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This paper presents an algorithm for targeting a team of UAVs as sensor plat-
forms to ensure the improvement in the forecast at a separate verification time
and location within the ensemble forecast framework. The information gain at the
verification time/space is used as a metric of the forecast uncertainty reduction,
and a computationally efficient backward selection method forms the backbone of
the targeting approach. This paper presents the optimal targeting problem, which
is complex because it must account for vehicle limitations, such as maximum and
minimum flying speed, and the full impact of sensing at a given location. This
impact includes a modification of the covariance information used in the targeting,
which thus further impacts the future targeting solutions. A cut-off heuristic based
on the sparse approximation of the covariance structure is proposed for this full
optimization, and it is shown to significantly save computation time by reducing the
number of measurement candidates to be consided in payoff calculation. Several
further approximations that decompose the computation and decision making into
different topologies and choices on the planning horizon are also presented. These
are shown to avoid the combinatorial explosion of the computation time, and the
optimality of the decomposition schemes is shown to be highly dependent on the
existence of agent-wise sharing of the up-to-date covariance information. Numerical
simulations using the two-dimensional Lorenz-2003 chaos model are performed to
validate the proposed algorithm and compare the suggested decomposition schemes.

I. Introduction

Targeting of mobile sensor networks concerns decision making about when, where, and which
type of sensors should be deployed in order to achieve the best information such as the uncertainty
reduction of a region of interest1,2, 3 and accurate information about a specified target,4,5, 6 adapted
to the dynamic environment. Underlying technological questions in this problem are how to define
the information reward in a comprehensive but computationally efficient way, how to determine
the best choice fast enough to adapt to changes in the dynamic features of the environment but
exhaustive enough to earn reasonable level of optimality, and how to incorporate the dynamic
and kinematic constraints related to the motion of the sensor platforms in an effective way. The
combinatorial aspects of the selection problem and the limited amount of computational/time
resources available usually cause difficulty in balancing all these technological features.

There have been many studies in the sensor networks community regarding to the definition
and evaluation of information reward. Zhao et al.4 introduced the Mahalanobis distance measure
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characterized by the location and modality of a sensor in a dynamic query network for target
tracking, in order to avoid complicated entropy computation. Ertin et al.5 showed that the mutual
information measure is equivalent to the entropy measure in a distributed tracking sensor network
within the Bayesian filtering framework. Wang et al.6 presented an entropy-based heuristic to
approximate the computationally expensive mutual information in the target tracking task, while
Guestrin et al.1 proposed an approximation algorithm based on local kernels for maximizing mutual
information in Gaussian processes, and extended it to a randomized algorithm for a graphical
model.3 However, relatively little effort has been devoted to the selection scheme, since reward
computations are too expensive in practice to take any better than greedy strategy into account.
Reward calculation should be fast enough to adopt a sophisticated selection scheme whose time
complexity could be faster than linear in time. Recently, Choi et al.7 proposed a backward selection
framework relying on the commutativity of the mutual information to compute the information gain
in the context of targeting of sensor networks; it achieves significant savings of computation time
by reducing the number of times that the computationally expensive ensemble update should be
performed; however, sensor platforms were assumed to have unlimited mobility.

This paper concerns a targeting of multiple UAVs as sensor platforms that have limited capa-
bility of movement within the context of the weather prediction problem. Complex characteristics
of the weather dynamics such as being chaotic, uncertain, and of multiple time- and length-scales,
leads to the necessity of a large sensor network. However, the capability of the static network that
takes measurement at the same location every time is constrained by geographic aspects – whether
it is on land or over the ocean; the need for an adaptive sensor network incorporated with mobile
sensor platforms has been increased. A team of autonomous UAVs equipped with required sensor
packages can be an attractive physical realization of the adaptive sensor network, since it is much
more cost-effective than conventional crewed aircrafts, and able to be facilitated with substan-
tial amount of payload; its multi-agent feature provides robustness to changes in the environment
and to unexpected failures, while its autonomous feature allows its usage in unfavorable weather
situations.

Several researches have investigated adaptive targeting of sensor networks for weather fore-
cast enhancement such as singular vector methods by Palmer et al.8 that determines the most
performance-sensitive place based on the linear propagation of the dynamics and ensemble-based9

approximation of extended Kalman filter to quantify the changes in the future forecast covariance.
However, due to the enormous size of the system (the state vector typically has O(106) elements and
the size of adaptive network is O(103)9), only very naive selection strategies, for instance, greedily
picking the two flight trajectory out of 49 predefined flight trajectories of a conventional crewed
aircraft, have been considered. Thus, the selected solution tend to be far from the optimal; vehicle
capability was not effectively considered, since only small number of trajectories were assumed to
be available; furthermore, the merit of multi-agent aspects have not been sufficiently reflected.

This paper proposes an efficient algorithm for targeting multiple UAVs that play a role of an
adaptive mobile sensor network for the purpose of reducing the uncertainty in a specified verifi-
cation space/time. Mutual information is introduced to quantify the uncertainty reduction in the
random field, while minimum and maximum flying speed of UAV describes the limited mobility of
the vehicle. The multi-UAV targeting problem is formulated as a static sensor selection problem
with reachability constraints, and the backward selection algorithm7 is adopted to form the core of
the algorithm computing the mutual information efficiently. In order to reduce the computational
waste of resources in computing payoff of suboptimal candidates, cut-off process is introduced
accompanied by a simple cost-to-go function based on the sparse assumption of the covariance
matrix, that approximates the actual mutual information. Also, a methodology to incorporate the
proposed targeting algorithm into the ensemble-based forecast framework is represented. In addi-
tion, decomposition schemes that break down a large-scale targeting problem into subproblems by
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different configurations of team topology and size of planning horizon, are suggested with discussion
of their properties in the context of decentralized decision making. Numerical simulations will be
presented to validate the proposed targeting algorithm and compare the approximate schemes with
one another.

This paper is organized as follow. Section II briefly introduces the concept of mutual information
and the ensemble-based filtering. Section III poses the multiple-UAV targeting problem, which will
be addressed by the algorithm described in section IV. Approximation schemes are discussed in
section V, and numerical simulations results are given in section VI.

II. Preliminaries

A. Entropy and Mutual Information

Entropy represents the amount of information a random variable can provide if it is revealed. The
entropy of a random variable A1 is defined as11

h(A1) = −E [ log (pA1(a1))] . (1)

The joint entropy of two random variables h(A1, A2) is defined in a similar way. The joint entropy
and the conditional entropy h(A2|A1) are related as

h(A1, A2) = h(A1) + h(A2|A1). (2)

In this work, mutual information, which is also called information gain, is employed to measure
uncertainty reduction of one random variable by another random variable. Mutual information is
the amount of information one random variable can reveal about another random variable, which
is defined as

I(A1;A2) = h(A1)− h(A1|A2). (3)

It is noted that mutual information is commutative:11

I(A1;A2) ≡ I(A2;A1) = h(A2)− h(A2|A1). (4)

In the case that a set of random variables are jointly Gaussian, entropy is expressed as

h(A) ≡ h(A1, · · · , Ak) =
1
2
log

[
(2πe)k det(Cov(A))

]
. (5)

In this work, uncertainty reduction of a random variable by a measurement of another random
variable is described by the mutual information between those two, which can be computed com-
mutatively.

B. Ensemble Square Root Filter

This work is based on an ensemble forecast system, in particular, sequential ensemble square root
filter12 (EnSRF). Ensemble forecast represents the nonlinear features of the weather system better,
and mitigates computational burden of linearizing the nonlinear dynamics and keeping track of
a large covariance matrix.12,13 In EnSRF, propagation of the state and the covariance matrix
amounts to nonlinear integration of ensemble members. The ensemble mean corresponds to the
state estimate, and the covariance information can be obtained from the perturbation ensemble as

P = X̃X̃T /(LE − 1), X̃ ∈ RLS×LE (6)
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Figure 1. Multi-UAV targeting in the grid space-time

where LS is the number of state variables and LE is the ensemble size. X̃ is the perturbation
ensemble defined as

X̃ = η
(
X− x̄× 1T

)
(7)

where X is the ensemble matrix, a row concatenation of each ensemble member, and x̄ is the
ensemble mean, the row average of the ensemble matrix. η( ≥ 1) is the covariance inflation fac-
tor introduced to avoid underestimation of the covariance due to the finite ensemble size. The
propagation step for EnSRF is the integration

Xf (t + ∆t) =
∫ t+∆t

t
Ẋdt, X(t) = Xa(t), (8)

with Xf and Xa denoting the forecast and the analysis ensemble, respectively. The measurement
update step for EnSRF is

x̄a = x̄f + K(y −Hx̄f ) (9)

X̃a = (I−KH)X̃f (10)

where y denotes the observation vector; H does the observation matrix under the assumption of
linear observation. K denotes the appropriate Kalman gain, which can be obtained by solving a
nonlinear matrix equation described in terms of X.12 The sequential update process avoids solving
a nonlinear matrix equation and provides a faster method for determining K. The ensemble update
by the m-th observation is

X̃m+1 = X̃m − αmβmpm
i ξ̃m

i , (11)

αm = 1/
(
1 +

√
βmRi

)
, βm = 1/ (Pm

ii + Ri) (12)

where measurement is taken for the i-th state variable. pm
i , ξ̃m

i , and Pm
ii are the i-th column, the

i-th row, and (i, i) element of the prior perturbation matrix Pm, respectively. αm is the factor for
compensating mismatch of the serial update and the batch update, while βmpm

l corresponds to the
Kalman gain.

III. Problem Statement

This paper deals with targeting of UAVs in a finite grid space-time (fig. 1). The location of a
vehicle in the discrete space-time can be represented as a single positive integer regardless of the
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spatial dimension; denote si[tk] ∈ Z+ the location of the i-th UAV at time tk. For convenience, the
index set is defined such that

r = s + τ × ds (13)

when r and s represent two points that are spatially identical but temporally apart from each other
by τ , positiveness of which represents posteriority; ds denotes the spatial dimension of the grid
representation. Also, an index set S ⊂ Z+ is defined to be the search space-time over which UAVs
may be located.

This work assumes that a single state variable (e.g. local temperature, pressure, etc.), which
is measured by a sensor of a UAV, is associated with each grid point. Since the dynamics of
field state variables is stochastic and sensor measurements are noisy, two random variables Xs

and Zs are introduced to represent the state estimate and the measurement at each location s,
respectively. In addition, XS and ZS denote the random vectors representing the state estimates
and measurements of the entire search space S. Furthermore, V represents the random vector
consisting of the state estimates over the verification region at the verification time. With slight
abuse of notation, this paper does not distinguish a set of random variables from a random vector
formed by the corresponding random variables. The measurement model is written as

Zs = Xs + Ns; Ns ∼ N (0, Rs), ∀ s ∈ S, (14)
Cov(Ns, Nr) = 0, ∀ s 6= r, (15)
Cov(Ns, Xr) = 0, ∀ s, r ∈ S. (16)

Measurement is corrupted by a white Gaussian noise that is uncorrelated with any of the state
variables and with any other sensing noises.

The objective of targeting is to reduce expected forecast uncertainty in V, with considering
limited capability of movent of each UAV. Adopting entropy as a metric of uncertainty, the targeting
problem can be posed as decision finding the optimal control sequences u[tk]’s, or equivalently
optimal waypoint sequences s[tk]’s for the following maximization:

max
u[t1],··· ,u[tK ]

I(V;Zs[t1] · · ·Zs[tK ]) , h(V)− h(V|Zs[t1] · · ·Zs[tK−1]) (17)

subject to
s[tk+1] = s[tk] + u[tk], ∀k ∈ [1,K − 1] ∩ Z+ (18)
s[t1] = so = given (19)
si[tk] ∈ S, ∀i ∈ [1, n] ∩ Z+, ∀k ∈ [1,K − 1] ∩ Z+ (20)

s[tk] ,
[
s1[tk] · · · sn[tk]

]T
, Zs[tk] =

n⋃
i=1

Zsi[tk], and (21)

u[tk] ,
[
u1[tk] · · · un[tk]

]T
where (22)

ui[tk] ∈ U ⊂ Z+, ∀i ∈ [1, n] ∩ Z+, ∀k ∈ [1,K − 1] ∩ Z+. (23)

n is the number of UAVs and ui[tk] is the control action of the i-th UAV at time tk. The set U
defines all the possible control options that can be represented as positive integer values in the
grid space-time. Since a vehicle has limited capability of motion, U should be a finite set. The
condition (18) describes the vehicle dynamics, when initial (at t1) locations of vehicles are assumed
to be given in (32). The condition (20) means that vehicles should remain in the grid space by
their control actions - call it admissibility condition. With regard to the control option, this work
is particularly considering limited mobility of a UAV; thus, an admissible control action leads the
vehicle to its neighboring location at the next time step.
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Calculation of entropy of a random vector with a general distribution is not trivial; often
times requires computation of higher-order moments. However, in case a random vector is jointly
Gaussian, only the covariance information is needed to evaluate entropy as given in eq. (5). This
work assumes that the random vector representing the entire gridspace is Gaussian; or, more
relaxed, at least entropy of any subset of the entire random vector can be computed in a Gaussian
way with sufficient accuracy.

IV. Multi-UAV Targeting Algorithm

This section proposes a multi-UAV targeting algorithm for solving a targeting problem defined
in the previous section. The proposed targeting algorithm is featured by four main aspects: a)
the backward selection formulation to compute payoffs of solution candidates, b) the control space
search to effectively incorporate vehicle mobility constraints, c) a cut-off heuristics that reduces the
number of solution candidates for which payoff values are actually calculated, and d) an ensemble-
based setup with taking fixed observation networks into account. Details of these aspects will be
presented followed by a summary of the algorithm.

A. Backward Selection for Gaussian (BSG)

The Backward Selection for Gaussian (BSG) method that was presented in Choi et al.7 forms the
backbone of the targeting algorithm of this work. Think about a static sensor placement problem
by regarding the time axis in figure 1 as another space axis and neglecting the vehicle capability
constraints. Then, the selection problem can be stated as

sF
? = arg max

s⊂S:|s|=ns

I(V;Zs) , h(V)− h(V|Zs) (24)

G= arg max
s⊂S:|s|=ns

1
2 ldet (Cov(V))− 1

2 ldet (Cov(V|Zs)) (25)

where ns is the number of targeting points to select, ldet() stands for log det() function, and G=
denotes the equality under the Gaussian assumption. While referring to the above formulation
as forward selection, Choi et al.7 verified that computation time for selection decision can be
dramatically reduced by reformulating it as the following backward selection:

sB
? = arg max

s⊂S:|s|=ns

I(Zs;V) , h(Zs)− h(Zs|V) (26)

G= arg max
s⊂S:|s|=ns

1
2 ldet (Cov(Zs))− 1

2 ldet (Cov(Zs|V)) (27)

= arg max
s⊂S:|s|=ns

1
2 ldet (Cov(Xs) + Rs)− 1

2 ldet (Cov(Xs|V) + Rs) . (28)

It is noted that sF? ≡ sB?, since mutual information is commutative.
In finding the optimal solution using explicit enumeration, which results in the worst-case

computational complexity, the forward method computes the posterior entropy of V for every
possible measurement candidate s. This means evaluation and determinant calculation of the
posterior covariance of V have to be done total

(|S|
ns

)
times. On the contrary, the covariance update

can be done as a constant-time process for the backward method by updating the covariance of the
entire search space S at once; then, a combinatorial search extracts the pair of n× n submatrices
consisting of identical row/column indices from the prior and posterior covariance matrices of S,
that reveal the largest difference between their determinants. As the covariance update usually
incurs high computational expense – especially for the ensemble-based targeting problems – the
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backward selection saves an enormously great deal of computation time. In addition, the backward
formulation becomes more preferable if |V| is bigger than ns, since it computes the determinants
of smaller matrices.

B. Vehicle Capability

In addressing vehicle capability, the reachable set from the current UAV locations is defined as

R(s[tk]) =
{
r ⊂ S : r = s[tk] + u[tk]; s[tk] ⊂ S,u[tk] ⊂ U

}
, (29)

which can be interpreted as the set of all possible location vectors by legitimate control vectors
applied at tk. Incorporating this concept of the reachable set in the BSG framework, the targeting
problem can be rewritten as

(s[t2], · · · , s[tK ])? = arg max
s[t2],··· ,s[tK ]

h(Zs[t1] · · ·Zs[tK ])− h(Zs[t1] · · ·Zs[tK ]|V)

= arg max
s[t2],··· ,s[tK ]

1
2 ldet

(
Cov(Xs[1:K]) + Rs[1:K]

)
− 1

2 ldet
(
Cov(Xs[1:K]|V) + Rs[1:K]

)
(30)

subject to
s[tk+1] ∈ R(s[tk]), ∀k ∈ [1,K − 1] ∩ Z+ (31)
s[t1] = so = given, (32)

where Xs[1:K] ,
⋃K

k=1 Xs[tk] and Rs[1:K] , diag(Rs[tk]). This formulation corresponds to selecting
n × (K − 1) points satisfying the reachability condition whose information gain is maximized by
knowledge of V.

In order to incorporate the reachability condition effectively, this work defines the search process
based on the following principles: First, the search space should be exhaustive enough to consider
all the admissible and reachable candidates but is preferred to be as small as possible. Second, the
search process should be able to exclude the infeasible – unreachable or inadmissible – candidates
from the decision process. Such a search space SZ ⊂ S can be obtained by

SZ =
K−1⋃
k=1

Rk(so), (33)

where

Rk+1(so) = R
(
Rk(so)

)
, ∀k ∈ [1,K − 1] ∩ Z+. (34)

This SZ is also minimal in that every element in SZ will be referred to at least once in computing
the information gains for the feasible candidates. As the right-hand side of (33) is a union of disjoint
sets, the cardinality of SZ becomes

|SZ | =
K−1∑
k=1

|Rk(so)| ≤
K−1∑
k=1

|U|nk =
|U|nK − |U|n

|U|n − 1
∼ O(|U|n(K−1)). (35)

It is noted that not every subset of SZ of size n(K − 1) is a legitimate candidate satisfying the
reachability condition; thus, the search process should exclude such illegitimate candidates. For
this purpose, this work searches over the control space rather than the index space; the search
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Figure 2. Reachable zone by a single agent in two-dimensional grid space

process addresses decision of

(uZ [t1], · · · ,uZ [tK−1])
?

= arg max
uZ [t1],··· ,uZ [tK−1]

1
2 ldet

(
Cov(XsZ [1:K]) + RsZ [1:K]

)
− 1

2 ldet
(
Cov(XsZ [1:K]| V) + RsZ [1:K]

)
(36)

subject to
sZ [tk+1] = sZ [tk] + uZ [tk], ∀k ∈ [1, · · · K − 1] ∩ Z+ (37)

sZ [t1] =
[
1, · · · , n

]T (38)

where sZ and uZ is are the newly defined location index and the control action in SZ . With this
formulation, a close enough upper bound for the number of candidates to consider becomes simply
|U|n(K−1); this is much smaller than

( |SZ |
n(K−1)

)
, which could be O(|U|n2(K−1)2) in the worst case.

As to vehicle mobility constraints, this paper is particularly interested in limited flying speed
of a UAV described as

Vmin ≤ DM (si[tk], si[tk+1]) ≤ Vmax. (39)

DM denotes the Manhattan distance defined as

DM (s, r) =
m∑

j=1

|sj − rj | (40)

where m denotes the physical dimension of the space; sj and rj denote the j-th physical spatial
coordinate values of the gridpoints s and r in S, respectively. Figure 2 illustrates the reachable zone
by a single agent from location s in a two-dimensional grid space, in case Vmin = 1 and Vmax = 2.
Note in this case that

Rk(so) =
{

r ∈ S[tk+1] : DM (s, r) ≤ k × Vmax

}
, ∀k ∈ [2,K] ∩ Z+ (41)
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where S[tk+1] ⊂ S denotes the set of gridpoints whose time index is tk+1. Thus, the size of SZ for
a single agent in a two-dimensional space becomes

|SZ |sg.2d =
K−1∑
k=2

1 + 4
kVmax∑
j=1

j

 + 4
Vmax∑

j=Vmin

j . (42)

In case each UAV has identical moving capability, the reachable zone by a team of UAV is nothing
more than the union of each agent’s reachable zone:

SZ(so) =
n⋃

i=1

SZ(si[t1]). (43)

Then, the size of SZ for the multi-agent case will be

|SZ | ≤ n× |SZ |sg (44)

where equality holds when the reachable zone of each agent is disjoint each other. Note that
conflicting assignment is not apparently prohibited with this SZ ; different agents might take mea-
surements at the same location at the same time. However, the optimal targeting decision will
never select this option, since it is definitely suboptimal.

C. Cut-Off Heuristics

Although BSG does not involve a combinatorial number of covariance updates, it still requires to
compute a determinant of n(K − 1)× n(K − 1) matrix (maximum) |U|n(K−1) times, which is

|U|n(K−1) =

4
Vmax∑

j=Vmin

j

n(K−1)

= [2(Vmax + Vmin)(Vmax − Vmin + 1)]n(K−1) , (45)

for a two-dimensional problem. Therefore, if Vmax and/or n(K − 1) becomes large, the number of
submatrices to be considered in the decision rapidly grows. Moreover, as n(K − 1) becomes larger,
the unit time for computing the determinant of one submatrix also increases - proportional to
n3(K − 1)3 when utilizing Cholesky factorization. Thus, in order to address a large-scale problem,
it is necessary to reduce the number of candidates whose mutual information is actually calculated.

For this purpose, this paper proposes a cut-off heuristics that provides indication of which
measurement choice is likely to be good or not. For notational simplicity, a static backward selection
problem in (28) with simplified notations Cov(Xs) , P−

s and Cov(Xs|V) , P+
s , is considered in

this discussion; taking vehicle mobility into account in this heuristics will be an easy extension. It
was noted in Burer and Lee14 that for a legitimate covariance matrix P � 0,

ldet(P ) ≤ ldet(P ◦ Σ) (46)

where ◦ denotes Hadamard product, and Σ is a symmetric positive definite matrix satisfying

diag(Σ) = 1. (47)

With the simplest choice of Σ = I, upper bounds for the prior and posterior entropies for the
candidate s will be

h(Zs)− ns
2 log(2πe) = 1

2 ldet (P−
s + Rs) ≤ 1

2

∑ns
i=1 log [P−

s (i, i) + Rs(i, i)] , ĥ−s (48)

h(Zs|V)− ns
2 log(2πe) = 1

2 ldet (P+
s + Rs) ≤ 1

2

∑ns
i=1 log [P+

s (i, i) + Rs(i, i)] , ĥ+
s . (49)
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Note that calculation of ĥ−s and ĥ+
s is computationally much cheaper than the original entropy

computation, since it only requires simple scalar operations. Based on the above upperbounds, this
paper suggests to use

Îs = ĥ−s − ĥ+
s (50)

as indication of whether the candidate s is worth being considered as a possibly good solution.
Supposed that s is the m-th candidate in the list, then the cut-off decision for s is made by

c[s] =
{
pass, if Î(s) ≥ ILBD

fail, otherwise,
(51)

where ILBD is the tightest lowerbound of the optimal information gain thus far. The actual mutual
information of candidate s is computed, only if c[s] = pass.

If Îs ≤ I(Zs;V) for all s, the optimal solution is guaranteed to lie amongst the pass-ed candi-
dates. Unfortunately, this is not the case in general, since mutual information is not submodular for
many cases.1 However, this work experimentally verifies that Îs is a sufficiently good approximation
of the corresponding mutual information. Thus, keeping the fundament of the cut-off decision, this
paper proposes the following modification of the cut-off indicator function to improve the likelihood
of finding the optimal solution:

cε[s] =
{
pass, if Î(s) ≥ ILBD − ε

fail, otherwise,
(52)

with a positive relaxation parameter ε. Thus, every time a candidate s is on the table, its cost-
to-go and cut-off indicator are evaluated; the actual payoff value is computed if it pass-es the
cut-off criterion. An alternative way of implementating the above idea is to postpone the cut-
off decision after calculation of cost-to-go values of all the candidates. By evaluating the actual
information gain in the order of the largest cost-to-go heuristics, ILBD is likely to be tighter;
therefore, more candidates will be cut-off. However, this way requires more memory space than the
original implementation. In addition, a better approximation of I(Zs;V) than Îs can be obtained
by utilizing more sophisticated Σ such as block-diagonal and tri-diagonal, while it might incur more
computational expense. Also, another type of cost-to-go formula can be derived in the information-
theoretic context. (See Appendix A.)

D. Ensemble-Based Formulation

In weather forecast applications, targeted observations are usually not the sole source of informa-
tion but some fixed - also called routine - observation network is already placed. This routine
observation network periodically, usually every 6 hours in practice, takes measurement at the same
location. Figure 3 illustrates the observation structure needed to be considered in the targeting
problem within the time window from t0 (decision time) to tV (verification time). As pointed out
in the figure, routine observations after the targeting time is not typically considered in weather
applications, because the purpose of targeting is to enhance accuracy of the ∆T (= tV −tK)-interval
forecast broadcasted at tK .

To pose a targeting problem as presented in the previous section, two features need to be
notified. First, information available at t0 is the analysis ensemble in which actual measurements
up until t0 have been taken into account. Second, given the existence of the fixed observation
network, the targeting problem should be stated conditioned on the routine observations. This
work addresses the first aspect by augmenting forecast ensembles for all the relevant time instances
as follows.

Xf
[t1:tV ] =

[(
Xf

t1

)T
· · ·

(
Xf

tK

)T (
Xf

tV

)T
]T

, (53)
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Figure 3. Observation structure over space-time

where

Xf
tk

= Xa
t0 +

∫ tk

t0

Ẋ(t)dt (54)

and Xa
t0 ∈ RLS×LE is the analysis ensemble at t0. Then, conditioning process with the routine

observations from t1 through tK becomes nothing more than the ensemble update for the augmented
forecast ensemble Xf

[t1:tV ]. Note that an ensemble mean update cannot be (and does not need to
be) done, since those fixed observations have not been actually taken and a Gaussian entropy does
not require mean information. The ensemble update of the augmented ensemble by the (future)
routine observations can be expressed as

X̃−
[t1:tV ] =

(
I −Kr

[t1:tV ]H
r
[t1:tK ]

)
X̃f

[t1:tV ] (55)

where Kr
[t1:tK ] ∈ RLS(K+1)×nr(K+1) and Hr

[t1:tK ] ∈ Rnr(K+1)×LS(K+1) are the corresponding Kalman
gain and the observation matrix, and nr is the size of the routine network. In the EnSRF scheme,
this process can obviously be performed one observation by one observation. Then, the targeting
problem is posed by treating X−

[t1:tK ] as the prior ensemble. For instance, the prior state covariance
of the entire search space S can be computed as

Cov(XS) =
1

LE − 1
X̃−

S

(
X̃−

S

)T
(56)

where XS consists of the rows of X−
[t1:tK ] corresponding to S.

E. Algorithm Summary

Based on the four features discussed above, algorithm 1 represents the overall algorithmic ar-
chitecture for ensemble-based multi-UAV targeting. The presented one deals with the cheapest
implementation that uses the cost-to-go with Σ = I and computes the actual objective value for
every pass-ed candidate. Other types of cost-to-go heuristics and cut-off procedure can easily be
incorporated with slight modification of algorithm 1, although all the numerical results in this paper
will be based on this version of algorithm.
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Algorithm 1 Ensemble-Base Multi-UAV Targeting Algorithm (Memory Saving Implementation)
1: Initialize ILBD as default to be zero
2: Determine SZ from so, Vmin, and Vmax

3: Extract prior perturbation ensembles corresponding to SZ ∪ V; denote it as XSZ∪V
4: From XSZ∪V , extract XSZ

and compute the posterior ensemble XSZ |V
5: for all u[t1 : tK−1] ∈ Un(K−1) do
6: s[tk] ∈ SZ ∀k ? If yes, proceed; otherwise goto step 5.
7: Evaluate the prior and posterior covariance matrices, Cov(Zs[t1:tK ]) and Cov(Zs[t1:tK ]|V)
8: Compute the heuristic cost-to-go Îs[t1:tK ]

9: if Îs[t1:tK ] > ILBD − ε then
10: Compute I(Zs[t1:tK ];V)
11: if I(Zs[t1:tK ];V) > ILBD then
12: ILBD = I(Zs[t1:tK ];V)
13: uLBD = u[t1 : tK ]
14: end if
15: else
16: Goto step 5.
17: end if
18: end for
19: Return u?[t1 : tK−1] = uLBD and I?(Zs;V) = ILBD

V. Decomposition Schemes

The proposed cut-off heuristics can reduce the number of computations of matrix determinant;
however, it still requires calculation of cost-to-go values combinatorially many times. Thus, a further
approximation scheme that breaks down the original problem into a set of small pieces of problems
is needed to address a larger-scale problem. This section presents a team-based receding horizon
approximation of the original targeting problem. In addition to speeding up the computation, this
decomposition provides useful implication on the decentralized decision making for the targeting
approach.

Recall that the search process of targeting starts with two covariance matrices - Cov(XSZ
) and

Cov(XSZ
|V); the impact of measurements taken at the initial vehicle locations can be incorporated

in advance, since initial locations are assumed to be given. Before starting a search process, the
following two covariances are available.

Cov(XSZ
|Zso), and Cov(XSZ

|VZso). (57)

The decomposition approach in this section is applied after computing the above prior information.
Figure 4 illustrates the schematics of the problem decomposition in case the number of teams

is two. Instead of finding n(K− 1) control actions at once, a set of subproblems in each of which T
agents having an H-long lookahead window are involved, are considered. Assuming that T divides
n and H divides K−1 for simplicity, the number of subproblems becomes n(K−1)

TH . The approxima-
tion scheme starts with solving the first subproblem that determines the optimal control actions of
the first T agents until time H - decision making for team 1 for the first planning horizon in figure 4.
Afterwards, the second subproblem associated with the next T agents with the same time window
is taken into account. As soon as decisions for all the agents within the first time window have been
made, then the “execution step,” in which covariance information is updated incorporating those
decisions, will follow. From the decentralized point of view, the existence of the execution step im-
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Figure 4. Schematics of team-based decomposition with two different communication topologies

plies that the actual time interval between the first and next planning horizon is sufficiently large to
incorporate all the decisions made in the first horizon and to share the updated information. Thus,
the n

T +1-th subproblem determines the optimal control actions for agents 1 to T for the next time
window [H + 1, 2H] based on the updated covariances Cov(XSZ

|Zs[1:H]), and Cov(XSZ
|VZs[1:H]).

This sequence of decision making and execution continues in the temporal direction until the final
planning horizon [tK−H , tK−1].

Back to the transition from the first subproblem to the second subproblem, this work considers
two types of transition in this direction: “local” and “sequential” scheme. In the local scheme, a
decision of each team is made without any knowledge about the other teams’ decisions; every team
determines its best action using

Cov(XSZ
|Zs[1:kH]), and Cov(XSZ

|VZs[1:kH]) (58)

in the planning window [kH + 1, (k + 1)H]. On the contrary, in the sequential scheme each team
knows the decisions of preceding teams and incorporates them into its decision. In other words, a
team of agents (mT + 1) to (m + 1)T will compute its best control decisions with the priors of

Cov(XSZ
|Zs[1:kH]Zs(1:mT )), and Cov(XSZ

|VZs[1:kH]Zs(1:mT )). (59)

Figure 4 contrasts the information flows for these two spatial decomposition schemes. In a physical
sense, the distinction between the local and the sequential scheme is related to the communica-
tion topology amongst agents. The local scheme assumes that only inner-team communication is
available in a given decision horizon, while the sequential scheme assumes the existence of inter-
team communication even if it may not be real-time. Also, note that conflicting assignment that
is not allowed inside the team could be allowed among other teams, in particular, if the local
communication scheme is adopted.

VI. Numerical Simulations

A. Lorenz-2003 Model

The Lorenz-2003 model is an extended model of the Lorenz-95 model15 to address multi-scale
feature of the weather dynamics in addition to the basic aspects of the weather motion such as
energy dissipation, advection, and external forcing. In this paper, the original one-dimensional
model is extended to a two-dimensional one representing the mid-latitude region (20 − 70 deg) of
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the northern hemisphere. The system equations are

ẏij =− ξi−2α,jξi−α,j +
1

2bα/2c+ 1

k=+bα/2c∑
k=−bα/2c

ξi−α+k,jyi+k,j

− µηi,j−2βηi,j−β +
µ

2bβ/2c+ 1

k=+bβ/2c∑
k=−bβ/2c

ηi,j−β+kyi,i+k (60)

− yij + F

where

ξij =
1

2bα/2c+ 1

k=+bα/2c∑
k=−bα/2c

yi+k,j , i = 1, . . . , Lon (61)

ηij =
1

2bβ/2c+ 1

k=+bα/2c∑
k=−bβ/2c

yi,j+k, j = 1, . . . , Lat (62)

The subscript i denotes the west-to-eastern grid index, while j denotes the south-to-north grid
index. The dynamics of the (i, j)-th grid point depends on its longitudinal 2α-interval neighbors
(and latitudinal 2β) through the advection terms, on itself by the dissipation term, and on the
external forcing (F = 8 in this work). In case α = β = 1, this model is equivalent to the two-
dimension Lorenz-95 model.7 There are Lon = 36α longitudinal and Lat = 8β + 1 latitudinal grid
points. The dynamics in (60) are subject to cyclic boundary conditions in the longitudinal direction
(yi+Lon,j = yi−Lon,j = yi,j) and a constant advection condition( yi,0 = · · · yi,−bβ/2c = 3; yi,Lat+1 =
· · · = yi,Lat+bβ/2c = 0 in advection terms) is applied in the latitudinal direction, to model the mid-
latitude area as an annulus. The length-scale of the Lorenz-2003 is proportional to the inverse of
α and β in each direction: for instance, the grid size for α = β = 2 amounts to 347 km × 347 km.
The time-scale of the Lorenz-2003 system is such that 0.05 time units are equivalent to 6 hours in
real-time.

B. Prior Setup

For numerical validation of the proposed targeting algorithm, the initial analysis ensemble for
Lorenz-2003 dynamics with α = β = 2 is constructed. The routine network with size 186 is
assumed to be already deployed over the grid space, which is depicted with blue ‘o’ in figs.5). The
static network is dense in two portions of the grid space called lands, while it is sparse in the other
two portions of the space called oceans. The routine network takes measurement every 0.05 time
unit (∼ 6 hours). The leftmost part consisting of 27 grid points in the right land is selected as the
verification region, over which the forecast uncertainty reduction 0.6 time units(∼ 3 days) after the
targeting time is interested in; it is plotted with red ‘�’ in the figures. The planning window [t1, tK ]
is from 0.025 time unit(∼ 3 hours) through 0.375 time unit(∼ 15 hours) after t0 with K = 5; time
steps are equally spaced by 0.025 time unit(∼ 3 hours). The analysis ensemble at t0 with size 1224,
which is same as the size of the grid space, is obtained by running an EnSRF incorporating the
routine observations for 1000 cycles. In the upper plot of figure 5 shows a typical shape of the error
variance field with this routine configuration. The measurement noise variance is 0.22 for routines
and 0.022 for additional observations, assuming that high-resolution sensors will be equipped on the
UAVs. Initial locations of the UAVs are selected based on the climatological data (see Appendix
B) such that climatologically best points will be inside the reachable set of the initial locations.
Flight speed of the UAV is limited as Vmin = 1 grid/timestep and Vmax = 2 grids/timestep.
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C. Effect of Cut-Off Heuristics

As pointed out in section IV.C, the cost-to-go heuristics sometimes underestimates the actual
mutual information; the relaxing parameter ε is required for better optimality. In order to verify
the computational effectiveness of the heuristics and to figure out the effect of the relaxing parameter
on the solution optimality, the following two-agent targeting problem is considered. Two UAVs are
initially located at (45, 7) and (45, 9), which are in the middle of the eastern part of the wider
ocean. A Monte-Carlo simulation with 5 different initial ensembles – five different Xa

t0 – generated
from the data assimilation scheme every 1 time unit (∼5 days), is performed.

Table 1 shows the average information gain, the number of candidates whose actual payoffs
are computed, and the computation time, with respect to different values of ε. It is first noted
that the cut-off heuristics enormously reduces the number of candidates to be considered in payoff
calculation, while optimality degradation is very small. In fact, for four out of five cases, the
heuristic search gives the optimal answer even for the case of ε = 0. As ε = 0.2 gives a sufficiently
close answer to the optimum without substantial increase of computation time, this value of ε is used
for later simulations. It is also seen that improvement in the actual computation time is relatively
small compared with reduction in the number of candidates; this is because the heuristic search
requires additional computational resource to evaluate the cost-to-go function for every candidate.
This implies that more complicated cost-to-go functions might not be preferred, because it could
need longer overhead computation time.

D. Comparison of Decomposition Schemes

In order to discuss the validity of the decomposition schemes, simulation studies varying the values
of T and H with using either local or sequential inter-team communication, are conducted. A
four-agent problem with the same setup as before, which would take thousands of years to find the
solution by an exhaustive search on a usual PC, is considered. The initial locations of the UAVs are
(45, 7), (45, 9), (46, 7), and (46, 9) - call them UAV-1 through UAV-4. Three values of T = 1, 2, 4
and three values of H = 1, 2, 4 are taken into account; in case T = 1, 2, both local and sequential
communication schemes are dealt with, while T = 4 means full spatial cooperation among the UAVs.
Thus, total 15 different combinations plus a feasible random strategy are addressed for comparison;
for the cases of (T,H) = (4, 2), (2, 4), the cut-off heuristics with ε = 0.2 is implemented. Recall
that the full optimal solution equivalent to (T,H) = (4, 4) cannot be obtained within reasonable
amount of time. Monte-Carlo simulations are performed using 10 different initial ensembles.

Table 2 shows the average optimality of each strategy where superscript ‘C’ represents the use of
the cut-off heuristics. It is first noticeable that the local communication causes significant optimality
degradation. All of the three cases of T = 1(L) topology reveal inferior optimality even to the
reference random strategy. Furthermore, increase of the planning horizon degrades the optimality
for these cases; this can be interpreted as selecting many points based on outdated information

Table 1. 5-simulation average performance of the cut-off heuristics for different ε

ε I(Zs? ;V) No. Cand (×103) Comp. time (s)

0 6.185 454 545
0.1 6.193 782 547
0.2 6.198 1319 551
1.0 6.199 31847 754
∞ 6.199 401688 3187
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Figure 5. Targeting Solutions with so by climatology

is exceedingly suboptimal. Another noticeable comparison is between T = 2(L) and T = 1(S):
although each team consists of more UAVs for T = 2(L), the lack of inter-team communication
results in poorer optimality. In contrast to the case of local communication, increase of the team
size and/or the horizon size enhances optimality for the cases of sequential communication.

Figure 5 shows one exemplary targeting solution. The upper figure depicts the initial analysis
ensemble variance field, routine networks, and verification sites. The lower figures contrast two sets
of UAV paths corresponding to strategies T = 1(L),H = 4 (left) and T = 2(S),H = 4 (right).
These two setups provide the worst and the best optimality, respectively. In the left picture, due
to the lack of inter-agent communication all four UAVs collapse to one trajectory that must be the
single-agent optimal (but obviously multi-agent suboptimal) solution, while UAVs are searching
over relatively large portion of the space in the right picture.

The average computation time for each strategy is tabulated in Table 3. For every case except
the three cases with TH = 8, the targeting decision takes just about 3− 6 seconds. Computation
time for the remaining three cases are all about a thousand seconds. Compared with extremely
long expected computation time (about thousands of years) for the full optimization problem, it
can be verified that decomposition schemes considerably enhance computational effectiveness.
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Table 2. Average value of I(Zs? ;V) for 4-agent case ( I(Zsrnd ;V) = 6.5098 )

H = 1 H = 2 H = K − 1

T = 1(L) 6.4419 6.1147 6.0655
T = 1(S) 9.9142 9.9749 10.2611
T = 2(L) 7.5253 7.7506 8.2679C

T = 2(S) 9.9947 10.1854 10.5615C

T = n 10.0064 10.3363C N/A

Table 3. Average computation time (seconds) for 4-agent case

H = 1 H = 2 H = K − 1

T = 1(L) 3.8 3.0 3.1
T = 1(S) 5.9 4.4 4.1
T = 2(L) 3.9 3.7 1088.0C

T = 2(S) 5.3 4.8 1075.0C

T = n 4.7 1001.9C N/A

E. Additional Remarks

In the above simulation, the initial sites are selected rather close each other to ensure for climato-
logically best four points (in space/time) to lie in the reachable set of the UAVs’ initial locations.
Due to this proximity, UAV paths easily tend to collapse. Thus, additional simulation with more
dispersed initial locations is conducted to see the effect of initial distance between agents on the
targeting result. Other conditions being unchanged, initially the vehicles are located at (48, 3),
(47, 7), (47, 11), and (47, 15). Table 4 and figure 6 show the results. The optimality gap between
the local strategies and the sequential strategies becomes smaller in this case, because the chance
of conflicting assignment is reduced because of initial dispersion of the agents. However, the quali-
tative message regarding the communication topology and the size of planning horizon is consistent
with that of the previous experiments. Optimality of T = 1(L) cases are decreasing as the size of
planning horizon increases, and T = 1(S) still outperforms T = 2(L). Tendency of collapsed paths
for the local communication cases still exist as seen in figure 6.

In addition, this work also wants to discuss the influence of the change in the static network
configuration. By eliminating six routine observation sites in the oceanic region, the average and
maximum squared analysis error are increased approximately eight times. Table 5 represents the
optimality of each strategy. It is first noted that information gains are generally smaller than
those for the denser fixed network cases; this implies that targeting is of less help when the prior
information is not sufficiently good. Also, the optimality gaps amongst strategies decrease as the
overall performance levels decrease; but, the qualitative aspects as to the communication topology
are still coherent.

VII. Conclusions

This paper presented a targeting algorithm for multiple UAVs with limited mobility, which
was incorporated with ensemble-based forecasting and was featured by the backward selection
algorithm and the cut-off heuristics for enhancement of computational efficiency. Several decom-
position schemes that breaks down a large-scale problem into small pieces of subproblems were
proposed with interpretation as the notion of decentralization. Numerical simulations using an
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Figure 6. Targeting Solutions with dispersed so

simplified weather-like model revealed the validity of the proposed targeting algorithm and quanti-
tatively supported the importance of the information sharing amongst agents. Future research will
enhance the computational effectiveness of the proposed algorithm by optimizing the selection of
cost-to-go heuristics and cut-off decision process, and will address a realistic weather model such
as Coupled Ocean/Atmosphere Mesoscale Prediction System.16
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Appendix

A. Information-Theoretic Cost-to-Go Heuristics

A different type of heuristics can be derived in the information-theoretic context. The principle of
“information never hurts11” says that

h(A1, A2) = h(A1) + h(A2|A1) ≤ h(A1) + h(A2) (63)

for any random vectors A1 and A2. The implication of this inequalities is an upper bound of the
entropy of a random vector can be obtained by neglecting some connections between consisting
random variables. Note that expression of Îs can also be derived from this principle. If a bit
more computation cost is allowed, the following heuristics based on the chain approximation of the
graphical model of the information structure, can be used:

Îa
s = I(Zs1 ;V) +

ns−1∑
j=1

I(Zsj+1 ;V|Zsj ) = I(Zs1 ;V) +
ns−1∑
j=1

I(Zsj+1Zsj ;V)− I(Zsj ;V), (64)

which was presented in Zhang and Ji17 (but with incorrect interpretation). In terms of the covari-
ance matrix, this approximation is equivalent to the tri-diagonal assumption of the information
matrix, inverse of the covariance matrix. To implement this cost-to-go heuristic, mutual infor-
mation values for every single-point and double-point selection should be computed and stored in
advance, which are not particularly computationally expensive for a reasonable size of the search
space. Thus, application of Îa

s makes sense only when ns is greater than two.

B. Climatology-Based Fixed Observation Selection

The targeting problem proposed in this work determines the best places to take measurement (plus
considering vehicle capability) exploiting the prior information based on the up-to-date analysis
ensemble. Because targeting solution is adapted to initial ensemble information, different initial
ensemble results in different targeting solutions.

Climatology-based observation selection takes a different objective: it is interested in determines
good places to take measurement in the long-term sense independent of current ensemble informa-
tion. Thus, this concept can be useful in determining locations of additional fixed observation, at
which observation will be made on a regular basis. Algorithmically, this also can be done using the
targeting algorithm presented in this work starting with the climatological ensemble obtained as
follow.

X̃ f
C =

[
E1 · · · Em · · · ELC

]
(65)

where Em is the forecast error vector m-th data assimilation cycle defined as

Em =



X̄f (t1)− xt(t1)

X̄f (t2)− xt(t2)
...

X̄f (tK)− xt(tK)

X̄f (tV )− xt(tV )


m

(66)

X̄f (tk) =
∫ tk

t0

Ẋdt, X(t0) = Xa(t0). (67)

The climatology-based solution can be obtained by replacing Xf
[t1:tV ] by X̃f

C in the targeting algo-
rithm.

20 of 20

American Institute of Aeronautics and Astronautics


