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Abstract

This paper deals with a radar track before detect applica-

tion in a multi target setting. Track before detect is a method

to track weak objects (targets) on the basis raw radar mea-

surements, e.g. the reflected target power. In classical target

tracking, the tracking process is performed on the basis of

pre-processed measurements, that are constructed from the

original measurement data every time step. In this way no

integration over time takes place and information is lost.

In this paper we will give a modelling setup and a parti-

cle filter based algorithm to deal with a multiple target track

before detect situation. In simulations we show that, using

this method, it is possible to track multiple, closely spaced,

(weak) targets.

1. Introduction

Classical tracking methods take as an input so called plots

that typically consist of range measurements, bearing mea-

surements, elevation measurements and range rate (doppler)

measurements, see [1] and [2]. In this classical tracking set-

ting tracking consists of estimating kinematic state proper-

ties, e.g. position, velocity and acceleration on the basis of

these measurements.

In the classical setup the measurements are the output

of the extraction, see figure 1. In this setup there is a pro-

cessing chain before the tracking, this processing chain can

consist (e.g. in case of radar) of a detection stage, a cluster-

ing stage and an extraction stage, see figure 1.

In the method, that we propose here, we will use as mea-

surements the raw measurement data, e.g. reflected power,

see figure 1. The method is called Track Before Detect

(TBD), see also [6], [9] and [10].

If we look at figure 1 we see that in classical tracking (i.e.

the separate blocks) a detection decision is made directly on

the basis of the raw measurement from one single scan. This

detect cluster extract track
✲ ✲ ✲ ✲ ✲

video tracks

TBD

Figure 1: Classical data and signal processing (seperate

boxes) and TBD (large box)

means that already at the beginning of the processing chain

a hard decision is made w.r.t. the presence of a possible

target. Note that this decision is made instantaneously, i.e

without using information from the (near) past.

In TBD the decision is made at the end of the processing

chain, i.e. when all information has been used and inte-

grated over time. Note that information in a track has been

obtained by integrating over time). This method is espe-

cially suitable for tracking weak targets, i.e. targets that in

the classical setting often will not lead to a detection.

A particle filter will be used to perform the TBD. In

[8, 9, 10] it has been shown that for a single target the de-

tection can be based on the output of this filter. Somewhat

related is the work in [7], where a multiple target approach

for TBD on the basis of camera observations for well sepa-

rated targets has been presented.

In this paper we will present an algorithm that deals with

a multiple, closely spaced target, setup in which targets can

popup and disappear (birth/death).

2 System setup

Consider the general system

sk+1 = f(tk, sk, dk, wk), k ∈ N (1)

Prob{dk+1 = i | dk = j} = [Π(tk)]ij (2)

zk = h(tk, sk, dk, vk), k ∈ N (3)
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Where

• sk ∈ S ⊂ R
ns(dk) is the base state of the system.

• dk ∈ D ⊂ N is the modal state of the system.

• zk ∈ R
p is the measurement.

• tk ∈ R is time.

• wk is the process noise and pw(k,dk)(w) is the proba-

bility distribution of the process noise.

• vk is the measurement noise and pv(k,dk)(v) is the

probability distribution of the measurement noise.

• f is the system dynamics function.

• h is the measurement function.

• Π(tk) is the Markov transition matrix.

define

Zk = {z1, . . . , zk} (4)

The optimal hybrid filtering problem can be formulated

as follows.

Problem 2.1 (Optimal filtering problem)

Consider the system represented by the equations (1), (2)

and (3). Assume that the initial pdf p(s(0), d(0)) is avail-

able. The hybrid filtering problem is the problem of con-

structing the a posteriori pdf

p(sk, dk | Zk) (5)

Note that given the solution to problem 2.1, the mean of

the state (sk, dk) is obtained as

Ep(sk,dk|Zk))(sk, dk) (6)

Actually for any function of the state, φ(sk, dk), the mean

Ep(sk,dk|Zk))φ(sk, dk) (7)

can be calculated on the basis of the filtering solution.

3 Particle filter solution

A solution to the above hybrid filtering problem is to extend

the state in a straightforward manner with a modal state and

then apply a particle filter to the extended state, see e.g.

[4, 12]

The following algorithm will result in an approximation

of the a posteriori filtering distribution

p(sk, dk | Zk)

Algorithm 3.1

Consider the system represented by the equations (1), (2)

and (3).

Assume that an initial pdf

p(s0, d0)

is given.

Choose an integer N , the sample size.

1. Draw N samples according p(s0, d0), to obtain

{(s̃i
0, d̃

i
0)}i=1,...,N

2. Generate {di
k}i=1,...,N on the basis of {d̃i

k−1}i=1,...,N

and Π(tk−1).

3. Draw {wi
k−1}i=1,...,N according to pw(w) and obtain

{(si
k, di

k)}i=1,...,N using

si
k = f(tk−1, s̃

i
k−1, d̃

i
k−1, w

i
k−1)

4. Given zk, define

q̃i
k = p(zk | si

k, di
k, tk), i = 1, . . . , N

5. Normalize

qi
k :=

q̃i
k

∑N

i=1 q̃i
k

, i = 1, . . . , N

6. Resample N times from

p̂(s, d) :=

N
∑

j=1

qi
kδ((s, d) − (si

k, di
k))

and obtain {(s̃i
k, d̃i

k)}i=1,...,N to construct

p̂(sk | Zk) :=

N
∑

j=1

1

N
δ((s, d) − (s̃i

k, d̃i
k))

goto 2.

Remark 3.2

The above algorithm is a standard particle filter implemen-

tation. Different and better algorithms for multiple model

particle filters exist, see e.g. [4].

2

Proceedings of the 2003 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’03) 
1063-6919/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 19, 2009 at 07:03 from IEEE Xplore.  Restrictions apply.



4 TBD system setup

In this section we will describe the models that will be used

in the TBD application. We will describe the system dy-

namics models and the measurement models.

4.1 System dynamics

A widely used model is the constant velocity model, see e.g.

[1, 2]. This model is used to describe the position and veloc-

ity using Cartesian coordinates. Furthermore the model has

an additive process noise term. The discrete-time system

dynamics of this model is of the form:

sk+1 = f(tk, sk, dk) + g(tk, sk, dk)wk (8)

where

f(tk, sk, dk) =









1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1









sk (9)

with the state vector sk = [xk, yk, ẋk, ẏk]T where xk and

yk are the positions and ẋk and ẏk are the velocities. The

process noise wk is assumed to be standard white Gaussian

noise. T is the revisit time, which has been assumed to be

constant here, this assumption can be relaxed, however.

The process noise input model is given by

g(tk, sk, dk) =









1
2 ( 1

3ax,max)T 2 0

0 1
2 (1

3ay,max)T 2

1
3ax,maxT 0

0 1
3ay,maxT









(10)

with maximum accelerations ax,max and ay,max.

4.2 Measurement model

The measurements are measurements of reflected power.

One measurement zk consists of Nr ×Nd×Nb power mea-

surements z
ijl
k , where Nr, Nd and Nb are the number of

range, doppler and bearing cells.

In figure 2 we have plotted power measurements for a

fixed bearing angle, but as a function of different range and

doppler. The power measurements in this figure correspond

to a target that has a power of 10 and a noise level such that

the signal to noise ratio is 13dB.

The power measurements per range-doppler-bearing cell

are defined by

z
ijl
k = |zijl

A,k|
2 k ∈ N (11)
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Figure 2: Power of target in noise (SNR 13dB) as a function

of range and doppler cells

where z
ijl
A,k is the complex amplitude data of the target

which is

zA,k = AkhA(sk, tk) + n(tk), k ∈ N (12)

where

Ak = Ãkeıφk , φk ∈ (0, 2π) (13)

is the complex amplitude of the target and hA(sk, tk) is

the reflection form that is defined for every range-doppler-

bearing cell by

h
ijl
A (sk, tk) = e−

(ri−rk)2

2R
Lr−

(dj−dk)2

2D
Ld−

(bl−bk)2

2B
Lb , (14)

i = 1, . . . , Nr, j = 1, . . . , Nd, l = 1, . . . , Nb and k ∈ N

with

rk =
√

x2
k + y2

k (15)

dk = ṙk =
1

√

x2
k + y2

k

(xkẋk + ykẏk) (16)

bk = arctan

(

yk

xk

)

(17)

which are the range, doppler and bearing respectively of the

target. R, D and B are related to the size of a range, a

doppler and a bearing cell. Lr, Ld and Lb represent con-

stants of losses.

The noise is defined by

n(tk) = nI(tk) + ınQ(tk) (18)
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which is complex Gaussian, where nI(tk) and nQ(tk) are

independent, zero-mean white Gaussian with variance σ2
n.

In this way the power measurements per range-doppler-

bearing cell are defined by

z
ijl
k = |zijl

A,k|
2 = (19)

= |Akh
ijl
A (sk, tk) + nI(tk) + ınQ(tk)|2, k ∈ N

These measurements, conditioned on sk, are now exponen-

tially distributed

p(zijl
k |sk) =

1

µ
ijl
0

e
− 1

µ
ijl
0

z
ijl

k

(20)

where

µ
ijl
0 = E[zijl

k ]

= E[|Ãkeiφkh
ijl
A (sk, tk) + nI(tk) + ınQ(tk)|2]

= E[(Ãkh
ijl
A (sk, tk) cos(φk) + nI(tk))2

+(Ãh
ijl
A sin(φk) + nQ(tk))2]

= Ã2(hijl
A (sk, tk))2 + 2σ2

n

= Ph
ijl
P (sk, tk) + 2σ2

n (21)

with

h
ijl
P (sk, tk) = (hijl

A (sk, tk))2 = (22)

= e−
(ri−rk)2

R
Lr−

(dj−dk)2

D
Ld−

(bl−bk)2

B
Lb

which describes the power contribution of a target in every

range-doppler-bearing cell.

5 Multiple target setting

In this section we consider the (possible ) presence of two

targets, where one target can originate (spawn) from the

other. Think, e.g. of a missile being fired from a fighter

airplane.

We can consider the general system introduced in section

2, i.e.

sk+1 = f(tk, sk, dk, wk), k ∈ N (23)

Prob{dk+1 = i | dk = j} = [Π(tk)]ij (24)

zk = h(tk, sk, dk, vk), k ∈ N (25)

Furthermore, for this problem it is convenient to define a

base state vector that consists of the base states of both tar-

gets. Thus,

Sk =

(

s
(1)
k

s
(2)
k

)

(26)

The discrete mode dk represents one of three hypotheses

• dk = 0: There is no target present.

• dk = 1: There is one target present.

• dk = 2: There are two targets present.

5.1 Measurements models

For the multi target setup the measurement models need to

be extended.

The complex amplitude data that is received from two

targets can be modelled by

zA,k = A
(1)
k h

(1)
A (sk, tk) + A

(2)
k h

(2)
A (sk, tk) + n(tk) (27)

where A
(1)
k , h

(1)
A and A

(2)
k , h

(2)
A are the amplitude and reflec-

tion form of the first and second target respectively. Thus,

the power measurements are

z
ijl
k = |zijl

A,k|
2

= |A(1)h
(1)ijl

A (sk, tk) + A(2)h
(2)ijl

A (sk, tk)

+nI(tk) + ınQ(tk)|2 (28)

These will, again be exponentially distributed

p(zijl
k |sk) =

1

µ
ijl
0

e
− 1

µ
ijl
0

z
ijl

k

(29)

where

µ
ijl
0 = E[zijl

k ]

= E[|Ã
(1)
k eıφkh

(1)ijl

A (sk, tk)

+Ã
(2)
k eıφkh

(2)ijl

A (sk, tk) + nI(tk) + ınQ(tk)|2]

= E[(Ã
(1)
k cos(φ

(1)
k )h

(1)ijl

A (sk, tk)

+Ã
(2)
k cos(φ

(2)
k )h

(2)ijl

A (sk, tk) + nI(tk))2

+(Ã
(1)
k sin(φ

(1)
k )h

(1)ijl

A (sk, tk)

+Ã
(2)
k sin(φ

(2)
k )h

(2)ijl

A (sk, tk) + nQ(tk))2]

= (Ã
(1)
k h

(1)ijl

A (sk, tk))2

+(Ã
(2)
k h

(2)ijl

A (sk, tk))2 + 2σ2
n

= P (1)h
(1)ijl

P (sk, tk)

+P (2)h
(2)ijl

P (sk, tk) + 2σ2
n (30)

using this we obtain for the mode dependent likelihood

p(zk|Sk, dk) =











∏

ijl pv(zijl
k ) for dk = 0

∏

ijl p(zijl
k |Sk) for dk = 1, s

(2)
k = s

(1)
k

∏

ijl p(zijl
k |Sk) for dk = 2

(31)

4

Proceedings of the 2003 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’03) 
1063-6919/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 19, 2009 at 07:03 from IEEE Xplore.  Restrictions apply.



6 Multiple target tracking simula-

tions

In this section we give a demonstration of a particle filter

that is capable of tracking multiple targets.

In the scenario, initially there is no target present, the

first target appears after 5 seconds at a position of 88.6km

from the sensor and flies at a constant velocity of 200ms−1

directly to the sensor. At t = 15 a second target spawns

from the first, accelerating to a velocity of 300ms−1 over

three scans, see figure 3 for an illustration of the scenario.
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o
s
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io

n
 [

k
m

]

First target 
Second target

Figure 3: Target trajectories

We consider range cells in the interval [80, 90]km,

doppler cells in the interval[−0.34,−0.10]kms−1. We only

consider one bearing cell in this example. We therefore have

Nr×Nd×Nb cells, where Nr = 50, Nd = 16 and Nb = 1.

Initially, 9600 particles are uniformly distributed in

the state space, in an area between [85, 90]km and

[−0.22,−0.10]kms−1 in the x-direction and [−0.1, 0.1]km

[−0.10, 0.10]kms−1 and in the y-direction. Furthermore,

initially we uniformly distribute the particles over all

modes.

The transition probability matrix is assumed to be

Π(tk) =





0.90 0.10 0.00

0.10 0.80 0.10

0.00 0.10 0.90





The update time, T , is set to one second.

The dynamics of both targets are captured by a constant

velocity model, but with different values for their maxi-

mal acceleration. For the first target we set amax,x =

amax,y = 5ms−2. For the second target we choose

amax,x = 35ms−2 and amax,y = 5ms−2.

We assume that the power of both targets is known,

P (1) = 10 and P (2) = 1. The noise level is to be assumed

such that a specified SNR for the first (strongest) target is

realized according to

SNR = 10 log

(

P (1)

2σ2
n

)

[dB]

Simulations are performed for two different SNR val-

ues, SNR = 13dB and SNR = 7dB. This implies that

the SNR of the second target becomes 3dB and −3dB re-

spectively.
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Figure 4: Particles at k=5, SNR=13dB

In the figures 4, 5 and 6, we see, for the case of

SNR=13dB, the particle clouds at different time steps. In

figure 7, we see the corresponding mode probabilities. Un-

til time step k=5, the cloud remains more or less uniformly

distributed. When the first target appears the cloud quickly

concentrates on the target and remains there, see figure 5.

The filter however, is somewhat indecisive whether one or

two targets are present, see figure 7. After the birth of the

second target the filter is very well able to distinguish the

two targets.

In the figures 8, 9 and 10, we see for the case of

SNR=7dB, the particle clouds at different time steps. In fig-

ure 11, we see the corresponding mode probabilities. Again

until time step k=5, the cloud remains more or less uni-

formly distributed. When the first target appears the filter

picks it up quite good, but is again quite indecisive on the
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Figure 5: Particles at k=14, SNR=13dB
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Figure 6: Particles at k=25, SNR=13dB

number of targets, see figure 11. After the birth of the sec-

ond target, the filter is able to track both the first and second

target, but is still quite indecisive on the number of targets.

The explanation for this that the second target is a really

weak one, i.e. SNR=-3dB.

7 Conclusions

In this paper we presented a modelling setup and an algo-

rithm for a multiple target TBD application. The problem

has been solved by using a multiple model particle filter.
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Figure 7: Mode probabilities, SNR=13dB
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Figure 8: Particles at k=5, SNR=7dB

Simulations show that the method can deal with fairly weak

targets, that in a classical target tracking setup never would

have been detected.

In the future, the method should be extended to the case

where the SNR of the targets is unknown and where fluc-

tuation of the strength of the targets, so called radar cross

section fluctuation, is taken into account. Furthermore, it

should be studied to what extent other (better?) multiple

model particle filter algorithms can improve the results.
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Figure 9: Particles at k=14, SNR=7dB
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Figure 10: Particles at k=25, SNR=7dB
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