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Abstract: With recent advances in airborne weapons, air combat tends to occur in the form of
beyond-visual-range (BVR) combat and multi-aircraft cooperation. Target assignment is critical
in multi-aircraft BVR air combat decision-making. Most previous research on target assignment
for multi-aircraft cooperative BVR air combat has focused on centralized algorithms, which can
be time-consuming and unreliable. This paper proposes an efficient distributed target assignment
algorithm called the multi-target consensus-based auction algorithm (MTCBAA). First, by analyzing
the main geometric aspects of BVR air combat, a target assignment model for cooperative BVR air
combat was established. Next, based on a consensus-based auction algorithm (CBAA), the MTCBAA
was developed to solve the target assignment problem by introducing a cooperative decision-making
variable. Although the MTCBAA is based on a greedy mechanism, it can guarantee at least 50%
global optimization performance, which was proven through a demonstration of the minimum opti-
mization performance of a centralized target assignment algorithm, since the centralized algorithm
is equivalent to the MTCBAA. Finally, experiments were conducted, including an experiment that
illustrates the operation of the proposed algorithm, Monte Carlo comparisons with a centralized
target assignment method based on the immune algorithm, and deployment experiments on a
semi-physical simulation platform. Compared with the heuristic target assignment algorithm, the
proposed algorithm significantly improved the target assignment efficiency. The practicality of the
proposed algorithm was further verified through a distributed semi-physical simulation experiment.

Keywords: beyond-visual-range air combat; distributed target assignment; cooperative decision-
making; consensus-based auction algorithm

1. Introduction

Due to recent advances in airborne weapons, air combat tends to be performed beyond
the visual range [1]. In addition, the shortcomings of a single aircraft carrying limited
payloads and having limited mission execution capacities and variety have become more
prominent. As a potential solution for improving the probability of mission success,
cooperative air combat [2], where multiple aircraft complement and coordinate with each
other, has attracted great attention in recent years. In addition, target assignment [3,4],
as one of the core elements in cooperative air combat decision-making, plays the role of
coordinating the mission execution of each combat platform, thus maximizing the combat
benefits. Therefore, target assignment in cooperative beyond-visual-range (BVR) air combat
has been a research hotspot.

The earliest target assignment methods were developed in a centralized manner;
namely, it was assumed that there was a central node in a fleet, which was referred
to as a leader, while the other aircraft in the fleet were referred to as followers. The
leader collected global situation information from the followers and ran an optimization
algorithm to find global optimal or sub-optimal target assignment combinations for the
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fleet. Common target assignment methods based on the central node can be roughly
divided into two categories: optimization methods [5] and heuristic methods [6,7]. With
the development of artificial intelligence technology, centralized target assignment methods
based on neural networks [8], reinforcement learning [9], and decision trees [10] have
emerged in recent years. In the early stage, the centralized target assignment was the most
widely associated target assignment approach but, to obtain global situational information
for the central node, a large amount of communication is required. In addition, these
optimization algorithms are generally time-consuming, which can lead to inadequate real-
time assignment results in a rapidly changing battlefield. The heavy dependence of a
fleet on the central node can also lead to a failure of the entire fleet when the central node
is destroyed.

Aiming to address the shortcomings of the centralized target assignment algorithms,
distributed target assignment algorithms have emerged. In the early distributed target
assignment algorithms [11,12], the connected nodes sent their situation information to
each other to achieve situational consistency [13–15]. Then, all nodes ran the centralized
target assignment algorithm simultaneously to obtain their respective assignment solutions.
This type of algorithm does not require a central node and, therefore, improves system
robustness, but it cannot effectively solve the problems of large-scale communication and
high time consumption in centralized target assignment, and the application of situation-
consistency algorithms can significantly increase the target assignment time [16].

Another way to realize distributed target assignment is to use an auction mechanism.
A typical algorithm of this type is the contract network-based auction algorithm [17].
In this algorithm, the target assignment process includes three stages, an inviting bid
stage, a submitting bid stage, and a winner determination stage. At the beginning of
each iteration, a central node is selected based on the predetermined mechanism. Then,
each node in the fleet sends its bid for each task to the central node, and the central node
determines the winner for each task according to the received bids. As only bidding
information is exchanged in each iteration, the requirement for system communication
bandwidth is reduced. However, due to the existence of the central node in each iteration,
the communication topology in each iteration is limited.

In 2009, Choi et al. [18] proposed the consensus-based auction algorithm (CBAA) and
the consensus-based bundle algorithm (CBBA to solve single-agent multi-target assignment
problems. These algorithms were developed based on the idea of consistent assignment
results. Both algorithms consist of two phases, an auction phase and a consensus phase. In
the auction phase, each agent chooses the target with the largest gain for itself to join its
own task bundle one by one using the greedy strategy. Then, in the consensus phase, each
agent achieves conflict resolution based on the consistency rules. The CBAA and CBBA
do not have any special requirements for network topology but cannot achieve accurate
multi-agent single-target assignment. In 2010, Choi et al. [19] addressed the problem of
accurate multi-agent single-target assignment through task decomposition, modifying the
gain calculation method and task elimination mechanism, and proposed an enhanced
algorithm based on the CBBA, which can achieve heterogeneous multi-agent collaboration
to accomplish a common task. However, this algorithm can assign at most two agents to
the same task at a time. Different task scenarios correspond to different constraints, and the
above distributed task assignment methods still need to be modified when facing specific
task scenarios. To address this limitation, derivative algorithms based on algorithms for spe-
cific application scenarios [20–24] have been developed. In [23,24], distributed algorithms
for cooperative air combat target assignment were studied. However, these algorithms
have difficulties in practical distributed deployment because they denote simple loops
of the CBAA and need to handle global variables between the CBAA iterations. Further-
more, a few studies have been conducted on distributed target assignment algorithms in
cooperative air combat.

In multi-aircraft cooperative air combat, where each aircraft has the capacity to attack
multiple targets, there are both multi-aircraft cooperative attacks on single targets and
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single aircraft attacks on multiple targets. Moreover, the number of missiles each aircraft
assigns to a target can be larger than one. The existing distributed target assignment
algorithms cannot be directly used in such a scenario.

To address the target assignment problem in cooperative BVR air combat in a dis-
tributed manner, this paper proposes a multi-target consensus-based auction (MTCBAA) al-
gorithm, which is a distributed target assignment algorithm for cooperative BVR air combat.

The main contributions of this work can be summarized as follows:

(1) A distributed target assignment algorithm for cooperative BVR air combat called the
MTCBAA is proposed;

(2) The minimum performance of the MTCBAA is proven by demonstrating the minimum
optimization performance of a centralized target assignment algorithm, since the
centralized algorithm is equivalent to the MTCBAA;

(3) The minimum performance of the MTCBAA is also validated through comparison
experiments with an immune algorithm-based centralized target assignment method;

(4) The proposed algorithm was deployed on a distributed semi-physical simulation
platform to verify its practicality and real-time performance.

The remainder of this paper is organized as follows. Section 2 presents a target
assignment model for cooperative BVR air combat. Section 3 describes the MTCBAA in
detail and proves its minimum optimization performance. Section 4 presents and analyzes
experiment results. Section 5 concludes the paper and discusses potential future research.

2. Target Assignment Model

The target assignment modeling in cooperative BVR air combat is based on the tradi-
tional non-parameter approach, which has been widely studied in the related literature [1,4].
In this study, the approach from [1] is adopted; i.e., the azimuth angle ϕ, entry angle q,
and distance D between an aircraft and its target are considered to be the main modeling
factors, as shown in Figure 1. No special advantage functions are used for the speed and
altitude factors. The speed and altitude are taken into consideration when calculating the
missile attack zone parameter and the non-escape zone parameter, which are involved in
the distance advantage function. Thus, it can be considered that the speed and altitude are
integrated into the distance advantage calculation.
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Figure 1. The relative situation of an attacker and a target.

As shown in Figure 1, the relative situation of an attacker and a target can be rep-
resented by the line of sight (LOS) information. The LOS information contains several
parameters, such as the azimuth angle φ, entry angle q, and distance D. To better describe
the parameters, the LOS vector is first defined here. A LOS vector is a vector that starts
at the attacker’s mass center and points to the target’s mass center. The azimuth angle φ
is defined as the angle between the attacker’s velocity Va and the LOS vector. When Va



Aerospace 2022, 9, 486 4 of 23

rotates clockwise relative to LOS, φ is positive; otherwise, φ is negative. The entry angle q is
defined as the angle between the target’s velocity VT and the LOS vector. q is positive when
VT rotates clockwise relative to LOS; otherwise, it is negative. D is the distance between
the attacker’s mass center and the target’s mass center.

In the following, the attacking side—i.e., the side on which the target assignment
algorithm is running—is regarded as a red side, while the other side—i.e., the side to which
targets belong—is regarded as a blue side. The aircraft set of the red side is denoted by
R = {r1, r2, . . . , rN}, and the target set of the blue side is denoted by B = {b1, b2, . . . , bM},
where ri is the ith aircraft on the red side, bj is the jth target on the blue side, N is the number
of the red-side aircraft, and M is the number of the blue-side targets. Further, the azimuth
angle advantage, entry angle advantage, and distance advantage are denoted by Aϕ, Aq,
and AD, respectively. The three advantages are calculated as shown in Equations (1)–(3),
which are derived from our previous work [1]:

Aϕ =

{
1− |ϕ|

5ϕmax
0 ≤ |ϕ| ≤ ϕmax

0 ϕmax ≤ |ϕ| ≤ 180
, (1)

where φmax is the maximum allowable off-axis launch angle. Equation (1) indicates that,
when φ is smaller than φmax, the attacker can easily satisfy missile launching conditions,
and thus the attacker has a larger azimuth angle advantage; otherwise the attacker cannot
launch missiles.

Aq = e−
(180−|q|)π

180 ,−180 ≤ q ≤ 180, (2)

This equation indicates that the attacker has the greatest entry angle advantage when
q = 180◦, while, when q = 0◦, the attacker has the minimum entry angle advantage. The
design of the equation is based on the characteristics of the missile attack zone.

AD =


1 D < DNEZmax

2−
D−DNEZmax

DWEZmax−DNEZmax DNEZmax ≤ D ≤ DWEZmax

0 D > DWEZmax

, (3)

where DWEZmax and DNEZmax denote the far boundaries of the missile non-escape zone
(NEZ) and weapon-engagement zone (WEZ), respectively. If the target is inside the at-
tacker’s NEZ, no matter how the target maneuvers, it will be hit by the attacker’s missile,
and the distance advantage equals 1 in such a situation. If the target is inside the WEZ and
outside the NEZ, the distance advantage will decrease as D increases. Otherwise, if the
target is outside the WEZ, the attacker cannot pose a threat to the target. For more details
on the advantage functions, please refer to our previous work [1].

The weighted multiplication of the three advantages yields the integrated advantage,
which is given by:

A = Aγ1
ϕ Aγ2

q AD, (4)

where γ1 and γ2 are weighted coefficients satisfying the condition γ1 + γ2 = 1.
Equation (4) can be used to calculate both the advantage of ri with respect to bj and

the threat of bj to ri, which are denoted by Aij and Tji, respectively. As the value of Aij is in
the range of [0, 1], Aij is considered the probability Pij that ri fires a missile at bj and hits;
i.e., it is assumed that, the greater the advantage of ri with respect to bj is, the higher the
probability that it fires a missile that will hit bj.

For the case where multiple missiles from the red side attack bj cooperatively, the hit
probability Pj can be calculated by:

Pj = 1−ΠN
i=1
(
1− Pij

)xij , (5)

where xij is the number of missiles assigned to bj by ri; all xij values form a two-dimensional
assignment matrix, which is denoted by X in this study.
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The total threat to the red side imposed by bj can be calculated by:

Tj = ∑N
i=1 Tji. (6)

Then, for the red side, the profit from attacking bj can be calculated by:

gj = PjTj. (7)

Ultimately, the target assignment model in cooperative BVR air combat can be defined
as follows:

max
M
∑

j=1
gj

s.t.
N
∑

i=1
xij 6Mj

(
x·,j, PTH

)
,

M
∑

j=1
xij 6 Lt,

xij ∈ {0, 1, 2, · · · , Lt}.

. (8)

Specifically, the ultimate goal of the target assignment is to maximize the total profit
of the red side while satisfying the corresponding constraints. In Equation (8), the first
constraint indicates that the number of missiles assigned to a target cannot exceed Mj,
where Mj indicates the maximum number of missiles that can be assigned to bj; it is
a function of vector x·,j composed of the elements in column j of matrix X and the hit
probability threshold PTH. If ∃ i ∈ {1, 2, ···, N}, xij > 0 and Pij ≥ PTH, then Mj equals 1,
otherwise Mj equals 2. The second constraint indicates that the number of missiles an
aircraft can assign cannot exceed Lt, where Lt indicates the number of missiles each aircraft
can carry.

3. Distributed Target Assignment Algorithm Design

In this section, the MTCBAA method is proposed to solve the target assignment model
described in Section 2 in a distributed manner. The MTCBAA was developed based on
the CBAA. Therefore, to describe the MTCBAA better, a brief introduction to the CBAA is
provided in Section 3.1. The detailed design of the MTCBAA is described in Section 3.2.
In Section 3.3, the minimum optimization performance of the MTCBAA is proven by
demonstrating the minimum optimization performance of a centralized target assignment
algorithm, since the centralized algorithm is equivalent to the MTCBAA.

3.1. Brief Introduction to CBAA

The CBAA represents a distributed target assignment algorithm that can solve one-to-
one target assignment problems. Each iteration of the CBAA consists of two phases: the
auction and consensus phases.

In the auction phase, based on the greedy principle, agents select targets with the
greatest bidding value for themselves from the set of assignable targets as their bidding
targets; an assignable target is a target that has not been assigned yet. The index and
bidding value of the selected bidding targets are two variables integrated into an agent.
Then, the index and bidding value determined in the auction phase are carried to the
consensus phase by the agent.

In the consensus phase, agents exchange their estimated greatest bidding values with
the other agents they are connected with. Then, based on the estimated greatest bidding
values, bidding target index, and bidding value of the bidding target, agents can determine
whether they win the bid for their selected targets. If an agent wins the bid, it is assigned
to the selected target in the current iteration; otherwise, the agent proceeds to the next
iteration to bid on other assignable targets. During the consensus phase, the estimated
greatest bidding values need to be updated.
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The two phases are iterated cyclically until the target assignment is completed. The
specific operation of the CBAA is described in a previous study [18].

3.2. MTCBAA

The CBAA can solve only one-to-one target assignment problems, where each agent
can select at most one target, and each target can be assigned to at most one agent. However,
it cannot be applied to the multi-target attack problem of a single aircraft and the problem
of multiple aircraft attacking the same target cooperatively in multi-aircraft cooperative
BVR air combat, and thus is not consistent with the target assignment model defined by
Equation (8).

In this section, an improved distributed target assignment algorithm for the multi-
aircraft cooperative BVR air combat target assignment problem given by Equation (8), the
MTCBAA, is introduced.

The MTCBAA is developed based on the CBAA, and its iterations also consist of the
auction and consensus phases. In the MTCBAA, each agent ri, i ∈ {1, 2, . . . ,N}, stores six
local variables. The first variable is the bidding value vector ci, whose element cij denotes
the bidding value of ri for target bj. The second variable is the assignment result vector
ai, and its element aij denotes the number of missiles assigned to bj by ri; ai is initialized
as a zero vector. At the end of the consensus phase of each iteration, if ri wins the bid on
bj, then aij = aij + 1; otherwise, aij remains the same. aij can be cumulative over multiple
iterations, and its final value at the end of the assignment is not necessarily just 0 or 1. The
third variable is the estimated greatest bidding value vector yi, where element yij represents
the greatest bidding value estimated by ri that all aircraft on the red side can provide for
bj. Here, the word “estimated” means yi is a private variable of ri, and ri cannot directly
know the greatest bidding value of its side for a given target but can only estimate it from
the information obtained during the consensus phase yi is used to determine whether ri is
eligible to bid on the target bj. Only if ri’s bidding value for the target bj cij is larger than yij
is ri eligible to bid on the target bj, as shown in lines 8–9 of Algorithm 1. The fourth variable
is the target validity vector, and its element hij satisfies the following expression:

hij = Π
(
cij > yij

)
, ∀j ∈ {1, 2, · · · , M}, (9)

where Π(·) is the indicator function, whose value is 1 when the judgment condition in the
parentheses is true; otherwise, it has a value of 0.

In this study, bj is defined as a valid task for ri when the bid value of ri for bj is
greater than the estimated greatest bidding value. The fifth variable is the estimated missile
assignment vector mi, where an element mij denotes the number of missiles assigned to
bj estimated by ri. The definitions of ai and mi appear similar, but in reality, they are
very different. An element in ai indicates the number of missiles assigned by ri to the
corresponding target—for example, if aij equals 2, it indicates that ri will assign two missiles
to attack the target bj. An element in mi indicates the total number of missiles assigned
to its corresponding target, and the number is estimated by ri—for example, if mij equals
1, it indicates that, from the estimation of ri, the red side assigns a total of one missile to
attack the target bj. mi is also a private variable of ri, and ri cannot directly estimate the total
number of missiles assigned to a given target but can only estimate it from the information
obtained during the consensus phase, corresponding to line 5 of Algorithm 2.

The last variable is the cooperative decision-making vector f i, whose element fij is the
hit probability for target bj obtained by the current assignment scheme estimated by ri. If
the hit probability for target bj does not reach the hit probability threshold PTH and the
number of missiles assigned to bj does not reach two, then bj will continue to participate in
the assignment of the current iteration; otherwise, the assignment to bj has been completed.

The auction phase of the MTCBAA is described in the following. The procedure of the
auction phase of an agent ri at an iteration t is shown in Algorithm 1.
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Algorithm 1: The MTCBAA auction phase of an agent ri at an iteration t

1: procedure SELECT TARGET based on yi(t− 1), ai(t− 1), fi(t− 1), mi(t− 1)
2: fi(t) = fi(t− 1)
3: f ′ ij(t) = 1−

(
1− fij(t)

)
·
(

1− Pij

)
, ∀j ∈ {1, 2, · · · , M}

4: Calculate cij(t) using Equation (11)
5: yi(t) = yi(t− 1)
6: ai(t) = ai(t− 1)
7: mi(t) = mi(t− 1)
8: hij = Π

(
cij > yij

)
, ∀j ∈ {1, 2, · · · , M}

9: if hi(t) 6= 0 and ∑ ai < Lt then
10: Ji = argmaxjhij · cij
11: fi Ji (t) = f ′ i Ji

(t)
12: yi Ji (t) = ci Ji

13: end if:
14: end procedure

As shown in step 1 of Algorithm 1, the input parameters of the auction phase of the
MTCBAA are yi(t−1), ai(t−1), f i(t−1), and mi(t−1), which are updated in the previous
iteration. Corresponding to steps 2 and 3, the auction phase begins with the calculation of
the new hit probability when ri assigns an additional missile to bj based on Equation (10):

f ′ ij(t) = 1−
(
1− fij(t)

)
·
(
1− Pij

)
, ∀j ∈ {1, 2, · · · , M}. (10)

Subsequently, corresponding to step 4, by combining the hit probability and
Equations (6) and (7), the bidding value of ri for bj can be obtained by:

cij(t) =

{
f ′ ij(t)Tj − fij(t)Tj, ∀j ∈

{
j
∣∣ fij < PTH & mij < 2

}
,

0, otherwise.
. (11)

It can be seen that the bidding value cij represents an incremental profit for ri with
respect to bj. In steps 5–7, the estimated greatest bidding value vector yi, the assignment
result vector ai, and the estimated missile assignment vector mi are updated.

In step 8 of the algorithm, the corresponding elements in ci and yi are compared to
determine whether ri is eligible to bid on each target. ri is eligible to bid on a target bj only
if the value of ri’s bid on bj, cij, is greater than the greatest bidding value on bj estimated by
ri, at which point hij equals 1.

In line 9, whether ri can still bid is first determined. ri is considered to have the ability
to bid only if the elements in hi are not all zero; i.e., ri is eligible to bid on at least one target,
and ri’s Lt missiles have not all been assigned. Finally, corresponding to lines 10–12, ri
selects the valid task with the greatest bidding value as its target; meanwhile, the elements
corresponding to the target in yi and f i should be updated. Then, ri waits to proceed to the
consensus phase.

The procedure of the consensus phase in the MTCBAA of an agent ri at an iteration t
is shown in Algorithm 2.

In the consensus phase of the MTCBAA, corresponding to lines 1 and 2, an agent ri
first exchanges the estimated greatest bidding vector and the cooperative decision-making
vector with an agent rk that satisfies the condition of gik = 1, where gik is an element of the
adjacency matrix corresponding to the fleet’s communication topology; gik = 1 indicates a
communication connection between ri and rk.

After that, corresponding to lines 4 to 5, based on the received information and ri’s
information, ri updates the estimated missile assignment vector mi by determining whether,
for each target bj, at least one red side aircraft has bid on it. If there is at least one aircraft
involved in bidding on bj—i.e., ∃ k ∈ {1, 2, . . . , N}—then ykj > 0; accordingly, the σyj
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obtained from the expression in line 4 is greater than zero, such that the expression in line 5
is equivalent to mij = mij + 1; otherwise, the expression in line 5 is equivalent to mij = mij + 0.

Algorithm 2: The MTCBAA consensus phase of an agent ri at an iteration t

1: SEND yi(t), fi(t) to rk with lik(t) = 1
2: RECEIVE yk(t), fk(t) from rk with lik(t) = 1
3: procedure UPDATE ASSIGNMENT SCHEME based on gi(t), fk(t), yk(t), and Ji
4: σyj = Σk:gik(t)=1ykj, ∀j ∈ {1, 2, · · · , M}
5: mij = mij + Π

(
σyj > 0

)
, ∀j ∈ {1, 2, · · · , M}

6: zij = argmaxkgik(t) · ykj(t), ∀j ∈ {1, 2, · · · , M}
7: if zi Ji = i then
8: ai,Ji (t) = ai,Ji (t) + 1
9: end if
10: fij(t) = fzij ,j, ∀j ∈ {1, 2, · · · , M}
11: Update yij(t) using Equation (13)
12: end procedure

Corresponding to lines 6–7, ri can determine whether it wins the bid on the Jith target;
i.e., ri determines whether the aircraft providing the global greatest bidding value on the
Jith target is ri. From the expression in line 6, it can be obtained that the aircraft providing
the global greatest bidding value for the target bj is indexed by zij. Meanwhile, from the
auction phase of ri, it can be obtained that ri is bidding on the Jith target. Thus, in line 7,
it is only necessary to determine whether zi,Ji is equal to i to know whether ri wins the
bid on the Jith target. If this holds, in line 8, the corresponding assignment element ai,Ji is
increased by 1; otherwise, it remains the same.

In addition, the cooperative decision-making vector and the estimated greatest bidding
vector need to be updated in lines 10 and 11, respectively. The cooperative decision-making
vector is updated by

fij(t) = fzij ,j, ∀j ∈ {1, 2, · · · , M}, (12)

where zij is the index of an aircraft that wins the bid on target bj in the current iteration.
The estimated greatest bidding vector is updated by:

yij(t) =

{
gizij(t) ·

[
1−

(
1− fij(t)

)
·
(

1− Pzij j

)]
· Tj − fij(t) · Tj, ∀j ∈

{
j
∣∣ fij < PTH and mij < 2

}
,

0, otherwise.
, (13)

where, for target bj, the update of its estimated greatest bidding value represents the
prediction of the corresponding value in the next iteration. The prediction is undertaken by
subtracting the profit corresponding to bj at the completion in the current iteration from the
profit corresponding to bj when the aircraft that wins the bid on bj in the current iteration
assigns one more missile for bj based on the current assignment scheme.

These two phases iterate between each other until the target assignment process is com-
pleted. Target assignment is terminated either when the hit probability threshold is reached
for all targets or when there are no more missile resources left for further assignment.

3.3. Minimum Optimization Performance of MTCBAA

As shown in Algorithms 1 and 2, the MTCBAA is based on a greedy mechanism, so
there is no guarantee that the algorithm can find an optimal assignment solution. However,
the MTCBAA has a minimum optimization performance guarantee, which is demon-
strated in this section. It should be noted that optimization performance here refers to the
optimization of the assignment profit or assignment solution.

To prove the minimum optimization performance guarantee of the MTCBAA, an
equivalent centralized target assignment algorithm, which is denoted as the multi-target
sequential greedy algorithm (MTSGA), is proposed. The pseudo-code of the MTSGA is
given in Algorithm 3. Subsequently, the proof of the minimum optimization guarantee of
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the MTSGA is provided. The proof of the equivalence of the MTCBAA and MTSGA corre-
sponds to the proof of Theorem 1, and the proof of the minimum optimization performance
guarantee of the MTCBAA and MTSGA corresponds to the proof of Theorem 2.

Algorithm 3: The MTSGA

1: R1 = R, B1 = B
2: ηi = 0, ∀i ∈ R
3: J(0)i = φ, ∀i ∈ R
4: I(0)j = φ, ∀j ∈ B

5: c(1)ij = cij

(
J(0)i

)
, ∀(i, j) ∈ R× B

6: n = 1
7: while assignment is not completed
8: (i∗n, j∗n) = argmax(i,j)∈Rn×Bn

c(n)ij
9: ηi∗n = ηi∗n + 1
10: J(n)i∗n

= J(n−1)
i∗n

⊕end {j∗n}
11: J(n)i = J(n−1)

i , ∀i 6= i∗n
12: I(n)j∗n

= I(n−1)
j∗n

⊕end {i∗n}
13: I(n)j = I(n−1)

j , ∀j 6= j∗n
14: c(n+1)

ij = cij

(
J(n)i

)
, ∀(i, j) ∈ Rn+1 × Bn+1

15: if ηi∗n = Lt, then
16: Rn+1 = Rn\{i∗n}
17: c(n+1)

i∗n ,j = 0, ∀j ∈ B
18: else
19: Rn+1 = Rn
20: end if
21: f j∗n = f

(
I(n)j∗n

)
22: if f j∗n > PTH or

∣∣∣I(n)j∗n

∣∣∣ >= 2, then

23: Bn+1 = Bn\{j∗n}
24: c(n+1)

i,j∗n
= 0, ∀i ∈ Rn+1

25: else
26: Bn+1 = Bn\{j∗n}
27: end if
28: n = n + 1
29: end while

In Algorithm 3, an aircraft set R1 and a target set B1 are assigned in the first iteration
are initialized first in line 1. Then, the missile consumption ηi for an aircraft ri, ∀ i ∈ R1 is
set to zero in line 2. An aircraft ri is defined to have a target set Ji; a target bj is defined to
have an aircraft set Ij. The elements in the target set Ji denote indexes of targets assigned
to ri obtained in the MTSGA iterations sorted in the same order they have been added to
the set. The elements in the aircraft set Ij denote indexes of aircraft that assign at least one
missile to bj; these elements are also obtained in the MTSGA iterations and sorted in the
same order they have been added to the set. All target sets Ji, ∀ i ∈ R and aircraft sets Ij,
∀ j ∈ B are initialized as empty sets in lines 3 and 4. The bidding value of each aircraft to
each target also needs to be initialized. The initialization work of the bidding values in
Algorithm 3 is done in line 5, and the bidding values are initialized and updated by:

cij(Ji) =

{
gj
(
Ij ⊕end {i}

)
− gj

(
Ij
)
, ∀j ∈

{
j
∣∣ f j < PTH &

∣∣Ij
∣∣ < 2

}
0, otherwise

, (14)

where ⊕end is the operator that combines the sets before and after itself. Suppose there are
two sets—namely, A = {1, 2, 3} and B = {4, 5, 6}; then, A ⊕end B = {1, 2, 3, 4, 5, 6}. |·| is
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the operator to count the number of elements in a set, and gj(Ij) is the profit obtained by
attacking bj according to the assignment scheme Ij, and it is calculated by:

gj
(
Ij
)
=

[
1−∏

|Ij |
k=1

(
1− PIj(k),j

)]
· Tj, (15)

where Ij(k) is the kth element of Ij.
It can be easily noticed that the calculation expression of the profit of attacking bj in

Equation (15) is equivalent to Equation (7), and the calculation expression of the bidding
value of ri for bj in Equation (14) is equivalent to Equation (11).

At the beginning of the next MTSGA iteration, based on the bidding value matrix
in the current iteration, corresponding to line 8, the aircraft and target indexes in* and jn*
corresponding to the largest bidding value in the bidding value matrix are selected, and
then the missile consumptions of the in*th aircraft (line 9), target sets (lines 10 and 11),
aircraft sets (lines 12 and 13), and the bidding value matrix (line 14) are updated.

Lines 15–20 correspond to the update of the set Rn+1, which is the set of aircraft
entering the next assignment iteration. The first step is to determine in line 15 whether
the missile consumption of the in*th aircraft has reached the upper limit of the number of
missiles it carries, Lt. If the upper limit is reached, then Rn after removing in* should be
assigned to the Rn+1 according to line 16; otherwise, Rn can be assigned directly to the Rn+1
according to line 19. In addition, note that if in* should be removed from the set, then the
bid value of the in*th aircraft for each target should also be set to 0 according to line 17, so
that the in*th aircraft will no longer participate in the subsequent bids.

The cooperative decision-making variable of the jn*th target is updated in line 21.
Lines 22–27 correspond to the update of the set Bn+1, which is the set of targets

entering the next assignment iteration. The first step is to determine in line 22 whether the
assignment to the jn*th target has been completed. If it holds, then Bn, after removing jn*,
should be assigned to Bn+1, according to line 23; otherwise, Bn can be assigned directly to
Bn+1, according to line 26. In addition, note that if jn* is removed from the set, then each
aircraft’s bid value for the jn*th target should be set to 0 according to line 24, so that no
aircraft will bid on the jn*th target in the subsequent bids.

The iterations continue until the assignment is completed, as shown in line 7; the
target assignment termination conditions are the same as for the MTCBAA; that is, target
assignment is terminated either when the hit probability threshold is reached for all targets
or when there are no more missile resources left for further assignment.

The equivalence theorem of the MTCBAA and MTSGA is given and proven in
the following.

Theorem 1. Under the same situational conditions, the MTCBAA and MTSGA generate the same
target assignment scheme for the multi-aircraft cooperative BVR air combat target assignment
problem given by Equation (8).

Proof of Theorem 1. The proof of Theorem 1 is obtained using mathematical induction.
Assume that the target set of ri in the nth iteration is J(n)i =

{
j∗k1

, j∗k2
, · · · , j∗kLin

}
, where

k1 < k2 < · · · < kLin and Lin =
∣∣∣J(n)i

∣∣∣. Then, the first element of J(n)i is determined by:

c(k1)
i,j∗k1

= ci,j∗k1
(φ) = max

j∈Bk1

ci,j(φ), (16)

where Bk1 is the set of aircraft updated in the (k1 − 1)th iteration of the MTSGA to enter the
k1th iteration of assignment, corresponding to rows 1 and 23 in Algorithm 3. In contrast,
the MTCBAA assigns the first target to the aircraft ri as follows:

Ji = argmaxcij(φ)×Π
(
cij(φ) > yij

)
. (17)
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Notice that ∀j /∈ Bk1 and, because Ji is currently an empty set, target bj has been
assigned to aircraft other than ri, so cij(φ) ≤ yij, ∀j /∈ Bk1 holds. The problem of searching
for the target corresponding to the maximum bidd ing value in set B for aircraft ri, which
is given by Equation (17), degenerates to the problem of searching for such a target in a
smaller set Bk1 . This matches the method of determining the target given by Equation (16);
thus, Ji = j∗k1

.
Next, assume that the MTSGA obtains the same first l targets for each aircraft ri as the

MTCBAA. Then, the (l + 1)th target of ri in the MTSGA is determined by:

c(kl+1)
i,j∗kl+1

= ci,j∗kl+1

(
J(1:l)

i

)
= max

j∈Bkl+1

ci,j

(
J(1:l)

i

)
, (18)

where J(1:l)
i represents the target set of ri consisting of the first l targets.

For a target bj, when its index j satisfies j /∈ Bkl+1
, corresponding to Equation (11) or (14),

the new bidding value of ri for bj equals zero. Then, it holds that:

cij

(
J(1:l)

i

)
×Π

(
cij

(
J(1:l)

i

)
> yij

)
= 0, ∀j /∈ Bkl+1

. (19)

In contrast, the (l + 1)th target of ri in the MTCBAA is determined by:

max
j∈B

cij

(
J(1:l)

i

)
×Π

(
cij

(
J(1:l)

i

)
> yij

)
. (20)

Substituting Equation (19) into Equation (20), Equation (20) can be further simplified
as follows:

max
j∈B

cij

(
J(1:l)

i

)
×Π

(
cij

(
J(1:l)

i

)
> yij

)
= max

j∈Bkl+1

cij

(
J(1:l)

i

)
×Π

(
cij

(
J(1:l)

i

)
> yij

)
= max

j∈Bkl+1

cij

(
J(1:l)

i

)
.

. (21)

The simplification result of Equation (21) is the same as that of Equation (18). Thus, it
can be concluded that, if the first l targets of ri obtained by the MTSGA and the MTCBAA
are identical, then the (l + 1)th targets of ri obtained by the two algorithms are also identical,
which proves Theorem 1. �

Next, the minimum optimality guarantee theorem for the MTCBAA is given and proven.

Theorem 2. The MTCBAA can guarantee at least 50% global optimality.

Proof of Theorem 2. According to Theorem 1, the MTCBAA is equivalent to the MTSGA,
so it is sufficient to prove that the MTSGA can guarantee at least 50% global optimality.

Suppose a target bj has been assigned once, and the hit probability Pi∗k1,j of bj does not
meet the hit probability threshold PTH. When bj has another opportunity to be assigned,
because the remaining assignable resources at this time are fewer compared to the time
when bj was assigned for the first time, the maximum for the hit probability that each
remaining assignable aircraft can provide for bj, which is denoted as Pi∗k2,j, satisfies the
inequality Pi∗k2,j ≤ Pi∗k1,j; k1 is the index of the iteration in which bj was assigned for the
first time, k2 is the index of the iteration in which bj is assigned for the second time, i∗k1

is
the index of the aircraft that provides the maximum bidding value on bj in the k1th iteration
of the MTSGA, and i∗k2

is the index of the aircraft that provides the maximum bidding value
on bj in the k2th iteration of the MTSGA. Then, the maximum bidding value on bj at its
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second assignment subtracted from the maximum bidding value on bj at its first assignment
satisfies Equation (22):

ci∗k2,j − ci∗k1,j

=
[
1−

(
1− Pi∗k2,j

)(
1− Pi∗k1,j

)
− Pi∗k1,j

]
· Tj − Pi∗k1,j · Tj

=
(

Pi∗k2,j − Pi∗k2,j · Pi∗k1,j − Pi∗k1,j

)
· Tj

≤ 0

. (22)

In addition, from the operation of the MTSGA, it is evident that, for each of the other
targets assigned after the first assignment of target bj, regardless of whether this is its first
or second assignment, its maximum bidding value is less than or equal to ci∗k1,j.

For the convenience of presentation, in the following proof of Theorem 2, aircraft i∗k is
denoted as aircraft k, and target j∗k is denoted as target k. In other words, the indexes in the
MTSGA are denoted as follows:

i∗k = k j∗k = k ∀k ≤ Nmin. (23)

The subscripts for the rest of the variables need to be replaced accordingly. For instance,
ci∗k ,j∗k

can be denoted as ckk. Then, in the MTSGA, the following inequality holds:

cii ≥ cjj, if i < j. (24)

As the aircraft and target pairs are selected based on the greedy principle in each
iteration of the MTSGA, Equation (25) holds in parallel:

cii ≥ cij, ∀i, ∀j > i
cii ≥ cjj ≥ cji, ∀i, ∀j > i

. (25)

Assume the number of iterations of the MTSGA is denoted by Nmin. Then, Nmin is
between M and 2M when the missile resources are sufficient; i.e., the number of missiles
is sufficient to complete the first assignment to all targets and the second assignment to
targets that did not reach the hit probability threshold in the first assignment. In this study,
M is the number of targets; Nmin = M when the hit probability threshold is met by assigning
each target only once; Nmin = 2M when each target needs to be assigned twice; otherwise,
M < Nmin < 2M. When the number of missiles does not satisfy the aforementioned con-
ditions, then Nmin = N · Lt, where N is the number of aircraft, and Lt is the number of
missiles each aircraft loads. The value of Nmin is determined by:

Nmin = min{N · Lt, 2M}. (26)

That is, in the case of a sufficient number of missiles, it is assumed that the MTSGA is
required to iterate 2M times, while in reality, the actual number of iterations required by
the MTSGA may be less than 2M. Assume that the actual number of iterations required
by the MTSGA is denoted by Nneed. For (2M− Nmin) additional iterations, the assignment
results are generated as follows. Select (2M− Nmin) missiles that have not been assigned
yet. Randomly arrange the indexes of their carrier aircraft and use them to form a new
ordered set called the random aircraft set. Then, randomly arrange the indexes of targets
that reach the hit probability threshold in the first assignment and form a new ordered set,
called the random target set; the length of both sets is (2M− Nmin). Combine the elements
in the two sets in order; the aircraft–target pairs are obtained in the additional (2M− Nmin)
iterations of the MTSGA. As (2M− Nmin) targets have already reached the hit probability
threshold condition in the first assignment, according to Equation (14), all the maximum
bidding values corresponding to the additional (2M−Nmin) iterations of the MTSGA equal
0. Thus, the MTSGA with 2M iterations is equivalent to the MTSGA with Nneed iterations
and satisfies Equations (24) and (25). When Nmin = N·Lt, there is no need to make a further
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assumption to change the number of iterations of the MTSGA. Hence, it can be concluded
that the MTSGA with Nmin iterations defined by Equation (26) is equivalent to the MTSGA
that performs the required number of iterations for a particular problem.

Denote the optimized profit obtained by the MTCBAA or the MTSGA as OPTMTCBAA,
which can be calculated by:

OPTMTCBAA =
Nmin

∑
i=1

cii. (27)

Next, assume that arbitrarily swapping the targets of aircraft i and j in the assignment
scheme obtained by the MTSGA has no effect on the bidding value of an aircraft k on a
target k, ∀k 6= i, j. In this study, this assumption is denoted as the target order-bidding value
independent (TOBI) assumption. Further, assume that the assignment scheme obtained by
the MTSGA is the worst assignment scheme; i.e., any swapping of targets of the two aircraft
can improve the total assignment profit. For instance, for aircraft i and j, where j > i, because
Equation (25) holds, after swapping their targets, the sum of profits of the two aircraft
satisfies Equation (28):

cij + cji ≤ cii + cii = 2cii. (28)

Furthermore, when Equation (29) holds, the equal sign in Equation (28) also holds:

cij = cji = cii. (29)

Therefore, if Equation (29) holds, aircraft i and j can achieve the maximum improve-
ment in their profit sum by swapping their targets.

Next, assume that Equation (29) holds for all pairs of aircraft in the assignment scheme;
i.e., the following equalities hold:

cii = cij, ∀i, ∀j > i,
cii = cji, ∀i, ∀j > i.

. (30)

Then, for the current assignment scheme obtained by the MTSGA, the maximum
improvement in the overall target assignment profit can be achieved by a series of target
exchange operations between aircraft pairs. One of the ways to achieve the maximum
improvement in the overall target assignment profit is given by Equation (31):

J∗i =

{
Nmin − i + 1, if i ∈ {1, 2, · · · , Nmin}
0, otherwise

. (31)

Equation (31) indicates that an aircraft i exchanges its target with an aircraft (Nmin − i + 1).
In this way, the first dNmin/2e aircraft can maintain the same profits as in the MTSGA,
while the next bNmin/2c can achieve the maximum profit improvements. In Equation (31),
d·e and b·c denote the upward and downward rounding operators, respectively.

Denote the global optimal target assignment profit when the TOBI assumption holds
by OPTTOBI; then, OPTTOBI satisfies Equation (32):

OPTTOBI =
dNmin/2e

∑
i=1

cii +
Nmin
∑

i=dNmin/2e+1
c(Nmin−i+1),(Nmin−i+1)

= 2×
bNmin/2c

∑
i=1

cii +
dNmin/2e

∑
i=bNmin/2c

cii

≤ 2×
Nmin
∑

i=1
cii = 2OPTMTCBAA

(32)

It should be noted that the TOBI assumption does not always hold for the target
assignment problem defined by Equation (8). For a target bj that needs to be assigned
twice in the MTSGA, if its first assignment iteration is advanced by the target exchange
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shown in Equation (31)—i.e., the index of iteration corresponding to the first assignment of
bj in the MTSGA is k1 and the index of iteration corresponding to the second assignment of
bj in MTSGA is k2—after the target swapping corresponding to Equation (31), the index
of iteration corresponding to the first assignment of bj becomes k′1 = Nmin − k2 + 1, and
k′1 < k1, which correspond to two cases. In the first case, the hit probability to bj has met
the hit probability threshold through the k′1 iteration of the assignment, and ci∗k1

,bj
becomes

0 due to the constraints in Equation (14). In the second case, the hit probability for bj still
does not meet the hit probability threshold through the k′1 assignment iteration, so the new
bidding value on target bj in the k1th iteration is given by:

c′ i∗k1
,bj

=

[
1−

(
1− Pi∗

k′1
,bj

)(
1− Pi∗k1

,bj

)]
· Tbj
− Pi∗

k′1
,bj
· Tbj

=

(
Pi∗k1

,bj
− Pi∗k1

,bj
· Pi∗

k′1
,bj

)
· Tbj

.

. (33)

The original bidding value on target bj in the k1th iteration is given by:

ci∗k1
,bj

= Pi∗k1
,bj
· Tbj

. (34)

Subtracting Equation (34) from Equation (33), we have:

c′ i∗k1
,bj
− ci∗k1

,bj
= −Pi∗k1

,bj
· Pi∗

k′1
,bj
· Tbj
≤ 0. (35)

Thus, due to the introduction of the hit probability threshold constraint, the bidding
value in the k1th iteration is reduced in both cases compared to the TOBI case. This leads to
the conclusion that the global optimal target assignment profit MTOPT, considering the hit
probability threshold constraint, is upper-bounded by the global optimal target assignment
profit when the TOBI assumption holds, so it holds that:

MTOPT ≤ OPTTOBI ≤ 2OPTMTCBAA. (36)

Consequently, the MTCBAA can guarantee at least 50% global optimality, which
proves Theorem 2 �.

4. Experiments and Discussion

In Section 4.1, the operation of the MTCBAA is illustrated in an example. Section 4.2
describes the verification of the optimization efficiency and running time of the MTCBAA
through a comparison experiment between the MTCBAA and the centralized target as-
signment algorithm based on the artificial immune algorithm. The comparison experiment
was designed using the Monte Carlo method and Matlab parallel-computing toolbox
(PCT). Finally, Section 4.3 describes the verification of the practicality and real-time perfor-
mance of the MTCBAA through an experiment deploying the algorithm with a distributed
semi-physical simulation platform.

Unless specified otherwise, all experiments used the air combat scenario with four
red-side aircraft with multi-target attack capabilities cooperatively attacking four blue-side
targets; i.e., N = 4 and M = 4. The number of missiles carried by each aircraft was set to
Lt = 4; the maximum allowable off-axis launch angle of a missile was ϕmax = 40◦; the attack
zone boundary distance of a missile was DWEZmax = 80 km; the non-escape zone boundary
distance of a missile was DNEZmax = 60 km. In Equation (4), γ1 = 0.75, γ2 = 0.25, and the
hit probability threshold was set to PTH = 0.9.

The experimental configuration of experiments described in Sections 4.1 and 4.2 is
presented in Table 1.
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Table 1. Experimental configuration.

Parameter Value

CPU Intel(R) Core(TM) i7-10710U @ 1.10 GHz, 6 Cores
RAM 16 GB
Matlab Matlab 2015b

4.1. Example Experiment

The situation information of the blue side relative to the red side was set in the example
experiment as shown in Table 2.

Table 2. Situation information of the blue side relative to the red side.

Red Side Blue Side ϕij (◦) qij (◦) Dij (km)

r1

b1 −4 182 61

b2 6 179 72

b3 −6 175 69

b4 2 177 65

r2

b1 3 178 75

b2 −3 183 71

b3 4 184 62

b4 −6 177 64

r3

b1 −6 179 68

b2 −4 180 66

b3 5 183 71

b4 −1 181 76

r4

b1 −2 174 63

b2 4 178 79

b3 2 181 80

b4 6 179 70

In the situation shown in Table 2, the advantage matrix of the red side relative to the
blue side was given by:

W =


0.9431 0.6420 0.7001 0.8237
0.5828 0.6665 0.9031 0.8398
0.7375 0.8000 0.6615 0.5697
0.8714 0.5054 0.4941 0.6881

, (37)

where the elements in the ith row and jth column denote the advantage value of an aircraft
ri for a target bj.

The threat matrix of the blue side to the red side was given by:

T =


0.9421 0.5825 0.7355 0.8732
0.6403 0.6665 0.7982 0.5049
0.6997 0.9031 0.6607 0.4938
0.8242 0.8385 0.5697 0.6863

, (38)

where the elements in the jth row and ith column denote the threat values of a target bj to
an aircraft ri.

The intermediate results obtained during the MTCBAA operation are shown in Table 3.
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Table 3. Intermediate results of the MTCBAA.

Iteration
Index

Bidding Value
Matrix

Assignment
Matrix

Hit Probability
Vector

1


2.96 1.68 1.93 2.40
1.83 1.74 2.49 2.45
2.31 2.09 1.82 1.66
2.73 1.32 1.36 2.01




1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0




0.94
0

0.90
0



2


0 1.68 0 2.40
0 1.74 0 2.45
0 2.09 0 1.66
0 1.32 0 2.01




1 0 0 0
0 0 1 1
0 1 0 0
0 0 0 0




0.94
0.80
0.90
0.84



3


0 0.34 0 0.38
0 0.35 0 0.39
0 0.42 0 0.27
0 0.26 0 0.32




1 0 0 0
0 0 1 2
0 2 0 0
0 0 0 0




0.94
0.97
0.90
0.96



In the MTCBAA, in the auction phase of the first iteration, r1, r2, r3, and r4 select b1, b3,
b1, and b1, respectively, as targets based on the greedy principle. Then, in the consensus
phase, as r1 provided the maximum bidding value for b1, r1 won the bid for b1; r3 and r4
were not assigned any target in the first iteration due to bid failure; r2 was assigned to b3 as
desired due to separate participation in the auction of b3. At the end of the first iteration,
the hit probabilities for b1 and b3 met the hit probability threshold requirement, so these
two targets were not involved in the assignment of the subsequent iterations. In the
second iteration, r1–r4 participated in the assignment of b2 and b4; the specific process was
similar to the first iteration, so it is not described here. After the completion of the second
iteration, as the hit probabilities to b2 and b4 did not reach the hit probability threshold
requirement and the numbers of missiles assigned to b2 and b4 were less than two, b2 and b4
entered the third assignment iteration of the MTCBAA. The process of the third assignment
iteration was similar to that in the first two iterations. The bidding values calculated by
Equation (11) denote the incremental profit. At the end of the third iteration, all the target
assignments were completed, and the total profit was 10.79.

The target assignment results obtained by the MTSGA were the same as those obtained
by the MTCBAA, but the running time of the MTSGA was 0.018 s, which was twice that of
the MTCBAA, which was 0.01 s. This was because the MTSGA performed more iterations
than the MTCBAA.

4.2. Monte Carlo Comparison Experiment

Next, a comparison experiment between the MTCBAA and a centralized target assign-
ment algorithm based on the artificial immune algorithm [25] was conducted to verify the
optimization efficiency and the running time of the MTCBAA.

As the MTCBAA is a distributed target assignment algorithm, it is challenging to
compare it with a centralized target assignment algorithm in the same computing power
environment. The distributed operation process of the MTCBAA was simulated for multiple
aircraft using the PCT toolbox to deploy the MTCBAA to multiple workers, while the client
simulated the communication network responsible for data exchange between multiple
aircraft, as shown in Figure 2. Meanwhile, the centralized target assignment algorithm
based on an artificial immune algorithm was deployed to run on a single core.

The comparison of the two algorithms was conducted using the Monte Carlo method.
The azimuth angle ϕij was in the range of [−40◦, 40◦], the entry angle qij was in the range of
[140◦, 220◦], and the distance Dij was in the range of [60, 80] km; their values were randomly
set to compare the profits and running time of the two algorithms. The experiment included
a total of 1000 iterations.

The profit comparison results of the two algorithms are shown in Figure 3.
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In Figure 3, the vertical coordinate represents the decrease ratio for the assignment
profit obtained by the MTCBAA compared to the target assignment profit obtained by the
centralized target assignment algorithm based on the artificial immune algorithm under
the same simulation conditions. As shown in Figure 3, in each iteration of the comparison
experiments, the decrease ratio for the target assignment profit obtained by the MTCBAA
compared to that obtained by the centralized target assignment algorithm based on the
artificial immune algorithm was within 10%, and in only 34 iterations the decrease ratio
exceeded a value of 5%. In fact, the phenomenon of the decrease in the profit of the
MTCBAA being basically controlled to 10% also held in two-on-two and three-on-three air
combat scenarios. As the artificial immune algorithm is an optimization algorithm with
excellent performance in finding a globally optimal solution, the target assignment profit
of the centralized target assignment algorithm based on the artificial immune algorithm
could be considered the global optimal target assignment profit. The results indicated
that the decrease in the profit of the MTCBAA could be basically controlled to 10%, which
represented a significant improvement compared to the 50% stated in Theorem 2. This was
because it was basically impossible for any exchange of two aircraft-assigned targets, as is
described in the proof of Theorem 2, to improve the target assignment profit.

The results also showed that the average running time taken by the MTCBAA for each
iteration was 0.009 s, while that of the centralized target assignment algorithm based on
the artificial immune algorithm was 2.45 s. Thus, the running time of the MTCBAA was
basically negligible.

4.3. Deployment Experiment on Distributed Semi-Physical Simulation Platform

In this experiment, the MTCBAA was deployed to a distributed semi-physical simula-
tion platform constructed in our lab to verify its practicality and real-time performance.
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The architecture of the distributed semi-physical simulation platform is shown in
Figure 4. The platform was designed based on the host–target mechanism. It included a
host computer, which was used to generate code for each target computer based on the
real-time workshop (RTW) and to control the operation of target computers, and four target
computers based on an xPC target, which were used to provide a real-time verification
environment for the algorithms. As there was no strict requirement for real-time com-
munication between the host and target computers, their communication was performed
via Ethernet. However, to ensure the real-time property of the simulation environment,
the communication network between the target computers was required to have strict
transmission determinacy and predictability, which was achieved using a reflective mem-
ory network. The reflective memory cards used in this experiment were PCI5565 cards.
The Ethernet network had a star structure, while the reflective memory network had a
ring structure. In addition, it was necessary to solve the problems relating to the start-up
and time synchronizations for each target computer node, so the implementation method
proposed in a previous study [26] was adopted. This method will not be described in this
work. The method for the deployment of the MTCBAA to the distributed semi-physical
simulation platform is described in the following.
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The operation process of the MTCBAA was described in detail in Section 3.2 and will
not be repeated here. The focus of this section is on the realization of synchronization
before each consensus phase between target computers for the MTCBAA.

The synchronization before each consensus phase between target computers was
based on the double handshake mechanism, as shown in Figure 5. After the auction phase
in each iteration, each target computer wrote “1” at the specified offset address in the
reflected memory network and cyclically queried the other target computers for “1” at
the corresponding offset address. If the desired result was reached within 2 ms, the first
handshake terminated. Then, the second handshake was performed, where each target
computer wrote “0” at the specified offset address in the reflected memory network and
cyclically queried the other target computers for “0” at the corresponding offset address.
If the desired result was reached within 500 µs, the second handshake terminated. Then,
each target computer exchanged the data needed for the consensus phase with the other
target computers and performed the consensus phase operations.

The MTCBAA was deployed to four target computers using the situation data in
Section 4.1 as input, and the scheduling period of the MTCBAA was set to 20 ms. Then,
the simulation process started. The xPC GUI of the target computer 1 is presented in
Figure 6; the xPC GUIs of the other target computers were similar to that in Figure 6,
so they are not presented in this section. In Figure 6, the vector in scope 1 corresponds
to the assignment result vector a1; the vector in scope 2 corresponds to the cooperative
decision-making vector f 1; the vector in scope 3 corresponds to the estimated missile
assignment vector m1. As presented in Figure 6, the results were consistent with the results
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in Section 4.1. In addition, the TET values in Figure 6 show that the actual execution time
of the MTCBAA in target computer 1 was 117 µs using the situation data in Section 4.1 as
input, while the TET values of target computers 2–4 were 118, 118, and 116, respectively.
The MTCBAA, as a synchronization algorithm, was synchronized by the double handshake
mechanism, as described above. The total execution times of the four target computers
were approximately equal.
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Next, inputs were randomly generated using the conditions presented in Section 4.2,
and 1000 iterations of distributed simulation verification experiments were conducted. The
experiment results indicated that the MTCBAA had a maximum running time of 287 µs, a
minimum running time of 38 µs, and an average running time of 172 µs when deployed to
the target computers. Therefore, compared with the decision periods from previous studies
on BVR air combat [27,28], the execution time of the MTCBAA was negligible.

Finally, two target computers were used as red aircraft, and the other two target
computers were used as blue aircraft. Both sides were initially in a head-on situation. The
red aircraft made maneuvering decisions using an expert system constructed in our lab
and the proposed MTCBAA for target assignment, while the blue aircraft kept flying along
straight lines. The scene of the engagement between the two sides is presented in Figure 7,
where it can be seen that, when the blue aircraft entered the range of the missile attack
zones of the red side, the two red aircraft assigned a missile to the corresponding target
and fired. Then, each red aircraft switched to perform the single-side guide maneuver to
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reduce the approach rate with the enemy aircraft while providing medium guidance for its
launched missiles.
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From the above experimental results, it can be seen that the MTCBAA proposed
in this study shows obvious advantages in running time, and its distributed execution
eliminates the dependence on the central node and improves the robustness of the system.
Its practicability was demonstrated by deployment experiments on a distributed semi-
physical simulation platform.

5. Conclusions

The existing centralized target assignment algorithms are inefficient and focus only on
profit optimization, and the existence of the central node leads to low system robustness.
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To address these problems, this paper proposes an efficient distributed target assignment
algorithm for multi-aircraft cooperative BVR air combat.

As described in the methodology section, first, based on the non-parametric method,
air combat situation modeling was performed on a target assignment basis for multi-aircraft
cooperative BVR air combat. Next, based on the two-stage execution architecture of the
CBAA and the introduction of the cooperative decision-making variable, a distributed
target assignment algorithm for multi-aircraft cooperative BVR air combat, the MTCBAA,
was designed. The MTCBAA can determine the assigned targets and missile numbers for
all aircraft simultaneously. Finally, using the centralized target assignment algorithm—the
MTSGA, which is equivalent to the MTCBAA—the fact that the MTCBAA can guarantee at
least 50% optimization performance was proven.

In the experimental section, the operation process of the proposed MTCBAA was
illustrated in an example. Using the Matlab parallel computing toolbox and the Monte
Carlo method, the MTCBAA was compared with the immune algorithm-based centralized
target assignment method in two-on-two, three-on-three, and four-on-four BVR air combat
scenarios. The results showed that the proposed algorithm could keep profit reduction
under 10% in the abovementioned scenarios, while reducing the average target assign-
ment time from 2.45 s to 9 ms in the four-on-four scenarios. This proves the minimum
optimization performance guarantee of the MTCBAA and verifies its efficiency advantage
compared to the other algorithm. In addition, the results showed that. when the MTCBAA
was deployed to a distributed semi-physical air combat simulation platform in four-on-
four BVR air combat scenarios, it could achieve an average running time of 172 µs; thus,
the efficiency and practicality of the proposed algorithm were further verified. Based on
the experiment results, the proposed MTCBAA has excellent practicality and application
prospects. In future work, other improvement mechanisms could be investigated to reduce
the profit reduction further.

The work described here follows up on the work undertaken by our lab [1]. At the end
of the cooperative occupation described in our previous work [1], the MTCBAA could be
used for the target assignment of the first round of missile launches, thus forming an initial
suppression posture against the enemy. When the first round of missile launches is over,
the two combatants enter a more complex missile exchange phase, where target assignment
is no longer applicable and more complex maneuvering and fire control decision policies
are required. Therefore, we will investigate reinforcement learning-based multi-aircraft
cooperative BVR air combat maneuvering and fire control decision-making in the future.
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Abbreviations

BVR Beyond-visual-range
CBAA Consensus-based auction algorithm
CBBA Consensus-based bundle algorithm
SGA Sequential greedy algorithm
MTCBAA Multi-target consensus-based auction algorithm
MTSGA Multi-target sequential greedy algorithm
PCT Parallel computing toolbox
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