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I. INTRODUCTION

• Advances in the manufacturing of MEMS-based inertial sensors have 
made it possible to build small, inexpensive, and very accurate Inertial 
Measurement Units (IMUs).

• An important advantage of visual sensing is that images are high-
dimensional measurements, with rich information content.



I. INTRODUCTION

• Our approach is motivated by the observation that, when a static 
feature is viewed from several camera poses, it is possible to define 
geometric constraints involving all these poses. 

• The primary contribution of our work is a measurement model that 
expresses these constraints without including the 3D feature position 
in the filter state vector, resulting in computational complexity only 
linear in the number of features. 

feature = landmark



II. RELATED WORK

•① One family of algorithms for fusing inertial measurements with 
visual feature observations follows the Simultaneous Localization and 
Mapping (SLAM) paradigm.

• In these methods, the current IMU pose, as well as the 3D positions 
of all visual landmarks are jointly estimated with the difference that 
IMU measurements, instead of a statistical motion model, are used 
for state propagation.

MonoSLAM + IMU



II. RELATED WORK

• The fundamental advantage of SLAM based algorithms is that they 
account for the correlations that exist between the pose of the 
camera and the 3D positions of the observed features. 

• On the other hand, the main limitation of SLAM is its high 
computational complexity.



II. RELATED WORK

•② Several algorithms exist that, contrary to SLAM, estimate the pose 
of the camera only(i.e., do not jointly estimate the feature positions), 
with the aim of achieving real-time operation.

• Utilize the feature measurements to derive constraints between pairs 
of images.

• Our algorithm can express constraints between multiple camera 
poses, and can thus attain higher estimation accuracy.
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• Discrete Kalman filter — predict equations.
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• Discrete Kalman filter — update equations.
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• Extended Kalman Filter (Discrete)
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* Introduction to Kalman Filter

• EKF:

How to predict covariance matrix ?

linearization



* Introduction to Kalman Filter

• Two important equations 

Error State

Residual

How the error propagates

How the error is measured
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• EKF predict equations.

Predict state

Predict covariance



* Introduction to Kalman Filter

• EKF update equations.

Kalman Gain

Update Covariance

Update state
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III. ESTIMATOR DESCRIPTION

• A. Structure of the EKF state vector

EKF state vector comprises 

(i) the evolving IMU state

(ii) a history of up to past poses of the camera



III. ESTIMATOR DESCRIPTION

• EKF state vector   — IMU State

: the unit quaternion describing the rotation from  {G} to {I}

: the bias affecting gyroscope measurements

: IMU velocity with respect to {G}

: the bias affecting accelerometer measurements

: IMU position with respect to {G}



III. ESTIMATOR DESCRIPTION

• IMU error-state

Error definition:

For quaternion



III. ESTIMATOR DESCRIPTION

• EKF state vector

Assuming that N camera poses are included in the EKF state vector at 
time-step k, this vector has the following form

R & T of camera pose



III. ESTIMATOR DESCRIPTION

• EKF error state vector is defined accordingly:



III. ESTIMATOR DESCRIPTION

• B. Propagation (Predict)

The filter propagation equations are derived by discretization of the 
continuous-time IMU system model

1) Continuous-time system modeling:

The time evolution of the IMU state is described by



III. ESTIMATOR DESCRIPTION

• Applying the expectation operator in the state propagation equations 
we obtain the equations for propagating the estimates of the evolving 
IMU state.

Derived by measurement of gyro

Derived by measurement of accelerometer



III. ESTIMATOR DESCRIPTION

• 2) Discrete-time implementation

• IMU state estimate 

Every time a new IMU measurement is received, the IMU state 
estimate is propagated using 5th order Runge-Kutta numerical 
integration of Eqs. (9)



III. ESTIMATOR DESCRIPTION

• What about the covariance?  we need this



III. ESTIMATOR DESCRIPTION

• The linearized continuous time model for the IMU error-state is:



III. ESTIMATOR DESCRIPTION

• The error state transition matrix            is similarly 
computed by numerical integration of the differential equation

• A simple approximation



III. ESTIMATOR DESCRIPTION

• Two important equations of EKF

Error State

Residual



III. ESTIMATOR DESCRIPTION

• EKF covariance estimate 

Partition:

The 15×15 covariance matrix of the evolving IMU state

The 6N×6N covariance matrix of the camera pose estimates



III. ESTIMATOR DESCRIPTION

• EKF covariance

covariance matrix of the state estimate is propagated as:

the covariance matrix of the propagated IMU state

the error-state transition matrix for the IMU



III. ESTIMATOR DESCRIPTION

•

A simple Version:



III. ESTIMATOR DESCRIPTION

• C. State Augmentation

Upon recording a new image, the camera pose estimate is

computed from the IMU pose estimate as:



III. ESTIMATOR DESCRIPTION

• When a camera pose estimate is appended to the state vector, the 
covariance matrix of the EKF is augmented accordingly



III. ESTIMATOR DESCRIPTION

• D. Measurement Model

We now present the measurement model employed for updating the 
state estimates, which is the primary contribution of this paper.

General form of measurement model in EKF：

is the measurement Jacobian matrix



III. ESTIMATOR DESCRIPTION

• Measurement model

Where  is the 3D feature position in the global frame. Since this is 

unknown, in the first step of our algorithm we employ least-squares 

minimization to obtain an estimation.

jth feature , ith pose



III. ESTIMATOR DESCRIPTION

• the measurement residual

• Linearization

Estimated position of feature



III. ESTIMATOR DESCRIPTION

• By stacking the residuals of all Mj measurements of this feature, we 
obtain:

• Thus, the residual cannot be directly applied for measurement 
updates in the EKF.



III. ESTIMATOR DESCRIPTION

• To overcome this problem, we let A denote the unitary matrix whose 
columns form the basis of the left nullspace of Hf

• This equation defines a linearized constraint between all the camera 
poses from which the feature fj was observed.

Row number:



III. ESTIMATOR DESCRIPTION

• Two important equations of EKF

Error State

Residual



III. ESTIMATOR DESCRIPTION

• E. EKF Updates 

EKF updates are triggered by one of the following two events:

1) When a feature that has been tracked in a number of images is no 
longer detected, then all the measurements of this feature are 
processed using the method presented in Section III-D.

This case occurs most often.



III. ESTIMATOR DESCRIPTION

2) The maximum allowable number of camera poses, Nmax, has been 
reached.

In our algorithm, we choose Nmax/3 poses that are evenly spaced in 
time, starting from the second-oldest pose. These are discarded after 
carrying out an EKF update using the constraints of features that are 
common to these poses. 



III. ESTIMATOR DESCRIPTION

• Update process in detail

Consider that at a given time step the constraints of L features, 
selected by the above two criteria, must be processed.

By stacking all residuals in a single vector, we obtain:

Row number:

Row number: 



III. ESTIMATOR DESCRIPTION

• One issue that arises in practice is that d can be a quite large number. 
For example, if 10 features are seen in 10 camera poses each, the 
dimension of the residual is 170.（ ）

Row number of



III. ESTIMATOR DESCRIPTION

• the new measurement residual

：the number of columns in



III. ESTIMATOR DESCRIPTION

• update

Kalman Gain

Update Covariance

Update state



III. ESTIMATOR DESCRIPTION

• Computational complexity 

The residual , as well as the matrix         , can be computed using 
Givens rotations in operations, without the need to explicitly 
form       .

On the other hand, covariance update involves multiplication of square 
matrices of dimension ξ , an operation.

Therefore, the cost of the EKF update is

r  = column  number of      



III. ESTIMATOR DESCRIPTION

• F. Discussion

• As shown in the previous section, the filter’s computational 
complexity is linear in the number of observed features, and at most 
cubic in the number of states that are included in the state vector. 

• The number of poses that are included in the state is the most 
significant factor in determining the computational cost of the 
algorithm (tradeoff).

r  = column  number of      



III. ESTIMATOR DESCRIPTION

• If, on the other hand, the residual vector row as employed, without 
projecting it on the range of , the computational cost of 
computing the Kalman gain would have been . Since typically 

,we see that the use of the residual        results in 
substantial savings in computation.



III. ESTIMATOR DESCRIPTION

• My guess

Feature 1

Feature 4

Feature 2

Feature 3

Feature 5

Pose 2

Pose 1

Pose 3

Pose 2

Pose 3

Pose 2

Pose 3 Pose 4

Pose 1 Pose 2 Pose 3 Pose 4 …

Hash Map

Array



III. ESTIMATOR DESCRIPTION

Caused by two criteria

Extract the key points and match



IV. EXPERIMENTAL RESULTS

• The experimental setup：

A camera/IMU system, placed on a car that was moving on the 
streets of a typical residential area in Minneapolis, MN. 

The system comprised a Pointgrey FireFly camera, registering 
images of resolution 640×480 pixels at 3Hz

An Inertial Science ISIS IMU, providing inertial measurements at 
a rate of 100Hz.



IV. EXPERIMENTAL RESULTS

• For the results shown here, feature extraction and matching was 
performed using the SIFT algorithm

• Even though images were only recorded at 3Hz due to limited hard 
disk space on the test system, the estimation algorithm is able to 
process the dataset at 14Hz, on a single core of an Intel T7200 
processor (2GHz clock rate). 

• During the experiment, a total of 142903 features were successfully 
tracked and used for EKF updates, along a 3.2km-long trajectory.



IV. EXPERIMENTAL RESULTS



IV. EXPERIMENTAL RESULTS

• Error

The final position error is approximately 10m in a trajectory of

3.2km, i.e., an error of 0.31% of the travelled distance.

Error : 10m



V. CONCLUSIONS

In this paper we have presented an EKF-based estimation algorithm for 
real-time vision-aided inertial navigation.

The main contribution of this work is the derivation of a measurement 
model that is able to express the geometric constraints that arise when 
a static feature is observed from multiple camera poses.

The resulting EKF-based pose estimation algorithm has computational 
complexity linear in the number of features, and is capable of very 
accurate pose estimation in large-scale real environments.



Thank you.





III. ESTIMATOR DESCRIPTION

• is computed by numerical integration of the Lyapunov
equation

with initial condition                  time interval 

Another Version:


