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Abstract Despite QTL mapping being a routine

procedure in plant breeding, approaches that fully

exploit data from multi-trait multi-environment

(MTME) trials are limited. Mixed models have

been proposed both for multi-trait QTL analysis

and multi-environment QTL analysis, but these

approaches break down when the number of traits

and environments increases. We present models for

an efficient QTL analysis of MTME data with

mixed models by reducing the dimensionality of the

genetic variance–covariance matrix by structuring

this matrix using direct products of relatively simple

matrices representing variation in the trait and

environmental dimension. In the context of MTME

data, we address how to model QTL by environment

interactions and the genetic basis of heterogeneity of

variance and correlations between traits and envi-

ronments. We illustrate our approach with an

example including five traits across eight stress

trials in CIMMYT maize. We detected 36 QTLs

affecting yield, anthesis-silking interval, male

flowering, ear number, and plant height in maize.

Our approach does not require specialised software

as it can be implemented in any statistical package

with mixed model facilities.
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Introduction

Plant breeders have an interest in multiple trait

evaluations of germplasm rather than single trait

evaluations, because good varieties combine optimal

values for several traits to maximise productivity and

quality. Multiple traits are of further interest to

breeders when searching for indirect traits in selec-

tion schemes. By exploiting genetic correlations

between traits, secondary traits can be used to

improve primary ones that have low heritability or

are difficult to measure. Genotype by environment

interaction (GEI) complicates the analysis of single

traits when breeders evaluate their genotypes across a

range of environments. The occurrence of GEI in

multi-trait data provides an even larger challenge to

the breeder. Data in plant breeding programmes often

have a multi-trait multi-environment (MTME) struc-

ture, but limited statistical methodology is available

to correctly represent genetic and phenotypic varia-

tion in MTME data.
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The simplest approach to analyse MTME data is to

perform a series of single-trait single-environment

analyses and then combine the results in some kind of

meta-analysis. Methods of analysis for single traits in

single environments need not be simple, but never-

theless often have the form of analysis of variance

and regression models with single error terms com-

bined with least squares procedures for parameter

estimation, although mixed model analyses allowing

multiple random terms would be more appropriate.

A combined MTME analysis is more powerful

than a collection of single-trait single-environment

analyses and allows a more realistic analysis of the

data, as GEI and genetic correlations between traits

can be directly modelled. Conversely, a MTME

analysis requires more elaborate models. For the

analysis of GEI in single traits, multiplicative fixed

models have become popular (van Eeuwijk 1995;

Crossa and Cornelius 2002). Well known examples of

such models are the regression on the mean model

(Finlay and Wilkinson 1963) and the Additive Main

effects and Multiplicative Interaction effects model,

or, AMMI model, (Gollob 1968; Gabriel 1978;

Gauch 1988). Fixed multiplicative models can be

generalised to multi-trait GEI analysis, for example in

the form of three-mode principal components (Kroo-

nenberg and Basford 1989; Basford et al. 1991;

Crossa et al. 1995). By determining low dimensional

approximations (principal components) to the struc-

ture present in the three classification modes of

genotypes, environments, and traits, GEI patterns

across traits can be studied (van Eeuwijk and

Kroonenberg 1995; Varela et al. 2006). Fixed mul-

tiplicative models are useful tools for a first

exploration of MTME data. For inferential purposes,

however, we prefer a mixed model approach.

The modelling of the genetic (co)variances

between traits and environments in combination with

the modelling of the heterogeneous residuals is a

condition to be fulfilled to arrive at reliable conclu-

sions about genotypic differences. Mixed models are

a natural framework for the analysis of such complex

data sets, especially when the data are unbalanced

(see a recent review in Smith et al. 2005). By

modelling the response as the result of random and

fixed factors and covariables, a wide range of

possible (co)variance structures can be used to model

the data, improving tests and estimates of treatment

effects. The literature shows many examples of the

use of mixed models for complicated genotype by

environment data (Denis et al. 1997; Piepho 1997;

Cullis et al. 1998; Smith et al. 2001), but is less

prolific with respect to the analysis of genotype by

trait by environment data (Smith et al. 2007). Esti-

mates for parameters in mixed models can be

obtained by residual maximum likelihood (Patterson

and Thompson 1971), which nowadays is imple-

mented in statistical packages such as Genstat (Payne

et al. 2006), ASReml (Gilmour et al. 2006), SAS

(SAS Institute 1999), and R (R Development Core

Team 2005), among others. The mixed model

methodology is therefore a very suitable framework

for plant breeders to analyse their complex data sets.

A less recognised application of mixed models is

in the detection of quantitative trait loci (QTLs). By

following the principles of regression-based QTL

mapping (Haley and Knott 1992; Martı́nez and

Curnow 1992), molecular marker information can

be integrated into mixed models to test for the effect

of DNA polymorphisms on phenotypic traits. Within

the context of MTME data, the integration of

molecular marker data into mixed models can help

to identify regions (QTLs) with effects on multiple

traits in multiple environments. This type of QTL

analysis provides a valuable tool for investigating

issues such as: (1) the occurrence of QTL by

environment interaction (QEI), which is caused by

changing expression of QTLs across environments;

(2) the causes of genetic correlations between traits,

which result from either linked QTLs or pleiotropic

QTLs; and (3) the changes in genetic correlations

between traits across environments, which are caused

by linked or pleiotropic QTLs showing QEI. Multi-

trait or multi-environment QTL mapping approaches

have been presented in the literature (Jiang and Zeng

1995; Knott and Haley 2000; Piepho 2000; Verbyla

et al. 2003; Malosetti et al. 2004; Emrich et al. 2007;

Boer et al. 2007). In all those examples, the problem

is either reduced to the multi-trait (MT), or to the

multi-environment (ME) dimension. Recently, Malo-

setti et al. (2006) extended the QTL model to the

MTME level using mixed model methodology.

In this paper, we further elaborate the mixed

model methodology for MTME QTL mapping. The

approach consists in first identifying an efficient

model for genetic correlations by imposing some

structure on the (co)variance matrix. Once a suitable

and parsimonious model is identified, molecular
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marker information is included to extend the pheno-

typic model into a MTME QTL model. To illustrate

this method, we re-analyse a maize F2 reference

population from CIMMYT, in which five traits were

evaluated over a range of several stress/non-stress

environments. Part of the data used here was

previously analysed by a single-trait single-environ-

ment approach (Ribaut et al. 1996, 1997) and another

part by a single-trait multi-environment approach

(Vargas et al. 2006).

Materials and methods

Plant material, phenotypic and molecular data

The data used correspond to an F2 maize reference

population from CIMMYT maize drought breeding

program, which was derived from the cross of a

drought-tolerant line (P1) with a drought susceptible

line (P2). Here we provide a brief description of

genotypes, trials and molecular marker procedures,

more details are given in Ribaut et al. (1996, 1997).

DNA from 211 F2 plants was extracted to produce

information for 132 co-dominant markers on 10

linkage groups. Phenotypic evaluations were per-

formed on 211 F2:3 families, each one derived from

an original F2 plant. The families were evaluated

under different water and nitrogen regimes during

1992, 1994 and 1996. In the winter of 1992 three

water regimes were imposed on the trials: well

watered (WW), intermediate stress (IS) and severe

stress (SS). In the winter of 1994, only the IS and SS

trials were available. Nitrogen availability varied in

the 1996 trials, with two low nitrogen treatments (LN,

in winter and summer) and one high-nitrogen treat-

ment (HN in summer). In each of the trials, five traits

were evaluated: grain yield (YLD), the time gap

between male and female flowering, that is, the

anthesis-silking interval (ASI), days to male flower-

ing (MFLW), the number of ears per plant (ENO) and

plant height (PH).

Mixed model for the MTME data

Consider a MTME data set consisting of I genotypes,

evaluated in J environments with measurements on K

traits (in our example, I = 211, J = 8, and K = 5).

Define an N 9 1 vector y; with N = IJK, that

contains all the observations sorted by trait within

environment and within genotype. Random variables

will be underlined. The typical element of the

observation vector y is y
ijk
; so that within y the trait

index k runs fastest and the genotype index i runs

slowest. We will now develop a mixed model to

describe the observations (Smith et al. 2005). Given

that the interest is in the genetic variation within the

population rather than the genotypes themselves, we

assume genotypes to be random. Trait-environment

combinations are taken as fixed. A general formula-

tion of a mixed model for the MTME data is:

y ¼ Xbþ Zuþ e: ð1Þ

The response vector y; is modelled by a set of fixed

effects collected in vector b and random effects

collected in vectors u and e: X and Z are design

matrices assigning the fixed and random effects to the

observations. Vector b contains the trait means within

environments across genotypes, l(j,k), so that b = (l(1,1),

l(1,2), ... , l(1,k), l(2,1),... , l(J,K))
0. Vector u collects

the random genotypic effects per trait by environment

combination, u(i,j,k), so that u ¼ ðuð1;1;1Þ; uð1;1;2Þ; . . .;

uð1;1;KÞ; uð1;2;1Þ; . . .; uð1;J;KÞ; uð2;1;1Þ; . . .; uðI;J;KÞÞ0: Ran-

dom genetic effects are assumed normally distributed,

u�N(0, G); with G the genetic (co)variance matrix

(vcovG). Finally, e is a vector of non-genetic residuals

associated with each observation and normally dis-

tributed, e�N(0, R): The phenotypic (co)variance is

given by: VðyÞ ¼ ZGZ0 þ R:

From a breeder’s point of view, the vcovG is of

special interest as it reflects the magnitude and

pattern of relationships between genetic effects.

Random genetic effects across a set of environments

will not be independent if there are genes/QTLs with

effects across those environments. In addition,

genetic effects for different traits are not independent

if genes/QTLs for different traits are linked or

pleiotropic. The effect of genes/QTLs across envi-

ronments will often not be equal in size, and

sometimes not even in sign, leading to heterogeneous

genetic variances. The model for vcovG should reflect

these relationships and the heterogeneities in genetic

variation. Under the very unrealistic assumption of

complete independence between genetic effects

across environments and traits, G has a simple form,

with non-zero values on the diagonal (the genetic

variances per trait per environment) and zeroes
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off-diagonal. This model implies neither common

QTLs between environments nor linked or pleiotropic

QTLs for traits. A more realistic model would allow

for covariances caused by common QTLs between

environments and by linked or pleiotropic QTLs for

traits. The most general model, allows the G matrix to

contain unique genetic variances and covariances.

This is the so-called unstructured model, which, in

practice can be difficult to fit due to the high number

of parameters to be estimated. Between the unreal-

istic independence model and the fully unstructured

vcovG model there are a number of more parsimo-

nious models that approximate the unstructured

vcovG by imposing some structure on it.

Table 1 shows a non-exhaustive list of different

models that can be used to model the vcovG. Model

choice is an iterative process and will depend on the

particular data set, so predefined ‘good’ models are

hard, if not impossible, to provide. The models in

Table 1 can be grouped in two. The first group

(including models 1–4) considers the factorial com-

bination of traits and environments, interpreting each

trait–environment combination as a trait by itself.

With J environments and K traits, a total of M ‘new

traits’ (M = JK) can be defined. Models 5–9 form a

group of models that exploits the direct product of

(co)variance matrices for environments and traits.

Note that model 1 represents the unrealistic model of

complete independence between genetic effects, and

model 4 is the unstructured model, with the full G

matrix. Models 2, 3, and 5–9 provide approximations

to the full G matrix. Model 2 adds one parameter to

model 1, which imposes a uniform genetic correlation

between traits and environments. Model 3 uses a

multiplicative model called factor analytic model of

order 1, to approximate a fully unstructured (co)var-

iance matrix (Oman 1991; Gogel et al. 1995). The rest

of the models combine in different ways the diagonal

(DIAG), the uniform (UNIF), the factor analytic of

order 1 (FA1), and the unstructured (UN) models. The

choice of the best model for the data can be based on a

goodness of fit criterion such as the Bayesian Infor-

mation Criterion, or BIC (Schwarz 1978). The BIC is

calculated as BIC = -2 log L + log(N) 9 p, with

log L the residual loglikelihood, N the sample size,

and p the number of variance and covariance param-

eters in the model. The smaller the value of BIC, the

better the model is. It must be noted that the effective

sample size to use in the calculation is not clearly

defined within the mixed model framework (Pauler

1998). An upper limit would be the total number of

observations, while a lower limit would correspond to

the total number of individuals (genotypes in this

case). Staying on the conservative side, we used the

number of genotypes as an estimate for the sample

size in the expression for BIC.

Table 1 Different models for the genetic (co)variance matrix (G)

G matrix formation Models for Gtrait�env
m�m =Genv

j�j � Gtrait
k�k Number of parameters in Ga BIC CPU timeb

Model 1 G ¼ Gtrait�env
m�m DIAG 40 23,070 1.3 s

Model 2 UNIF 41 22,535 22.7 s

Model 3 FA1 80 21,836 2 m 3.6 s

Model 4 UN 820 20,263 3 m 38.1 s

Model 5 G ¼ Genv
j�j � Gtrait

k�k DIAG � DIAG 8 + 5 - 1 = 12 20,589 1.2 s

Model 6 UNIF � DIAG 9 + 5 - 1 = 13 23,690 3.4 s

Model 7 FA1 � DIAG 16 + 5 - 1 = 20 20,910 3.5 s

Model 8 UNIF � UN 9 + 15 - 1 = 13 20,522 15.5 s

Model 9 FA1 � UN 16 + 15 - 1 = 30 19,709 15.0 s

Models 1–4 use the factorial combination of traits and environments as different traits. Models used are diagonal (DIAG), uniform

(UNIF), factor analytic order 1 (FA1) and unstructured (UN). Models 5–9 use the direct product of covariance matrices for

environments and traits. Bayesian Information Criterion is presented to compare the goodness of fit of the different models. The

computing time required to fit the model is shown in the last column
a The number of parameters for the models 5–9 follows from the sum of the parameters for the component matrices minus the

number of identification constraints. Note that the total number of (co)variance parameters in the model is equal to the number

presented for the G matrix in this column plus 40 from the number of parameters in the R matrix
b Pentium1 4, CPU 3.61 GHz, 3.12 GB RAM
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A QTL mixed model for the MTME data

The phenotypic model discussed in the preceding

section, serves as the basis for a more elaborate

model in which the effect of a particular genomic

region on the phenotype is tested. For individual

genotypes, molecular markers offer information at

the DNA level. QTLs can then be identified by testing

the association between polymorphisms at the DNA

level with variation at the phenotypic level. A QTL

model arises from Eq. 1 by including the effect of a

putative QTL as follows:

y ¼ Xbþ XQTLaþ Zu� þ e: ð2Þ

The extra term in the model is composed of a

design matrix XQTL, which is derived from molecular

marker information (a further description of this key

matrix will follow), and a vector of fixed QTL effects

(a). In an MTME model, vector a has dimensions M

9 1 and contains the additive genetic QTL effects for

all the traits in each of the environments: a = (a(1,1),

a(1,2)...a(1,K), a(2,1)...a(J,K))
0. The random genetic

effects, now collected in a vector u�; result from

the effects of QTLs outside the tested region, that is,

the genetic background. Genetic background effects

are assumed normally distributed: u��Nð0;G�Þ: Note

that G* represents the part of the genetic (co)variance

that is not explained by the QTL.

A key element in the QTL model is the design

matrix XQTL, which contains the so-called genetic

predictors. Genetic predictors are a function of the

conditional probabilities of the QTL genotype given

flanking marker information (Lynch and Walsh

1998). In an F2 population, at a marker position,

the genetic predictor corresponding to an additive

genetic QTL effect of an individual will take the

value -1, 0, or 1 depending on whether the

individual’s marker genotype is aa, Aa, or AA

(interpreted as the QTL genotypes qq, Qq, and QQ

respectively). In between markers, QTL genotypes

are not directly observable, but conditional proba-

bilities of genotypes qq, Qq, and QQ can be

calculated from flanking markers (Jiang and Zeng

1997). In between marker positions, the value of the

additive genetic predictor is equal to the difference

of the conditional probabilities for QTL genotypes

QQ and qq: Pr(QQ|flanking markers)–Pr(qq|flanking

markers). The values of the genetic predictors for

each of the I genotypes can be estimated and

collected in a vector p = (x1,x2 ...xI)
0. The design

matrix of genetic predictors (XQTL) can then be

expressed as: XQTL = p � IM, that is, the direct

product (Kronecker product) of vector p and the

identity matrix of dimension M. Note that the present

configuration of matrix XQTL assumes a pleiotropic

effect of the QTL on all traits. However, the design

matrix XQTL can be modified to exclude the effect of

a particular trait–environment combination by

removing the corresponding columns (and therefore

also reducing the vector of estimated effects).

Note that although dominance has not been

considered in the model here, it can be fitted by

including an extra term containing dominance genetic

predictors. At marker positions, dominance genetic

predictors will take the values 0, 1, 0 for aa, Aa, and

AA respectively, and in between markers will be

equal to Pr(Qq|flanking markers) (Lynch and Walsh

1998). In a preliminary analysis, we scanned the

genome and we did not find any significant domi-

nance effect (data not shown). The observation of

dominance not being important in this population is

consistent with previous results on the same popula-

tion (Vargas et al. 2006). We therefore excluded

dominance from the model.

The extension from a single QTL model to a multi-

QTL model is straightforward and is given by Eq. 3.

y ¼ Xbþ
X

Q

XQTL
q aq þ Zu� þ e: ð3Þ

The QTL section includes the additive effects of

all detected QTLs in the genome. Note that the form

of the design matrix Xq
QTL defines whether that

position is pleiotropic or not. Linked QTLs are

determined by consecutive design matrices Xq
QTL and

Xq+1
QTL whose positions are close on the same

chromosome. The degree with which the QTL model

explains the genetic variance can be assessed by

comparing the diagonal estimates of matrix G* from

fitting Eq. 3, with the diagonals of the G matrix

obtained from fitting Eq. 1.

QTL mapping: scanning and testing procedure

With the modelling framework determined, we still

need a strategy to develop a multi-QTL model (Eq. 3)

from a phenotypic model (Eq. 1). Model search is not

a simple task and there is often no unique solution to
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this problem. Here we followed a procedure which

can be split into two main steps: (1) genome-wide

scan with tests for single QTLs, (2) multi-QTL model

refinement by backward selection from a model

containing all the significant, but still putative, QTLs

detected in step 1. All models were fitted with

Genstat1, version 9 (Payne et al. 2006), see Appen-

dix II for source code.

In step 1 we performed a genome-wide scan using

a one-QTL model, which consisted of fitting Eq. 2 at

regular intervals along the genome. This strategy

required the calculation of genetic predictors on a

regular grid across the genome. We chose 5 cM as

the maximum distance between consecutive predic-

tors. At each evaluation point within the genome, we

used a Wald test (Verbeke and Molenberghs 2000;

Payne et al. 2006) to find out whether one or more of

the trait–environment QTL effects were significantly

different from zero (H0: a(1,1) = a(1,2) = ��� =

a(1,K) = a(2,1) = ��� = a(J,K) = 0). The test statistic

for a Wald test, W, for the effect of a QTL in a single

environment is calculated as: W ¼ â2
ðj;kÞ

SE2 ; with âðj;kÞ the

estimated QTL effect in environment j for trait k, and

SE the associated standard error. Under the null

hypothesis W is chi-square distributed with 1 degree

of freedom. Instead of testing QTL effects for all

traits simultaneously, a more informative sub-test can

be carried out to test QTL effects for specific traits.

For example, for trait 1 the null hypothesis then

becomes:

H0 : að1;1Þ ¼ að1;2Þ ¼ � � � ¼ að1;JÞ ¼ 0:

The values of the Wald statistics or the associ-

ated tail probabilities, P, expressed as -log10(P),

serve to produce plots analogous to the usual LOD

score profiles in QTL mapping. By plotting the -

log10(P) along the chromosomes, we identified

putative QTLs at those positions for which peaks

in the profile exceeded a threshold value. We used

a Bonferroni-based multiple-test control threshold,

using the estimation of the effective number of tests

along the genome proposed by Li and Ji (2005).

We control the genome-wide alpha level at 0.05,

which corresponded to a point-wise alpha level of

0.05 divided by the effective number of tests along

the genome. All QTLs identified in this way,

constituted the starting set of QTLs (predictors)

for the backward selection procedure of the second

step in the procedure.

QTLs identified in step 1 showed a significant effect

for one or more traits, so the design matrix needed to be

adapted as described in the previous section (see

Appendix I). Step 2 started by fitting Eq. 3 including all

putative QTLs in the model. Backward selection

consisted in removing putative QTLs from the model

when the associated Wald test conditional on all the

other putative QTLs being in the model was not

significant (P [ 0.05). In each step the position

showing the largest P value (above 0.05) was excluded

from the model and the process repeated until no

position had an associated p value larger than 0.05.

From the fit of the final multi-QTL model we estimated

the individual QTL effects and standard errors.

Results

The results of fitting a phenotypic model (Eq. 1)

assuming different models for the vcovG are given in

Table 1. As mentioned before, models 1–4 (group 1)

are based on the idea of treating trait–environment

combinations as traits. In contrast, models 5–9 (group

2) use direct products of covariance matrices for traits

and environments. While models in group 1 are more

flexible, they require the estimation of a higher

number of parameters than those in group 2. Note that

the simplest model in group 1 (model 1) has a higher

number of parameters than the most complex one in

group 2 (model 9). The higher number of parameters

of models in group 1 resulted in longer computing

time as is shown in Table 1. A higher number of

parameters creates also more convergence difficul-

ties. For example, although we eventually could fit an

unstructured model, convergence was only achieved

after supplying appropriate initial values. The BIC

showed that all models in group 2 (except for model

5) performed better than those in group 1, with model

9 being the best. Based on these results we decided to

use model 9 in the QTL mapping stage.

The result of the first step of our QTL mapping

approach, that is, the fit of Eq. 2 across the chromo-

somes, is summarised in Fig. 1. A total of 36 regions,

revealed by peak values in the profiles, were iden-

tified as harbouring putative QTLs. In some cases,

profiles related to different traits showed peaks at the

same position, which we considered as an indication

of pleiotropy. However, we recognise that strictly

speaking this might not be true, as very close linkage
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can not be excluded as a possibility. Four chromo-

some regions had exactly coinciding peaks for two

traits, and at chromosome 6 three traits had a peak in

the same region. All 36 positions were regarded as

candidate QTLs and constituted the starting point for

the backwards selection procedure. None of the

candidates were eliminated in the backward selection

stage. Therefore our final QTL model consisted of 36

QTLs of which 31 related to a single trait, four

affected two traits, and the remaining QTL affected

three traits (Fig. 2 shows the chromosome position

and the affected trait(s) for each of the 36 QTLs).

In addition to the affected trait(s) and chromosome

position, Fig. 2 shows the results of the test for the

specific effect of the QTLs in each of the eight

environments (represented by blocks inside the QTL

bars). Significant effects are indicated by either a ‘+’ or

‘-’ sign, depending on whether the allele from the

drought-susceptible parent (P2) increased or decreased

the trait value. Non-significant effects are indicated by

‘o’. Inspection of Fig. 2 raises the impression that most

of the QTLs showed inconsistent effects across

environments. Inconsistent QTL effects underlie

GEI. The occurrence of GEI was expected for trials

involving contrasting environmental conditions. Rel-

atively consistent QTL effects were identified for ASI

on chromosomes 1, 6 and 10, for MFLW on chromo-

somes 4, and 9, and for PH on chromosomes 3, 6 and 9.

No QTL showed consistent effects on YLD and ENO,

which could be the consequence of a more complex

genetic basis of these traits (especially YLD).

The positions and effects of the different QTLs can

help to understand the causes of genetic correlations

between traits. Neighbouring or pleiotropic QTLs with

consistent effects on different traits will induce

consistent genetic correlations. Consistent genetic

correlations were not observed in general, although

some consistent positive correlations were suggested

by the two linked QTLs for PH and MFLW around the

middle of chromosome 9. The majority of the genetic

correlations induced by linked or pleiotropic QTLs

were inconsistent across environments. For example,
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Fig. 1 Result of a multi-trait multi-environment QTL scan.

The profiles correspond to yield (YLD), ASI, male flowering
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the two linked QTLs on top of chromosome 2 (30–

40 cM) induced a positive correlation between YLD

and PH in the first three environments, but that

correlation disappeared in the rest of the environments.

As YLD is the most important trait, it is interesting

to point out where the QTLs for YLD were located

and what their relationships were with QTLs for other

traits. YLD QTLs were present on all chromosomes

except at chromosomes 5, 8 and 9. Yield QTLs were

in many cases linked or pleiotropic to PH and

inducing positive correlations between the traits.

Linked QTLs for YLD and PH were observed at

chromosomes 1, 2, 3, 4 and 7. Pleiotropy was

observed for chromosome 6. The YLD QTL on

chromosome 3 was also linked to an ENO QTL, and

pleiotropy was observed on chromosome 6. In all

cases the correlation between YLD and ENO was

positive. Correlations between YLD and ASI were

mostly caused by a pleiotropic QTLs on chromosome

10 and some linkage on chromosomes 1, 3 and 6, but

no clear direction of the correlation was observed.

Finally, a MFLW QTL was pleiotropic to YLD on

chromosome 4 (inducing a negative correlation), and

some weak linkage was observed on chromosomes 2,

7 and 10 without a clear direction of the sign of the

correlation.

Figure 3 shows the total genetic variance, the

number of detected QTLs and the proportion of

explained variation by the detected QTLs for each

trait and environment. The total genetic variance was

given by the diagonal of the G matrix of the

phenotypic model (Eq. 1), and the unexplained

variance was given by the diagonal of the G* matrix

after fitting the full QTL model (Eq. 3 including 36

QTLs). Estimates were produced by fitting Eqs. 1 and

3 based on model 3, which allowed better estimates

of the variance components due to its higher flexi-

bility in comparison to model 9. In terms of the total

genetic variance, Fig. 3 shows that genotypes gave

less consistent responses across environments for

YLD, ASI and ENO than for MFLW and PH. The

heterogeneity of genetic variance across environ-

ments underlines the existence of GEI, which is in

agreement with our findings of inconsistent QTL

effects across environments. In the case of MFLW

and PH, less GEI occurred as the genetic variance

was more homogenous across environments. The

only exception was LN96a (low nitrogen trial in

winter season), which seemed to produce a very

distinct reaction of the genotypes with a longer male

flowering period but more homogenous plant height.

The proportion of explained variation ranged from

zero to 55% (Fig. 3). On average ASI and PH were

the traits that had the highest proportion of explained

genetic variance (29% and 31%, respectively),

followed by MFLW and ENO with 19% and 23%,

respectively, and finally YLD with 15%. As

expected, the number of detected QTLs was in

general related to the amount of genetic variation

observed.

Discussion

Plant breeders routinely deal with data involving

collections of genotypes evaluated for multiple traits

across multiple environments. Mixed models offer a

suitable framework to jointly analyse such data

without imposing unrealistic assumptions, like zero

genetic correlations between environments and traits,

and constant variance across environments. In

MTME QTL analysis, the flexibility of mixed models

can be fully exploited. However, for several traits

across multiple environments, the number of (co)var-

iance parameters increases rapidly, causing serious

difficulties in fitting the models and requiring

substantial computing time. In our approach to QTL

mapping, model fitting at individual genomic evalu-

ation points should be fast as many evaluations are

required along the genome. One way out of the above

problem is to impose some structure on the genetic

(co)variance matrix, which leads to more parsimoni-

ous models. In this paper, we compared different

models to structure the genetic (co)variances between

five traits and eight environments, making it possible

to perform a MTME QTL analysis involving 40 trait–

environment combinations.

Fig. 2 Distribution of QTLs detected for yield (YLD), ASI,

male flowering (MFLW), ear number (ENO), and plant height

(PH). Each QTL is represented by a bar with a connector to the

corresponding position on the chromosome. Pleiotropic QTLs

are indicated by connectors pointing to more than one trait. The

eight blocks constituting each bar show the effect of the QTL

in each environment (from left to right: NS92a, IS92a, SS92a,

IS94a, SS94a, LN96a, LN96b, HN96b). Significant effects are

indicated by either ‘+’ (red background) or ‘-’ (blue

background) depending on whether the allele from the

drought-susceptible parent (P2) increases or decreases the

trait’s value. Non-significant effects are indicated by ‘o’ (white

background)

b
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Two major strategies were used to model the

(co)variance matrix G. The first strategy considers

each trait–environment combination as a new ‘trait’.

The second approach uses the direct product of

covariance matrices for traits and environments. We

observed that the second strategy was a better option

than the first one, at least for our data. The use of

direct products of matrices to construct (co)variance

matrices gave a good fit to the data, while consider-

ably reducing the number of parameters. In terms of

computing time, the second approach produced mod-

els that converged much faster than those based on the

first strategy. Fast fitting of models is desirable as we

needed to fit a similarly structured mixed model at

more than 400 chromosome positions. To give some

idea about the required computing time for a QTL

analysis, our data consisted of 8,440 observations and

needed almost 2 h of a Pentium1 4, 3.6 GHz

processor and 3.1 GB of RAM memory, to run a

genome-wide QTL scan (based on model 9, Table 1).

Fitting the final QTL model, which consisted of 36

different QTLs, took slightly over 3 min.

Based on a mixed model, which combined both

efficiency in terms of number of parameters and

goodness of fit, we were able to perform a MTME

QTL analysis on five traits in eight environments. The

first key aspect of this mixed model approach is that

QTL effects were tested taking into account the

genetic correlation structure in the data. In a simula-

tion study, Piepho (2005) showed that ignoring

genetic correlations in multi-environment data leads

to a substantial increase of the type I error rate when

testing for QTL effects. We therefore expect that our

model approach will reduce the risk of over-optimistic

conclusions. The second important aspect is that by

using a parsimonious model for G, a larger number of

trait–environment combinations can be included in

comparison to other multi-trait QTL mapping
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Fig. 3 Bar plot of the total

genetic variance for yield

(YLD), ASI, male flowering

(MFLW), ear number

(ENO), and plant height

(PH) in eight environments

in Mexico. The proportion

of explained variance by the

final QTL model is

indicated in yellow. The

total number of detected

QTLs is indicated on top of

each bar
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approaches. Most of the multi-trait QTL mapping

approaches model the genetic (co)variances by an

unstructured model (Jiang and Zeng 1995; Korol et al.

1998; Knott and Haley 2000; Hackett et al. 2001;

Lund et al. 2003), which in practice limits the number

of traits that can be handled. It is symptomatic that the

applications of multi-trait QTL mapping under the use

of unstructured (co)variance matrices never included

more than just a few traits, i.e., mostly 2–5 (Calinski

et al. 2000; Hackett et al. 2001; Szyda et al. 2003;

Mercadé et al. 2005; Olsen et al. 2005). With few

traits and/or environments, the unstructured model is a

possible option, although not necessarily the optimal

one. However, if the number of environments and

traits increases, as is the case in this paper, the

unstructured model will eventually fail and more

efficient modelling approaches need to be used.

The MTME QTL analysis detected 36 QTLs

affecting grain yield and other important traits in

maize across a wide range of stress conditions. In

addition to the improvement in power to detect QTLs

which was demonstrated using simulation by Jiang

and Zeng (1995) and Knott and Haley (2000), an

integrated QTL analysis produces useful information

concerning the genetic determination and relation

between traits. The set of QTLs could be categorised

as consisting of two classes: QTLs that affected only

one trait (31 in total) versus pleiotropic QTLs that

affected two or more traits (the remaining five QTLs).

The basis of genetic correlations can be understood in

terms of pleiotropic QTLs and linked QTLs for

multiple traits. QTL locations informed us about

which of the two mechanisms was more plausible.

Our QTL analysis provided also insight in the causes

of GEI. QTLs with consistent effects across environ-

ments were distinguished from those whose effects

were highly influenced by the environment, the latter

being responsible for GEI. Size and sign of QTL effects

across environments give an indication of the impor-

tance of the particular QTL as cause of observed GEI.

Large differences in QTL effects between environments

underlie strong GEI, the extreme being a reversal of

sign implying cross-over GEI. Environment-specific

QTL effects are a valuable piece of information for the

breeder at the moment of pyramiding favourable alleles

for broad or specific adaptation.

A desirable feature of our approach was that all

information was produced within the same model

class, thereby avoiding the burden of having to

combine results from different analyses outside a

formal framework. For example, three of the eight

environments (NS92a, IS94a and SS94a) were pre-

viously used in a conventional single-trait single-

environment QTL analysis (Ribaut et al. 1996, 1997).

For yield four, five and four QTLs were reported in

NS92a, IS94a and SS94a, respectively, which fairly

well agrees with the number of detected QTLs in

those three environments in the analysis here (six,

four and three QTLs, see Fig. 3). However, the

single-trait analysis, failed to give an integrated

answer with respect to QTL locations and effects, so

QTLs detected in one environment were not strictly

comparable to those found in a second environment.

In a multi-environment strategy, Vargas et al. (2006)

integrated the information across the eight environ-

ments to model QEI, but kept the traits separately

(YLD and ASI). Their main conclusions coincided

with the ones found here, with the major QTLs for

YLD identified on chromosome 1 and 10, and for ASI

found on chromosomes 1, 6 and 10. However, some

power seemed to have been gained in the MTME

approach, as we detected eight and seven QTLs for

YLD and ASI, instead of the six and five YLD and

ASI QTLs reported by Vargas et al. (2006).

In conclusion, this paper shows how high dimen-

sional data sets (traits 9 environments) can be used

in the identification of genetic factors underlying trait

variation and covariation. The approach exploits the

flexibility of mixed modelling, which has the added

advantage of being readily available to the breeding

community. The approach does not require any specific

software other than a package with mixed model

facilities, although it does require some extra inter-

vention from the user. That last requirement is largely

compensated by the improvement and reliability of the

results that is expected to follow from the use of a more

realistic model for the genetic (co)variances.
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Appendix I: Illustration of design matrices

For illustration purposes let us assume a simple

situation with 2 genotypes (G1 and G2), 3 environ-

ments (a, b and c), and 2 traits (x and y). Column ‘te’

corresponds to the factorial combination of traits and

environments. Molecular information is given by one

marker (mk), which is homozygous of maternal type

in G1 (value = - 1), and homozygous of paternal

type for G2 (value = 1). The layout of the data is

(replicates omitted):

The design matrices for the basic phenotypic

model, Y ¼ Xbþ Zuþ e (Eq. 1) are:

With l the corresponding trait–environment averages

across genotypes, and u the random genetic effects

associated to each genotype and in each trait–

environment. The full (co)variance matrix for the

random genotypic effects ½u�N(0, G)� is:

Genotype Environment Trait te mk Y

G1 a x ax -1 Yax,1

G1 a y ay -1 Yay,1

G1 b x bx -1 Ybx,1

G1 b y by -1 Yby,1

G1 c x cx -1 Ycx,1

G1 c y cy -1 Ycy,1

G2 a x ax 1 Yax,2

G2 a y ay 1 Yay,2

G2 b x bx 1 Ybx,2

G2 b y by 1 Yby,2

G2 c x cx 1 Ycx,2

G2 c y cy 1 Ycy,2

Yax;1

Yay;1

Ybx;1

Yby;1

Ycx;1

Ycy;1

Yax;2

Yay;2

Ybx;2

Yby;2

Ycx;2

Ycy;2

2
66666666666666666666664

3
77777777777777777777775

¼

1

1

1

1

1

1

1

1

1

1

1

1

2
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3
7777777777777777777775

lax

lay

lbx

lby

lcx

lcy

2

6666664

3

7777775
þ

1

1

1

1

1

1

1

1

1

1

1

1

2
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3
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uax;1

uay;1
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uax;2
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ucy;2

2
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þ
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2
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3
77777777777777777777775
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The design matrices of a model that includes one

pleiotropic QTL, that is, Y ¼ Xbþ XQTLaþ Zu� þ e

(Eq. 2) are:

G ¼

r2
ax

rax;ay r2
ay

rax;bx ray;bx r2
bx

rax;by ray;by rbx;by r2
by

rax;cx ray;cx rbx;cx rby;cx r2
cx

rax;cy ray;cy rbx;cy rby;cy rcx;cy r2
cy

r2
ax

rax;ay r2
ay

rax;bx ray;bx r2
bx

rax;by ray;by rbx;by r2
by

rax;cx ray;cx rbx;cx rby;cx r2
cx

rax;cy ray;cy rbx;cy rby;cy rcx;cy r2
cy

2
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3
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2
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3
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1
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1

1

1

1

1
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2
6666666666666666666664

3
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2
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7777777777777777777775
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with the (co)variance matrix for residual genetic

effects ½u��Nð0;G�Þ� the same as in the pheno-

typic model. The new parameters in the model are

the trait–environment specific QTL effects given

by a.

If the QTL is not pleiotropic, but affects only one

of the traits, say x, then the design matrix associated

with the QTL will change to:

where the design matrix for the QTL has now three

columns, and only the QTL effects on the specific

trait (x) are fitted.

Appendix II: Genstat code

Assuming the same data set layout as in Appendix I

the code to fit the different models presented in this

paper will now be given.

Yax;1

Yay;1

Ybx;1

Yby;1

Ycx;1

Ycy;1

Yax;2

Yay;2

Ybx;2

Yby;2

Ycx;2

Ycy;2
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77777777777777777777775
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7777777777777777777775
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2
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þ
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�1
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1
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7777777777777777777775
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þ
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7777777777777777777775

u�ax;1

u�ay;1

u�bx;1

u�by;1

u�cx;1

u�cy;1

u�ax;2

u�ay;2

u�bx;2

u�by;2

u�cx;2

u�cy;2

2
66666666666666666666664

3
77777777777777777777775

þ
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eay;1
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2
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3
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Genstat codes to fit the models in Table 1

Model 1:

VCOMPONENTS ½fixed ¼ te; constant ¼ omit;

experiment ¼ te�random ¼ geno:te

VSTRUCTURE ½term ¼ geno:te� factor ¼ te;

model ¼ diagonal

REML Y ¼ Y

Short code explanation

The VCOMPONENTS statement defines the fixed

and random effects (fixed= fixed model terms,

random= random model terms). The ‘fixed = te’

specification fits an intercept term for each trait –

environment combination. Note that this is because

the overall constant is excluded by the command

‘constant = omit’. Finally, by including the ‘exper-

iment=’ option, a different residual term is fitted for

each trait–environment combination.

The VSTRUCTURE statement is used to impose a

model on the random terms. The option term=

indicates which term to model, the option factor=

over which factor levels to form the direct product,

and the option model= indicates which model to use

for the (co)variance matrix.

The REML statement fits the model by REsidual

Maximum Likelihood and has as parameter the

response vector ‘Y’.

Model 2:

VCOMPONENTS ½fixed ¼ te; constant ¼ omit;

experiment ¼ te�random ¼ geno:te

VSTRUCTURE ½term ¼ geno:te� factor ¼
te; model ¼ uniform; heterogeneity ¼
outside

REML Y ¼ Y

Model 3:

VCOMPONENTS ½fixed ¼ te; constant ¼ omit;

experiment ¼ te� random ¼ geno:te

VSTRUCTURE ½term ¼ geno:te� factor ¼ te;

model ¼ fa

REML Y ¼ Y

Model 4:

VCOMPONENTS ½fixed ¼ te; constant ¼ omit;

experiment ¼ te� random ¼ geno:te

VSTRUCTURE ½term ¼ geno:te� factor ¼
te; model ¼ unstructured

REML Y ¼ Y

Model 5:

VCOMPONENTS ½fixed ¼ te; constant ¼ omit;

experiment ¼ te�random ¼ geno:env:trait

VSTRUCTURE ½term ¼ geno:env:trait� factor ¼
env; trait; model ¼ diagonal; diagonal

REML Y ¼ Y

Model 6:

VCOMPONENTS ½fixed ¼ te; constant ¼ omit;

experiment ¼ te� random ¼ geno:env:trait

VSTRUCTURE ½term ¼ geno:env:trait� factor ¼
env; trait; model ¼ uniform; diagonal;

heterogeneity ¼ outside; �
REML Y ¼ Y

Model 7:

VCOMPONENTS ½fixed ¼ te; constant ¼ omit;

experiment ¼ te� random ¼ geno:env:trait

VSTRUCTURE ½term ¼ geno:env:trait� factor ¼
env; trait; model ¼ fa; diagonal

REML Y ¼ Y

Model 8:

VCOMPONENTS ½fixed ¼ te; constant ¼ omit;

experiment ¼ te� random ¼ geno:env:trait

VSTRUCTURE ½term ¼ geno:env:trait� factor ¼
env; trait; model ¼ uniform; unstructured;

heterogeneity ¼ outside; �
REML Y ¼ Y

Model 9:

VCOMPONENTS½fixed ¼ te; constant ¼ omit;

experiment ¼ te�random ¼ geno:env:trait

VSTRUCTURE½term ¼ geno:env:trait�factor ¼
env; trait; model ¼ fa; unstructured

REML Y ¼ Y

Genstat code to fit a one-QTL model based on the

best model (model 9):
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VCOMPONENTS ½fixed ¼ teþ mk:te;

constant ¼ omit; experiment ¼ te�
random ¼ geno:env:trait

VSTRUCTURE ½term ¼ geno:env:trait� factor ¼
env; trait; model ¼ fa; unstructured

REML Y
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