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The destruction of archaeological sites and the loss of archaeological landscapes remains a global concern as populations 
and urban areas continue to expand. Archaeological sites are not only significant to local communities, national identities, 
and modern tourist economies but also provide critical knowledge of past sociocultural interactions, settlement patterns, 
human-environment relationships, and risk mitigation strategies. While archaeological landscapes and site destruction have 
remained outside of traditional land use land cover change (LULCC) studies, they are a form of urban and agricultural land use. 
By conceptualizing archaeological site destruction within land change science, this study provides an innovative approach 

for assessing “what’s left” of historically surveyed archaeological landscapes. Using a Random Forest algorithm and Landsat 
satellite data, this study quantifies archaeological site destruction attributed to LULCC in Peru’s lower Moche Valley between 

1985 and 2020. More than 400 archaeological sites previously recorded during the Chan Chan-Moche Valley Project (CCMVP, 
1969–1974) are analyzed. Results indicate that less than a quarter of the original CCMVP sites remain on the landscape. The 
primary drivers of LULCC in the lower Moche Valley include population growth, migration, and government policies, while 
secondary drivers include heritage values. Positioning archaeological survey data within land change science and integrat- 
ing machine learning techniques can benefit historic survey reassessments globally and provides significant knowledge of 
archaeological site destruction and the socioeconomic conditions that underly dynamic landscape changes. 
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 INTRODUCTION 

rchaeological ground surveys are critical to identifying archaeological sites and the material remains of past
ultures and peoples. They are the precursor to conservation and preservation initiatives, tourism development,
cholarly excavation, and academic research. Archaeological survey is also the antecedent for public and private
evelopment and the transition of past landscapes to modern agricultural, industrial, or residential use. Since
he early 20th century, scholars and cultural resource management ( CRM ) professionals have conducted
urveys at a global scale. The majority of this work has focused on undeveloped and previously un-surveyed
reas. Routine follow-up surveys are rare, creating a gap in how scholars and CRM professionals address “what’s
eft” of archaeological landscapes where historic surveys (i.e., surveys more than 50 years old) were completed. 
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Alternative methods for reassessing archaeological sites identified by past ground surveys are limited. Resur-
eying landscapes is costly (e.g., field-housing, food, stipends) and constrained by time, weather, and the ability
f personnel to physically ground-truth and access sites, which may be remote or located in difficult terrain.
n some cases, sociopolitical conflicts prevent archaeologists from accessing previously recorded sites. Satel-
ite remote sensing is a cost-effective option that has allowed archaeologists (and citizen scientists alike, e.g.,
lobalXplorer) to examine and monitor archaeological sites from afar. While remote sensing is not a direct

ubstitute for survey (see Study Limitations), the method presented here allows archaeologists to assess and
onsolidate what has survived on archaeological landscapes faster than traditional methods, to determine the
rivers of site destruction, and to inform future ground-truthing, excavation, and conservation at remaining sites.
sing Peru’s lower Moche Valley as a case study, this article provides an innovative approach to reassess known
rchaeological landscapes by leveraging machine learning algorithms, remote sensing, and land change science
o quantify archaeological site destruction and identify the drivers of land use land cover change ( LULCC )
hat contribute to the loss of archaeological landscapes. 

Remote sensing technologies and spatial resolution have rapidly progressed since the 1970s and the initial
aunch of the ERTS Multispectral Scanner ( MSS ) that was limited to 80-meter resolution [Fowler 2010 ]. Prior
o this, archaeologists relied on aerial photographs that enabled significant contributions to early archaeological
urvey and land assessment [Kosok 1965 ; Miller 1957 ; Willey 1953 ]. Current high-resolution satellite data has al-
owed archaeologists to analyze urban encroachment [Moise et al. 2021 ; Vaz 2020 ; Elfadaly et al. 2018 ], wartime
ite destruction [Angiuli et al. 2021 ; Cunliffe 2014 ], site damage and looting [El Hajj 2021 ; Rayne et al. 2020;
aspari 2020 ; Masini and Lasaponara 2020 ; Cuca and Hadjimitsis, 2017 ; Parcak 2015 ] and to conduct archaeo-

ogical prospection [Orengo et al. 2020 ; Casana 2020 ; Kempf 2019 ; Dawson et al. 2020 ]. Scholars have also made
dvances in modeling and quantifying land use in ancient societies [Loughlin et al. 2021 , Stephens et al. 2019 ,
ughes et al. 2018 ], utilizing deep learning to identify archaeological features [Karamitrou et al. 2022 ; Olivier

nd Verschoof 2021 ; Zingman et al. 2016 ], linking ancient land use and modern deforestation practices [Plekhov
t al. 2021 ], and assessing site distribution and settlement patterns [Van Valkenburgh et al. 2020 ; Thompson
020 ; Wernke et al. 2020 ]. Related to the current study, the ground-assessment and ethnographic research on
rbanization and its impact on six archaeological sites in Trujillo, Peru by Gamboa [ 2016 ] provides insight into
he experience of local communities and heritage management. Studies incorporating LULCC (i.e., land change
cience) and spatial computation methods for archaeology remain limited [Agapiou 2021 ; Nebbia et al. 2021 ].

hile the use of satellite imagery for archaeological research is not a new phenomenon, the integration of land
hange science and the conceptualization of archaeological survey data within this broader framework is the ma-
or contribution of this article. By integrating archaeological survey with LULCC, remote sensing, and machine
earning, a deeper understanding of the primary and secondary drivers of archaeological destruction, and the
omplex human-environment interactions and socioeconomic policies that underly these changes, is possible. 

Land cover refers to the surface cover on the ground (e.g., vegetation, asphalt, open water, bare soil) whereas
and use refers to how a landscape is used (e.g., residential, agriculture, industrial) [Tewabe and Fentahun 2020 ].
nowing and quantifying what land-use types are present–and when–can help address the destruction of ar-
haeological landscapes over time. Land change drivers are often difficult to link empirically because they depend
n dynamic spatiotemporal variables [Turner et al. 2007 ]. Previous research has shown, however, that national
olicies and governance, population growth, global commodity value chains, foreign investments and the acqui-
ition of land, new technologies, migration, labor availability, climate change, and so forth are all potential land
hange drivers [Zimmerer and Vaca 2016 ; Meyfroidt et al. 2013 ; Hecht 2010 ; Turner et al. 2007 ]. 

Traditional studies of LULCC include the expansion of agriculture and urbanization, biodiversity loss, defor-
station, carbon emissions, and the effects of land change on ecosystem services [Lambin and Meyfroidt 2011 ;
udel et al. 2009 ; Huston 2005 ; Rindfuss et al. 2004 ; Geist and Lambin 2002 ]. Recent advances in machine learn-

ng have increased LULCC classification accuracy [Rahman et al. 2020 ; Vega Isuhuaylas et al. 2018 ], leading to
igh-resolution object segmentation [Wang et al. 2021 ; Zarro et al. 2020 ] and the analysis of geospatial big data
CM Journal on Computing and Cultural Heritage, Vol. 16, No. 3, Article 47. Publication date: August 2023. 
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Li et al. 2021 ; Kalantar et al. 2020 ]. This knowledge is used to develop strategies to conserve fragile ecosystems,
esolve socioeconomic pressure, and develop sustainable land management solutions. In Peru, extensive LULCC
esearch has been conducted on deforestation and biodiversity loss [Álavarez-Berríos et al. 2021 ; Vargas et al.
019 ; Bax et al. 2019 ], agricultural expansion [Sánchez-Cuervo et al. 2020 ; Gutiérrez-Vélez et al. 2011 ; Tovar et
l. 2013 ], urbanization and infrastructure development [Ramierez et al. 2019 ], crop classification [Tatsumi et al.
016 ], and mining [Cabellero Espejo et al. 2020 ; Asner and Tupayachi 2017 ]. 

While archaeological landscapes have remained outside of traditional LULCC studies, they are a form of ur-
an and agricultural use and provide valuable cultural ecosystem services (e.g., tourism revenue, heritage values,
nd cultural identity [Tengberg et al. 2012 ]). The inclusion of archaeological landscapes within a broader LULCC
ramework is applicable for four reasons. First, the loss of archaeological landscapes is physically measurable
sing archaeological survey data and remote sensing. Landscape loss can also be measured economically (e.g.,
ourism revenue) and correlates to sustainable practices (both socioeconomic and in terms of archaeological
reservation). As Eric Vaz [2020, p. 2] argues, the “preservation of archaeological sites allow sustainable land-
capes to be supported, particularly within small towns that rely on product differentiation, seasonal tourism,
nd endogenous economies. . . ”. Second, similar to biodiversity loss, land-use change significantly affects diverse
epresentations of the past and modifies access to cultural resources, amplifying identity and heritage erasure.
n the past, it has been difficult to analyze the erasure of cultural ecosystem services because of their intangi-
le properties [Bürgi et al. 2017 ]; however, quantifying archaeological site destruction can provide insight into
uctuating cultural values. Third, adopting a LULCC framework provides archaeologists with a more compre-
ensive understanding of the dynamic nature of landscape change and archaeological site destruction. Finally,
he conversion of archaeological landscapes to new land-use classes (e.g., agriculture, industrial, urban) influ-
nces natural resource exploitation, carbon emissions, and local carrying capacity. The current study focuses
n the first three factors. Knowing what remains of archaeological landscapes and the causal factors associ-
ted with archaeological destruction is beneficial to researchers, NGOs, and government agencies who influence
olicy decisions and conservation initiatives worldwide. 
This article utilizes computational methods to quantify archaeological site destruction and integrates archae-

logical survey data with machine learning, land change science, and remote sensing to provide an innovative
nd cost-effective approach to assess what remains of historically surveyed archaeological landscapes. A Ran-
om Forest algorithm and Python is used to classify 35 years of Landsat satellite imagery in Peru’s lower Moche
alley (1985–2020). A total of 477 archaeological sites recorded during the Chan Chan-Moche Valley Project

 CCMVP , 1969-1974) are analyzed. LULCC is assessed at both the regional and the site scale. The goal of this
esearch is to (1) provide an innovative approach to archaeological LULCC change that can be scaled globally
o assess surveyed archaeological landscapes, (2) convey a broader understanding of the long-term impacts of
ocioeconomic policies and heritage discourse that contribute to the loss of archaeological landscapes in Peru,
nd (3) to identify remaining CCMVP archaeological sites in Peru’s lower Moche Valley. 

 MATERIALS AND METHODS 

.1 Case Study: Lower Moche Valley, Peru 

ocated along Peru’s arid North Coast and situated in the department of La Libertad, the Moche Valley is home
o the country’s third largest city—Trujillo—with an estimated urban population of more than 1.4 million peo-
le [INEI n.d. ]. Agrarian land reforms in the 1970s and Peru’s neoliberal policies in the 1990s globalized and
xpanded the country’s exports making the Moche Valley the largest commercial sector in the La Libertad
rovince [Velarde 2018 ; Schwarz and Mathijs 2017 ; Schuster and Maertens 2016 ]. Under these policies, the re-
ion became a leading producer of footwear, sugar cane, asparagus, blueberries, mango, and avocado, to name
 few [Apaz et al. 2019 ]. Today, the Moche Valley retains significant agro-industrial status, with most arable
oastal land having been acquired by domestic and international corporations from small-holding agricultural
ACM Journal on Computing and Cultural Heritage, Vol. 16, No. 3, Article 47. Publication date: August 2023. 
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ommunities [Thompson et al. 2016]. To sustain agro-industrial and residential growth, irrigation has been
ritical. The Chavimochic Irrigation Project diverts water from the neighboring Santa Valley to support 78,310
ectares of land in the Moche Valley as well as the expansive urban and agricultural growth of Trujillo and its
utlying districts [Mark et al. 2017 ; World Bank 2021 ]. Evidence of pre-historic canal systems—some of which are
till in use today—is also found throughout the region, underlying the significance of water management both
ast and present [Caramanica et al. 2020 ; Huckleberry et al. 2012 ; Billman 2002 ; Ortloff et al. 1985 ; Farrington
nd Park 1978 ]. The region is, however, highly susceptible to catastrophic ENSO ( El Niño Southern Oscilla-

ion ) events, which periodically disrupt agro-industrial production and land use due to widespread flooding and
nfrastructure damage [Ráez Luna 2017 ]. 

The Moche Valley also has a rich archaeological history with numerous pre-ceramic lithic sites and the built
emains of several state and imperial cultures including the Moche (100–700 CE), Chimú (900–1470 CE), and Inca
1470–1532) [Quilter 2021 ; Prieto et al. 2019 ; Vogel 2018 ; Chapdelaine 2011 ; Moore and Mackey 2008 ; Castillo and
ceda 2008 ; Moseley 2001 ; Shimada 2000 ; Moseley and Cordy-Collins 1990 ; Mackey 1982 ; Moseley and Mackey
972 ]. Archaeological tourism has steadily increased over the past decade, providing income for local artisans
nd hospitality workers [Dupeyron 2021 ; Coben 2014 ; Underberg-Goode 2014 ]. Recent government investment,
nfrastructure development, and the promotion of the Ruta Moche tourist circuit are partly responsible for rising
isitor rates. For example, visitors to the archaeological complex of Huaca del Sol y de la Luna increased from
8,143 in 2009 to 136,653 in 2019, an increase of roughly 40% (MINCETUR). The Ruta Moche includes the UNESCO
orld Heritage Site of Chan Chan, the national patrimonial sites of Huaca de la Luna y Huaca del Sol, and El

rujo, as well as several sites located outside of the Moche Valley [Underberg-Goode 2014 ]. The majority of
ourists visiting Peru, however, remain disproportionately concentrated in the former Inca capital of Cuzco and
ts surrounding region. 

.2 Archaeological Data and Archival Records 

he archaeological dataset used in this study consists of 477 archaeological sites previously recorded during the
CMVP (1969–1974), co-directed by Michael Moseley and Carol Mackey. It should be noted that the CCMVP

ites do not represent the totality of archaeological sites in the Moche Valley, but only a fraction of the total.
he digitized locations of all sites from the original CCMVP documentation were generously provided by Brian
illman (UNC-Chapel Hill) and Patrick Mullins (University of Pittsburgh) as part of the Moche Valley Ancient

ettlement Database ( MVASD ) to enable QGIS compatibility. Site locations are represented as point data (e.g.,
 site’s center). The author ground-verified a 10% sample of all CCMVP sites to assess the accuracy of site ge-
locations and to record common land-use practices adjacent to sites in 2018. For sites that were still present on
he landscape, geolocation accuracy fell within 7–10 m of digitized points. 

Archival work was conducted by the author at the Harvard Peabody Museum Archives to access the “Michael
. Moseley Papers on the Chan Chan-Moche Valley Project” in 2019. CCMVP field notes define a wide range of

dentified sites including middens, platforms, burials, canals, roomed structures, and large ceramic sherd scatters.
he majority of recorded sites were attributed to the Moche, Chimú, and Chimú-Inca periods. Notes recorded
y Ian Farrington (Nov. 1–7, n.d.) and Charles M. Hastings (March–May 1973) detail the material remains of
dentified sites as well as nearby land-use practices: 

“Some of the so called structures must have been so but during later occupation of the pampa 
they were almost destroyed leaving just rectilinear patterns of rocks, wall footings etc. with sherds .”
(Farrington, n.d.; author’s emphasis) 

“The survey in this area has taken on a very real air of salvage archaeology. More than 50% of the sites 
which appear on the 1942 photos have been completely destroyed; so much land has been reclaimed 

for agriculture in the past few decades that generally only the sites in marginal locations survive .”
[Hastings, 1973; author’s emphasis] 
CM Journal on Computing and Cultural Heritage, Vol. 16, No. 3, Article 47. Publication date: August 2023. 
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“Forty strong possibilities were gone without a trace; the most common cause of destruction is the 
reclaiming of land for agriculture, but building construction, roads, and canals are also factors . I recorded 

only two sites. One is a midden with little architecture and poor preservation and the other a destroyed 

structure with a worthwhile sample of sherds scraped to one side of the site . Both sites are either late 
Moche and/or Early Chimu.” [Hastings, 1973; author’s emphasis] 

bservations made by Hastings and Farrington regarding disturbed stone structures, large ceramic scatters, and
he marginal locations of surviving sites are similar to the author’s own observations during ground verification.

For the purposes of this study, sites identified between 1969 and 1974 are considered present on the landscape
uring the entirety of the CCMVP, despite reports of landscape development detailed by Hastings and other
roject members while surveying. This leaves an unavoidable 11-year gap between the last CCMVP survey date
nd the 1985 Landsat 5 Thematic Mapper satellite data (Landsat 2 imagery prior to 1985 remains unusable; see
andsat Time-series Data). While it is not possible to calculate LULCC rates within this 11-year period, it is
ossible to infer which CCMVP sites were likely to have been destroyed prior to 1985 based on the algorithms
lassification of land use in 1985. 

.3 Landsat Time-Series Data 

o quantify archaeological destruction and identify the primary drivers of LULCC in the lower Moche Valley,
andsat multispectral satellite images were collected at 5-year intervals (path 009, row 066) with WGS84 datum,
rojection UTM Zone 17S, and spatial resolution of 30 × 30 m per pixel from 1985 to 2020. Landsat’s open source
vailability and time-series depth make it valuable and cost-effective for LULCC analysis. Data quality, however,
ecomes more variable with earlier sensors. Although Landsat 2 images were available prior to 1985, the data
uality and resolution remained too low to include in the current analysis. Landsat 5 Thematic Mapper tiles were
ollected for 1985, 1990, 1995, 2000, 2005, and 2010 while Landsat 8 OLI/TIRS tiles were collected for 2015 and
020. Images from Landsat 7 were bypassed in favor of Landsat 5 tiles during collection due to an error in the
ine Scan Corrector after 2003 [Young et al. 2017 ]. All satellite images were downloaded from United States

eological Survey ( USGS ) Earth Explorer Collection 2 Level 2, which is calibrated for surface reflectance. The
tudy area encompasses 115,535 hectares across the lower Moche Valley. 

.4 Geospatial Data Extraction 

ULCC were selected based on the author’s ground-verification field work, visual interpretation of the Landsat
ata, CCMVP archival materials, and Google Earth images. In total, seven classes were selected: Desert/Barren,
ater, Poultry Farming, Urban, Roads, Agriculture, and Mountain Scrub. Here, Agriculture is defined as active

nd fallow fields and also includes vegetation categories like parks, gardens, and so forth. Although Roads are
raditionally classified as a subset of Urban land use, the two classes were separated for this study based on
rchival records indicating the rapid expansion of roadways between 1970 and 1974. Clouds were trained as an
ighth class to assess the percent of cloud cover per year in each Landsat image. 

An ALOS World 3D–30 m Digital Surface Model ( DSM ) was used to calculate elevation and slope rasters
or the study area. A DSM was selected instead of a DEM ( Digital Elevation Model ) based on the relatively
at coastal topography of the lower Moche Valley. The DSM provides elevation measurements from the top of
uildings, vegetation, and so forth, rather than ground level (DEM). Normalized Difference Vegetation Index

 NDVI ) was also calculated for each study year. Landsat bands 1–7 were used to create a composite image for
andsat 8 OLI/TIRS and Bands 1–6 were used for Landsat 5 TM. Individual Landsat composite images were then
tacked with their corresponding NDVI rasters, elevation, and slope rasters. 

For each Landsat satellite image, polygons representing the eight LULCC classes were produced by the author
sing QGIS—a free and open source platform for geographic information system applications and analysis of
eospatial data. Four hundred pixels per class (3,200 pixels total) were randomly sampled within each polygon.
ACM Journal on Computing and Cultural Heritage, Vol. 16, No. 3, Article 47. Publication date: August 2023. 
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his was repeated for each Landsat image and polygon set. Point Sampling was then utilized to extract underlying
olygon attributes and raster values from the stacked raster layers (e.g., NDVI, elevation, slope). This data was
xported and used to train a Random Forest ( RF ) algorithm using Scikit Learn and Python. The addition of the
DVI, slope, and elevation raster layers enabled the RF algorithm to learn subtle differences between each land-
se class and further differentiate pixel values in tandem with the Landsat bands. The method outlined here can be
tilized globally by tailoring land-use classes based on specialist knowledge of different regions and study areas.

.5 RF Algorithm 

F was selected because of its unparalleled accuracy and its ability to run efficiently on large datasets [Doyle
t al. 2021 ; Sánchez-Cuervo et al. 2020 ; Tatsumi et al. 2016 ; Kulkarni and Lowe 2016 ]. RF is a supervised machine
earning algorithm that develops large numbers of decision trees to classify sets of variables [Breiman 2001 ].
he goal of a decision tree classifier is the separation of groups at each non-terminal node and the choice of

eatures that are most effective in distinguishing the class grouping [Kulkarni and Lowe 2016 ]. The decision
rees are aggregated to provide the average of the individual tree outputs. 

Training data consisted of 400 pixels per class (3,200 pixels total per year) with 70% of individual pixel classes
sed for training and 30% of each pixel class withheld for validation. Previous studies have demonstrated the
0–30% split generates the lowest mean standard error and best model performance when compared to other split
ptions [Nguyen et al. 2021 ; Adelabu et al. 2015 ]. An Out-of-Bag ( OOB ) score was generated to assess RF model
ccuracy and error rate from the reserved validation data. The OOB estimate is derived from the classification
rror for the samples omitted from each tree, which is averaged over the total number of trees [Tatsumi et al.
016 ]. GridSearchCV was utilized to test the two hyperparameters that have the greatest impact on algorithm
ccuracy—max_depth and n_estimators [Doyle et al. 2021 ]—and optimize the RF models. n_estimators refer to
he number of trees created while max_depth is defined as the number of levels in each tree. Value combinations
or all n_estimators (5, 10, 50, 100, 250, 300, 350) and max_depth (2, 4, 8, 16, 32, 64, None) were tested for each
ear of the study. This resulted in 49 RF models per year and a total of 392 RF models spanning 1985–2020. For
ach year, the RF model with the highest validation accuracy and lowest OOB error rate was selected, resulting
n the eight models used in this study. 

Additionally, sites ground-verified by the author in 2018 were compared to the 2020 RF land-use classification
o generate a confusion matrix and further assess destruction accuracy and the algorithms precision, sensitivity,
nd specificity scores. Despite a 2-year difference between the 2020 RF model and on-site ground verification, the
0 sites selected were located in marginal areas where land-use change was largely stable when comparing the
015 and 2020 RF models. This is further evidenced by land-use majorities remaining the same in 2015 and 2020.
f the 40 sites ground-verified in 2018, 17 were inaccessible due to their location on private property; however,

he surrounding land use was recorded and utilized for this additional accuracy assessment. 

.6 Extracting and Calculating LULCC 

ll classified raster images were exported to QGIS. The total area of each class was calculated per year before
alculating the percent change of land use and land cover across the study region. 

Following regional calculations, CCMVP sites were overlaid onto all classified raster images. A 50-m circular
uffer was generated around all CCMVP sites (represented as point data) to extract representative land-use pixel
alues and quantify archaeological destruction per year. The selection of the 50-m buffer was based on CCMVP
eld notes describing site extents. While the author was unable to analyze the entirety of the CCMVP archival
ollection, the largest site estimate found by the author was attributed to Survey H38550: “The area covered by
herds was a square about 50-meters on a side, marked by linear boulder piles. . . ” (Survey H38550). Although the
xtent of H38550’s surface material is larger than other sites recorded by CCMVP surveyors, 50 m was selected
s the maximum site extent for all CCMVP buffers to capture broader patterns of land use. Zonal Statistics were
CM Journal on Computing and Cultural Heritage, Vol. 16, No. 3, Article 47. Publication date: August 2023. 
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Table 1. Reports n_estimators and max_depth as well as Model Accuracy (Rounded to the Nearest 

Whole Number) and OOB Measurements for the Eight RF Models used in this Study 

Landsat Satellite Year n_estimator max_depth Accuracy (%) OOB 

Landsat 8 OLI/TIRS 2020 350 16 95 94.6 
2015 250 None 95 94.4 

Landsat 
5 Thematic 
Mapper (TM) 

2010 250 32 96 96.1 
2005 250 16 95 94.8 
2000 250 32 95 94.2 
1995 100 32 94 94.1 
1990 350 16 96 96.8 
1985 250 None 97 96.2 
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sed to extract the majority land-use class represented within individual site buffers. These values were then
xported to determine land-use change and destruction at the individual site scale. 

Three tiers of destruction probability were determined based on land-use and transition patterns over time:
igh (urban, agriculture, road, water), Medium (poultry farm), and Low (desert/barren, mountain scrub, cloud).
 site was considered destroyed if the majority land use within the 50-m buffer was identified as a High or
edium destruction category or if the site transitioned to one of these destruction tiers between 1985 and 2020.

ites that remained in the Low destruction categories between 1985 and 2020 are considered surviving sites on
he landscape. 

 RESULTS AND ANALYSIS 

.1 RF Accuracy Assessments and Algorithm Runtime 

F training accuracy scores for Landsat 8 OLI/TIRS models averaged 94.5%, whereas accuracy for Landsat 5 TM
odels ranged from 96.8 to 94.1% based on OOB values. Table 1 reports RF accuracy measurements of the eight

elected models for each study year. Overall, algorithm validation accuracy was high with an average score of
5.1% across all models. Additionally, a confusion matrix for the 2020 RF model was generated to compare the RF
lgorithms land use classifications and the author’s ground-verification observations recorded at 40 CCMVP sites
n 2018 to assess the algorithm’s accuracy predicting site destruction (Figure 1 ). The classifier’s overall accuracy
hen determining site destruction was 80% with an error rate of 0.20. The classifiers sensitivity (0.90), precision

0.56), and specificity (0.76) measurements were generally high. For these three measurements, the closer a score
s to 1, the stronger the result. Finally, the classifier’s false-positive rate was low with a value of 0.23 (a score
loser to 0 is considered strong). 

The majority of classification inaccuracies for Landsat 8 OLI/TIRS and Landsat 5 TM models were attributed
o the separation of Roads from the Urban class and vice versa. This is understandable given the resolution of the
andsat imagery and considering that Roads are traditionally a subclass within Urban land use. Additionally, the
lgorithm’s ability to distinguish between Desert/Barren and Poultry Farms was noticeably weaker than other
and-use classes despite the inclusion of the DSM. In the Moche Valley, poultry farms are located almost exclu-
ively in desert areas and inherently include desert within their footprint, as each building on a given property
s separated by sandy, barren land. The relatively small size of Poultry Farms and the inability to distinguish
ndividual buildings given the 30-m resolution made training for this class difficult. Small discrepancies were
lso noted between Mountain Scrub and the Desert/Barren categories due to variations in sediments, seasonal
ullies (channels that form following heavy rainfall and deposit sediment), and shadows attributed to cloud
over. These classification discrepancies were manually corrected by the author during post-processing using
he Semi-Automatic Classification ( SCP ) tool in QGIS. 
ACM Journal on Computing and Cultural Heritage, Vol. 16, No. 3, Article 47. Publication date: August 2023. 
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Fig. 1. Site destruction confusion matrix. A confusion matrix was generated to compare sites ground-verified by the author 

vs. the RF 2020 models accuracy when classifying site destruction or survival based on land use. 
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The average runtime for testing all combinations of n_estimators and max_depth for RF optimization was
 min 51 sec, while the algorithm’s total runtime to classify satellite imagery for the eight selected RF models
as 22 min 52 sec. Post-processing, pixel reclassification, and data extraction was estimated to be 72 h. For

omparison, the author was able to visit an average of six sites per day with an estimated daily hiking range of
–11 miles while ground-verifying site destruction and land use in 2018. Depending on the condition of individual
ites, an average of 1 h 16 min was spent recording ground observations (not including hiking time to access sites).
n total, 40 CCMVP sites were visited during a 2-week period. The algorithm’s ability to efficiently classify land-
se patterns surrounding the 477 CCMVP sites in less than 25 min significantly outperforms the time required
or physical site visits. 

.2 LULCC in Peru’s Moche Valley 

igure 2 represents the total area (hectares) attributed to each land-use class between 1985 and 2020, whereas
igure 3 visually represents LULCC across all eight RF models. Between 1985 and 2020, poultry farms accounted
or a 1,918% increase in land use—the highest percent change within the seven land-use classes. Roads increased
y 227%, as did urban development (124%), and agricultural land use (19%). As poultry farms, agriculture, roads,
nd urban areas increased desert/barren and mountain scrub simultaneously decreased by 16% and 18%. The
atter two land-use classes, however, still constitute the largest percentage of total land area, accounting for

ore than 60% (73,146 ha) of undeveloped land within the 115,535 ha study zone as of 2020. By comparison,
griculture accounted for 13% (14,784 ha) of total land area, and urban areas and roads formed a combined 10%
13,135 ha) of total land area by 2020 (Figure 2 ). 

Cloud coverage within individual Landsat images averaged less than 2% across all study years with the ex-
eption of 2010. The presence of clouds was contained to the mountainous regions east of Trujillo, at the outer
CM Journal on Computing and Cultural Heritage, Vol. 16, No. 3, Article 47. Publication date: August 2023. 
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Fig. 2. Land-use area per year (hectare). Land-use change in Peru’s lower Moche Valley represented in hectares. Cloud cover 

is not included but accounts for the variations in the Mountain Scrub land-use area in 2010. 

Table 2. Variety of Identified Land-Use Classes in 50-m Site Buffers 

Variety of Identified Land Use Classes in 50m Site Buffers 
1985 1990 2000 2005 2010 2015 2020 

# Sites One Land Use Class 414 409 379 369 344 339 339 
# Sites Two Land Use Classes 57 65 94 99 115 130 119 
# Sites Three Land Use Classes 6 3 3 9 18 8 19 
# Sites Four Land Use Classes 0 0 1 0 0 0 0 

The number of land-use classes within individual 50-m site buffers are tabulated here. Sites represented by a single land-use class 
are most prominent in 1985. Single land-use homogeneity decreases moving toward the present as land use become more complex. 
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imits of the study area which are largely undeveloped. Despite 15 sites being covered by clouds in 2010 (as well
s 1 site in 2005), clouds did not negatively affect land-use outcomes or the quantification of site destruction, as
he sites in question were located in undeveloped mountain scrub. Notably, Landsat images from 1990 and 1995
o not include any cloud cover. 

.3 LULCC at CCMVP Sites 

he creation of 50-m buffers surrounding individual CCMVP sites revealed the variety of land use occurring at
ites, the total number of sites attributed to a land-use class per year, overall site destruction rates, and a timeline
f site destruction. 
Table 2 shows the diversity of representative land-use classes recorded within buffer zones for each study year.
ore than 70% of CCMVP site buffer zones could be attributed to a single representative land-use class, although,

and-use homogeneity within archaeological buffers decreased over time. The year with the highest percentage
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Fig. 3. Land-use change between 1985 and 2020 in Peru’s lower Moche Valley. 
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f sites represented by a single land-use class was 1985. Roughly 86.8%, or 414 sites fell within one class. The
ear with the lowest number of sites with a single land use was 2020, with 71.1% or 339 single land-use sites.
ecreased land-use homogeneity reflects the ongoing development and expansion of industrial, residential, and
gricultural assets in the lower Moche Valley. 

For sites that did not maintain a single land use over time, the majority land-use class was determined by the
otal area a class occupied within the 50-m buffer. The majority class was considered to be the representative
and use at sites with two or more recorded land-use classes. The number of sites represented by two land-use
lasses ranged from 57 sites in 1985 to a high of 130 sites in 2015. Less frequently observed were sites represented
CM Journal on Computing and Cultural Heritage, Vol. 16, No. 3, Article 47. Publication date: August 2023. 
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Table 3. Number of Sites within Land-Use Majorities 

Number of Sites within Land-Use Majorities 
n = 477 1985 1990 1995 2000 2005 2010 2015 2020 

Water 0 0 0 1 2 1 0 0 
Agriculture 107 114 106 115 123 128 125 124 
Poultry Farm 1 1 4 0 1 0 3 6 
Desert/Barren 257 231 240 203 174 136 120 94 
Urban 40 66 75 118 123 154 178 193 
Roads 1 5 7 4 14 11 13 15 
Mountain Scrub 71 71 45 36 39 32 38 45 
Cloud 0 0 0 0 1 15 0 0 

Land-use majorities were calculated for each 50-m site buffer. The number of sites per year occupying 
a majority land-use class are shown here. 

Table 4. Number of Sites Destroyed per 5-Year Period 

Number of Sites Destroyed Per 5-Year Period 

1974-1985 1986-1990 1991-1995 1996-2000 2001-2005 2006-2010 2011-2015 2016-2020 Total Destroyed 

Agriculture 107 15 5 8 8 8 4 4 159 

Poultry Farm 1 1 4 0 0 0 0 1 8 

Road 1 2 2 0 3 1 1 2 11 

Urban 40 26 16 33 20 23 17 11 186 

Total 149 44 27 41 31 32 22 18 364 

Of the 477 CCMVP sites, 364 have been destroyed while 113 are estimated to remain on the landscape. Between 1974 and 1985, the 
highest rates of CCMVP destruction were recorded with a total loss of 149 sites. The land-use class attributed to the highest rate of 
archaeological destruction is urban expansion. Results in bold show the land-use class that destroyed the most sites per 5-year period. 
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y three or more land-use classes within the 50-m buffer zone. The number of sites with three land-use classes
anged from a low of 3 sites in 2000 to a high of 19 sites in 2020. Only one site in 2000 had four land-use classes
ecorded within the 50-m buffer zone—this was the maximum number of classes recorded for an individual site.

After determining the majority land-use class present at each CCMVP site, the total number of sites occupying
ndividual land-use classes was calculated per year (Table 3 ). In general, the number of sites originally located
n Desert or Mountain Scrub decreased after 1990 as land was simultaneously converted to agricultural or urban
se. Notably, the number of sites consumed by urban land use steadily increased from 40 sites in 1985 to 193
ites in 2020. The land-use patterns detected at CCMVP sites are representative of the broader, regional trends
eported in LULCC in Peru’s Moche Valley. 

.4 CCMVP Site Destruction 

f the 477 sites recorded during the CCMVP, the current study reveals 364 sites have been destroyed, while
13 sites likely remain on the landscape (Figure 4 ). Surviving CCMVP sites are characterized by their remote
ocations to the north and east of Trujillo, in the coastal desert areas and the Andean foothills. As of 2020, 40
emaining sites are attributed to Mountain Scrub while 73 are located in the Desert/Barren land-use class. In
otal, more than 76.3% of CCMVP sites have been destroyed. 

Table 4 shows the total number of sites destroyed per 5-year period as well as the land-use class attributed
o destruction. The highest rate of archaeological destruction occurred between the end of the CCMVP survey
nd the first year of satellite coverage in this study. Between 1974 and 1985, 149 sites were destroyed. Of these,
07 sites were destroyed by agricultural expansion, 40 by urban development, 1 site by poultry farming, and
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Fig. 4. Map of CCMVP site destruction. Of the 477 sites recorded during the CCMVP, 364 have likely been destroyed (High 

and Medium land-use destruction categories) while 113 have likely survived (Low destruction land-use categories). 

1  

l  

o  

l  

p  

c
 

s  

t  

(  

o

4

4

W  

V  

t  

s

A

 site by roads. The second highest period of destruction (44 sites) occurred between 1986 and 1990, while the
owest destructive period (18 sites) occurred between 2016 and 2020. Moving toward the present, the lower rate
f archaeological destruction is a circumstance of fewer sites remaining on the landscape. In extremely marginal
andscapes this also raises questions about how representative archaeological survey data are, if surveys take
lace after significant periods of urban growth and agrarian expansion. Overall, destruction rates were relatively
onsistent from 1986 to 2020, with an average of 31 CCMVP sites destroyed per 5-year period. 

Agriculture was the leading cause of archaeological destruction prior to 1985, but urban expansion quickly
urpassed it. Between 1985 and 2020, urbanization accounted for a total loss of 186 CCMVP sites, while agricul-
ural expansion was linked to the overall destruction of 159 sites and 11 sites were destroyed by road construction
Table 4 ). Despite poultry farms undergoing the largest percent change in land-use area over the 35-year period,
nly eight instances of CCMVP site destruction were attributed to this class. 

 DISCUSSION 

.1 Primary Drivers of Site Destruction 

hile many variables influence land-use change, the primary drivers of site destruction in the lower Moche
alley are population growth, migration, and government policies. Urbanization and agricultural expansion are

he effects of these drivers, having played a major role in reshaping and erasing the archaeological landscape
urrounding Trujillo and its outlying districts in the lower Moche Valley. 
CM Journal on Computing and Cultural Heritage, Vol. 16, No. 3, Article 47. Publication date: August 2023. 
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Table 5. Urban and Rural Population of La Libertad Province 

Urban and Rural Population La Libertad Province 

1940 1961 1972 1981 1993 2007 2017 

Urban Population 122,177 246,847 474,465 631,529 870,390 1,184,548 1,403,555 
Rural Population 273,056 351,078 326,512 350,545 399,871 432,502 374,525 

Population data collected from the Institute Nacional de Estadística y Informática (INEI). 

Table 6. Migration to La Libertad between 1976 

and 2017 

Migration Years Total Migration 

1976–1981 46,992 
1988–1993 80,368 
2002–2007 74,531 
2012–2017 61,542 

Migration data collected from the Institute Nacional de 
Estadística y Informática (INEI). 
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4.1.1 Population Growth and Migration. Census data collected between 1940 and 2017 reveals a 1,048% in-
rease in La Libertad’s urban population as well as a 37% increase in the province’s rural population (INEI n.d. ).
espite the net increase of the rural population since 1940, the population actually declined by 13% between
007 and 2017 (the most recent census years). Within the same decade, the urban population increased by 18%.
ensus data collected in 1972, 1981, 1993, 2007, and 2017 provides further insight into the decades spanning the
urrent study (Table 5 ). The growth within the urban population occurred consistently between 1972 and 1981
33%), 1981 and 1993 (37%), and 1993 and 2007 (36%). Migration to La Libertad has also contributed to popula-
ion growth (Table 6 ). Domestic migrants, drawn by perceived economic opportunities, established residential
ommunities in Trujillo’s desert periphery in the early 1970s. The majority of this urbanization extended to the
orth and west of the city center [Gamboa 2016 ; Rosner 1997 ]. Known as asentamientos humanos , these urban
ommunities were largely autonomous until their legal registration by district governments in the 1980s that
rought water, electricity, and sewage connections [Gamboa 2016 ]. Peak immigration was recorded between
988 and 1993 with 80,368 individuals relocating to La Libertad [INEI 2017b ]. The consistent growth of Trujillo’s
rban population has accelerated the city’s expansion and the concomitant destruction of archaeological sites.
his is evident when comparing the overall increase in urban land use and the number of sites located in urban
reas between 1985 and 2020 (Figure 2 and Table 3 ). 

Population growth has continued to be a significant factor propelling housing demand and urban expansion.
ccording to the Institute of Construction and Development of the Peruvian Chamber of Construction, con-

truction in Trujillo grew by 500% between 2006 and 2012, with 84% of activity attributed to housing [RPP 2012 ].
s a response to rapid land development, archaeological survey prior to construction is now legally required

n Peru [Higueras 2008 ]. Modern communities situated on the urban periphery prefer “to situate their houses
ear archaeological sites, even in the presence of nearby areas apparently without archaeological remains, in
rder to avail themselves of construction materials.” [Gamboa 2016 , p. 327]. Archaeological sites also provide an
dvantageous position against the risk of flooding [Gamboa 2016 ] and may provide irrigation and water access
f pre-Columbian canals are still in use. Until the early 2010s, the expansion of Trujillo’s metropolitan periphery
as locally driven with little state planning or interference [Gamboa 2016 ]. The high rate of archaeological site
estruction in the lower Moche Valley reflects the prioritization of resources like housing, water, and food access.
he conservation of archaeological heritage sites has understandably remained a lower priority in areas where

hese basic needs are not being met. 
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The growth of Trujillo’s urban community parallels a 19% increase in agricultural land use. Consumer demand
or agricultural products has led to the simultaneous expansion of cropland as a result of Trujillo’s population
rowth. Equally significant is the impact of Peru’s Agrarian Reforms (1970s) and government policies imple-
ented by former president Alberto Fujimori (1990s) concerning agricultural land use, urban migration, and

ubsequent archaeological destruction. 

4.1.2 Government Policies and Commercial Expansion. The Agrarian Reform Law implemented in 1969 by
eneral Juan Velasco Alvarado (1968–1975), sought to replace large landholding estates and subsistence farms.
hrough the expropriation of landholdings that exceeded 150 ha along Peru’s coast, state regulations, and a new
an on neo-feudalism, the Velasco government attempted to increase agricultural productivity and move toward
ocial equity by redistributing land to peasant communities [Cant 2021 ]. In the 12 years following the Velasco
overnment, 15,000 properties (8 million ha) were expropriated and redistributed to peasant farmers through
tate-run cooperatives [Savoy 2011 ]. The new agricultural system and state regulations ultimately contributed
o a decline in agricultural production, a greater reliance on imported goods to meet domestic food demands and
opulation growth, and an intense rural migration to urban centers like Trujillo, Lima, and Chiclayo. The growth
f the urban population caused a decline in coastal farmland as urban areas expanded and negatively impacted
ater supplies that formerly supported agricultural production [Savoy 2011 ]. Figure 2 underscores land changes
ccurring toward the end the Agrarian Reform period. Agricultural land is reduced from 12,407 ha in 1985 to
2,182 ha in 1990 and is offset by the simultaneous growth of Trujillo’s urban footprint from 4,786 ha in 1985 to
,626 ha in 1990. 

The decline of coastal agriculture at the expense of urban expansion was short lived in the lower Moche Val-
ey. The free-market policies of President Alberto Fujimori (1990–2000) served to reverse the expropriation and
edistribution policies of the Agrarian Reforms and supported the development of a private agro-export sector
Savoy 2011 ]. New policies were created to reorient the economy toward export-led growth, facilitate access
o land and water resources, and maximize domestic agriculture and production [Schwarz et al. 2016 ; Crabtree
002 ]. Two key laws enacted between 1990 and 2000 have had a lasting impact on Peru’s economy and land use:
he “Foreign Investment Promotion Law” [1991] led to the equal treatment of foreign and domestic investors and
iberalized land markets, and the “Agricultural Sector Promotional Law 27360,” introduced in 2000 and extended
ntil 2021, reduced taxes for agricultural companies and lowered the cost of agricultural labor [Schwarz et al.
016 ]. Peru’s free trade agreements ( FTAs ) negotiated during this period also generated tremendous growth.

The policies initiated by Fujimori shifted land use in the lower Moche Valley as the laws benefited large-scale
roducers connected to foreign markets. Farmland surrounding Trujillo rebounded during this period and con-
inued to expand into the early 21st century, reaching a maximum extent of 15,079 ha by 2015. The formation
f new markets and increased agro-industrial development along Peru’s coast created a temporary boom for
he asparagus, avocado, blueberry, and newly emerging quinoa industries. Recently established companies (both
omestic and international) in Trujillo and its surrounding districts brought technological improvements and
ncreased production capacity at export-oriented processing plants [Bedoya-Perales et al. 2018 ]. For example,
anper (a joint Danish-Peruvian venture founded in 1991) is one of Peru’s largest agricultural companies, spe-

ializing in asparagus, artichoke, grape, and avocado production with the majority of exports focused on the U.S.
nd Europe. Danper’s first production site was originally located in Trujillo, Peru and occupied 5,000 ha—a large
ortion of which was formerly desert [IFU 2021 ]. 

.2 Secondary Drivers of Site Destruction 

wo secondary drivers are attributed to site destruction in the lower Moche Valley: Peru’s historic heritage
iscourse and historic state-emphasized heritage values. Individuals, communities, and governments influence
nd shape landscapes over time to enhance the availability of valued resources, whether cultural, economic,
r social [Tengberg et al. 2012 ]. Peru has increasingly invested in making archaeological heritage tourism a
CM Journal on Computing and Cultural Heritage, Vol. 16, No. 3, Article 47. Publication date: August 2023. 
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ocioeconomic priority. Although the country has expanded its regional archaeological attractions, it has simul-
aneously intensified tourism to the Cuzco region. Marca Peru, the multiregional emphasis of the Qhapaq Nan
roperties, and the recent inscriptions of Caral-Supe [2009] and Chankillo [2021] on the UNESCO World Her-
tage list (and the addition of the Chachapoyas sites of the Utcubamba Valley (including Kuelap) to the tentative
ist) are all state investments away from Cusco. These newly promoted state sites all preference monumental
rchitecture. While conceptions of Peru’s heritage are beginning to change at the local, national, and interna-
ional levels, the Inca archaeological landscape has historically been (and continues to be) Peru’s primary cultural
cosystem service in terms of tourism revenue and traditional heritage values. 

The re-discovery of Machu Picchu in 1911 by Hiram Bingham’s Yale Peruvian Expedition brought world-
ide attention to Cusco, Peru and the architectural grandeur of the former Inca Empire. Media outlets like
ational Geographic Magazine and Harper’s Magazine were quick to publish images of Cusco’s rich archaeo-

ogical remains, with the earliest guidebooks appearing in the late 1920s. The creation of the Boleto Turístico
el Cusco in 1978, further emphasized the significance of monumental Inca sites, with eight former Inca royal
states anchoring the tourist circuit. The historic city center of Cusco and Machu Picchu would both be named
NESCO World Heritage sites in 1983, increasing their branding as “must-see,” highly valued heritage destina-

ions. Further, Peru’s 1999 Tourist Master Plan designated Cusco as a priority tourism development zone. The
nca past has also increasingly intertwined with national heritage discourse, with former President Alejandro
oledo holding a symbolic inauguration at Machu Picchu in 2001. Toledo’s reason for holding the additional
eremony at Machu Picchu, largely reflects national historic sentiment that the Inca represent “the glory of [the
eruvian] past” [Reuters 2001]. Following Toledo’s inauguration, the campaign, “Peru—Land of the Inca” was
sed throughout the early 2000s to attract international tourists [Baumhackl 2019 ]. National rhetoric tying Pe-
uvian identity to the Inca past has caused Inca heritage to be historically valued above other cultural periods
nd has greatly influenced tourist expectations and perceptions of Peruvian heritage. The high value placed on
arge-scale, monumental Inca sites as part of Peru’s national heritage discourse has partially resulted in the con-
urrent devaluation of small-scale sites and higher destruction rates, both in Cusco and regions where the Inca
ast is limited. 
While it is difficult to link intangible cultural values to empirical data, high rates of archaeological destruction

an be used to extrapolate cultural values. As Gamboa [ 2016 ] has stated “. . . the adult population of the urban
eriphery of Trujillo frequently varies between emerging expectations and a low interest with respect to the his-
ory and value of the local archaeological sites .” (author’s emphasis). The destruction of archaeological sites in the
ower Moche Valley is not only a product of modern socioeconomic pressures and policies (see Subsection 4.1 ),
nd Peru’s traditional Inca-centric and monumental heritage discourse (discussed above), but also a simultane-
us state-directed emphasis on a few high-profile tourism sites coupled with a lower status lack of engagement
ith second-tier sites. In the lower Moche Valley, high-profile sites (i.e., primary tier) include the UNESCO World
eritage Site of Chan Chan and the colonial city center of Trujillo, Huaca de la Luna y Huaca del Sol, El Brujo,

nd Arco Iris. State emphasis of monumental archaeological sites as valued heritage affects local and regional
ngagement with lower-order archaeological sites (e.g., CCMVP sites). For example, the Chimú household set-
lement of Cerro la Virgen located 6 km from Chan Chan, has been exposed to illegal gravel quarrying since
006 [Billman et al. 2020 ] and periods of illegal housing since 2017 [Andina 2019 ]. Despite the site’s designation
s a zona intangible by the former Instituto Nacional de Cultura [Resolución Directoral 082–INC] and initiatives
o slow the destruction rate, the planned expansion of the Carlos Martinez de Pinillos de Huanchaco airport
ill demolish the site in a bid to increase tourism and economic growth in the region [La Republica 2021 ]. His-

orically, the rate of small-scale site destruction in the lower Moche Valley reflects a lack of engagement and
tate investment in lesser known, understudied second-tier sites as heritage in favor of the economic or practical
dvantages that land development may offer. 

While the historic trend of site destruction is clear, significant work to rescue small-scale sites continues to
ccur in the Moche Valley as new resources are invested into research. The Universidad Nacional de Trujillo and
ACM Journal on Computing and Cultural Heritage, Vol. 16, No. 3, Article 47. Publication date: August 2023. 
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he Instituto Nacional de Cultura (currently the Ministerio de Cultura de Perú) have undertaken rescue exca-
ations at sites threatened by urban and agricultural expansion including the CCMVP identified sites of Huaca
ichanzao and Las Lomas, among other sites in the region [Gamboa 2016 ]. Billman and colleagues’ research
nd partnerships with local communities in the middle Moche Valley have helped sustain and preserve archae-
logical sites that would have otherwise been destroyed [Billman et al. 2018 ]. Recent research conducted at the
eavily damaged site of Huanchaquito-Las Llamas revealed the largest child and camelid sacrifice in the New
orld [Prieto et al. 2019 ]. Such investigations are significant to continue to shift domestic heritage values and

iscourse at the local and national level (and altering international perspectives of Peru’s heritage landscape) and
re vital to the future preservation of small-scale sites in the Moche Valley, including remaining CCMVP sites. 

.3 Study Limitations 

4.3.1 Database Discrepancies. Small, unavoidable discrepancies exist within the CCMVP database. Twenty-
wo sites do not have site numbers and are only listed as “MV ??.” The site numbers either could not be interpreted
r could not be recovered from the original CCMVP field notes during digitization conducted as part of the
VASD. These sites can only be distinguished by their UTM coordinates. The MV ?? sites were included in

he present analysis since land use and potential destruction could still be calculated based on site coordi-
ates. The inclusion of CCMVP coordinates and a list of remaining sites have been deliberately withheld from
ublication to protect remaining sites. 

4.3.2 Limitations of Satellite Imagery. The method presented in this study is not meant to be a replacement
or archaeological survey. Rather, the method provides archaeologists, government agencies, and NGOs with a
elatively quick and cost-effective approach (compared to resurveying) to determine what remains of histori-
ally surveyed archaeological landscapes (i.e., surveys more than 50 years old), or alternatively what has been
estroyed and why. It is increasingly important for archaeologists to place regional datasets within the context of
ite preservation or destruction, especially if there are landscape changes already taking place prior to surveys.

ithout doing so, archaeologists risk biasing remaining sites as being representative of all that was formerly on
he landscape. The approach outlined in the current study also accelerates the process of selecting sites for tar-
eted excavation, conservation efforts, and provides a deeper understanding of land-use change and its impact
n archaeological sites. 
One limitation of this approach is that satellite images do not show what could remain preserved underground,

nstead cataloging the probability of surface destruction. The assignment of the “high,” “medium,” and “low”
and-use destruction categories is meant to inform targeted excavation and future survey work. Future ground-
alidation would be needed to infer various levels of site degradation that cannot be determined using Landsat
atellite imagery. Landsat resolution is too course (30 m). Environmental factors (i.e., extensive cloud cover) or
he absence of satellite imagery for a given region (see Landsat Global Archive Consolidation ( LGAC )) may
revent the successful use of this method in some global locations. 

 CONCLUSION 

his study provides an innovative approach to assess “what’s left” of historically surveyed archaeological land-
capes and quantify archaeological site destruction. Remote sensing paired with machine learning algorithms
ike RF provide greater accuracy for land-use classification and the analysis of archaeological landscapes. Re-
earchers can easily access open source, global 30-m resolution Landsat satellite imagery for remote sensing
nalysis through the USGS’s Earth Explorer. Combined with free, open source software like QGIS, the method
utlined here offers a cost-effective option (compared to resurveying or purchasing high-resolution satellite im-
gery) that can be implemented by researchers, NGOs, and government agencies worldwide. The integration of
and change science within archaeological survey also provides knowledge of LULCC drivers as well as how and
hy archaeological sites are destroyed (or survive) over time. 
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Using Peru’s lower Moche Valley as a case study, 477 archaeological sites recorded during the CCMVP were
nalyzed. Results indicate that less than a quarter of these sites remain on the modern landscape, with urbaniza-
ion and agricultural expansion accounting for 94.7% of site destruction. Underlying the expansion of these two
and-use classes are government policies that have spurred migration and population growth within La Libertad
nd the Trujillo region. The devaluation and historically low prioritization of second-tier archaeological sites
as also played a significant role in site destruction. CCMVP sites represent a small fraction of the total number
f archaeological sites in the Moche Valley. The incorporation of additional archaeological survey data from the
oche Valley and neighboring regions of La Libertad could reveal broader land-use patterns and would likely

ncrease known rates of archaeological destruction. Understanding land-use patterns and the underlying drivers
f land-use change is significant for future archaeological survey and conservation as well as socioeconomic
evelopment as Peru seeks to establish alternative heritage tourism routes along the North Coast. 
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