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Abstract

Rapid progress has been made in the field of

reading comprehension and question answer-

ing, where several systems have achieved hu-

man parity in some simplified settings. How-

ever, the performance of these models de-

grades significantly when they are applied

to more realistic scenarios, where answers

are involved with various types, multiple text

strings are correct answers, or discrete rea-

soning abilities are required. In this paper,

we introduce the Multi-Type Multi-Span Net-

work (MTMSN), a neural reading comprehen-

sion model that combines a multi-type answer

predictor designed to support various answer

types (e.g., span, count, negation, and arith-

metic expression) with a multi-span extraction

method for dynamically producing one or mul-

tiple text spans. In addition, an arithmetic

expression reranking mechanism is proposed

to rank expression candidates for further con-

firming the prediction. Experiments show that

our model achieves 79.9 F1 on the DROP hid-

den test set, creating new state-of-the-art re-

sults. Source code1 is released to facilitate fu-

ture work.

1 Introduction

This paper considers the reading comprehension

task in which some discrete-reasoning abilities are

needed to correctly answer questions. Specifi-

cally, we focus on a new reading comprehension

dataset called DROP (Dua et al., 2019), which

requires Discrete Reasoning Over the content of

Paragraphs to obtain the final answer. Unlike pre-

vious benchmarks such as CNN/DM (Hermann

et al., 2015) and SQuAD (Rajpurkar et al., 2016)

that have been well solved (Chen et al., 2016;

Devlin et al., 2019), DROP is substantially more

challenging in three ways. First, the answers to

1https://github.com/huminghao16/MTMSN

the questions involve a wide range of types such

as numbers, dates, or text strings. Therefore, var-

ious kinds of prediction strategies are required to

successfully find the answers. Second, rather than

restricting the answer to be a span of text, DROP

loosens the constraint so that answers may be a set

of multiple text strings. Third, for questions that

require discrete reasoning, a system must have a

more comprehensive understanding of the context

and be able to perform numerical operations such

as addition, counting, or sorting.

Existing approaches, when applied to this more

realistic scenario, have three problems. First,

to produce various answer types, Dua et al.

(2019) extend previous one-type answer predic-

tion (Seo et al., 2017) to multi-type prediction

that supports span extraction, counting, and ad-

dition/subtraction. However, they have not fully

considered all potential types. Take the question

“What percent are not non-families?” and the pas-

sage snippet “39.9% were non-families” as an ex-

ample, a negation operation is required to infer the

answer. Second, previous reading comprehension

models (Wang et al., 2017; Yu et al., 2018; Hu

et al., 2018) are designed to produce one single

span as the answer. But for some questions such as

“Which ancestral groups are smaller than 11%?”,

there may exist several spans as correct answers

(e.g., “Italian”, “English”, and “Polish”), which

can not be well handled by these works. Third,

to support numerical reasoning, prior work (Dua

et al., 2019) learns to predict signed numbers for

obtaining an arithmetic expression that can be ex-

ecuted by a symbolic system. Nevertheless, the

prediction of each signed number is isolated, and

the expression’s context information has not been

considered. As a result, obviously-wrong expres-

sions, such as all predicted signs are either minus

or zero, are likely produced.

To address the above issues, we introduce
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the Multi-Type Multi-Span Network (MTMSN),

a neural reading comprehension model for pre-

dicting various types of answers as well as

dynamically extracting one or multiple spans.

MTMSN utilizes a series of pre-trained Trans-

former blocks (Devlin et al., 2019) to obtain a

deep bidirectional context representation. On top

of it, a multi-type answer predictor is proposed

to not only support previous prediction strategies

such as span, count number, and arithmetic ex-

pression, but also add a new type of logical nega-

tion. This results in a wider range of coverage

of answer types, which turns out to be crucial to

performance. Besides, rather than always produc-

ing one single span, we present a multi-span ex-

traction method to produce multiple answers. The

model first predicts the number of answers, and

then extracts non-overlapped spans to the specific

amount. In this way, the model can learn to dy-

namically extract one or multiple spans, thus being

beneficial for multi-answer cases. In addition, we

propose an arithmetic expression reranking mech-

anism to rank expression candidates that are de-

coded by beam search, so that their context infor-

mation can be considered during reranking to fur-

ther confirm the prediction.

Our MTMSN model outperforms all existing

approaches on the DROP hidden test set by achiev-

ing 79.9 F1 score, a 32.9% absolute gain over prior

best work at the time of submission. To make a fair

comparison, we also construct a baseline that uses

the same BERT-based encoder. Again, MTMSN

surpasses it by obtaining a 13.2 F1 increase on the

development set. We also provide an in-depth ab-

lation study to show the effectiveness of our pro-

posed methods, analyze performance breakdown

by different answer types, and give some qualita-

tive examples as well as error analysis.

2 Task Description

In the reading comprehension task that requires

discrete reasoning, a passage and a question are

given. The goal is to predict an answer to the ques-

tion by reading and understanding the passage.

Unlike previous dataset such as SQuAD (Ra-

jpurkar et al., 2016) where the answer is limited

to be a single span of text, DROP loosens the con-

straint so that the answer involves various types

such as number, date, or span of text (Figure 1).

Moreover, the answer can be multiple text strings

instead of single continuous span (A2). To suc-

Passage: As of the census of 2000, there were 218,590
people, 79,667 households, ... 22.5% were of German
people, 13.1% Irish people, 9.8% Italian people, ...
Q1: Which group from the census is larger: German or
Irish?
A1: German
Q2: Which ancestral groups are at least 10%?
A2: German, Irish
Q3: How many more people are there than households?
A3: 138,923
Q4: How many percent were not German?
A4: 77.5

Figure 1: Question-answer pairs along with a passage

from the DROP dataset.

cessfully find the answer, some discrete reasoning

abilities, such as sorting (A1), subtraction (A3),

and negation (A4), are required.

3 Our Approach

Figure 2 gives an overview of our model that aims

to combine neural reading comprehension with

numerical reasoning. Our model uses BERT (De-

vlin et al., 2019) as encoder: we map word em-

beddings into contextualized representations using

pre-trained Transformer blocks (Vaswani et al.,

2017) (§3.1). Based on the representations, we

employ a multi-type answer predictor that is able

to produce four answer types: (1) span from the

text; (2) arithmetic expression; (3) count number;

(4) negation on numbers (§3.2). Following Dua

et al. (2019), we first predict the answer type of

a given passage-question pair, and then adopt in-

dividual prediction strategies. To support multi-

span extraction (§3.3), the model explicitly pre-

dicts the number of answer spans. It then outputs

non-overlapped spans until the specific amount is

reached. Moreover, we do not directly use the

arithmetic expression that possesses the maximum

probability, but instead re-rank several expression

candidates that are decoded by beam search to fur-

ther confirm the prediction (§3.4). Finally, the

model is trained under weakly-supervised signals

to maximize the marginal likelihood over all pos-

sible annotations (§3.5).

3.1 BERT-Based Encoder

To obtain a universal representation for both the

question and the passage, we utilize BERT (De-

vlin et al., 2019), a pre-trained deep bidirectional

Transformer model that achieves state-of-the-art

performance across various tasks, as the encoder.

Specifically, we first tokenize the question and
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Figure 2: An illustration of MTMSN architecture. The multi-type answer predictor supports four kinds of answer

types including span, addition/subtraction, count, and negation. A multi-span extraction method is proposed to

dynamically produce one or several spans. The arithmetic expression reranking mechanism aims to rank expression

candidates that are decoded by beam search for further validating the prediction.

the passage using the WordPiece vocabulary (Wu

et al., 2016), and then generate the input sequence

by concatenating a [CLS] token, the tokenized

question, a [SEP] token, the tokenized passage,

and a final [SEP] token. For each token in the

sequence, its input representation is the element-

wise addition of WordPiece embeddings, posi-

tional embeddings, and segment embeddings (De-

vlin et al., 2019). As a result, a list of input embed-

dings H0 ∈ R
T×D can be obtained, where D is

the hidden size and T is the sequence length. A se-

ries of L pre-trained Transformer blocks are then

used to project the input embeddings into contex-

tualized representations Hi as:

Hi = TransformerBlock(Hi−1), ∀i ∈ [1, L]

Here, we omit a detailed introduction of the block

architecture and refer readers to Vaswani et al.

(2017) for more details.

3.2 Multi-Type Answer Predictor

Rather than restricting the answer to always be a

span of text, the discrete-reasoning reading com-

prehension task involves different answer types

(e.g., number, date, span of text). Following Dua

et al. (2019), we design a multi-type answer pre-

dictor to selectively produce different kinds of an-

swers such as span, count number, and arithmetic

expression. To further increase answer coverage,

we propose adding a new answer type to sup-

port logical negation. Moreover, unlike prior work

that separately predicts passage spans and ques-

tion spans, our approach directly extracts spans

from the input sequence.

Answer type prediction Inspired by the Aug-

mented QANet model (Dua et al., 2019), we use

the contextualized token representations from the

last four blocks (HL−3, ..., HL) as the inputs to

our answer predictor, which are denoted as M0,

M1, M2, M3, respectively. To predict the answer

type, we first split the representation M2 into a

question representation Q2 and a passage repre-

sentation P2 according to the index of intermedi-

ate [SEP] token. Then the model computes two

vectors hQ2 and hP2 that summarize the question

and passage information respectively:

αQ = softmax(WQQ2), hQ2 = αQQ2

where hP2 is computed in a similar way over P2.

Next, we calculate a probability distribution to

represent the choices of different answer types as:

ptype = softmax(FFN([hQ2 ;hP2 ;hCLS]))

Here, hCLS is the first vector in the final con-

textualized representation M3, and FFN denotes

a feed-forward network consisting of two linear

projections with a GeLU activation (Hendrycks

and Gimpel, 2016) followed by a layer normaliza-

tion (Lei Ba et al., 2016) in between.

Span To extract the answer either from the pas-

sage or from the question, we combine the gating

mechanism of Wang et al. (2017) with the standard

decoding strategy of Seo et al. (2017) to predict

the starting and ending positions across the en-

tire sequence. Specifically, we first compute three

vectors, namely gQ0 , gQ1 , gQ2 , that summarize
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the question information among different levels of

question representations:

βQ = softmax(FFN(Q2), gQ2 = βQQ2

where gQ0 and gQ1 are computed over Q0 and Q1

respectively, in a similar way as described above.

Then we compute the probabilities of the start-

ing and ending indices of the answer span from the

input sequence as:

M̄start = [M2;M0;g
Q2 ⊗M2;g

Q0 ⊗M0],

M̄end = [M2;M1;g
Q2 ⊗M2;g

Q1 ⊗M1],

pstart = softmax(WSM̄start),

pend = softmax(WEM̄end)

where ⊗ denotes the outer product between the

vector g and each token representation in M.

Arithmetic expression In order to model the

process of performing addition or subtraction

among multiple numbers mentioned in the pas-

sage, we assign a three-way categorical variable

(plus, minus, or zero) for each number to indicate

its sign, similar to Dua et al. (2019). As a result,

an arithmetic expression that has a number as the

final answer can be obtained and easily evaluated.

Specifically, for each number mentioned in the

passage, we gather its corresponding representa-

tion from the concatenation of M2 and M3, even-

tually yielding U = (u1, ...,uN ) ∈ R
N×2∗D

where N numbers exist. Then the probabilities of

the i-th number being assigned a plus, minus or

zero is computed as:

p
sign
i = softmax(FFN([ui;h

Q2 ;hP2 ;hCLS]))

Count We consider the ability of counting en-

tities and model it as a multi-class classification

problem. To achieve this, the model first produces

a vector hU that summarizes the important infor-

mation among all mentioned numbers, and then

computes a counting probability distribution as:

αU = softmax(WUU), hU = αUU,

pcount = softmax(FFN([hU;hQ2 ;hP2 ;hCLS]))

Negation One obvious but important linguistic

phenomenon that prior work fails to capture is

negation. We find there are many cases in DROP

that require to perform logical negation on num-

bers. The question (Q4) in Figure 1 gives a qual-

itative example of this phenomenon. To model

this phenomenon, we assign a two-way categori-

cal variable for each number to indicate whether

a negation operation should be performed. Then

we compute the probabilities of logical negation

on the i-th number as:

p
negation
i = softmax(FFN([ui;h

Q2 ;hP2 ;hCLS]))

3.3 Multi-Span Extraction

Although existing reading comprehension tasks

focus exclusively on finding one span of text as

the final answer, DROP loosens the restriction so

that the answer to the question may be several

text spans. Therefore, specific adaption should be

made to extend previous single-span extraction to

multi-span scenario.

To do this, we propose directly predicting the

number of spans and model it as a classification

problem. This is achieved by computing a proba-

bility distribution on span amount as

pspan = softmax(FFN([hQ2 ;hP2 ;hCLS]))

To extract non-overlapped spans to the specific

amount, we adopt the non-maximum suppression

(NMS) algorithm (Rosenfeld and Thurston, 1971)

that is widely used in computer vision for pruning

redundant bounding boxes, as shown in Algorithm

1. Concretely, the model first proposes a set of

top-K spans S according to the descending order

of the span score, which is computed as pstart
k pend

l

for the span (k, l). It also predicts the amount of

extracted spans t from pspan, and initializes a new

set S̃. Next, we add the span si that possesses the

maximum span score to the set S̃, and remove it

from S. We also delete any remaining span sj that

overlaps with si, where the degree of overlap is

measured using the text-level F1 function. This

process is repeated for remaining spans in S, until

S is empty or the size of S̃ reaches t.

3.4 Arithmetic Expression Reranking

As discussed in §3.2, we model the phenomenon

of discrete reasoning on numbers by learning to

predict a plus, minus, or zero for each number in

the passage. In this way, an arithmetic expres-

sion composed of signed numbers can be obtained,

where the final answer can be deduced by per-

forming simple arithmetic computation. However,

since the sign of each number is only determined

by the number representation and some coarse-

grained global representations, the context infor-

mation of the expression itself has not been con-

sidered. As a result, the model may predict some
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Algorithm 1 Multi-span extraction

Input: pstart; pend; pspan

1: Generate the set S by extracting top-K spans
2: Sort S in descending order of span scores
3: t = argmaxpspan + 1
4: Initialize S̃ = {}

5: while S 6= {} and |S̃| < t do
6: for si in S do
7: Add span si to S̃
8: Remove span si from S
9: for sj in S do

10: if f1(si, sj) > 0 then
11: Remove span sj from S

12: return S̃

obviously wrong expressions (e.g., the signs that

have maximum probabilities are either minus or

zero, resulting in a large negative value). There-

fore, in order to further validate the prediction, it

is necessary to rank several highly confident ex-

pression candidates using the representation sum-

marized from the expression’s context.

Specifically, we use beam search to produce

top-ranked arithmetic expressions, which are sent

back to the network for reranking. Since each ex-

pression consists of several signed numbers, we

construct an expression representation by taking

both the numbers and the signs into account. For

each number in the expression, we gather its cor-

responding vector from the representation U. As

for the signs, we initialize an embedding matrix

E ∈ R
3×2∗D, and find the sign embeddings for

each signed number. In this way, given the i-th ex-

pression that contains M signed numbers at most,

we can obtain number vectors Vi ∈ R
M×2∗D as

well as sign embeddings Ci ∈ R
M×2∗D. Then the

expression representation along with the reranking

probability can be calculated as:

αV
i = softmax(WV (Vi +Ci)),

hV
i = αV

i (Vi +Ci),

parith
i = softmax(FFN([hV

i ;hQ2 ;hP2 ;hCLS]))

3.5 Training and Inference

Since DROP does not indicate the answer type

but only provides the answer string, we therefore

adopt the weakly supervised annotation scheme,

as suggested in Berant et al. (2013); Dua et al.

(2019). We find all possible annotations that point

to the gold answer, including matching spans,

arithmetic expressions, correct count numbers,

negation operations, and the number of spans. We

use simple rules to search over all mentioned num-

bers to find potential negations. That is, if 100

minus a number is equal to the answer, then a

negation occurs on this number. Besides, we only

search the addition/subtraction of three numbers at

most due to the exponential search space.

To train our model, we propose using a two-

step training method composed of an inference

step and a training step. In the first step, we use

the model to predict the probabilities of sign as-

signments for numbers. If there exists any an-

notation of arithmetic expressions, we run beam

search to produce expression candidates and la-

bel them as either correct or wrong, which are

later used for supervising the reranking compo-

nent. In the second step, we adopt the marginal

likelihood objective function (Clark and Gardner,

2018), which sums over the probabilities of all

possible annotations including the above labeled

expressions. Notice that there are two objective

functions for the multi-span component: one is a

distantly-supervised loss that maximizes the prob-

abilities of all matching spans, and the other is a

classification loss that maximizes the probability

on span amount.

At test time, the model first chooses the answer

type and then performs specific prediction strate-

gies. For the span type, we use Algorithm 1 for

decoding. If the type is addition/subtraction, arith-

metic expression candidates will be proposed and

further reranked. The expression with the maxi-

mum product of cumulative sign probability and

reranking probability is chosen. As for the count-

ing type, we choose the number that has the max-

imum counting probability. Finally, if the type is

negation, we find the number that possesses the

largest negation probability, and then output the

answer as 100 minus this number.

4 Experiments

4.1 Implementation Details

Dataset We consider the reading comprehension

benchmark that requires Discrete Reasoning Over

Paragraphs (DROP) (Dua et al., 2019) to train

and evaluate our model. DROP contains crowd-

sourced, adversarially-created, 96.6K question-

answer pairs, with 77.4K for training, 9.5K for

validation, and another 9.6K hidden examples for

testing. Passages are extracted from Wikipedia

articles and the answer to each question involves

various types such as number, date, or text string.

Some answers may even be a set of multiple spans

of text in the passage. To find the answers, a com-



1601

Model
Dev Test

EM F1 EM F1

Heuristic Baseline (Dua et al., 2019) 4.28 8.07 4.18 8.59

Semantic Role Labeling (Carreras and Màrquez, 2004) 11.03 13.67 10.87 13.35

BiDAF (Seo et al., 2017) 26.06 28.85 24.75 27.49

QANet+ELMo (Yu et al., 2018) 27.71 30.33 27.08 29.67

BERTBASE (Devlin et al., 2019) 30.10 33.36 29.45 32.70

NAQANet (Dua et al., 2019) 46.20 49.24 44.07 47.01

NABERTBASE 55.82 58.75 - -

NABERTLARGE 64.61 67.35 - -

MTMSNBASE 68.17 72.81 - -

MTMSNLARGE 76.68 80.54 75.85 79.88

Human Performance (Dua et al., 2019) - - 92.38 95.98

Table 1: The performance of MTMSN and other competing approaches on DROP dev and test set.

Model
BASE LARGE

EM F1 EM F1

MTMSN 68.2 72.8 76.7 80.5

w/o Add/Sub 46.7 51.3 53.8 58.0

w/o Count 62.5 66.4 71.8 75.6

w/o Negation 59.4 63.6 67.2 70.9

w/o Multi-Span 67.5 70.7 75.6 78.4

w/o Reranking 66.9 71.2 74.9 78.7

Table 2: Ablation tests of base and large models on the

DROP dev set.

prehensive understanding of the context as well as

the ability of numerical reasoning are required.

Model settings We build our model upon two

publicly available uncased versions of BERT:

BERTBASE and BERTLARGE
2, and refer readers

to Devlin et al. (2019) for details on model sizes.

We use Adam optimizer with a learning rate of 3e-

5 and warmup over the first 5% steps to train. The

maximum number of epochs is set to 10 for base

models and 5 for large models, while the batch size

is 12 or 24 respectively. A dropout probability of

0.1 is used unless stated otherwise. The number of

counting class is set to 10, and the maximum num-

ber of spans is 8. The beam size is 3 by default,

while the maximum amount of signed numbers M

is set to 4. All texts are tokenized using Word-

2BERTBASE is the original version while BERTLARGE

is the model augmented with n-gram masking and
synthetic self-training: https://github.com/

google-research/bert.

Model EM F1

MTMSN 76.7 80.5

w/o Q/P Vectors 75.1 79.2

w/o CLS Vector 74.0 78.4

Q/P Vectors Using Last Hidden 76.5 80.2

w/o Gated Span Prediction 75.8 79.7

Combine Add/Sub with Negation 75.5 79.4

Table 3: Ablation tests of different architecture choices

using MTMSNLARGE.

Piece vocabulary (Wu et al., 2016), and truncated

to sequences no longer than 512 tokens.

Baselines Following the implementation of

Augmented QANet (NAQANet) (Dua et al.,

2019), we introduce a similar baseline called Aug-

mented BERT (NABERT). The main difference

is that we replace the encoder of QANet (Yu

et al., 2018) with the pre-trained Transformer

blocks (Devlin et al., 2019). Moreover, it also sup-

ports the prediction of various answer types such

as span, arithmetic expression, and count number.

4.2 Main Results

Two metrics, namely Exact Match (EM) and F1

score, are utilized to evaluate models. We use the

official script to compute these scores. Since the

test set is hidden, we only submit the best single

model to obtain test results.

Table 1 shows the performance of our model

and other competitive approaches on the develop-
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Type (%)
NABERT MTMSN

EM F1 EM F1

Date 1.6 55.7 60.8 55.7 69.0
Number 61.9 63.8 64.0 80.9 81.1
Single Span 31.7 75.9 80.6 77.5 82.8
Multi Span 4.8 0 22.7 25.1 62.8

Table 4: Performance breakdown of NABERTLARGE

and MTMSNLARGE by gold answer types.

ment and test sets. MTMSN outperforms all ex-

isting approaches by a large margin, and creates

new state-of-the-art results by achieving an EM

score of 75.85 and a F1 score of 79.88 on the test

set. Since our best model utilizes BERTLARGE

as encoder, we therefore compare MTMSNLARGE

with the NABERTLARGE baseline. As we can see,

our model obtains 12.07/13.19 absolute gain of

EM/F1 over the baseline, demonstrating the effec-

tiveness of our approach. However, as the human

achieves 95.98 F1 on the test set, our results sug-

gest that there is still room for improvement.

4.3 Ablation Study

Component ablation To analyze the effect of

the proposed components, we conduct ablation

studies on the development set. As illustrated in

Table 2, the use of addition and subtraction is ex-

tremely crucial: the EM/F1 performance of both

the base and large models drop drastically by more

than 20 points if it is removed. Predicting count

numbers is also an important component that con-

tributes nearly 5% gain on both metrics. More-

over, enhancing the model with the negation type

significantly increases the F1 by roughly 9 percent

on both models. In brief, the above results show

that multi-type answer prediction is vitally impor-

tant for handling different forms of answers, es-

pecially in cases where discrete reasoning abilities

are required.

We also report the performance after remov-

ing the multi-span extraction method. The results

reveal that it has a more negative impact on the

F1 score. We interpret this phenomenon as fol-

lows: producing multiple spans that are partially

matched with ground-truth answers is much easier

than generating an exactly-matched set of multiple

answers. Hence for multi-span scenarios, the gain

of our method on F1 is relatively easier to obtain

than the one on EM. Finally, to ablate arithmetic

expression reranking, we simply use the arithmetic

expression that has the maximum cumulative sign

Type
NABERT MTMSN

(%) EM F1 (%) EM F1

Span 43.0 67.9 74.2 42.7 72.2 81.0
Add/Sub 43.6 62.0 62.1 32.4 78.1 78.2
Count 13.4 62.4 62.4 13.4 70.4 70.4
Negation 0 0 0 11.5 96.3 96.3

Table 5: Performance breakdown of NABERTLARGE

and MTMSNLARGE by predicted answer types.

probability instead. We find that our reranking

mechanism gives 1.8% gain on both metrics for

the large model. This confirms that validating ex-

pression candidates with their context information

is beneficial for filtering out highly-confident but

wrong predictions.

Architecture ablation We further conduct a de-

tailed ablation in Table 3 to evaluate our architec-

ture designs. First, we investigate the effects of

some “global vectors” used in our model. Specifi-

cally, we find that removing the question and pas-

sage vectors from all involved computation leads

to 1.3 % drop on F1. Ablating the representation

of [CLS] token leads to even worse results. We

also try to use the last hidden representation (de-

noted as M3) to calculate question and passage

vectors, but find that does not work. Next, we re-

move the gating mechanism used during span pre-

diction, and observe a nearly 0.8% decline on both

metrics. Finally, we share parameters between the

arithmetic expression component and the negation

component, and find the performance drops by

1.1% on F1.

4.4 Analysis and Discussion

Performance breakdown We now provide a

quantitative analysis by showing performance

breakdown on the development set. Table 4 shows

that our gains mainly come from the most frequent

number type, which requires various types of sym-

bolic, discrete reasoning operations. Moreover,

significant improvements are also obtained in the

multi-span category, where the F1 score increases

by more than 40 points. This result further proves

the validity of our multi-span extraction method.

We also give the performance statistics that

are categorized according to the predicted answer

types in Table 5. As shown in the Table, the main

improvements are due to the addition/subtraction

and negation types. We conjecture that there are

two reasons for these improvements. First, our
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Figure 3: EM/F1 scores of MTMSNLARGE with differ-

ent maximum numbers of spans.

Figure 4: EM/F1 scores of MTMSNLARGE with differ-

ent beam sizes and amounts of signed numbers (M ).

proposed expression reranking mechanism helps

validate candidate expressions. Second, a new in-

ductive bias that enables the model to perform log-

ical negation has been introduced. The impressive

performance on the negation type confirms our

judgement, and suggests that the model is able to

find most of negation operations. In addition, we

also observe promising gains brought by the span

and count types. We think the gains are mainly

due to the multi-span extraction method as well as

architecture designs.

Effect of maximum number of spans To inves-

tigate the effect of maximum number of spans on

multi-span extraction, we conduct an experiment

on the dev set and show the curves in Figure 3.

We vary the value from 2 to 12, increased by 2,

and also include the extreme value 1. According

to the Figure, the best results are obtained at 8.

A higher value could potentially increase the an-

swer recall but damage the precision by making

more predictions, and a smaller value may force

the model to produce limited number of answers,

resulting in high precision but low recall. There-

fore, a value of 8 turns out to be a good trade-off

between recall and precision. Moreover, when the

value decreases to 1, the multi-span extraction de-

grades to previous single-span scenario, and the

performance drops significantly.

Configuration Skipped Kept Ratio (%) F1

Span 33752 43657 56.4 38.9
+ | 6384 71025 91.7 59.2
+ | + � 4282 73127 94.4 63.6
+ | + � + ~ 1595 75814 97.9 72.8

Table 6: Annotation statistics under different combi-

nations of answer types in the DROP train set. “Kept”

and “Skipped” mean the number of examples with or

without annotation, respectively. ♣ refers to Add/Sub,

♠ denotes Count, and ♥ indicates Negation. F1 scores

are benchmarked using MTMSNBASE on the dev set.

Effect of beam size and M We further investi-

gate the effect of beam size and maximum amount

of signed numbers in Figure 4. As we can see,

a beam size of 3 leads to the best performance,

likely because a larger beam size might confuse

the model as too many candidates are ranked, on

the other hand, a small size could be not suffi-

cient to cover the correct expression. In addition,

we find that the performance constantly decreases

as the maximum threshold M increases, suggest-

ing that most of expressions only contain two or

three signed numbers, and setting a larger thresh-

old could bring in additional distractions.

Annotation statistics We list the annotation

statistics on the DROP train set in Table 6. As

we can see, only annotating matching spans results

in a labeled ratio of 56.4%, indicating that DROP

includes various answer types beyond text spans.

By further considering the arithmetic expression,

the ratio increase sharply to 91.7%, suggesting

more than 35% answers need to be inferred with

numeral reasoning. Continuing adding counting

leads to a percentage of 94.4%, and a final 97.9%

coverage is achieved by additionally taking nega-

tion into account. More importantly, the F1 score

constantly increases as more answer types are con-

sidered. This result is consistent with our observa-

tions in ablation study.

Error analysis Finally, to better understand the

remaining challenges, we randomly sample 100

incorrectly predicted examples based on EM and

categorize them into 7 classes. 38% of errors are

incorrect arithmetic computations, 18% require

sorting over multiple entities, 13% are due to mis-

takes on multi-span extraction, 10% are single-

span extraction problems, 8% involve miscount-

ing, another 8% are wrong predictions on span

number, the rest (5%) are due to various reasons
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such as incorrect preprocessing, negation error,

and so on. See Appendix for some examples of

the above error cases.

5 Related Work

Reading comprehension benchmarks Promis-

ing advancements have been made for reading

comprehension due to the creation of many large

datasets. While early research used cloze-style

tests (Hermann et al., 2015; Hill et al., 2016), most

of recent works (Rajpurkar et al., 2016; Joshi et al.,

2017) are designed to extract answers from the

passage. Despite their success, these datasets only

require shallow pattern matching and simple logi-

cal reasoning, thus being well solved (Chen et al.,

2016; Devlin et al., 2019). Recently, Dua et al.

(2019) released a new benchmark named DROP

that demands discrete reasoning as well as deeper

paragraph understanding to find the answers. Sax-

ton et al. (2019) introduced a dataset consisting

of different types of mathematics problems to fo-

cuses on mathematical computation. We choose to

work on DROP to test both the numerical reason-

ing and linguistic comprehension abilities.

Neural reading models Previous neural read-

ing models, such as BiDAF (Seo et al., 2017),

R-Net (Wang et al., 2017), QANet (Yu et al.,

2018), Reinforced Mreader (Hu et al., 2018), are

usually designed to extract a continuous span

of text as the answer. Dua et al. (2019) en-

hanced prior single-type prediction to support var-

ious answer types such as span, count number,

and addition/subtraction. Different from these

approaches, our model additionally supports a

new negation type to increase answer coverage,

and learns to dynamically extract one or multiple

spans. Morevoer, answer reranking has been well

studied in several prior works (Cui et al., 2016;

Wang et al., 2018a,b,c; Hu et al., 2019). We fol-

low this line of work, but propose ranking arith-

metic expressions instead of candidate answers.

End-to-end symbolic reasoning Combining

neural methods with symbolic reasoning was con-

sidered by Graves et al. (2014); Sukhbaatar et al.

(2015), where neural networks augmented with

external memory are trained to execute simple pro-

grams. Later works on program induction (Reed

and De Freitas, 2016; Neelakantan et al., 2016;

Liang et al., 2017) extended this idea by using

several built-in logic operations along with a key-

value memory to learn different types of compo-

sitional programs such as addition or sorting. In

contrast to these works, MTMSN does not model

various types of reasoning with a universal mem-

ory mechanism but instead deals each type with

individual predicting strategies.

Visual question answering In computer vi-

sion community, the most similar work to our

approach is Neural Module Networks (Andreas

et al., 2016b), where a dependency parser is used

to lay out a neural network composed of several

pre-defined modules. Later, Andreas et al. (2016a)

proposed dynamically choosing an optimal lay-

out structure from a list of layout candidates that

are produced by off-the-shelf parsers. Hu et al.

(2017) introduced an end-to-end module network

that learns to predict instance-specific network

layouts without the aid of a parser. Compared to

these approaches, MTMSN has a static network

layout that can not be changed during training and

evaluation, where pre-defined “modules” are used

to handle different types of answers.

6 Conclusion

We introduce MTMSN, a multi-type multi-span

network for reading comprehension that requires

discrete reasoning over the content of paragraphs.

We enhance a multi-type answer predictor to sup-

port logical negation, propose a multi-span extrac-

tion method for producing multiple answers, and

design an arithmetic expression reranking mecha-

nism to further confirm the prediction. Our model

achieves 79.9 F1 on the DROP hidden test set, cre-

ating new state-of-the-art results. As future work,

we would like to consider handling additional

types such as sorting or multiplication/division.

We also plan to explore more advanced methods

for performing complex numerical reasoning.
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