A multi-valued neutrosophic qualitative flexible approach based on likelihood for multi-criteria decision-making problems

${ }^{\text {a }}$ School of Economics and Management, Hubei University of Automotive Technology, Shiyan, China; ${ }^{\text {b }}$ School of Business, Central South University, Changsha, China; 'School of Economics, Central South University of Forestry and Technology, Changsha, China

Abstract

In this paper, multi-criteria decision-making (MCDM) problems based on the qualitative flexible multiple criteria method (QUALIFLEX), in which the criteria values are expressed by multi-valued neutrosophic information, are investigated. First, multi-valued neutrosophic sets (MVNSs), which allow the truth-membership function, indeterminacy-membership function and falsity-membership function to have a set of crisp values between zero and one, are introduced. Then the likelihood of multi-valued neutrosophic number (MVNN) preference relations is defined and the corresponding properties are also discussed. Finally, an extended QUALIFLEX approach based on likelihood is explored to solve MCDM problems where the assessments of alternatives are in the form of MVNNs; furthermore an example is provided to illustrate the application of the proposed method, together with a comparison analysis.

ARTICLE HISTORY

Received 5 December 2015
Accepted 27 July 2016

KEYWORDS

Multi-valued neutrosophic sets; multi-criteria decision-making; likelihood; QUALIFLEX

1. Introduction

Smarandache (1998, 1999, 2005) initially introduced the concept of neutrosophic sets (NSs), which are an extension of the standard interval $[0,1]$ of Atanassov's intuitionistic fuzzy sets (IFSs) (Atanassov, 1986). NSs are characterised by a truthmembership function, indeterminacy-membership function and falsity membership function that are represented by a set of crisp numbers between $] 0^{-}, 1^{+}$, the non-standard unit interval. However, without a specific description, NSs are difficult to apply in real-life situations. Hence, single-valued neutrosophic sets (SNSs) and interval neutrosophic sets (INSs) were defined, which can be denoted by three real numbers and intervals, respectively, in the real unit interval [0,1] (Majumdar \& Samant, 2014; Wang, Smarandache, Zhang, \& Sunderraman, 2010; Ye, 2013, 2014a). Seemingly, SNSs and INSs are particular cases of NSs. In recent years, NSs and their particular cases have been applied to solve multi-criteria decision-making (MCDM) problems (Liu \& Shi, 2015; Peng, Wang, Zhang, \& Chen, 2014; Tian, Zhang, Wang, Wang, \& Chen, 2015; Wu, Wang, Peng, \& Chen, 2016; Ye, 2014b, 2014c), and also applied to medical diagnosis (Ma, Wang, Wang, \& Wu, 2016; Ye, 2015a), clustering analysis (Ye, 2014d), image processing (Guo \& Sengur, 2014), green product development (Tian, Wang, Wang, \& Zhang, 2016a), engineering machine (Tian, Wang, Wang, \& Zhang, 2016b) and graphs (Broumi, Talea, Bakali, \& Smarandache, 2016a, 2016b). For example, Ye (2014a) proposed an MCDM method using the aggregation operators of SNSs. Moreover, Zhang, Ji, Wang, and Chen (2015) developed an MCDM method based on integrated weight under an interval neutrosophic environment. Based on the operations in Ye (2014a), Peng, Wang, Wang, Zhang, and Chen (2016) developed some aggregation operators of SNSs, and applied them to multi-criteria group decision-making (MCGDM) problems. Liu and Wang (2014)
investigated the single-valued neutrosophic normalised weighted Bonferroni mean and applied it to MCDM problems. Liu, Chu, Li, and Chen (2014) developed some Hamacher aggregation operators with NSs. Ye (2014b, 2014c) proposed the similarity measures between SNSs and INSs to solve MCDM problems. Finally, Peng et al. (2014) defined the outranking relations with SNSs and Zhang, Ji, Wang, and Chen (2016) developed a neutrosophic normal cloud and both were applied to solve MCDM problems.

However, because of the ambiguity and complexity of decision-making in the real world, it is difficult for decisionmakers to express precisely their preferences by using NSs and their particular cases, including SNSs and INSs. Under these circumstances, Wang and Li (2015) and Ye (2015b) developed the definition of multi-valued neutrosophic sets (MVNSs) and single-valued neutrosophic hesitant fuzzy sets (SVNHFSs), respectively, which are both extensions of SNSs and the hesitant fuzzy sets (HFSs) introduced by Torra and Narukawa (2009) and Torra (2010). Moreover, both MVNSs and SVNHFSs are represented by truth-membership, indeterminacy-membership and falsity-membership functions that have a set of crisp values between zero and one. Actually, there is no difference between MVNSs and SVNHFSs. Based on the definition of MVNSs, Peng, Wang, Wu, Wang, and Chen (2015) and Peng, Wang, and Wu (2016a) further defined multi-valued neutrosophic power aggregation operators and outranking relations, and applied them to resolve MCGDM or MCDM problems. Ji, Zhang, and Wang (2016) developed a projection-based TODIM method with multi-valued neutrosophic information.

The qualitative flexible multiple criteria (QUALIFLEX) method, developed by Paelinck (1976, 1977, 1978), is based on the pair-wise comparisons of alternatives with respect to each criterion under all possible alternative permutations, and
identifies the optimal permutation that maximises the value of the concordance/discordance index (Martel \& Matarazzo, 2005). Recently, based on likelihood-based preference relations, several extended QUALIFLEX methods were developed and applied to manage different types of fuzzy information, including interval-valued intuitionistic fuzzy (Chen, 2014a), interval type-2 fuzzy (Wang, Tsao, \& Chen, 2015), hesitant fuzzy linguistic (Lee \& Chen, 2015) and interval type-2 trapezoidal fuzzy information (Chen, 2014b, 2015). However, their extensions were only used to resolve MCDM problems with fuzzy information and few attempts have been made to extend QUALIFLEX to the multi-valued neutrosophic decision-making environment. Moreover, some decision-making problems, where the number of criteria significantly exceeds the number of alternatives, cannot be managed by most of existing neutrosophic decisionmaking methods, or they fail to obtain the distinct ranking of alternatives. Therefore, the purpose of this paper is to propose an extended QUALIFLEX method based on multi-valued neutrosophic numbers (MVNNs) to obtain more imprecise or uncertain decision-making information.

Therefore, in this paper, the preference relations of MVNNs are developed based on likelihood. Then, based on these likelihoods, an extended QUALIFLEX approach is established to deal with MCDM problems where the data are expressed by MVNNs. Consequently, an illustrative example is also provided to demonstrate the applicability of the proposed method. This paper introduces the concept of multi-valued likelihoods of the possibility of MVNNs preference relations, namely truthmembership likelihood, indeterminacy-membership likelihood and falsity-membership likelihood, and then determines the likelihoods between MVNNs numbers. Therefore, the proposed approach is different to the previous method referred to above, as it captures more imprecise or uncertain decision information and effectively addresses MCDM problems within a multivalued neutrosophic environment.

The rest of paper is organised as follows. In Section 2, some basic concepts of NSs and SNSs are briefly reviewed. Then the definition of MVNSs is introduced, and the likelihood preference relations of MVNNs are defined in Section 3. Section 4 contains the extended QUALIFLEX method to solve MCDM problems with MVNNs. In Section 5, an illustrative example and a comparison analysis are presented to verify the proposed approach. Finally, conclusions are drawn in Section 6.

2. Preliminaries

In this section, the definitions of NSs, SNSs and HFSs are introduced, which will be utilised in the latter analysis.

2.1. Neutrosophic sets and simplified neutrosophic sets

Definition 1 (Smarandache, 1999): Let X be a space of points, and x be an element in X. A NS A in X is characterised as follows:

$$
\begin{equation*}
A=\left\{\left\langle x, T_{A}(x), I_{A}(x), F_{A}(x)\right\rangle \mid x \in X\right\} \tag{1}
\end{equation*}
$$

where $T_{A}(x), I_{A}(x)$ and $F_{A}(x)$ are the truth-membership function, the indeterminacy-membership function and the
falsity-membership function, respectively. $T_{A}(x), I_{A}(x)$ and $F_{A}(x)$ are real standard or nonstandard subsets of $] 0^{-}, 1^{+}[$, and satisfying $0^{-} \leq \sup T_{A}(x)+\sup I_{A}(x)+\sup F_{A}(x) \leq 3^{+}$.

When considering the applicability of NSs, Ye (2014a) reduced NSs of nonstandard intervals into SNSs of standard intervals, which can preserve the operations of NSs appropriately.

Definition 2 (Ye, 2014a): Let X be a space of points (objects), and x be an element in X. An SNS A in X is characterised by:

$$
\begin{equation*}
A=\left\{\left\langle x, T_{A}(x), I_{A}(x), F_{A}(x)\right\rangle \mid x \in X\right\} \tag{2}
\end{equation*}
$$

here $T_{A}(x), I_{A}(x)$ and $F_{A}(x)$ are subsets of the real standard $[0,1]$, which represent the truth-membership function, the indeterminacy-membership function and the falsitymembership function, respectively. In particular, an SNS is a special case of NSs. If X has only one element, then A is called a simplified neutrosophic number (SNN), which can be denoted by $A=\left\langle T_{A}(x), I_{A}(x), F_{A}(x)\right\rangle$.

Example 1: Assume that $X=\left\{x_{1}, x_{2}, x_{3}\right\}$, where x_{1} is quality, x_{2} is trustworthiness, and x_{3} is the price of an equipment, is the universal set. The values of x_{1}, x_{2} and x_{3} are in [0, 1]. They can be collected from the questionnaire of some domain experts, whose option could be a degree of 'good', a degree of indeterminacy and a degree of 'poor'. A is an SNS of X defined as follows:

$$
\begin{aligned}
A= & \left\{\langle\{0.4\},\{0.2\},\{0.5\}\rangle / x_{1},\langle\{0.4\},\{0.1\},\{0.3\}\rangle / x_{2},\langle\{0.5\},\right. \\
& \left.\{0.2\},\{0.3\}\rangle / x_{3}\right\} .
\end{aligned}
$$

Definition 3 (Ye, 2014b): The complement of an SNS A is denoted by A^{C} and is defined as

$$
\begin{equation*}
A^{C}=\left\{\left\langle x, T_{A}^{C}(x), I_{A}^{C}(x), F_{A}^{C}(x)\right\rangle \mid x \in X\right\} . \tag{3}
\end{equation*}
$$

Here, $T_{A}^{C}(x)=F_{A}(x), I_{A}^{C}(x)=\{1\}-I_{A}(x)$ and $F_{A}^{C}(x)=$ $T_{A}(x)$ for every x in X.

2.2. Hesitant fuzzy sets

Definition 4 (Torra, 2010; Torra \& Narukawa, 2009): Let X be a reference set, and x be an element in X. An HFS E on X can be expressed as a mathematical symbol:

$$
\begin{equation*}
E=\left\{\left\langle x, h_{E}(x)\right\rangle \mid x \in X\right\}, \tag{4}
\end{equation*}
$$

where $h_{E}(x)$ is a set of values in $[0,1]$, denoting the possible membership degrees of the element $x \in X$ to the set E. In particular, if X has only one element, E is called a hesitant fuzzy number (HFN) (Xia \& Xu, 2011), which can be denoted by $E=\left\{h_{E}(x)\right\}$. The set of all HFNs is represented by HFNS.

Example 2: Let $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ be a reference set, then an HFS E can be obtained as follows:

$$
E=\left\{\left\langle x_{1},\{0.3,0.1\}\right\rangle,\left\langle x_{2},\{0.4,0.2\}\right\rangle,\left\langle x_{3},\{0.5,0.6\}\right\rangle\right\} .
$$

Definition 5 (Torra, 2010): The complement of an HFS E is denoted by E^{C} and is defined as:

$$
\begin{equation*}
E^{C}=\left\{\left\langle x, h_{E}^{C}(x)\right\rangle \mid x \in X\right\} \tag{5}
\end{equation*}
$$

Here $h^{C}(x)=\bigcup_{\gamma \in h^{C}(x)}\{1-\gamma\}$ for any x in X.
Definition 6 (Peng, Wang, \& Wu, 2016b): Let h_{A} and h_{B} be two HFNs, all elements in HFNs be arranged in ascending order, and $\gamma_{h_{i}}^{\sigma(j)}$ be referred to as the j th value in $h_{i}(i=A, B)$. Then the following comparison methods can be provided:
(1) $h_{A} \leq h_{B}$ if $\gamma_{A}^{\sigma(j)} \leq \gamma_{B}^{\sigma(j)}$ and $\gamma_{A}^{\sigma\left(l_{h_{A}}\right)} \leq \gamma_{B}^{\sigma\left(l_{h_{B}}\right)}$,
where $\quad \gamma_{A}^{\sigma(j)} \in h_{A}, \gamma_{B}^{\sigma(j)} \in h_{B}, j=1,2, \cdots, l_{h}, \quad$ and $\quad l_{h}=$ $\min \left(l_{h_{A}}, l_{h_{B}}\right)\left(l_{h_{i}}\right.$ is the number of elements in $\left.h_{i}\right)$;
(2) $h_{A}=h_{B}$ if $h_{A} \leq h_{B}$ and $h_{B} \leq h_{A}$.

3. The likelihood of MVNNs preference relations

In this section, MVNSs are introduced, and the preference relations of MVNNs based on likelihood are defined.

3.1. MVNSs and their operations

Definition 7 (Wang \& Li, 2015; Ye, 2015b): Let X be a space of points, and x be an element in X. A MVNS A in X is characterised by:

$$
\begin{equation*}
A=\left\{\left\langle x, \tilde{T}_{A}(x), \tilde{I}_{A}(x), \tilde{F}_{A}(x)\right\rangle \mid x \in X\right\} \tag{6}
\end{equation*}
$$

where $\tilde{T}_{A}(x), \tilde{I}_{A}(x)$, and $\tilde{F}_{A}(x)$ are three sets of precise values in $[0,1]$ and in the form of HFSs, denoting the truth-membership function, indeterminacy-membership function and falsity-membership function, respectively, and satisfying $0 \leq \gamma, \eta, \xi \leq 1,0 \leq \gamma^{+}+\eta^{+}+\xi^{+} \leq 3$, where $\gamma \in$ $\tilde{T}_{A}(x), \eta \in \tilde{I}_{A}(x), \xi \in \tilde{F}_{A}(x), \gamma^{+}=\sup \tilde{T}_{A}(x), \eta^{+}=\sup \tilde{I}_{A}(x)$ and $\xi^{+}=\sup \tilde{F}_{A}(x)$.

If X has only one element, then A is called a MVNN, denoted by $A=\left\langle\tilde{T}_{A}(x), \tilde{I}_{A}(x), \tilde{F}_{A}(x)\right\rangle$. For convenience, a MVNN can be denoted by $A=\left\langle\tilde{T}_{A}, \tilde{I}_{A}, \tilde{F}_{A}\right\rangle$. The set of all MVNNs is represented by MVNNS.

Obviously, MVNSs are particular cases of NSs. If each of $\tilde{T}_{A}(x), \tilde{I}_{A}(x)$ and $\tilde{F}_{A}(x)$ for any x has only one value, i.e. $\gamma, \quad \eta$ and ξ, and $0 \leq \gamma+\eta+\xi \leq 3$, then MVNSs are reduced to SNSs; if $\tilde{I}_{A}(x)=\emptyset$ for any x, then MVNSs are reduced to DHFSs; and if $\tilde{I}_{A}(x)=\tilde{F}_{A}(x)=\emptyset$ for any x, then MVNSs are reduced to HFSs. In other words, MVNSs are extensions of SNSs, DHFSs and HFSs.

Example 3: Assume that $X=\left\{x_{1}, x_{2}, x_{3}\right\}$, where x_{1} is the technology, x_{2} is the market potential, and x_{3} is the risk, is the universal set. The values of x_{1}, x_{2} and x_{3} are in [0,1$]$. They can be collected from the questionnaire of some domain experts, whose option could be a degree of 'excellent', a degree of indeterminacy and a degree of 'weakness'. A is a MVNS of X defined as follows:

$$
\begin{aligned}
A= & \left\{\langle\{0.2,0.3\},\{0.1\},\{0.5\}\rangle / x_{1},\langle\{0.4\},\{0.2\},\{0.3\}\rangle / x_{2},\right. \\
& \left.\langle\{0.3\},\{0.2,0.4\},\{0.6\}\rangle / x_{3}\right\} .
\end{aligned}
$$

Definition 8 (Peng et al., 2015): Let $A \in M V N N S$, then the complement of a MVNN can be denoted by A^{C}, which can be defined as follows:

$$
\begin{equation*}
A^{C}=\left\{\left\langle\cup_{\xi \in \tilde{F}_{A}}\{\xi\}, \cup_{\eta \in \tilde{I}_{A}}\{1-\eta\}, \cup_{\gamma \in \tilde{T}_{A}}\{\gamma\}\right\rangle\right\} . \tag{7}
\end{equation*}
$$

Definition 9: Let $A=\left\langle\tilde{T}_{A}, \tilde{I}_{A}, \tilde{F}_{A}\right\rangle$ and $B=\left\langle\tilde{T}_{B}, \tilde{I}_{B}, \tilde{F}_{B}\right\rangle$ be two MVNNs, all elements in $\tilde{T}_{i}, \tilde{I}_{i}$ and $\tilde{F}_{i}(i=A, B)$ be arranged in ascending order, and $\gamma_{i}^{\sigma(\cdot)}, \eta_{i}^{\sigma(\cdot)}$ and $\xi_{i}^{\sigma(\cdot)}$ be referred to as the (\cdot)-th value in $\tilde{T}_{i}, \tilde{I}_{i}$ and $\tilde{F}_{i}(i=A, B)$, respectively. Then the following comparison methods can be provided.
(1) $A \leq B \quad$ if $\quad \gamma_{A}^{\sigma(j)} \leq \gamma_{B}^{\sigma(j)} \quad$ and $\quad \gamma_{A}^{\sigma\left(l_{T_{A}}\right)} \leq \gamma_{B}^{\sigma\left(l_{T_{B}}\right)}$ $\left(j=1,2, \ldots, l_{\tilde{T}}, l_{\tilde{T}}=\min \left(l_{\tilde{T}_{A}}, l_{\tilde{T}_{B}}\right)\right)$,
$\eta_{A}^{\sigma(k)} \geq \eta_{B}^{\sigma(k)}$ and $\eta_{A}^{\sigma\left(l_{I_{A}}\right)} \geq \eta_{B}^{\sigma\left(l_{I_{B}}\right)}\left(k=1,2, \ldots, l_{\tilde{I}}, l_{\tilde{I}}=\right.$ $\left.\min \left(l_{\tilde{I}_{A}}, l_{\tilde{I}_{B}}\right)\right)$,

$$
\xi_{A}^{\sigma(m)} \geq \xi_{B}^{\sigma(m)} \quad \text { and } \quad \xi_{A}^{\sigma\left(l_{\tilde{F}_{A}}\right)} \geq \xi_{B}^{\sigma\left(l_{\tilde{F}_{B}}\right)} \quad(m=1,2, \ldots,
$$

$$
\left.l_{\tilde{F}}, l_{\tilde{F}}=\min \left(l_{\tilde{F}_{A}}, l_{\tilde{F}_{B}}\right)\right)
$$

Here $l_{\tilde{T}}, l_{\tilde{I}}$ and $l_{\tilde{F}}$ are the number of elements in $\tilde{T}_{i}, \tilde{I}_{i}$ and $\tilde{F}_{i}(i=A, B)$, respectively.
(2) $A=B$ if $A \leq B$ and $B \leq A$.

Example 4: Let $A=\langle\{0.2,0.5\},\{0.1,0.2\},\{0.3\}\rangle$ and $B=$ $\langle\{0.2,0.5\},\{0.1,0.2\},\{0.3\}\rangle$ be two MVNNs. According to Definition $9, A=B$ can be easily obtained, which is consistent with our intuition.

3.2. The likelihood of MVNNs preference relations

Since the comparison methods presented in Definition 9 reflect the partial order of MVNNs, the likelihood of MVNNs reference relations is now defined in the following.

Definition 10: Let $A=\left\langle\tilde{T}_{A}, \tilde{I}_{A}, \tilde{F}_{A}\right\rangle$ and $B=\left\langle\tilde{T}_{B}, \tilde{I}_{B}, \tilde{F}_{B}\right\rangle$ be two MVNNs, then the truth-membership likelihood, indeterminacy-membership likelihood and falsity-membership likelihood $P\left(\tilde{T}_{A}, \tilde{T}_{B}\right), P\left(\tilde{I}_{A}, \tilde{I}_{B}\right)$ and $P\left(\tilde{F}_{A}, \tilde{F}_{B}\right)$, respectively, of a MVNN preference relation $P(A, B)$ are defined as follows:
(3) $P\left(\tilde{F}_{A}, \tilde{F}_{B}\right)$

$$
=\left\{\begin{array}{ll}
1-\frac{1}{l_{\tilde{F}_{A}} \cdot l_{\tilde{F}_{B}}} \sum_{\xi_{A} \in \tilde{F}_{A}} \sum_{\xi_{B} \in \tilde{F}_{B}} \frac{\xi_{A}}{\xi_{A}+\xi_{B}}, & \tilde{F}_{A} \neq\{0\} \text { or } \tilde{F}_{B} \neq\{0\} \tag{10}\\
0.5 . & \tilde{F}_{A}=\{0\} \text { and } \tilde{F}_{B}=\{0\}
\end{array} .\right.
$$

$$
\begin{align*}
& \text { (1) } P\left(\tilde{T}_{A}, \tilde{T}_{B}\right) \\
& =\left\{\begin{array}{ll}
\frac{1}{l_{\tilde{T}_{A}} \cdot l_{\tilde{T}_{B}}} \sum_{\gamma_{A} \in \tilde{T}_{A}} \sum_{\gamma_{B} \in \tilde{T}_{B}} \frac{\gamma_{A}}{\gamma_{A}+\gamma_{B}}, & \tilde{T}_{A} \neq\{0\} \\
0.5 . & \text { or } \tilde{T}_{B} \neq\{0\} \\
\tilde{T}_{A}=\{0\} & \text { and } \tilde{T}_{B}=\{0\}
\end{array},\right. \\
& \text { (2) } P\left(\tilde{I}_{A}, \tilde{I}_{B}\right) \\
& =\left\{\begin{array}{ll}
1-\frac{1}{l_{T_{A}} \cdot l_{I_{B}}} \sum_{\eta_{A} \in \tilde{I}_{A}} \sum_{\eta_{B} \in \tilde{I}_{B}} \frac{\eta_{A}}{\eta_{A}+\eta_{B}}, & \tilde{I}_{A} \neq\{0\} \\
0.5 . & \text { or } \tilde{I}_{B} \neq\{0\} \\
\tilde{I}_{A}=\{0\} & \text { and } \tilde{I}_{B}=\{0\}
\end{array} ;\right. \tag{9}
\end{align*}
$$

The likelihood of an MVNN preference relation $P(A, B)$ is defined by

$$
\begin{equation*}
P(A, B)=\frac{1}{3}\left(P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)+P\left(\tilde{I}_{A}, \tilde{I}_{B}\right)+P\left(\tilde{F}_{A}, \tilde{F}_{B}\right)\right) . \tag{11}
\end{equation*}
$$

Here $l_{(\cdot)}$ represents the number of elements in (\cdot).
Example 5: Let $A=\langle\{0.5,0.6\},\{0.4\},\{0.2\}\rangle$ and $B=\langle\{0.5\}$, $\{0.5\},\{0.1,0.3\}\rangle$ be two MVNNs. Then the following can be true:
$P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)=0.5225, P\left(\tilde{I}_{A}, \tilde{I}_{B}\right)=0.5556, P\left(\tilde{F}_{A}, \tilde{F}_{B}\right)=0.4667$.

Thus, $\quad P(A, B)=\frac{1}{3}\left(P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)+P\left(\tilde{I}_{A}, \tilde{I}_{B}\right)+P\left(\tilde{F}_{A}, \tilde{F}_{B}\right)\right)=$ 0.5149 .

Apparently, the likelihood of MVNNs reference relations can deal with any two MVNNs.

Property 1: Let $A=\left\langle\tilde{T}_{A}, \tilde{I}_{A}, \tilde{F}_{A}\right\rangle$ and $B=\left\langle\tilde{T}_{B}, \tilde{I}_{B}, \tilde{F}_{B}\right\rangle$ be two MVNNs, and $P\left(\tilde{T}_{A}, \tilde{T}_{B}\right), P\left(\tilde{I}_{A}, \tilde{I}_{B}\right)$ and $P\left(\tilde{F}_{A}, \tilde{F}_{B}\right)$ be the truth-membership, indeterminacy-membership and falsitymembership likelihoods of the relation $A \geq B$, respectively. The following properties can therefore be true:
(1) $0 \leq P\left(\tilde{T}_{A}, \tilde{T}_{B}\right) \leq 1$;
(2) $0 \leq P\left(\tilde{I}_{A}, \tilde{I}_{B}\right) \leq 1$;
(3) $0 \leq P\left(\tilde{F}_{A}, \tilde{F}_{B}\right) \leq 1$;
(4) $P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)+P\left(\tilde{T}_{B}, \tilde{T}_{A}\right)=1$;
(5) $P\left(\tilde{I}_{A}, \tilde{I}_{B}\right)+P\left(\tilde{I}_{B}, \tilde{I}_{A}\right)=1$;
(6) $P\left(\tilde{F}_{A}, \tilde{F}_{B}\right)+P\left(\tilde{F}_{B}, \tilde{F}_{A}\right)=1$;
(7) if $\tilde{T}_{A}=\tilde{T}_{B}$, then $P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)=0.5$;
(8) if $\tilde{I}_{A}=\tilde{I}_{B}$, then $P\left(\tilde{I}_{A}, \tilde{I}_{B}\right)=0.5$;
(9) if $\tilde{F}_{A}=\tilde{F}_{B}$, then $P\left(\tilde{F}_{A}, \tilde{F}_{B}\right)=0.5$.

Proof: (1), (2) and (3) can easily be obtained.
(4) If $\tilde{T}_{A}=\tilde{T}_{B}=\{0\}$, then according to Equation (8) in Definition 10, $P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)=P\left(\tilde{T}_{B}, \tilde{T}_{A}\right)=\frac{1}{2}$. Thus, $P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)+$ $P\left(\tilde{T}_{B}, \tilde{T}_{A}\right)=1$. If $\tilde{T}_{A} \neq\{0\}$ or $\tilde{T}_{B} \neq\{0\}$, then all elements in \tilde{T}_{i} ($i=A, B$) are arranged in ascending order, and $\gamma_{i}^{\sigma(\cdot)}(i=A, B)$ is referred to as the (\cdot)-th value in $\tilde{T}_{i}(i=A, B)$. Thus,

$$
\begin{aligned}
& P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)+P\left(\tilde{T}_{B}, \tilde{T}_{A}\right) \\
&= \frac{1}{l_{\tilde{T}_{A}} \cdot l_{\tilde{T}_{B}}}\left(\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{B}^{\sigma(1)}}+\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{B}^{\sigma(2)}}+\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{B}^{\sigma(3)}}\right. \\
&+\cdots+\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{B}^{\sigma\left(l_{\tilde{T}_{B}}\right)}}+ \\
& \ldots \ldots \ldots \\
& \frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{B}^{\sigma(1)}}+\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{B}^{\sigma(2)}}+\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{B}^{\sigma(3)}} \\
&\left.+\cdots+\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\gamma_{A}^{\sigma\left(l_{\left.T_{\tilde{T}_{A}}\right)}\right)}+\gamma_{B}^{\sigma\left(l_{\tilde{l}_{B}}\right)}}\right)+\frac{1}{l_{\tilde{T}_{B}} \cdot l_{\tilde{T}_{A}}}\left(\frac{\gamma_{B}^{\sigma(1)}}{\gamma_{B}^{\sigma(1)}+\gamma_{A}^{\sigma(1)}}\right.
\end{aligned}
$$

Similarly, $\quad P\left(\tilde{I}_{A}, \tilde{I}_{B}\right)+P\left(\tilde{I}_{B}, \tilde{I}_{A}\right)=1 \quad$ and $\quad P\left(\tilde{F}_{A}, \tilde{F}_{B}\right)+$ $P\left(\tilde{F}_{B}, \tilde{F}_{A}\right)=1$ can be achieved.
(7) If $\tilde{T}_{A}=\tilde{T}_{B}=\{0\}$, then $P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)=0.5$ is certainly valid. If $\tilde{T}_{A} \neq\{0\}$ or $\tilde{T}_{B} \neq\{0\}$, then all elements in $\tilde{T}_{i}(i=A, B)$ are arranged in ascending order, and $\gamma_{i}^{\sigma(\cdot)}(i=A, B)$ is referred to as the (\cdot) th value in $\tilde{T}_{i}(i=A, B)$. Based on Definition 9 , since $\tilde{T}_{A}=\tilde{T}_{B}, \gamma_{A}^{\sigma(j)}=\gamma_{B}^{\sigma(j)}, \gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}=\gamma_{B}^{\sigma\left(l_{\tilde{T}_{B}}\right)}$ and $l_{\tilde{T}_{A}}=l_{\tilde{T}_{B}}$ can be obtained. Thus,

$$
\begin{aligned}
P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)= & \frac{1}{l_{\tilde{T}_{A}} \cdot l_{\tilde{T}_{B}}} \sum_{\gamma_{A} \in \tilde{T}_{A}} \sum_{\gamma_{B} \in \tilde{T}_{B}} \frac{\gamma_{A}}{\gamma_{A}+\gamma_{B}} \\
= & \frac{1}{\left(l_{\tilde{T}_{A}}\right)^{2}}\left(\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{A}^{\sigma(1)}}+\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{A}^{\sigma(2)}}\right. \\
& +\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{A}^{\sigma(3)}}+\cdots+\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{A}^{\sigma\left(l_{\left.\tilde{T}_{A}\right)}\right.}} \\
& +\frac{\gamma_{A}^{\sigma(2)}}{\gamma_{A}^{\sigma(2)}+\gamma_{A}^{\sigma(1)}}+\frac{\gamma_{A}^{\sigma(2)}}{\gamma_{A}^{\sigma(2)}+\gamma_{A}^{\sigma(2)}}+\frac{\gamma_{A}^{\sigma(2)}}{\gamma_{A}^{\sigma(2)}+\gamma_{A}^{\sigma(3)}} \\
& +\cdots+\frac{\gamma_{A}^{\sigma(2)}}{\gamma_{A}^{\sigma(2)}+\gamma_{A}^{\sigma\left(l_{\left.\tilde{T}_{A}\right)}\right)}}+
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{A}^{\sigma(1)}}+\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\gamma_{A}^{\sigma\left(l_{T_{A}}\right)}+\gamma_{A}^{\sigma(2)}} \\
& \left.+\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{A}^{\sigma(3)}}+\cdots+\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{A}^{\sigma\left(l_{\tilde{l}_{A}}\right)}}\right)
\end{aligned}
$$

$$
=\frac{1}{\left(l_{\tilde{T}_{A}}\right)^{2}}\left(\frac{1}{2} l_{\tilde{T}_{A}}+\left(\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{A}^{\sigma(2)}}+\frac{\gamma_{A}^{\sigma(2)}}{\gamma_{A}^{\sigma(2)}+\gamma_{A}^{\sigma(1)}}\right)\right.
$$

$$
+\left(\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{A}^{\sigma(3)}}+\frac{\gamma_{A}^{\sigma(3)}}{\gamma_{A}^{\sigma(3)}+\gamma_{A}^{\sigma(1)}}\right)
$$

$$
\begin{aligned}
& +\frac{\gamma_{B}^{\sigma(1)}}{\gamma_{B}^{\sigma(1)}+\gamma_{A}^{\sigma(2)}}+\frac{\gamma_{B}^{\sigma(1)}}{\gamma_{B}^{\sigma(1)}+\gamma_{A}^{\sigma(3)}}+\cdots+\frac{\gamma_{B}^{\sigma(1)}}{\gamma_{B}^{\sigma(1)}+\gamma_{A}^{\sigma\left(l_{T_{A}}\right)}} \\
& +\frac{\gamma_{B}^{\sigma\left(l_{\tilde{T}_{B}}\right)}}{\gamma_{B}^{\sigma\left(l_{T_{B}}\right)}+\gamma_{A}^{\sigma(1)}}+\frac{\gamma_{B}^{\sigma\left(l_{\tilde{T}_{B}}\right)}}{\gamma_{B}^{\sigma\left(l_{T_{B}}\right)}+\gamma_{A}^{\sigma(2)}}+\frac{\gamma_{B}^{\sigma\left(l_{\tilde{T}_{B}}\right)}}{\gamma_{B}^{\sigma\left(l_{T_{T_{B}}}\right)}+\gamma_{A}^{\sigma(3)}} \\
& \left.+\cdots+\frac{\gamma_{B}^{\sigma\left(l_{\tilde{T}_{B}}\right)}}{\gamma_{B}^{\sigma\left(l_{T_{B}}\right)}+\gamma_{A}^{\sigma\left(l_{\widetilde{T}_{A}}\right)}}\right) \\
& =\frac{1}{l_{\tilde{T}_{A}} \cdot l_{\tilde{T}_{B}}}(\overbrace{B}^{\gamma_{B}} \frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{B}^{\sigma(1)}}+\frac{\gamma_{B}^{\sigma(1)}}{\gamma_{B}^{\sigma(1)}+\gamma_{A}^{\sigma(1)}}) \\
& +\left(\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{B}^{\sigma(2)}}+\frac{\gamma_{B}^{\sigma(2)}}{\gamma_{B}^{\sigma(2)}+\gamma_{A}^{\sigma(1)}}\right) \\
& +\cdots+\left(\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{B}^{\sigma\left(l_{T_{B}}\right)}}+\frac{\gamma_{B}^{\sigma\left(l_{\vec{T}_{B}}\right)}}{\gamma_{B}^{\sigma\left(l_{T_{B}}\right)}+\gamma_{A}^{\sigma(1)}}\right) \\
& \left.+\cdots+\left(\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\gamma_{A}^{\sigma\left(l_{\tilde{l}_{A}}\right)}+\gamma_{B}^{\sigma\left(l_{\tilde{T}_{B}}\right)}}+\frac{\gamma_{B}^{\sigma\left(l_{\tilde{T}_{B}}\right)}}{\gamma_{B}^{\sigma\left(l_{\tilde{T}_{B}}\right)}+\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}\right)\right) \\
& =\frac{1}{l_{\tilde{T}_{A}} \cdot l_{\tilde{T}_{B}}}\left(l_{\tilde{T}_{B}} \cdot l_{\tilde{T}_{A}}\right)=1 .
\end{aligned}
$$

$$
\begin{aligned}
&+\cdots+\left(\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}+\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{A}^{\sigma(1)}}\right) \\
&+\left(\frac{\gamma_{A}^{\sigma(2)}}{\gamma_{A}^{\sigma(2)}+\gamma_{A}^{\sigma(3)}}+\frac{\gamma_{A}^{\sigma(3)}}{\gamma_{A}^{\sigma(3)}+\gamma_{A}^{\sigma(2)}}\right)_{\sigma\left(l_{\tilde{T}_{A}}\right)}^{\sigma} \\
&+\cdots+\left(\frac{\gamma_{A}^{\sigma(2)}}{\left.\gamma_{A}^{\sigma(2)}+\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{A}^{\sigma(2)}}{\gamma_{A}}\right)}\right. \\
&\left.+\cdots+\left(\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}-1\right)}}{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}-1\right)}+\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}+\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\left.\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}-1\right)}\right)}\right)\right) \\
&=\frac{1}{\left(l_{\tilde{T}_{A}}\right)^{2}}\left(\frac{1}{2} l_{\tilde{T}_{A}}+l_{\tilde{T}_{A}}\left(l_{\tilde{T}_{A}}-1\right)-\left(1+2+\cdots+\left(l_{\tilde{T}_{A}}-1\right)\right)\right) \\
&=\frac{1}{\left(l_{\tilde{T}_{A}}\right)^{2}} \cdot\left(\frac{1}{2} l_{\tilde{T}_{A}}^{2}\right)=0.5 .
\end{aligned}
$$

Similarly, (8) and (9) can be obtained.
Property 2: Let $A=\left\langle\tilde{T}_{A}, \tilde{I}_{A}, \tilde{F}_{A}\right\rangle$ and $B=\left\langle\tilde{T}_{B}, \tilde{I}_{B}, \tilde{F}_{B}\right\rangle$ be two MVNNs, and $P(A, B)$ be the likelihood of the relation $A \geq B$. The following properties can therefore be true:
(1) $0 \leq P(A, B) \leq 1$;
(2) $P(A, A)=0.5$;
(3) $P(A, B)+P(B, A)=1$;
(4) if $P(A, B)=P(B, A)$, then $P(A, B)=P(B, A)=0.5$;
(5) if $P(A, B) \geq 0.5$ and $P(B, C) \geq 0.5$, then $P(A, C) \geq$ 0.5 ;
(6) if $A=B$, then $P(A, B)=0.5$;
(7) If $A \geq B$, then $P(A, B) \geq 0.5$.

Proof: Only (6) and (7) will be proved and the other process of proof will be omitted here.
(6) If $A=B$ and $\tilde{T}_{A}=\tilde{T}_{B}=\{0\}, \tilde{I}_{A}=\tilde{I}_{B}=\{0\}$ and $\tilde{F}_{A}=$ $\tilde{F}_{B}=\{0\}$, then $P(A \geq B)=0.5$ can be easily obtained. If $A=$ B, and $\tilde{T}_{A} \neq\{0\}$ or $\tilde{T}_{B} \neq\{0\}, \tilde{I}_{A} \neq\{0\}$ or $\tilde{I}_{B} \neq\{0\}$ and $\tilde{F}_{A}=$ $\{0\}$ and $\tilde{F}_{B}=\{0\}$, then $\tilde{T}_{A}=\tilde{T}_{B}, \tilde{I}_{A}=\tilde{I}_{B}$ and $\tilde{F}_{A}=\tilde{F}_{B}$ can be achieved based on Definition 9. According to Property 1, $P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)=P\left(\tilde{I}_{A}, \tilde{I}_{B}\right)=P\left(\tilde{F}_{A}, \tilde{F}_{B}\right)=0.5$ can be obtained. Thus, $P(A, B)=\frac{1}{3}\left(P\left(\tilde{T}_{A} \geq \tilde{T}_{B}\right)+P\left(\tilde{I}_{A} \geq \tilde{I}_{B}\right)+P\left(\tilde{F}_{A}, \tilde{F}_{B}\right)\right)=0.5$ is certainly valid.
(7) If $A \geq B$, then according to Definition $9, \gamma_{A}^{\sigma(j)} \leq \gamma_{B}^{\sigma(j)}$ and $\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)} \leq \gamma_{B}^{\sigma\left(l_{\tilde{T}_{B}}\right)}\left(j=1,2, \ldots, l_{\tilde{T}}, l_{\tilde{T}}=\min \left(l_{\tilde{T}_{A}}, l_{\tilde{T}_{B}}\right)\right)$ can be obtained. Thus,

$$
\begin{aligned}
P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)= & \frac{1}{l_{\tilde{T}_{A}} \cdot l_{\tilde{T}_{B}}}\left(\left(\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{B}^{\sigma(1)}}+\frac{\gamma_{A}^{\sigma(2)}}{\gamma_{A}^{\sigma(2)}+\gamma_{B}^{\sigma(2)}}\right.\right. \\
& \left.+\cdots+\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\sigma \sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{B}^{\sigma\left(l_{\tilde{T}_{B}}\right)}\right) \\
& +\left(\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{B}^{\sigma(2)}}+\frac{\gamma_{A}^{\sigma(2)}}{\gamma_{A}^{\sigma(2)}+\gamma_{B}^{\sigma(1)}}\right) \\
& +\left(\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{A}^{\sigma(3)}}+\frac{\gamma_{A}^{\sigma(3)}}{\gamma_{A}^{\sigma(3)}+\gamma_{B}^{\sigma(1)}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\cdots+\left(\frac{\gamma_{A}^{\sigma(1)}}{\gamma_{A}^{\sigma(1)}+\gamma_{B}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}+\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{B}^{\sigma(1)}}\right) \\
& +\left(\frac{\gamma_{A}^{\sigma(2)}}{\gamma_{A}^{\sigma(2)}+\gamma_{B}^{\sigma(3)}}+\frac{\gamma_{A}^{\sigma(3)}}{\gamma_{A}^{\sigma(3)}+\gamma_{B}^{\sigma(2)}}\right) \\
& \\
& +\cdots+\left(\frac{\gamma_{A}^{\sigma(2)}}{\gamma_{A}^{\sigma(2)}+\gamma_{B}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}+\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{B}^{\sigma(2)}}\right) \\
& \\
& \left.\quad+\cdots+\left(\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}-1\right)}}{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}-1\right)}+\gamma_{B}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}+\frac{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}}{\left.\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{B}^{\sigma\left(l_{\tilde{T}_{A}}-1\right)}\right)}\right)\right) \\
& \geq \\
& =\frac{1}{\left(l_{\tilde{T}_{A}}\right)^{2}}\left(\frac{1}{2} l_{\tilde{T}_{A}}+l_{\tilde{T}_{A}}^{\left.\left(l_{\tilde{T}_{A}}-1\right)-\left(1+2+\cdots+\left(l_{\tilde{T}_{A}}-1\right)\right)\right)}\right. \\
& =\frac{1}{\left(l_{\tilde{T}_{A}}\right)^{2}} \cdot\left(\frac{1}{2} l_{\tilde{T}_{A}}^{2}\right)=0.5 .
\end{aligned}
$$

Definition 11: Let $A=\left\langle\tilde{T}_{A}, \tilde{I}_{A}, \tilde{F}_{A}\right\rangle$ and $B=\left\langle\tilde{T}_{B}, \tilde{I}_{B}, \tilde{F}_{B}\right\rangle$ be two MVNNs. The following preference relations can then be obtained:
(1) If $P(A, B)>0.5$, then A is superior to B, denoted by $A \succ$ B;
(2) If $P(A, B)=0.5$, then A is indifferent to B, denoted by $A \sim B ;$
(3) If $P(A, B)<0.5$, then A is inferior to B, denoted by $A \prec$ B.

Example 6. Based on Example 5, $P(A, B)=0.5149>0.5$, and A is superior to B, i.e. $A \succ B$.

Property 3: Let $A=\left\langle\tilde{T}_{A}, \tilde{I}_{A}, \tilde{F}_{A}\right\rangle$ and $B=\left\langle\tilde{T}_{B}, \tilde{I}_{B}, \tilde{F}_{B}\right\rangle$ be two MVNNs. If $A<B$, then $A \prec B$.
Proof: Let all elements in $\tilde{T}_{i}(i=A, B)$ be arranged in ascending order, and $\gamma_{i}^{\sigma(\cdot)}(i=A, B)$ be referred to as the (\cdot)-th value in $\tilde{T}_{i}(i=A, B)$. If $A<B$, then according to Definition $9, \gamma_{A}^{\sigma(j)}<\gamma_{B}^{\sigma(j)}$ and $\gamma_{A}^{\sigma\left(l_{T_{A}}\right)}<\gamma_{B}^{\sigma\left(l_{\tilde{T}_{B}}\right)}$ $\left(j=1,2, \ldots, l_{\tilde{T}}, l_{\tilde{T}}=\min \left(l_{\tilde{T}_{A}}, l_{\tilde{T}_{B}}\right)\right)$ can be obtained. Thus, $\frac{\left.\gamma_{A}^{\sigma\left(\tilde{T}_{A}\right.}\right)}{\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\gamma_{B}^{\sigma\left(l \tilde{T}_{B}\right)}}<\frac{1}{2}$. So $\quad \sum_{\gamma_{A} \in \tilde{T}_{A}} \sum_{\gamma_{B} \in \tilde{T}_{B}} \frac{\gamma_{A}}{\gamma_{A}^{\left(l\left(\tilde{T}_{\tilde{T}_{A}}\right)\right.}} \gamma_{\gamma_{A}\left(\tilde{T}_{A}\right)}+\gamma_{B}^{\sigma\left(l_{\tilde{T}_{B}}\right)}<\frac{1}{2} \cdot l_{\tilde{T}_{A}}$. $l_{\tilde{T}_{B}}$, i.e. $\quad P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)=\frac{1}{l_{T_{A}} \cdot l_{\tilde{T}_{B}}} \sum_{\gamma_{A} \in \tilde{T}_{A}} \sum_{\gamma_{B} \in \tilde{T}_{B}} \frac{\gamma_{A}^{\sigma\left(\tilde{T}_{A}\right)}}{\left.\gamma_{A}^{\sigma\left(l_{\tilde{T}_{A}}\right)}+\begin{array}{c}\sigma\left(\gamma_{B}\right) \\ \sigma\left(l_{B}\right)\end{array}\right)}<\frac{1}{2}$.

 be true. Therefore, $P(A, B)=\frac{1}{3}\left(P\left(\tilde{T}_{A}, \tilde{T}_{B}\right)+P\left(\tilde{I}_{A}, \tilde{I}_{B}\right)+\right.$ $\left.P\left(\tilde{F}_{A}, \tilde{F}_{B}\right)\right)<\frac{1}{3}\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=\frac{1}{2}$. Based on Definition 11, $A \prec B$ can be obtained.

4. The likelihood-based QUALIFLEX approach with MVNNs

Assume there are n alternatives denoted by $A=$ $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ and m criteria denoted by $C=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$, and the weight vector of criteria is $W=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$, where $w_{j} \geq 0 \quad(j=1,2, \ldots, m)$ and $\sum_{j=1}^{m} w_{j}=1$. Let
$R=\left(\alpha_{i j}\right)_{n \times m}$ be the multi-valued neutrosophic decision matrix, and $\alpha_{i j}=\left\langle\tilde{T}_{\alpha_{i j}}, \tilde{I}_{\alpha_{i j}}, \tilde{F}_{\alpha_{i j}}\right\rangle$ be the evaluation value of α_{i} for criterion c_{j} being in the form of MVNNs. Where $\tilde{T}_{\alpha_{i j}}$ indicates the truth-membership function, $\tilde{I}_{\alpha_{i j}}$ indicates the indeterminacy-membership function and $\tilde{F}_{\alpha_{i j}}$ indicates the falsity-membership function.

Based on the likelihood of preference relations on MVNNs, this study compares the MVNNs ratings and proceeds to establish an extended QUALIFLEX method, which can be used to solve MCDM problems within a multi-valued neutrosophic environment. The proposed approach can be summarised in the following series of steps.

Step 1: Normalise the decision-making matrix.

In general, there are maximising criteria and minimising criteria in MCDM problems. According to the method proposed by Xu and Hu (2010), the minimising criteria can be transformed into maximising criteria as follows:

$$
\begin{align*}
\beta_{i j}= & \left\{\begin{array}{ll}
\alpha_{i j}, & \text { for maximizing criteria } c_{j} \\
\left(\alpha_{i j}\right)^{c}, & \text { for minimizing criteria } c_{j}
\end{array},\right. \\
& (i=1,2, \ldots, n ; j=1,2, \ldots, m) . \tag{12}
\end{align*}
$$

Here, $\left(\alpha_{i j}\right)^{c}$ is the complement of $\alpha_{i j}$ as defined in Definition 8.

Step 2: Determine all of the possible permutations of the alternatives.

Take the set of alternative α and assume that there exist n ! permutations of the ranking of the alternatives. Let P^{τ} denote the τ th permutation as

$$
\begin{equation*}
P^{\tau}=\left(\ldots, \alpha_{\delta}, \ldots, \alpha_{\theta}, \ldots\right), \tau=1,2, \ldots, n! \tag{13}
\end{equation*}
$$

Where $\alpha_{\delta}, \alpha_{\theta} \in \alpha$ and the alternative α_{δ} is ranked higher than or equal to α_{θ}.

Step 3: Calculate the likelihood.
Based on Definition 10, the likelihood of the relation $P\left(\alpha_{\delta j}, \alpha_{\theta j}\right)(j=1,2, \ldots, m)$ for each pair of alternatives $\left(\alpha_{\delta}, \alpha_{\theta}\right)\left(\alpha_{\delta}, \alpha_{\theta} \in \alpha\right)$ can be obtained as follows:

$$
\begin{equation*}
P\left(\alpha_{\delta j}, \alpha_{\theta j}\right)=\frac{1}{3}\left(P\left(\tilde{T}_{\alpha_{\delta j}}, \tilde{T}_{\theta j}\right)+P\left(\tilde{I}_{\alpha_{\delta j}}, \tilde{I}_{\theta j}\right)+P\left(\tilde{F}_{\alpha_{\delta j}}, \tilde{F}_{\theta j}\right)\right) . \tag{14}
\end{equation*}
$$

As indicated in Definition 11, each pair of alternatives ($\alpha_{\delta}, \alpha_{\theta}$) at the level of ranking with respect to the criterion $c_{j} \in C$ is considered. Then the ranking corresponding to the permutation P^{τ} is determined. Next, based on the likelihood of the relation $P\left(\alpha_{\delta j}, \alpha_{\theta j}\right)$, the following can be true: (1) if $P\left(\alpha_{\delta j}, \alpha_{\theta j}\right)>0.5$, then concordance exists; if $P\left(\alpha_{\delta j}, \alpha_{\theta j}\right)=0.5$,
then indifference exists; and if $P\left(\alpha_{\delta j}, \alpha_{\theta j}\right)<0.5$, then discordance exists. The larger the $P\left(\alpha_{\delta j}, \alpha_{\theta j}\right)$, the higher the concordance.

Step 4: Calculate the weighted concordance index.
According to the weights $w_{j}(j=1,2, \ldots, m)$ of the criteria, the weighted concordance index $\varphi^{\tau}\left(\alpha_{\delta}, \alpha_{\theta}\right)$ for each pair of alternatives $\left(\alpha_{\delta}, \alpha_{\theta}\right)\left(\alpha_{\delta}, \alpha_{\theta} \in \alpha\right)$ can be defined as follows:

$$
\begin{equation*}
\varphi^{\tau}\left(\alpha_{\delta}, \alpha_{\theta}\right)=\sum_{j=1}^{m}\left(P\left(\alpha_{\delta j}, \alpha_{\theta j}\right) \cdot w_{j}\right) \tag{15}
\end{equation*}
$$

Step 5: Calculate the comprehensive concordance/ discordance index.

Based on Step 4, the comprehensive concordance index φ_{τ} of the permutation $P^{\tau}(\tau=1,2, \ldots, n!)$ can be obtained as follows:

$$
\begin{equation*}
\varphi^{\tau}=\sum_{\alpha_{\delta}, \alpha_{\theta} \in \alpha} \varphi^{\tau}\left(\alpha_{\delta}, \alpha_{\theta}\right) \tag{16}
\end{equation*}
$$

The comprehensive concordance index φ^{τ} can serve as the evaluation criterion of the chosen hypothesis for ranking the alternatives.

Step 6: Determine the ranking order of all alternatives.

The bigger the comprehensive concordance index of the permutation value, the better the final ranking result of the alternatives. Therefore, the optimal ranking order of alternatives can be determined by comparing the values φ^{τ} of each permutation P^{τ}, which is the permutation with the maximal value φ^{τ}, namely:

$$
\begin{equation*}
P^{*}=\max _{\tau=1}^{n!}\left\{\varphi^{\tau}\right\} . \tag{17}
\end{equation*}
$$

5. An illustrative example

In this section, an example of an MCDM problem (adapted from Shen, Olfat, Govindan, Khodaverdi, \& Diabat, 2013) is used to demonstrate the application and effectiveness of the proposed decision-making approach.

In order to lower environmental impacts and increase ecological efficiency, ABC Automobile manufacturing company wants to implement green practices at all stages of the manufacturing process to achieve profit and market share objectives. Thus, how to choose a suitable green supplier from several potential suppliers is a MCDM problem. Assume that there are three possible green suppliers $a_{i}(i=1,2,3)$ to be selected. Each supplier is evaluated based on nine criteria, which are denoted by $c_{j}(j=1,2, \ldots, 9)$: c_{1} is the pollution produced; c_{2} is the resource consumption; c_{3} is the eco-design; c_{4} is the green image; c_{5} is the environmental management system; c_{6} is the commitment to green supply chain management from managers; c_{7} is the use of environmentally friendly technology; c_{8} is the use of environmentally friendly materials; and c_{9} is the staff environmental training. Moreover, c_{1} is a minimising type and other criteria are of

Table 1. Criteria for selecting and evaluating green suppliers.

Criteria	Name	Definition
c_{1}	Pollution production	Average volume of air emission pollutant, waster, solid wastes and harmful materials releases per day during measurement period Resource consumption in terms of raw material, energy and water during the measurement Design of products for reduced consumption of material/energy, design of products for reuse, recycle, recovery of material, design of products
c_{2}	Resource consumption c_{3}	Eco-design
c_{4}	Green image	The ratio of green customers to total customers c_{5}
c_{6}	Environmental certifications such as ISO 1400, environmental policies, planning of	
environmental objectives, checking and control of environmental activities.		

the maximising type. More details can be found in Table 1. The weights of criteria are provided by the company as follows: $w=(0.1226,0.0900,0.1311,0.1415,0.1303,0.1017$, $0.0846,0.0974,0.1008$). A decision team including an operations manager, a purchasing manager and an environmental manager is invited to assess the performance of these three potential suppliers using each criterion. The decision-makers evaluate three suppliers using the nine criteria, and the results are in the form of MVNNs. This method is only suitable if the amount of decision-makers is small and they could evaluate these criteria in the form of MVNNs. One decision-maker could give several evaluation values for three membership functions. However, when more than one decision-maker evaluates the same value, it is only counted once. The evaluations of suppliers using the criteria can be found in Table 2.

5.1. An illustration of the proposed method

The procedures for obtaining the optimal alternative, by using the developed method, are as follows.

Step 1: Normalise the decision-making matrix.
Since c_{1} is a minimising type and other criteria are of the maximising type, according to Equation (11), the normalised MVNN decision matrix $\tilde{R}^{k}=\left(\beta_{i j}^{k}\right)_{4 \times 3}$ can be obtained and is shown in Table 3.

Step 2: Determine all of the possible permutations of the alternatives.

Since $n=3$, there are $6(3!=6)$ permutations of the rankings for all alternatives that must be tested and which are expressed in the following:

$$
\begin{aligned}
& P^{1}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), P^{2}=\left(\alpha_{1}, \alpha_{3}, \alpha_{2}\right), P^{3}=\left(\alpha_{2}, \alpha_{1}, \alpha_{3}\right) \\
& P^{4}=\left(\alpha_{2}, \alpha_{3}, \alpha_{1}\right), P^{5}=\left(\alpha_{3}, \alpha_{1}, \alpha_{2}\right), P^{6}=\left(\alpha_{3}, \alpha_{2}, \alpha_{1}\right)
\end{aligned}
$$

Step 3: Calculate the likelihood.
Based on the truth-membership likelihood, indeterminacymembership likelihood and falsity-membership likelihood, $P\left(\tilde{T}_{\alpha_{\delta j}}, \tilde{T}_{\alpha_{\theta j}}\right), P\left(\tilde{I}_{\alpha_{\delta j}}, \tilde{I}_{\alpha_{\theta j}}\right)$ and $P\left(\tilde{F}_{\alpha_{\delta j}}, \tilde{F}_{\alpha_{\theta j}}\right)$, respectively, the likelihood $P\left(\alpha_{\delta j}, \alpha_{\alpha_{\theta j}}\right)$ can be achieved and is shown in Table 4.

Step 4: Calculate the weighted concordance index.
Based on Equation (14) and the likelihood $P\left(\alpha_{\delta j}, \alpha_{\theta j}\right)$ in Step 3, the weighted concordance index $\varphi^{\tau}\left(\alpha_{\delta}, \alpha_{\theta}\right)$ for each pair of alternatives $\left(\alpha_{\delta}, \alpha_{\theta}\right)\left(\alpha_{\delta}, \alpha_{\theta} \in \alpha\right)$ can be obtained and is shown in Table 5.

Step 5: Calculate the comprehensive concordance/discordance index.

Table 2. The evaluations of the green suppliers by decision-makers under criteria.

	Suppliers		
Criteria	α_{1}	α_{2}	α_{3}
c_{1}	$\langle\{0.3,0.7\},\{0.4\},\{0.2\}\rangle$	$\langle\{0.3,0.5\},\{0.5\},\{0.2\}\rangle$	$\langle\{0.4,0.7\},\{0.3\},\{0.1,0.2\}\rangle$
	$\langle\{0.5,0.6\},\{0.3\},\{0.4\}\rangle$	$\langle\{0.4\},\{0.5\},\{0.2\}\rangle$	$\langle\{0.6\},\{0.3\},\{0.1,0.2\}\rangle$
c_{3}	$\langle\{0.4\},\{0.6\},\{0.4\}\rangle$	$\langle\{0.5,0.7\},\{0.3\},\{0.3\}\rangle$	$\langle\{0.5\},\{0.4\},\{0.3\}\rangle$
c_{4}	$\langle\{0.7\},, 00.3\},\{0.2\}\rangle$	$\langle\{0.3,0.4\},\{0.2\},\{0.4\}\rangle$	$\langle\{0.4,0.6\},\{0.1\},\{0.3\}\rangle$
c_{5}	$\langle\{0.5\},\{0.2\},\{0.1\}\rangle$	$\langle\{0.5\},\{0.4\},\{0.1\}\rangle$	$\langle\{0.4,0.7\},\{0.2\},\{0.5\}\rangle$
c_{6}	$\langle\{0.6,0.7\},\{0.3\},\{0.2\}\rangle$	$\langle\{0.6\},\{0.5,0.6\},\{0.3\}\rangle$	$\langle\{0.5,0.6\},\{0.2\},\{0.6\}\rangle$
c_{7}	$\langle\{0.6,0.9\},\{0.6\},\{0.4\}\rangle$	$\langle\{0.6,0.8\},\{0.4\},\{0.6\}\rangle$	$\langle\{0.5,0.8\},\{0.2\},\{0.4\}\rangle$
c_{8}	$\langle\{0.6,0.8\},\{0.3\},\{0.5\}\rangle$	$\langle\{0.7,0.9\},\{0.2\},\{0.4\}\rangle$	$\langle\{0.6\},\{0.1,0.5\},\{0.3\}\rangle$
c_{9}	$\langle\{0.7,0.9\},\{0.3\},\{0.6\}\rangle$	$\langle\{0.6,0.8\},\{0.2\},\{0.4\}\rangle$	$\langle\{0.6,0.8\},\{0.3\},\{0.4\}\rangle$

Table 3. Normalised decision matrix.

	Suppliers		
Criteria	α_{1}	α_{2}	α_{3}
c_{1}	$\langle\{0.2\},\{0.6\},\{0.3,0.7\}\rangle$	$\langle\{0.2\},\{0.5\},\{0.3,0.5\}\rangle$	$\langle\{0.1,0.2\},\{0.7\},\{0.4,0.7\}\rangle$
	$\langle\{0.5,0.6\},\{0.3\},\{0.4\}\rangle$	$\langle\{0.4\},\{0.5\},\{0.2\}\rangle$	$\langle\{0.6\},\{0.3\},\{0.1,0.2\}\rangle$
c_{3}	$\langle\{0.4\},, 00.6\},\{0.4\}\rangle$	$\langle\{0.5,0.7\},\{0.3\},\{0.3\}\rangle$	$\langle\{0.5\},\{0.4\},\{0.3\}\rangle$
c_{4}	$\langle\{0.7\},, 003\},\{0.2\}\rangle$	$\langle\{0.3,0.4\},\{0.2\},\{0.4\}\rangle$	$\langle\{0.4,0.6\},\{0.1\},\{0.3\}\rangle$
c_{5}	$\langle\{0.5\},\{0.2\},\{0.1\}\rangle$	$\langle\{0.5\},\{0.4\},\{0.1\}\rangle$	$\langle\{0.4,0.7\},\{0.2\},\{0.5\}\rangle$
c_{6}	$\langle\{0.6,0.7\},\{0.3\},\{0.2\}\rangle$	$\langle\{0.6\},\{0.5,0.6\},\{0.3\}\rangle$	$\langle\{0.5,0.6\},\{0.2\},\{0.6\}\rangle$
c_{7}	$\langle\{0.6,0.9\},\{0.6\},\{0.4\}\rangle$	$\langle\{0.6,0.8\},\{0.4\},\{0.6\}\rangle$	$\langle\{0.5,0.8\},\{0.2\},\{0.4\}\rangle$
c_{8}	$\langle\{0.6,0.8\},\{0.3\},\{0.5\}\rangle$	$\langle\{0.7,0.9\},\{0.2\},\{0.4\}\rangle$	$\langle\{0.6\},\{0.1,0.5\},\{0.3\}\rangle$
c_{9}	$\langle\{0.7,0.9\},\{0.3\},\{0.6\}\rangle$	$\langle\{0.6,0.8\},\{0.2\},\{0.4\}\rangle$	$\langle\{0.6,0.8\},\{0.3\},\{0.4\}\rangle$

Based on Equation (15), the comprehensive concordance/discordance index φ^{τ} can be calculated as follows:

$$
\begin{aligned}
& \varphi^{1}=1.4856 ; \varphi^{2}=1.5002 ; \varphi^{3}=1.4802 ; \varphi^{4}=1.4997 \\
& \varphi^{5}=1.5198 ; \varphi^{6}=1.5144
\end{aligned}
$$

Step 6: Determine the optimal ranking of all alternatives.
According to the results in Step 5 and Equation (16), $\varphi^{5}>$ $\varphi^{6}>\varphi^{2}>\varphi^{4}>\varphi^{1}>\varphi^{3}$ and $P^{*}=\max _{\tau=1}^{n!}\left\{\varphi^{\tau}\right\}=P^{5}$ can be obtained. Thus, the final ranking of the three potential suppliers
is: $\alpha_{3} \succ \alpha_{1} \succ \alpha_{2}$ and the best alternative is α_{3}, while the worst is α_{2}.

5.2. A comparison analysis

In order to validate the feasibility of the proposed decisionmaking method, a comparative study was conducted with other methods based on the same illustrative example. The comparison analysis includes two cases. One consists of the two methods that were outlined in Ye (2014a) and Peng et al. (2014), which are compared to the proposed method with simplified neutrosophic information. In the other, the method that was introduced in Ye (2015b) and Peng et al. (2015), which are

Table 4. The results of the likelihoods of $P\left(\alpha_{\delta j}, \alpha_{\theta j}\right)$.

	$P\left(\tilde{T}_{\alpha_{1 j}}, \tilde{T}_{\alpha_{2 j}}\right)$	$P\left(\tilde{I}_{\alpha_{1 j}}, \tilde{I}_{\alpha_{2 j}}\right)$	$P\left(\tilde{F}_{\alpha_{1 j}}, \tilde{F}_{\alpha_{2 j}}\right)$	$P\left(\alpha_{1 j}, \alpha_{2 j}\right)$	$P\left(\tilde{T}_{\alpha_{1 j}}, \tilde{T}_{\alpha_{3 j}}\right)$	$P\left(\tilde{l}_{\alpha_{1 j}}, \tilde{l}_{\alpha_{3 j}}\right)$	$P\left(\tilde{F}_{\alpha_{\alpha_{1 j}}}, \tilde{F}_{\alpha_{3 j}}\right)$	$P\left(\alpha_{1 j}, \alpha_{3 j}\right)$
c_{1}	0.5000	0.5455	0.4604	0.5020	0.5833	0.5385	0.5338	0.5519
c_{2}	0.5778	0.6250	0.3333	0.5120	0.4773	0.5000	0.2667	0.4146
c_{3}	0.4040	0.3333	0.4286	0.3886	0.4444	0.4000	0.4286	0.4243
C_{4}	0.6682	0.4000	0.6667	0.5783	0.5874	0.2500	0.6000	0.4791
C_{5}	0.5000	0.6667	0.5000	0.5556	0.4861	0.5000	0.8333	0.6065
c_{6}	0.5192	0.6458	0.6000	0.5884	0.5418	0.4000	0.7500	0.5639
c_{7}	0.5145	0.4000	0.6000	0.5048	0.5366	0.2500	0.5000	0.4289
c_{8}	0.4664	0.4000	0.4444	0.4369	0.5357	0.4375	0.3750	0.4494
c_{9}	0.5336	0.4000	0.4000	0.4445	0.5336	0.5000	0.4000	0.4779
	$P\left(\tilde{T}_{\alpha_{2 j}}, \tilde{T}_{\alpha_{1 j}}\right)$	$P\left(\tilde{I}_{\alpha_{2 j}}, \tilde{I}_{\alpha_{1 j}}\right)$	$P\left(\tilde{F}_{\alpha_{2 j}}, \tilde{F}_{\alpha_{1 j}}\right)$	$P\left(\alpha_{2 j}, \alpha_{1 j}\right)$	$P\left(\tilde{T}_{\alpha_{2 j}}, \tilde{T}_{\alpha_{3 j}}\right)$	$P\left(\tilde{I}_{\alpha_{2 j}}, \tilde{I}_{\alpha_{3 j}}\right)$	$P\left(\tilde{F}_{\alpha_{\alpha_{2 j}}}, \tilde{F}_{\alpha_{3 j}}\right)$	$P\left(\alpha_{2 j}, \alpha_{3 j}\right)$
c_{1}	0.5000	0.4545	0.5396	0.498	0.5833	0.5833	0.5748	0.5805
c_{2}	0.4222	0.375	0.6667	0.4880	0.4000	0.3750	0.4167	0.3972
c_{3}	0.5960	0.6667	0.5714	0.6114	0.5417	0.5714	0.5000	0.5377
C_{4}	0.3318	0.6000	0.3333	0.4217	0.4155	0.3333	0.4286	0.3925
c_{5}	0.5000	0.3333	0.5000	0.4444	0.4861	0.3333	0.8333	0.5509
c_{6}	0.4808	0.3542	0.4000	0.4116	0.5227	0.2679	0.6667	0.4858
c_{7}	0.4855	0.6000	0.4000	0.4952	0.5224	0.3333	0.4000	0.4186
c_{8}	0.5336	0.6000	0.5556	0.5631	0.5692	0.5238	0.4286	0.5072
c_{9}	0.4664	0.6000	0.6000	0.5555	0.5000	0.6000	0.5000	0.5333
	$P\left(\tilde{T}_{\alpha_{3 j}}, \tilde{T}_{\alpha_{1 j}}\right)$	$P\left(\tilde{l}_{\alpha_{3 j}}, \tilde{l}_{\alpha_{1 j}}\right)$	$P\left(\tilde{F}_{\alpha_{3 j}}, \tilde{F}_{\alpha_{1 j}}\right)$	$P\left(\alpha_{3 j}, \alpha_{1 j}\right)$	$P\left(\tilde{T}_{\alpha_{3 j}}, \tilde{T}_{\alpha_{2 j}}\right)$	$P\left(\tilde{l}_{\alpha_{3 j}}, \tilde{l}_{\alpha_{2 j}}\right)$	$P\left(\tilde{F}_{\alpha_{\alpha_{3 j}}}, \tilde{F}_{\alpha_{2 j}}\right)$	$P\left(\alpha_{3 j}, \alpha_{2 j}\right)$
C_{1}	0.4167	0.4615	0.4662	0.4481	0.4167	0.4167	0.4252	0.4195
c_{2}	0.5227	0.5000	0.7333	0.5854	0.6000	0.625	0.5833	0.6028
c_{3}	0.5556	0.6000	0.5714	0.5757	0.4583	0.4286	0.5000	0.4623
C_{4}	0.4126	0.7500	0.4000	0.5209	0.5845	0.6667	0.5714	0.6075
c_{5}	0.5139	0.5000	0.1667	0.3935	0.5139	0.6667	0.1667	0.4491
c_{6}	0.4582	0.6000	0.2500	0.4361	0.4773	0.7321	0.3333	0.5142
c_{7}	0.4634	0.7500	0.5000	0.5711	0.4776	0.6667	0.6000	0.5814
c_{8}	0.4643	0.5625	0.6250	0.5506	0.4308	0.4762	0.5714	0.4928
c_{9}	0.4664	0.5000	0.6000	0.5221	0.5000	0.4000	0.5000	0.4667

Table 5. The results of the weighted concordance/discordance index.

P^{1}	$\varphi^{1}\left(\alpha_{1}, \alpha_{2}\right)$	$\varphi^{1}\left(\alpha_{1}, \alpha_{3}\right)$	$\varphi^{1}\left(\alpha_{2}, \alpha_{3}\right)$	P^{2}	$\varphi^{2}\left(\alpha_{1}, \alpha_{3}\right)$	$\varphi^{2}\left(\alpha_{1}, \alpha_{2}\right)$	$\varphi^{2}\left(\alpha_{3}, \alpha_{2}\right)$
	0.5027	0.4902	0.4927		0.4902	0.5027	0.5073
P^{3}	$\varphi^{3}\left(\alpha_{2}, \alpha_{1}\right)$	$\varphi^{3}\left(\alpha_{2}, \alpha_{3}\right)$	$\varphi^{3}\left(\alpha_{1}, \alpha_{3}\right)$	P^{4}	$\varphi^{4}\left(\alpha_{2}, \alpha_{3}\right)$	$\varphi^{4}\left(\alpha_{2}, \alpha_{1}\right)$	$\varphi^{4}\left(\alpha_{3}, \alpha_{1}\right)$
	0.4973	0.4927	0.4902		0.4927	0.4973	0.5098
P^{5}	$\varphi^{5}\left(\alpha_{3}, \alpha_{1}\right)$	$\varphi^{5}\left(\alpha_{3}, \alpha_{2}\right)$	$\varphi^{5}\left(\alpha_{1}, \alpha_{2}\right)$	p^{6}	$\varphi^{6}\left(\alpha_{3}, \alpha_{2}\right)$	$\varphi^{6}\left(\alpha_{3}, \alpha_{1}\right)$	$\varphi^{6}\left(\alpha_{2}, \alpha_{1}\right)$
	0.5098	0.5073	0.5027		0.5073	0.5098	0.4973

Table 6. A comparison of different methods with simplified neutrosophic information.	
Methods	Ranking of alternatives
Ye (2014a)	$\alpha_{2} \succ \alpha_{3} \succ \alpha_{1}$
Peng et al. (2014)	$\alpha_{3} \succ \alpha_{2} \succ \alpha_{1}$
Proposed method	$\alpha_{3} \succ \alpha_{2} \succ \alpha_{1}$

Table 7. A comparison of different methods with multivalued neutrosophic information.

Methods	Ranking of alternatives
Ye (2015b)	$\alpha_{1} \succ \alpha_{3} \succ \alpha_{2}$ or $\alpha_{3} \succ \alpha_{1} \succ \alpha_{2}$
Peng et al. (2015)	$\alpha_{1} \succ \alpha_{3} \succ \alpha_{2}$ or $\alpha_{3} \succ \alpha_{1} \succ \alpha_{2}$
Proposed method	$\alpha_{3} \succ \alpha_{1} \succ \alpha_{2}$

extended to a multi-valued neutrosophic environment, are compared with the proposed approach with multi-valued neutrosophic information.

Case 1. The proposed approach is compared with two methods of Ye (2014a) and Peng et al. (2014) using simplified neutrosophic information.

Ye (2014a) defined the weighted arithmetic averaging operator and weighted geometric averaging operator to resolve MCDM problems with SNNs. Furthermore, Peng et al. (2014) developed an extended ELECTRE method for dealing with simplified neutrosophic MCDM problems, which is closest to the proposed method. However, their methods fail to resolve MCDM problems where the assessments of alternatives regarding the criteria are in the form of MVNNs. Thus, the decisionmaking information should be modified to facilitate the comparative analysis. With regard to the same illustrative example, all multi-valued neutrosophic evaluation values are translated into single-valued neutrosophic values by using the mean values of truth-membership, indeterminacy-membership and falsitymembership.

For the method of Ye (2014a), the weighted arithmetic averaging operator and the weighted geometric averaging operator are used to aggregate the nine criteria of each alternative, then the similarity measures of each alternative can be obtained to rank the alternatives. However, the concordance and discordance matrixes are calculated first in the method of Peng et al. (2014), and the outranking matrices are obtained to determine the final order of alternatives. Therefore, when the methods of Ye (2014a), Peng et al. (2014) and the proposed approach are used to solve the modified MCDM problem, the results can be found in Table 6.

From the results in Table 6, it can be seen that if the weighted arithmetic averaging and the weighted geometric averaging operators are utilised, respectively, then the final ranking is $\alpha_{2} \succ$ $\alpha_{3} \succ \alpha_{1}$, and the best alternative is α_{2}. However, if the method of Peng et al. (2014) is utilised to manage the modified decisionmaking information, then the final ranking is $\alpha_{3} \succ \alpha_{2} \succ \alpha_{1}$, which is consistent with that of the proposed approach, and the best alternative is α_{3}.

Case 2. The proposed approach is compared with the method of Ye (2015b) and Peng et al. (2015) using multi-valued neutrosophic information.

The methods in Ye (2015b) and Peng et al. (2015) can deal with multi-valued neutrosophic information directly. Then the results can be found in Table 7.

From the results presented in Table 7, it can be seen that if the single-valued neutrosophic hesitant fuzzy weighted arithmetic averaging and single-valued neutrosophic hesitant fuzzy weighted geometric averaging operators in Ye (2015b) are utilised, respectively, then the final ranking is $\alpha_{1} \succ \alpha_{3} \succ \alpha_{2}$ or $\alpha_{3} \succ \alpha_{1} \succ \alpha_{2}$. Whereas if the power weighted arithmetic averaging and power weighted geometric averaging operators in Peng et al. (2015) are used, respectively, then the final ranking is either $\alpha_{1} \succ \alpha_{3} \succ \alpha_{2}$ or $\alpha_{3} \succ \alpha_{1} \succ \alpha_{2}$. Therefore, the final rankings obtained by utilising the methods of Ye (2015b) and Peng et al. (2015) are different from that using the proposed approach. Moreover, when the aggregation operators in the methods of Ye (2015b) and Peng et al. (2015) are used, then there are a large number of elements in the truth-membership, indeterminacymembership and falsity-membership degrees for the three aggregated values. For example, 32 elements can be obtained for the truth-membership degree of alternative α_{1}.

Thus, from the comparison analysis presented above, two issues can be discussed.

First, the result of the proposed approach is different to that using the methods of Ye (2014a, 2015b) and Peng et al. (2015) with simplified neutrosophic and multi-valued neutrosophic information. Although different aggregation operators can be used to deal with the different relationships of the aggregated arguments, the number of operations and the sizes of the results will exponentially increase if more MVNNs are involved in the operations. Furthermore, different aggregation operators can lead to different results. The deterioration caused by these complexities may confine the application of aggregation operators.

Second, the proposed approach and the method of Peng et al. (2014) produce the same results for a MCDM problem with a suitable number of alternatives and criteria. Moreover, in the illustrative example, where there are few alternatives and a large number of criteria, if the method of Peng et al. (2014) is
used, then the final ranking results of the alternatives cannot be obtained directly.

However, the proposed approach with MVNNs differs from the existing methods, which always involve operations whose impact on the final solution may be considerable as stated earlier, as the developed method can overcome these shortcomings. The loss and distortion of the preference information provided can be avoided, which makes the final results better correspond with real decision-making problems. Moreover, the proposed method is preferred to be used to resolving problems in which the number of criteria observably exceeds the number of alternatives. Therefore, the proposed approach can effectively deal with the preference information expressed by MVNNs, which is a prerequisite of guaranteeing the accuracy of the final rankings.

6. Conclusions

MVNSs can be applied to problems with uncertain, imprecise, incomplete and inconsistent information, which widely exist in scientific and engineering cases. In this paper, the preference relations of MVNNs based on likelihood were developed. Subsequently, based on the likelihood of MVNNs, an extended QUALIFLEX approach was proposed to deal with MCDM problems where the data are expressed by MVNNs. Finally, an illustrative example demonstrated the application of the proposed decision-making approach, and showed that the results are feasible and credible. The primary advantages of the approach developed in this paper over the other methods are not only its ability to deal effectively with preference information in the form of MVNNs, but also its ability to resolve MCDM problems with a few alternatives and a large set of criteria, which makes the final results better correspond with real decision-making problems. In future research, the related measures of MVNNs will be further investigated.

Acknowledgment

The authors thank the editors and anonymous reviewers for their helpful comments and suggestions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Natural Science Foundation of China [grant number 71571193], [grant number 71401185]; the Humanities and Social Sciences Youth Foundation of Ministry of Education of China [grant number 15YJCZH127]; the Science Foundation for Doctors of Hubei University of Automotive Technology [grant number BK201405]; and the Humanities and Social Science Foundation of Hubei Province [grant number 15Q130].

Notes on contributors

Juan-juan Peng received her Ph.D. degree in Management Science and Engineering from Central South University, Changsha, China, in 2015. She is a lecturer in School of Economics and Management, Hubei University of Automotive Technology, China. Her current research focuses on decisionmaking theory and application and information management.
Jian-qiang Wang received his Ph.D. degree in Management Science and Engineering from Central South University, Changsha, China, in 2005. He is currently a professor in Business School, Central South University. His current research interests include decision-making theory and application, risk management and control, and information management.

Wu-E Yang received his Ph.D. degree in Management Science and Engineering from Central South University, Changsha, China, in 2013. He is currently a professor in Economics College, Central South University of Forestry and Technology, China. His current research focuses on decisionmaking theory and information management.

ORCID

Jian-qiang Wang © http://orcid.org/0000-0001-7668-4881

References

Atanassov, K.T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96.
Broumi, S., Talea, M., Bakali, A., \& Smarandache, F. (2016a). Single valued neutrosophic graphs. Journal of New Theory, 10, 86-101.
Broumi, S., Talea, M., Bakali, A., \& Smarandache, F. (2016b). On bipolar single valued neutrosophic graphs. Journal of New Theory, 11, 84-102.
Chen, T.Y. (2014a). Interval-valued intuitionistic fuzzy QUALIFLEX method with a likelihood-based comparison approach for multiple criteria decision analysis. Information Sciences, 261, 149-169.
Chen, T.Y. (2014b). Multiple criteria decision analysis using a likelihoodbased outranking method based on interval-valued intuitionistic fuzzy sets. Information Sciences, 286, 188-208.
Chen, T.Y. (2015). Likelihoods of interval type-2 trapezoidal fuzzy preference relations and their application to multiple criteria decision analysis. Information Sciences, 295, 303-322.
Guo, Y., \& Sengur, A. (2014). A novel image thresholding algorithm based on neutrosophic similarity score. Measurement, 58, 175-186.
Ji, P., Zhang, H.Y., \& Wang, J.Q. (2016). A projection-based TODIM method under multi-valued neutrosophic environments and its application in personnel selection. Neural Computing and Applications. Advance online publication. doi:10.1007/s00521-016-2436-z
Lee, L.W., \& Chen, S.M. (2015). Fuzzy decision making based on likelihoodbased comparison relations of hesitant fuzzy linguistic term sets and hesitant fuzzy linguistic operators. Information Sciences, 294, 513-529.
Liu, P.D., Chu, Y.C., Li, Y.W., \& Chen, Y.B. (2014). Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making. International Journal of Fuzzy Systems, 16(2), 242-255.
Liu, P., \& Shi, L. (2015). The generalized hybrid weighted average operator based on interval neutrosophic hesitant set and its application to multiple attribute decision making. Neural Computing and Application, 26, 457-471.
Liu, P.D., \& Wang, Y.M. (2014). Multiple attribute decision-making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Computing and Applications, 25(7-8), 2001-2010.
Ma, Y.X., Wang, J.Q., Wang, J., \& Wu, X.H. (2016). An interval neutrosophic linguistic multi-criteria group decision-making method and its application in selecting medical treatment options. Neural Computing and Applications. Advance online publication. doi:10.1007/s00521-016-2203-1
Majumdar, P., \& Samant, S.K. (2014). On similarity and entropy of neutrosophic sets. Journal of Intelligent and Fuzzy Systems, 26(3), 1245-1252.
Martel, J.M., \& Matarazzo, B. (2005). Other outranking approaches. In Multiple criteria decision analysis: State of the art surveys (pp. 197-259). New York, NY: Springer.
Peng, J.J., Wang, J.Q., Wang, J., Zhang, H.Y., \& Chen, X.H. (2016). Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. International Journal of Systems Science, 47(10), 2342-2358.
Peng, J.J., Wang, J.Q., \& Wu, X.H. (2016a). An Extension of the ELECTRE approach with multi-valued neutrosophic information. Neural Computing and Applications. Advance online publication. doi:10.1007/s00521-016-2411-8
Peng, J.J., Wang, J.Q., \& Wu, X.H. (2016b). Novel multi-criteria decisionmaking approaches based on hesitant fuzzy sets and prospect theory. International Journal of Information Technology \& Decision Making, 15(3), 621-643.

Peng, J.J., Wang, J.Q., Wu, X.H., Wang, J., \& Chen, X.H. (2015). Multi-valued neutrosophic sets and power aggregation operators with their applications in multi-criteria group decision-making problems. International Journal of Computational Intelligence Systems, 8(4), 345-363.
Peng, J.J., Wang, J.Q., Zhang, H.Y., \& Chen, X.H. (2014). An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Applied Soft Computing, 25, 336-346.
Paelinck, J.H.P. (1976). Qualitative multiple criteria analysis, environmental protection and multiregional development. Papers in Regional Science, 36, 59-76.
Paelinck, J.H.P. (1977). Qualitative multicriteria analysis: An application to airport location. Environment and Planning A, 9, 883-895.
Paelinck, J.H.P. (1978). Qualiflex: a flexible multiple-criteria method. Economics Letters, 1, 193-197.
Shen, L., Olfat, L., Govindan, K., Khodaverdi, R., \& Diabat, A. (2013). A fuzzy multi criteria approach for evaluating green supplier's performance in green supply chain with linguistic preferences. Resources, Conservation and Recycling, 74, 170-179.
Smarandache, F. (1998). Neutrosophy: Neutrosophic probability, set, and logic. Rehoboth: American Research Press, pp. 1-105.
Smarandache, F. (1999). A unifying field in logics. Neutrosophy: Neutrosophic probability, set and logic. Rehoboth: American Research Press, pp. 1141.

Smarandache, F. (2005). A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability: Neutrsophic logic. Neutrosophy, neutrosophic set, neutrosophic probability and statistics. Rehoboth: American Research Press, pp. 1-156.
Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25, 529-539.
Torra, V., \& Narukawa, Y. (2009). On hesitant fuzzy sets and decision. In Proceedings of the 18th IEEE International Conference on Fuzzy Systems (pp. 1378-1382). Jeju Island, Korea.
Tian, Z.P., Wang, J., Wang, J.Q., \& Zhang, H.Y. (2016a). Simplified neutrosophic linguistic multi-criteria group decision-making approach to green product development. Group Decision and Negotiation. Advance online publication. doi:10.1007/s10726-016-9479-5
Tian, Z.P., Wang, J., Wang, J.Q., \& Zhang, H.Y. (2016b). An improved MULTIMOORA approach for multi-criteria decision-making based on interdependent inputs of simplified neutrosophic linguistic information. Neural Computing and Applications. Advance online publication. doi:10.1007/s00521-016-2378-5
Tian, Z.P., Zhang, H.Y., Wang, J., Wang, J.Q., \& Chen, X.H. (2016). Multicriteria decision-making method based on a cross-entropy with interval neutrosophic sets. International Journal of Systems Science, 47(15), 3598-3608.
Wang, J.Q., \& Li, X.E. (2015). An application of the TODIM method with multi-valued neutrosophic set. Control and Decision, 30(6), 1139-1142.

Wang, H., Smarandache, F., Zhang, Y.Q., \& Sunderraman, R. (2010). Single valued neutrosophic sets. Multispace and Multistructure, 4, 410413.

Wang, J.C., Tsao, C.Y., \& Chen, T.Y. (2015). A likelihood-based QUALIFLEX method with interval type-2 fuzzy sets for multiple criteria decision analysis. Soft computing, 19(8), 2225-2243.
Wu, X.H., Wang, J.Q., Peng, J.J., \& Chen, X.H. (2016). Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. International Journal of Fuzzy Systems. Advance online publication. doi:10.1007/s40815-016-0180-2
Xia, M.M., \& Xu, Z.S. (2011). Hesitant fuzzy information aggregation in decision making. International Journal of Approximate Reasoning, 52(3), 395-407.
Xu, Z.S., \& Hu, H. (2010). Projection models for intuitionistic fuzzy multiple attribute decision making. International Journal of Information Technology and Decision Making, 9, 267-280.
Ye, J. (2013). Multicriteria decision-making method using the correlation coefficient under single-value neutrosophic environment. International Journal of General Systems, 42(4), 386-394.
Ye, J. (2014a). A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. Journal of Intelligent and fuzzy Systems, 26(5), 2459-2466.
Ye, J. (2014b). Single valued neutrosophic cross-entropy for multicriteria decision making problems. Applied Mathematical Modeling, 38(3), 1170-1175.
Ye, J. (2014c). Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. Journal of Intelligent and Fuzzy Systems, 26(1), 165-172.
Ye, J. (2014d). Clustering methods using distance-based similarity measures of single-valued neutrosophic sets. Journal of Intelligent Systems, 23, 379-389.
Ye, J. (2015a). Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artificial Intelligence in Medicine, 63, 171-179.
Ye, J. (2015b). Multiple-attribute decision-making method under a singlevalued neutrosophic hesitant fuzzy environment. Journal of Intelligent Systems, 24(1), 23-36.
Zhang, H.Y., Ji, P., Wang, J.Q., \& Chen, X.H. (2015). Improved weighted correlation coefficient based on integrated weight for interval neutrosophic sets and its application in multi-criteria decision making problems. International Journal of Computational Intelligence Systems, 8(6), 1027-1043.
Zhang, H.Y., Ji, P., Wang, J.Q., \& Chen, X.H. (2016). A neutrosophic normal cloud and its application in decision-making. Cognitive Computation. Advance online publication. doi:10.1007/s12559-016-9394-8

