Xk−1:k ≡ {x
(ℓ)
s(ℓ):t(ℓ) : ℓ ∈ L(Xk−1) ∪ L(Xk)}

= {x
(ℓ)
k−1 : t(ℓ) = k − 1}⊎{x

(ℓ)
k−1:k : t(ℓ) = k}

⊎{x
(ℓ)
k : s(ℓ) = k}.

Let x
(ℓ)
k = (x

(ℓ)
k , ℓ) to denote the element of the multi-object

state Xk at time k, with label ℓ ∈ L(Xk), then the multi-object

transition density given in [54], [56] can be rewritten as

fk|k−1 (Xk|Xk−1)

= ∆(Xk)1F(Bk⊎L(Xk−1))(L(Xk))Q
Bk−L(Xk)
B,k

×
∏

ℓ∈L(Xk−1)−L(Xk)

QS,k−1(x
(ℓ)
k−1, ℓ)

×
∏

ℓ∈Bk∩L(Xk)

PB,k(ℓ)fB,k(x
(ℓ)
k , ℓ)

×
∏

ℓ∈L(Xk−1)∩L(Xk)

PS,k−1(x
(ℓ)
k−1, ℓ)fS,k|k−1(x

(ℓ)
k |x

(ℓ)
k−1, ℓ)

= ∆(Xk)1F(Bk⊎L(Xk−1))(L(Xk))Q
Bk−L(Xk)
B,k

× [φk−1:k]
{x

(ℓ)
k−1:t(ℓ)=k−1} [φk−1:k]

{x
(ℓ)
k−1:k:t(ℓ)=k}

× [φk−1:k]
{x

(ℓ)
k

:s(ℓ)=k}

= ∆(Xk)1F(Bk⊎L(Xk−1))(L(Xk))Q
Bk−L(Xk)
B,k [φk−1:k]

Xk−1:k

where the last step follows from (68).

D. Proof of Proposition 3

Using the δ-form we have
∫

f(L(Xj:k))π(Xj:k)δXj:k

=

∫

f(L(Xj:k))
∑

ξ,Ij:k

w(ξ)(Ij:k)δj:k[L(Xj:k)][p
(ξ)]Xj:kδXj:k

=
∑

ξ,Ij:k

f(Ij:k)w
(ξ)(Ij:k)

∫

δj:k[L(Xj:k)][p
(ξ)]Xj:kδXj:k

=
∑

ξ,Ij:k

f(Ij:k)w
(ξ)(Ij:k)

∏

ℓ∈Ij:k

∫

p(ξ)(x
(ℓ)
s(ℓ):t(ℓ), ℓ)dx

(ℓ)
s(ℓ):t(ℓ)

(69)

=
∑

ξ,Ij:k

f(Ij:k)w
(ξ)(Ij:k),

where (69) follows from Lemma D below.
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Lemma D: For a function h taking trajectories to the reals,

with h(·, ℓ) integrable for each ℓ ∈ ∪k
i=jIi ≡ Ij:k

∫

δIj:k [L(Xj:k)][h]
Xj:kδXj:k

=
∏

ℓ∈Ij:k

∫

h(x
(ℓ)
s(ℓ):t(ℓ), ℓ)dx

(ℓ)
s(ℓ):t(ℓ).

Proof: For g : F(X × L) → R and I = {i1, . . . , i|I|} ⊆ L,
∫

δI [L(X)]g(X)δX

=

∞∑

n=0

∑

l1:n

1

n!

∫

δI [{l1, . . . , ln}]

× g({(l1, x1), . . . , (ln, xn)})dx1:n

=

∫

g({(i1, x1), . . . , (i|I|, x|I|)})dx1:|I| (70)

For g : F(X × Lj)× · · ·×F(X × Lk) → R, and It = {it,1,
. . . , it,|It|} ⊆ Lt, t = j, . . . , k,
∫

δIj:k [L(Xj:k)]g(Xj:k)δXj

= δIj+1:k
[L(Xj+1:k)]

∫

δIj [L(Xj)]g(Xj ,Xj+1:k)δXj

= δIj+1:k
[L(Xj+1:k)]

×

∫

g({(ij,1, xj,1), . . . , (ij,|Ij |, xj,|Ij |)},Xj+1:k)dxj,1:|Ij |

where the last line follows from (70). Further, iterating for j +
1, · · · , k
∫

δIj:k [L(Xj:k)]g(Xj:k)δXj:k

=

∫

· · ·

∫

g({(ij,1, xj,1), . . . , (ij,Nj
, xj,|Ij |)}, . . . ,

{(ik,1, xk,1), . . . , (ik,Nk
, xk,|Ik |)})dxj,1:|Ij | · · · dxk,1:|Ik |

Setting g(Xj:k) = [h]Xj:k yields
∫

δIj:k [L(Xj:k)][h]
Xj:kδXj:k

=

∫

δIj:k [L(Xj:k)]
∏

ℓ∈Ij:k

h(x
(ℓ)
s(ℓ):t(ℓ))δXj:k

=

∫

· · ·

∫
∏

ℓ∈Ij:k

h(x
(ℓ)
s(ℓ):t(ℓ))dxj,1:|Ij | · · · dxk,1:|Ik |

=

∫

· · ·

∫
∏

ℓ∈Ij:k

h(x
(ℓ)
s(ℓ):t(ℓ), ℓ)dxj,1 · · · dxj,|Ij |

· · · dxk,1 · · · dxk,|Ik |

=
∏

ℓ∈Ij:k

∫

h(x
(ℓ)
s(ℓ):t(ℓ), ℓ)dx

(ℓ)
s(ℓ):t(ℓ)

where the last step follows from regrouping dxj,1 · · · dxj,|Ij |

· · · dxk,1 · · · dxk,|Ik| to
∏

ℓ∈Ij:k
dx

(ℓ)
s(ℓ):t(ℓ). �

E. Proof of Proposition 8 (Multi-Scan GLMB Recursion)

Since π0:k−1(X0:k−1) is the multi-scan GLMB (36) with j =
0, substituting it into the posterior recursion (6), gives the multi-

scan GLMB (38)–(41) with j = 0, i.e.

π0:k(X0:k)

∝ gk(Zk|Xk)fk|k−1(Xk|Xk−1)π0:k−1(X0:k−1)

= gk(Zk|X0:k)
(
fk|k−1(Xk|Xk−1)π0:k−1(X0:k−1)

)

∝ ∆(X0:k)
∑

ξ∈Ξ

∑

θk∈Θk

w
(ξ,θk)
0:k (L(X0:k))[p

(ξ,θk)
0:k ]X0:k .

To evaluate p
(ξ,θk)
0:k (·, ℓ) as per (39), note from (36) that

p
(ξ)
0:k(x

(ℓ)
s(ℓ):t(ℓ), ℓ)

= (p
(ξ)
0:k−1 ⊙ φk−1:k)(x

(ℓ)
s(ℓ):t(ℓ), ℓ)

=

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φk−1:k(x
(ℓ)
s(ℓ):t(ℓ), ℓ), s(ℓ) > k − 1

p
(ξ)
0:k−1(x

(ℓ)
s(ℓ):k−1, ℓ)

×φk−1:k(x
(ℓ)
k−1:t(ℓ), ℓ), s(ℓ) ≤ k − 1 ≤ t(ℓ)

p
(ξ)
0:k−1(x

(ℓ)
s(ℓ):t(ℓ), ℓ), t(ℓ) < k − 1

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

PB,k(ℓ)fB,k(x
(ℓ)
k , ℓ), s(ℓ) = k

p
(ξ)
0:k−1(x

(ℓ)
s(ℓ):k−1, ℓ)PS,k−1(x

(ℓ)
k−1, ℓ)

×fS,k|k−1(x
(ℓ)
k |x

(ℓ)
k−1, ℓ),

s(ℓ) < t(ℓ) = k

p
(ξ)
0:k−1(x

(ℓ)
s(ℓ):k−1, ℓ)QS,k−1(x

(ℓ)
k−1, ℓ), s(ℓ) ≤ k − 1 = t(ℓ)

p
(ξ)
0:k−1(x

(ℓ)
s(ℓ):t(ℓ), ℓ), t(ℓ) < k − 1

Moreover, multiplying by ψ
(θk(ℓ))
0:k,Zk

(x
(ℓ)
s(ℓ):t(ℓ), ℓ),

p
(ξ)
0:k(x

(ℓ)
s(ℓ):t(ℓ), ℓ)ψ

(θk(ℓ))
0:k,Zk

(x
(ℓ)
s(ℓ):t(ℓ), ℓ) = (71)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ
(θk(ℓ))
B,k (x

(ℓ)
k , ℓ), s(ℓ) = k

p
(ξ)
0:k−1(x

(ℓ)
s(ℓ):k−1, ℓ)

×Λ
(θk(ℓ))
S,k|k−1(x

(ℓ)
k |x

(ℓ)
k−1, ℓ), s(ℓ) < t(ℓ) = k

p
(ξ)
0:k−1(x

(ℓ)
s(ℓ):k−1, ℓ)QS,k−1(x

(ℓ)
k−1, ℓ), s(ℓ) ≤ k−1 = t(ℓ)

p
(ξ)
0:k−1(x

(ℓ)
s(ℓ):t(ℓ), ℓ), t(ℓ) < k−1

and integrating we have

ψ̄
(ξ,θk)
0:k,Zk

(ℓ) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Λ̄
(θk(ℓ))
B,k (ℓ), s(ℓ) = k

Λ̄
(ξ,θk(ℓ))
S,k|k−1 (ℓ), s(ℓ) < t(ℓ) = k

Q̄
(ξ)
S,k−1(ℓ), s(ℓ) ≤ k − 1 = t(ℓ)

1, t(ℓ) < k − 1

(72)

Note that in the last step we used
∫

Λ
(θk(ℓ))
S,k (xk, ℓ|xk−1)p

(ξ)
0:k−1(xs(ℓ):k−1, ℓ)dxs(ℓ):k

=

∫

Λ
(θk(ℓ))
S,k (xk, ℓ|xk−1)p

(ξ)
k−1(xk−1, ℓ)dxk−1:k = Λ̄

(ξ,θk)
S,k, (ℓ)
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∫

QS,k−1(xk−1, ℓ)p
(ξ)
0:k−1(xs(ℓ):k−1, ℓ)dxs(ℓ):k−1

=

∫

QS,k−1(xk−1, ℓ)p
(ξ)
k−1(xk−1, ℓ)dxk−1 = Q̄

(ξ)
S,k−1(ℓ)

Hence, dividing (71) by (72) according to (39) gives (46).

Using the following equivalences: s(ℓ) = k iff ℓ ∈ D(θk) ∩
Bk; s(ℓ) < t(ℓ) = k iff ℓ ∈ D(θk)− Bk; s(ℓ) ≤ k − 1 = t(ℓ)
iff ℓ ∈ Ik−1−D(θk), we have
[

ψ̄
(ξ,θk)
0:k,Zk

]I0:k
Q

Bk−D(θk)
B,k

=
[

Λ̄
(θk(·))
B,k (·)

]D(θk)∩Bk
[

Λ̄
(ξ,θk(·))
S,k|k−1 (·)

]D(θk)−Bk

×
[

Q̄
(ξ)
S,k−1(·)

]Ik−1−D(θk)

Q
Bk−D(θk)
B,k

=
[

ω
(ξ,θk)
k|k−1

]Bk⊎Ik−1

(73)

since D(θk) ∩ Bk, D(θk)− Bk, Ik−1−D(θk), and Bk −D(θk)
form a partition of Bk ⊎ Ik−1.

Noting that for any θk ∈ Θk, 1Θk(Ik)(θk) = δD(θk)[Ik], and

substituting (36), (73) into definition (41) we have

w
(ξ,θk)
0:k (I0:k) = 1F(Bk⊎Ik−1)(D(θk))

[

ω
(ξ,θk)
k|k−1

]Bk⊎Ik−1

× w
(ξ)
0:k−1(I0:k−1)δD(θk)[Ik]

= ω
(ξ,θk)
0:k (I0:k−1)δD(θk)[Ik].

F. Computing Multi-Scan GLMB Parameters

Under a linear Gaussian multi-object model:

ψ
(j)
k,{z1:m}(x, ℓ) =

⎧

⎨

⎩

P
(ℓ)
D,k

N (zj ;Hkx,Rk)

κk(zj)
, if j > 0

Q
(ℓ)
D,k if j = 0

PS,k−1(ς, ℓ) = P
(ℓ)
S,k−1, QS,k−1(ς, ℓ) = Q

(ℓ)
S,k−1

fS.k|k−1(x|ς, ℓ) = N (x;Fk|k−1ς, Qk)

PB,k(ℓ) = P
(ℓ)
B,k, QB,k(ℓ) = Q

(ℓ)
B,k

fB,k(x, ℓ) = N (x;m
(ℓ)
B,k, Q

(ℓ)
B,k)

where N (·;µ,Σ) denotes a Gaussian density with mean µ and

covariance Σ, Fk|k−1 and Hk are the single-object transition

and measurement matrices, Qk and Rk are the process and

measurement noise covariances, m
(ℓ)
B,k and Q

(ℓ)
B,k are the mean

and covariance of any new state with label ℓ. It follows from

(51) that the densities τ
(js(ℓ):k)

0:k (·, ℓ) are Gaussians. Further, the

(canonical) multi-scan GLMB parameters, τ
(js(ℓ):k)

0:k (·, ℓ) and

η
(js(ℓ):k)

k|k−1 (ℓ) (required for the Gibbs sampler) can be computed

recursively using the following standard results on joint and

conditional Gaussians

N (z;Hx,R)N (x;m,P )

= N (x;µ(z,H,R,m, P ),Σ(H,R, P )) q(z;H,R,m,P )

= N
(

[x; z] , µ̂(H,m), Σ̂(H,R, P )
)

where

µ(z,H,R,m, P ) � m+ PHT (R+HPHT )−1(z −Hm)

Σ(H,R, P ) � P − PHT (R+HPHT )−1HP

q(z;H,R,m,P ) � N
(
z;Hm,R+HPHT

)

µ̂(H,m) �

[
m
Hm

]

,

Σ̂(H,R, P ) �

[
P PHT

HP R+HPHT

]

.

Specifically:

τ
(js(ℓ):k)

0:k (xs(ℓ):t(ℓ), ℓ)

= N (xs(ℓ):t(ℓ);m
(js(ℓ):t(ℓ))

0:t(ℓ) (ℓ), P
(js(ℓ):t(ℓ))

0:t(ℓ) (ℓ))

η
(js(ℓ):k)

k|k−1 (ℓ) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P
(ℓ)
B,kq

(jk)
k (zjk , ℓ), ℓ ∈ Bk, jk ≥ 0

P
(ℓ)
S,k−1q

(js(ℓ):k)

k (zjk , ℓ), ℓ ∈ Lk−1, jk ≥ 0

Q
(ℓ)
B,k, ℓ ∈ Bk, jk < 0

Q
(ℓ)
S,k−1, ℓ ∈ Lk−1, jk < 0

where

m
(js(ℓ):k)

0:k (ℓ)

=

{

m̂
(js(ℓ):k)

0:k (ℓ), jk = 0

µ(zjk , HkΠ
(ℓ)
k , Rk, m̂

(js(ℓ):k)

0:k (ℓ), P̂
(js(ℓ):k)

0:k (ℓ)), jk > 0

P
(js(ℓ):k)

0:k (ℓ) =

{

P̂
(js(ℓ):k)

0:k (ℓ), jk = 0

Σ(HkΠ
(ℓ)
k , Rk, P̂

(js(ℓ):k)

0:k (ℓ)), jk > 0

m̂
(js(ℓ):k)

0:k (ℓ)

=

{

m
(ℓ)
B,k, s(ℓ) = k

µ̂(Fk|k−1Π
(ℓ)
k−1,m

(js(ℓ):k−1)

0:k−1 (ℓ)), s(ℓ) < k

P̂
(js(ℓ):k)

0:k (ℓ)

=

{

Q
(ℓ)
B,k, s(ℓ) = k

Σ̂(Fk|k−1Π
(ℓ)
k−1, Qk, P

(js(ℓ):k−1)

0:k−1 (ℓ)), s(ℓ) < k

Π
(ℓ)
j =

[
0d,(j−s(ℓ))d, Id,d

]

q
(js(ℓ):k)

k (zjk , ℓ)

=

⎧

⎨

⎩

Q
(ℓ)
D,k, jk = 0

P
(ℓ)
D,k

q(zjk ;Hk,Rk,m̂
(js(ℓ):k)

k
(ℓ),P̂

(js(ℓ):k)

k
(ℓ))

κk(zjk )
, jk > 0

m̂
(js(ℓ):k)

k (ℓ) = Π
(ℓ)
k m̂

((js(ℓ):k)

0:k (ℓ),

P̂
(js(ℓ):k)

k (ℓ) = Π
(ℓ)
k P̂

((js(ℓ):k)

0:k (ℓ)(Π
(ℓ)
k )T

and d denotes the dimension of single-object state space.

For non-linear non-Gaussian models particle smoothing

methods can be used to approximate τ
(js(ℓ):k)

0:k (·, ℓ) and subse-

quently η
(js(ℓ):k)

k|k−1 (ℓ) by replacing integrals with sums.
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G. Proof of Proposition 10

Using (55) and noting that we are only interested in the

functional dependence ofπj,n(γj(ℓn)|γj(ℓn̄), γj̄) on γj(ℓn), we

write

πj,n(γj(ℓn)|γj(ℓn̄), γj̄)

∝ π(γ0:j−1, γj(ℓn), γj(ℓn̄), γj+1:k)

=

j−1
∏

i=1

π(i)(γi|γ0:i−1)

k∏

i=j

π(i)(γi|γ0:i−1)

∝
k∏

i=j

π(i)(γi|γ0:i−1)

sinceγj(ℓn) is not contained in any of the factorsπ(i)(γi|γ0:i−1),
i=1, . . . , j − 1. Substituting (54) for the remaining factors

gives

πj,n(γj(ℓn)|γj(ℓn̄), γj̄)

∝
k∏

i=j

1Γi
(γi)1F(Bi⊎L(γi−1))(L(γi))

k∏

i=j

∏

ℓ∈Bi⊎L(γi−1)

η
(γ0:i(ℓ))
i|i−1 (ℓ)

=

k∏

i=j

1Γi
(γi)1F(Bi⊎L(γi−1))(L(γi))

t(ℓn)∏

i=j

η
(γ0:i(ℓn))
i|i−1 (ℓn)

×

⎛

⎝

k∏

i=j

∏

ℓ∈Bi⊎L(γi−1)−{ℓn}

η
(γ0:i(ℓ))
i|i−1 (ℓ)

⎞

⎠

∝ 1F(Bj⊎L(γj−1))(L(γj))1F(Bj+1⊎L(γj))(L(γj+1))1Γj
(γj)

× η
(γj̄(ℓn))

j:n (γj(ℓn))

where in the last step we aggregated all terms not involving

γj(ℓn) into the normalizing constant.

The validity of γ1:k implies both 1F(Bj⊎L(γj−1))(L(γj)) and

1F(Bj+1⊎L(γj))(L(γj+1)) equal to 1, which means that the

following conditions hold

∀ℓ ∈ Lj − Bj ⊎ L(γj−1), γj(ℓ) = −1, (74)

∀ℓ ∈ Lj , γj(ℓ) ≥ 0 or γmin{j+1,k}(ℓ) = −1. (75)

Violation of (74) means 1F(Bj⊎L(γj−1))(L(γj)) = 0, because

if there exist an ℓ ∈ Lj − Bj⊎L(γj−1) such that γj(ℓ) ≥ 0, then

L(γj) is not in Bj ⊎ L(γj−1), i.e. 1F(Bj⊎L(γj−1))(L(γj)) = 0.

Violation of (75) means 1F(Bj+1⊎L(γj))(L(γj+1)) = 0, be-

cause (except for j = k) if there exist an ℓ ∈ Lj such that

γj(ℓ) < 0 and γj+1(ℓ) ≥ 0, then ℓ is not in L(γj) and hence

L(γj+1) (which contains ℓ) is not contained in Bj+1 ⊎ L(γj),
i.e. 1F(Bj+1⊎L(γj))(L(γj+1)) = 0.

We consider πj,n(γj(ℓn)|γj(ℓn̄), γj̄) for ℓn ∈
{ℓ1:|Bj⊎L(γj−1)|} first, and subsequently for ℓn ∈
{ℓ|Bj⊎L(γj−1)|+1:|Lj |}, if this set is non-empty.

For any ℓn ∈ {ℓ1:|Bj⊎L(γj−1)|} (74) holds, and we have either

(i) γj(ℓn) ≥ 0 or γmin{j+1,k}(ℓn) = −1; or (ii) its (logical)

complement, i.e. γj(ℓn) < 0 and γmin{j+1,k}(ℓn) ≥ 0.
For case (i), since (75) also hold, we have

πj,n(γj(ℓn)|γj(ℓn̄), γj̄)

∝ 1Γj
(γj)η

(γj̄(ℓn))

j:n (γj(ℓn))

∝

⎧

⎨

⎩

η
(γj̄(ℓn))

j:n (γj(ℓn)), γj(ℓn) ≤ 0

η
(γj̄(ℓn))

j:n (γj(ℓn))(1− 1γj(ℓn̄)(γj(ℓn))), γj(ℓn) > 0
,

where the last step invokes Proposition 3 of [57].

Case (ii) violates (75), hence 1F(Bj+1⊎L(γj))(L(γj+1)) = 0

and consequently π(γj(ℓn)|γj(ℓn̄), γj̄) = 0.

Decomposing γj(ℓn) ≤ 0 into two cases γj(ℓn) = 0 and

γj(ℓn) < 0, and combining the latter with case (ii) we have

πj,n(γj(ℓn)|γj(ℓn̄), γj̄)

∝

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

η
(γj̄(ℓn))

j:n (γj(ℓn))δγmin{j+1,k}(ℓn)[γj(ℓn)], γj(ℓn) < 0

η
(γj̄(ℓn))

j:n (γj(ℓn)), γj(ℓn) = 0

η
(γj̄(ℓn))

j:n (γj(ℓn))(1− 1γj(ℓn̄)(γj(ℓn))), γj(ℓn) > 0

and hence (57).

For any ℓn ∈ {ℓ|Bj⊎L(γj−1)|+1 : ℓ|Lj |}, any values

other than γj(ℓn) = −1 and γmin{j+1,k}(ℓn) = −1 would

violate (75) or (74). Either of these violations imply

1F(Bj+1⊎L(γj))(L(γj+1)) = 0. Hence we have (58).
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