A Multi-version Approach to Conflict Resolution in Distributed Groupware Systems

Chengzheng Sun and David Chen
School of Computing and Information Technology
Griffith University
Brisbane, QId 4111, Australia
Email: {C.Sun, D.Cheh@cit.gu.edu.au
URL: http://www.cit.gu.edu.au/scz

Abstract — Groupware systems are a special class of distributeddue to the speed limit of electronic signals. It is the communica-
computing systems which support human-computer-human interagion latency, rather than the bandwidth, which presents a major chal-
tion. Real-time collaborative graphics editors allow a group of userslenge to achieving high responsivness for Internet-based collabora-
to view and edit the same graphics document at the same time frotive editing systems. (3)nconstrainedMultiple users are allowed
geographically dispersed sites connected by communication nete concurrently and freely edit any parts of the documentat any time,
works. Resolving conflict access to shared objects is one of the coie order to facilitate free and natural information flow among col-
issues in the design of this type of systems. This paper proposedaborating users. The major challenge of supporting unconstrained
novel distributed multi-versioapproach to conflict resolution. This collaborative editing is the management of the multiple streams of
approach aims to preserve the work concurrently produced by muleoncurrent activities so that system consistency can be maintained
tiple users in the face of conflicts, and to minimize the number ofn the face of conflicts.

object versions for accommodating combined effects of conflicting The requirements for high responsiveness and for supporting un-
and compatible operations. Major technical contributions of this constrained collaboration over the Internet have led us to adopt a
work include a formal specification of a unique combined effect foryeplicated architecturdor the storage of shared documents: the
any group of conflicting and compatible operations, a distributed al-shared documents are replicated at the local storage of each par-
gorithm for incremental creation of mUltlple ObjeCt Versions, and at|c|pat|ng sitel so edmng Operations can be performed at local
consistent ObjeCt identification scheme for multi-version and mum-sites |mmed|a’[e|y and then propagated to remote sites. Because
replica graphics eifing systems. All algorithms and schemes pre- of concurrent generation of operations and non-negligible and non-
sented in this paper have been used in the GRACE (GRAphics Cajteterministic communication latency of the Internet, there exist

laborative Edting) system implemented in Java. three major inconsistency problems associated with the replicated
architecture [13]: (1¥livergence operations may arrive and be exe-
Keywords cuted at different sites in different orders, resulting in different final

Collaborative graphics editors, consistence maintenance, multipldocuments at different sites; (@ausality violation- operations may
object versions, real-time groupware systems, distributed computrrive and be executed out of their natural cause-effect order, causing
ing. confusionto both the system and its users; anth{@ntion violation
- theactualeffect of an operation at the time of its execution may be
I. Introduction different from theintendedeffect of this operation at the time of its
generation. To address these inconsistency problems systematically,
Groupware systems are a special class of distributed compul consistency model has been proposed in the context of the RE-
ing systems which suppohiuman-computer-humanteraction [2, DUCE (REal-time Distributed Unconstrained Cooperativetifg)
4, 13]. A commonly used groupware system is the real-time colproject [13]. The REDUCE consistency model has been applied to
laborative editor which allows a group of users to view and editthe collaborative text editing domain for solving various challeng-
the same document at the same time from geographically dispersesgk technical problems [14, 15, 16, 18]. In this paper, we will report
sites connected by communication networks. Collaborative editorfiew research findings in applying the REDUCE framework to the
are very useful facilities in_ad_/anced Computepforted _Coop- GRACE (GRAphics Collaborative Editing) project.
erative Wo_r k (CSCW) ap_pllcatlons [1]. such as electrom_c confer- Collaborative graphics editing systems can be classified into two
ence/meeting, collaborative CAD/CASE, and collaborative docu'types: object-based and bitmap-based. This paper is confined to

mentation systems. o o the issues associated with object-based collaborative graphics edit-
The goal of our research is to investigate the principles and teching systems only. Graphic objects such as lines, rectangles, circles,
niqgues underlying the construction of collaborative editors with theetc., can be created and updated. Each object is represented by at-
following three major characteristics [13, 18]. [®pal-ime:The yipytes such as type, size, position, color, group, etc.Créate
response to local user actions should be quick (without noticeablgperaﬁOn is used to create an object. After an object has been cre-
delay) and the latency for remote user actions should be low. Theteqd, updating operations can be applied to change the attributes of
key performance parameter here is the response time observahigyt object. For example,Moveoperation changes the position at-
by the user, rather than the number of operations per second as ffipute of the target object. In a collaborative editing environment,
non-interactive application systems. @jtributed: Collaborating gperation conflict may occur when multiple concurrent operations
users may reside on different machines connected by the Inter_n% to update the same object in different ways. Resolving conflict
with non-negligible and non-deterministic latency. While there is 5ccesses to shared objects is one of the core issues in the design of

no limit on the bandwidth increase of the Internet using fiber op-thjs type of systems and will be the focus of this paper.
tic communication technologies, the communication latency over The rest of this paper is organized as follows. In Section II, some
an inter-continental connection cannot be reduced considerably be-, '

- . %ack round information about the REDUCE framework is briefl
low 100 millise@nds (the threshold value for user noticeable delay)discugssed. In Section Ill, a multiple version strategy for conflig,/t

resolution is proposed, and the rules for determining combined eftenance of any two of them does not automatically ensure the other
fects of conflicting and compatible operations are derived. Thenone [13, 14].

a formal specification of a unique combined effect for any group

of conflicting and compatible operations is presented in Section IVB. Concurrency control techniques

A distributed algorithm for incremental creation of multiple object ¢ consistency model specifies, on the one hand, what assurance
versions is described in Section V. A consistent objectidentification, q|aporative editing system promises to its users, and on the other
;cheme for multi-version and multi-re_plica graphics editing systemf},and, what properties the underlying concurrency control mecha-
is pr(_asented in Sectlon_VI. Our work is compa_red to related work inyisms must support. To capture the causal relationships among all
_Sec_tlon VIL. I__astly, major results are summarized and further Workoperations in the system, a timestamping scheme baseeaiar
is discussed in Section VIIl. logical clockcan be used [13, 16]. Causality-preservation can be
. achieved by using either a distributed algorithm [13] or a central

II. Previous work notification server [16]. Since causality is an issuehwitt any re-

In this section, the basic concepts, definitions, and technique’gtionship with the semantics of operations, causality-preservation
adopted from our previous work are briefly described. For detailstechniques are generic and applicable to both text and graphics edi-

the reader is referred to [13]. tors. _ _ . .
For supporting convergence and intention-preservation, however,
A. A consistency model different editing domains require different techniques. In the text

) .]) editing domain, an optimistic concurrency control technique, called
Following Lamport [8], we define a causal (partial) ordering re- gperational transformation has been devised [14]. In the GRACE
lation of operations in terms of their generation and execution S€project, convergence and intention-preserving techniques for the

quences as follows. graphics editing domain have been investigated. Since achieving
o) o convergence is a relatively simple and independentissue, this paper
Definition 1: Causal ordering relation- will focus on the issues and results related to achieving intention-

Given two operation$); andO-, generated at sitesand j, then preservation only.

01 — O»,iff: (1) ¢ = 5 and the generation @, happened before

the generation of, or (2): # 5 and the execution oP; at sitey lll. Operation conflicts and multiple versions

happened belortie generaton s, of (3) there exists an 09ETA s Conflict and compatible relations
In the graphics editing domain, concurrent operations may target
Definition 2: Dependent and independent operations the same object and may conflict with each other. For example,

Given any two operation®; andO. (1) O, is dependendbn O; suppose user 1 generates operatian = Move(G, X) to move

iff O1 — O. (2) O; andO; areindependengtor concurreny, ex- objectG to position.X, and user 2 concurrently generates operation

pressed a€; || O, iff neitherO; — Oz, norO, — O;. | O, = Move(G,Y) to moved to positionY’, whereX # Y. Both
operations will be executed at their local sites immediately to give
Definition 3: Intention of an operation a quick response, and then propagated to the other sites. Gince

Given an operatior0, the intention ofO is the execution effect andO: are moving the same obje€t to two different positions, it
which could be achieved by applyit@ on the document state from IS impossible to accommodate their conflicting effects in the same

which O was generated. o target object. In general, two concurrent operations are in conflict if
they are targeting the same object but changing the same attribute to
Definition 4: A consistency model different values.

To give a precise definition of operation conflict, the following
notations are introduced: (I)gt(O) denotes the target object of
[Rperation0; (2) Att. Type(O) denotes the attribute type 6f, and
(3) Att.Value(O) denotes the attribute value 6f

A collaborative editing system is said to be consistent if it always
maintains the following properties: (Convergencewhen all sites
have executed the same set of operations, the copies of the sha
document at all sites are identical. @ausality-preservation for
any pair of operation®, andO-, if 01 — O, thenO; is executed .) .
beforeO, at all sites. (3)intention-preservation: for any opera- Definition 5: Conflict relation %" o

tion O, both the local and remote execution effectstbequal to ~ Given two operation®); and0O:, they conflict with each other, ex-
O’s intention, and if there exists an operatiop suchtha, || 0, ~ Pressed a® © O, iff (1) Oy || 02; (2) Tgt(01) = Tgt(0z);
then the execution effect @, does not interfere with the execution (3) Att.Type(O1) = Att.Type(O>); and (4)Att.Value(Or) #
effect of O, and vice versa. o Att.Value(Oz). m

It should be highlighted that the consistency model imposes an In contra_st, if a pair_ of operations are not conflicting, then they
execution order constraint only on dependent operations, but leavé¥€ compatible, as defined below.
it open for the execution order of independent operations as long o _)
as the convergence and intention-preservation properties are main- Definition 6: Compatible relation " o
tained. This feature of the consistency model lays the theoreticdPVen two operation®): andO:, if they do not conflict with each
foundation for achieving good responsiveness by fténg local ~ Other, they are compatible, expressedass O:. o
operations to be executed immediately after their generation. More-
over, the intention-preservation property makes a further promise t
the users that their individual operations’ effects can be protecte
against each other’s interference. Finally, it should be pointed out For compatible operations, if they are targeting the same object,
that the three properties aredependenin the sense that the main- they can be applied to the same object. For conflicting operations,

%. Accommodating all operation effects

what combined effects could they have without violating theirinten- '™ %% vsert User2

tions?

One possible combined effect is thell-effect which means none Afterec. 0L | After ex, 02
of the two conflicting operations has any final effect on the target ob- @01~ MvelG:X) |02 =Move(G,)
ject. This can be achieved by rejecting/undoing an operation when it

is found to be conflicting with another operation, as shown in Fig 1.
The final results at both sites are identical (empty). However, this -.-..___________ i e ot
null effect does not preserve the intentions of the two operations)

since none of the two operations has any effect at the remote site

and the effect of one operation has been undone by another indepen-
dent operation. The consequence of this intention violation is that) .) o .
whenever there is a conflict, the work concurrently done by involved ~ Fig- 2. Single operation effect for conflicting operations

users will be destroyed. This effect is highly undesirable in the col- Initia docu SAte: yser 1 User2 Inital docu sate
laborative working environment because users involved in a conflict
are provided with no explicit information about what other users in- After ex. OL: After ex. 02
tended to QO, and_ hence may not be able to take proper actions to @O Move(G.) 02 =Move(G, v)
resolve their conflict. [e] » S
Initial state User 1 User 2 Aoz Tl TN After e oL
G G
,,,,,, el e
After ex. O1 After ex. 02

01 = Move(G, X)
®

-G
Fig. 3. All operations effect for conflicting operations
,,,,,,,,,,,,,,,,,,,,,,,,, approach is that the single version object may be converted to mul-
After ex. O1
Reject O1 tiple versions if a conflict occurs. The system could notify the users
Undo 02 that there is a conflict, e.g., by highlighting the multiple versions of

the same object. Since all users are provided with a consistent and
explicit picture about what other users intended to do, they could
make better assessment of the situation and may decide to keep one
The second possible combined effect is #irgle-operation- Of the versions or even all of them if that is desired.
effect which is to retain the effect of only one operation, eithgr Itis worth pointing out that a similar all-operations-effect strategy
or O». This can be achieve by enforcing a serialized effect amond’las also been used in the collaborative text editing domain [13, 14]:
all operations. As shown in Fig. 2, whe®, arrives at user 1, it Whenthere are two concurrdntertoperations inserting two strings
moves(G to positionY (effectively undoingD:); whenO, arrives 51 andS: at the same position, evens is a substring ob>, both
at user 2, it is rejected. The final results at both users sites are ideftrings are maintained in the document (one after the other) rather
tical. However, this single operation effect violates the intentions ofthan being merged into one. In general, we advocate a groupware
both operations since one operati6h has no effect at user 2, and design principle: In the face of a conflict, it is usually better to pre-
the other operationt}.) has changed the effect of an independentserve and display all users’ work to facilitate a user-decided solu-
operation (1) at user 1. One consequence of this intention viola-tion to the conflict, rather than to destroy or hide users’ work to
tion is that whenever there is a conflict, only one user's work carimpose a system-decided solution to the conflict. Because it is gen-
be preserved. Another consequence is that users are not ensurecEt@/ly infeasible for the system to have the knowledge to properly
see the effects of the same set of operations: e.g., user 1 sees f§solve conflicts among concurrent users, conflicts are best resolved
effects of bothO; andO,, but user 2 never sees the effect@f. by collaborative users, with the system providing explicit informa-
Generally, when there are multiple conflicting operati@ss;h user ~ tion about other users’ actions.
may see the effects of arbitrary number of operations, depending on .
the order in which operations arrive at each site. Therefore, when &- Combined effect rules
conflict occurs, users may not see a consistent and explicit picture Given a group ofV operations targeting the same object, if they
about what other users intended to do, and hence they may not kege all mutually compatible with each other, then they can be ap-
able to take proper actions to resolve their conflict. plied to the original target object without creating new versions; and
To preserve all work concurrently produced by multiple users inif they are all mutually conflicting with each other, théhversions
the face of conflicts, we propose altroperations-effecbased ona can be created to accommodate each operation’s effect in a separate
multiple versionstrategy: two versions af, G; andG», will be version. However, if there is a mixture of compatible and conflict-
created, withO; andO- being applied ta7; andG., respectively. ing operations in the group, it becomes non-trivial to determine how
In this way, the effects of both operations are accommodated in twenany versions to create and how to apply which operations to which
separate versions, as shown in Fig. 3. versions. In the following discussion, the notati6§ O, } will be
This all-operations-effect preserves the intentions of both operaused to represent an objegtwith the effect of0, and G } repre-
tions since the effects @, andO- at their local sites are the same sents its initial state.
as their effects at the remote sites and they do not change the effectsTo start with, consider a simple scenario with three operations:
of each other. With this all-operations-effect, the system is able taJ;, O, andOs. Suppose they are targeting the same olifgand
ensure that the work produced by all users be always retained regartheir mutual conflict relations ar€?;, ® Oz, 01 ® O3, andO, ® Os.
less whether there is a conflict or not. The only side effect of thiswhat combined effects should these three operations have?

Fig. 1. The null-effect for conflicting operations

SinceO; ® O, they must be separately applied to two versionssystem chooses, at least one user (user 1 or user 3) in this scenario
G{0,} andG{O-} according to the nitiple versions strategy. In will observe that the original execution effect @f is undone and
general, we have the following combined effect rule: then redone in another object.

To avoid this abnormal interface effect, we propose to combine

Combined Effect Rule 1 (CER1) Given two operation®:, and Oz with bothO, andO- to produceG{0O:,O0s} andG{O-, O,}.

O, targeting objec@. If O, ® O2, they must be applied to different In this way, no matter which orders these three operations are exe-
versionsG{0; } andG{O- } made fromG. cuted, the final combined effect will be the same at all sites, without
any abnormal interface effect. In general, we have the following

The question is: how to combin®;’s effect? One possibility is additional rule to determine the combined effects of compatible op-
to make a separate versioH{ O: }. The problem with this approach erations in the face of mixed compatible and conflict operations.
is that it unnecessarily creates two versiéhD. } andG{O-} for
two compatible operations. To avoid unnecessary versions, we pro- Combined Effect Rule 3 (CER3) Given any group of opera-
pose to combine two compatible operatiéhsandO; ina common tions, if they are mutually compatible and target the same object,
versionG{O2, O:}. In general, to minimize the number of versions then their effects must be combined in at least one common version
for an object, the following combined effect rule is used to justify of the target object.
the creation of different versions.

In summary,CER1, CER2 and CERS3 are the three criteria for
Combined Effect Rule 2 (CER2) Given any two version&/i judging whether a combined effect for a group of operations target-
and(G> made from the same object, there must be at least one ing the same object is correct or not. By applying these criteria, the
operation0; applied toG, and at least one operatiéh applied following combined effects can be achieved: (1) conflicting opera-
to G2, such thatD; ® Os. tions are accommodated in different versions; (2) compatible oper-
ations are combined in common versions; (3) there is at least one
Furthermore, consider another scenario with three operationgsair of conflicting operations between any pair of versions; and (4)
O1, Oz, andOs, targeting the same obje¢t. Suppose their mu- there is at least one version combining the effects of any group of
tual conflict relations are®; ® Oz, 01 ® Os, andO2 ® Os. Since compatible operations.
01 ® Oz, two versionsgZ{0; } andG{O- } need to be created ac-
cording toCER1. The question is: which one of the two versions |\, Combined effects for any group of operations
shouldO; be applied to?)))) .
One possibility is to combineOs; with either O; (i.e., In_the previous se_ctlc_)n, ;lmple scenarios have been used to derive
G{01,0s}) or O (i.e., G{O2,05}), chosen by the system (ran- ar_ld illustrate the criteria (|.eCER1_, C_:ERZ andCERC_%) to deter-_
domly or by using their total ordering). This approach does not proMine the c_omblr_led effects of confllctln_g and compatl_ble op_e_ratlons.
duce any unnecessary version (accordinGER?2), but may have However, in a highly concurrent real-time collaborative editing en-

an abnormal phenomenon at the user interface, as shown in Fig. 4Vironment, a group of operations may have rather arbitrary and com-
plex conflict relationships among them. A major technical problem

User 1 User 2 User 3 here is: given an arbitrary group of operations targeting the same
G{} G{} G{} object, how to determine their combined effect, which is complying
G{01} @ O1 03@ G{03} with CER1, CER2 andCER3?

A. Conflict relation matrix and triangle

6{01,03} {03, 02} To solve this problem, we fi_rst introduce tpenflict _relatiqn ma-
trix to capture the complete picture of conflict relationships among
G{02} --undo O3 any group of operations targeting the same object.
G{01,03} (03,01} ~redo 03 Given a group of: operationsQ; , O, ..., O, targeting the same
G{0o2} G{01,03} object, their conflict relationships can be fully and uniquely ex-

pressed by & x n Conflict Relation Matrix (CRM)in which el-

ementCRM[i, 7],1 < 4,7 < nis filled with “®" if O; ® Oy,

otherwise it is filled with ©”. For example, & x 3 CRMfor three
Suppose the system has chosen to combinevith O,. Atthe operationsis shown in Fig. 5-(a).

site of user 3, the following abnormal phenomenon occars:is

first applied to its target objec¥ to produceG{O:}; thenO- ar-

Fig. 4. A scenario for motivating CER3

rives and is combined witl¥; to produceG{0O:, 0.} since they OP| 01 | Os | Os OP| O, | O,

are compatible (site 3 has no knowledge ali@utt this stage); fi- 011 © 1910 O | @ | ®

nally O; arrives and is found to be conflicting with,, s0O- has O | ® |© | O 0, o

to be undone to produdg{0,}, and then redone in a new version O: | © | © | ©® (b) CRT

to produce{Os, 0, } (to achieve the system chosen combined ef- (a) CRM

fect). In this scenario, user 3 will observe tiiat's effect is chang-)

ing from one version to another version, due to the inconsistence Fig. 5. CRM versus CRT

between its initial effect and its final effect. Thibreormal effect Since® and @ relations are symmetric (i.e¢RM[i, 5] =

is undesirable, and also violates the intentions of operations sinc€ RM[7,:]), and an operation is always compatible with itself (i.e.,
one operation (e.g@1) changes (by undoing) the effect of another C RM]i, i] = ®), by omitting these undant and constant relation
independent operation (e.@2:). It should be pointed out that no elements, the conflict matrix can be compressedto-al) x (n—1)
matter which combined effecOt combined withO, or O,) the Conflict Relation Triangle (CRT)}or example, th& x 3 CRMin

Fig 5-(a) can be compressed into an equivatent2 CRTin Fig. 5-
(b).

B. Compatible groups set

An alternative way of expressing the conflict/compatible relation-
ships for a group of operations is call&bmpatible Groups Set
(CGS) which is defined as follows.

Definition 7: Compatible Groups Set
Given a group of operation§'O, its corresponding Compatible
Groups Set'GS) is expressed as follows:

CGS = {CG1,CGy,...,CGp}

whereCG; = {01, 0»,...,0:}, and (1) all operations in anyG;
must be mutually compatible; (2) for any operationc GO, there
must be at least on@G; € CGS, such thaD € CG;; and (3) for
any pair of operation®;, O, € GO, if O, ® Oy, there must be at
leastone&C'G; € CGS, suchthaD., 0, € CG.. m

For example, the conflict relation expressed by tH&T in
Fig. 5-(b) can also be captured WyG'S = {{01,0:},{02, 03}}.
In general, given & RT', a CGS can be derived by using the follow-
ing algorithm.

Algorithm 1: Given aC' RT for a group ofN operations70, a
C @GS corresponding to thi€' RT' can be obtained as follows:
1. CGs ={};
2. Fori<i< N—-1l,andi< j< N
If CRT[i,5—1]=0®
ThenCGS = CGS + {{0:,0,}};
3. Fori <:< N,
If O; ¢ CGy forallk € {1,2,...,|CGS|}
ThenCGS = CGS + {{0:}}. O
For example, as shown in Fig. §0.,0s:} € CGS since
CRT[2,3 — 1] = ®, and{0,} € CGS sinceO, is not in any
otherCG in CGS.

OP| O, | O3
0.1 © | ® CGs ={{0,},{0:,0:1}
O ©

Fig. 6. A CRT and its correspondin@G.S.

It should be noted that in th€ G.S, the compatible relationships
among operations aexplicitly expressed by their co-existence in at
least oneg”’GG. However, the conflict relationships among operations
areimplicitly expressed by their non-coexistence in aiy.

C. Equivalent CGS
If two compatible groups se8G.S; andC'G'S; capture the same

compatible relationships for the same group of operations, then they

areequivalentdenoted a€’'G'S; = C'G.S;. There exist some trans-
formation rules which can be used to transfor@@.s into another
equivalentCGS.

In the following, we use the notaticiG; @ C'G; to mean that
all operations in botlt'G; andC'G; are mutually compatible.

Rule 1: Given aCGS, for any pairCdG;,CG; € CGS,
CG; ¢ CGy, CG; € CGy, andCG; © CdYy, thenCGS

CGS —{CG;,CG,} +{CG, uCqG,}. O

Rule 1 says that if none of the two groups embraces the other
(non-embracing groups) and all operations in the two groups are
mutually compatible (mutually-compatible groups), then these two
groups can be replaced by their union. This rule can be extended to
anym(> 2) non-embracing but mutually-compatible groups. With
this rule, multiple small grups can be merged into a single big group
which includes all mutually compatible operations.

Rule 2: Given aC'GS, if there existCG;, CG; € CGS, 1 # 3,
suchthatU'G; C CGj,thenCGS = CGS — {CG;). m

Rule 2 says that if one group is a subgroup of another group in a
C@GS, then the subgroup can be removed.

D. Normalized CGS

We are particularly interested in a special formcéf? s, called
Normalized Compatible Groups Set (NCG8hich is defined be-
low.

Definition 8: Normalized Compatible Groups Set
Given aC'd\S for any group of operation&'O targeting the same
object, theCG S is aNormalizedCGS (NCGS), iff: (1) for any
group of mutually compatible operations @O, there must be at
leastoneg” G € CGS, such that all these compatible operations co-
existinC'G; and (2) for any pai€'G;, CG; € CGS, there must be
atleaston®, € CG;, andong), € C'Gy, suchthaD, ® O,. 0O

By using Rules 1 and 2, @G S can always be transformed into
aNCGS. The following algorithm can be used to obtaitval'G'S
from a givenC RT for any group of operations targeting the same
object.

Algorithm 2: Given aC RT for a group of operations, & CGS

corresponding to thi€’ RT" can be obtained as follows:

1. Obtain a®G'S for this C'RT by using Algorithm 1.

2. Apply Rule 1 to transforn€’G.S into CGS’, so that all non-
embracing but mutually-compatible groups are replaced by
their unions.

3. Apply Rule 2 to transforn’G S’ into CGS”, so that all sub-
groups are removed.

4. ReturnNCGS = CGS". O

An example of applying Algorithm 2 to transform@G'S into a

NCGS is givenin Fig 7.

OP | Oy | O3 | O4
Oy & O] O]
O: ®© ®©
Os ®©

CGS = {{01,0:},{01,04},{02,0:},{02,04},{0, Os}}
{{01,05,04},{02,0:,04},{03,04}} (by Rule 1)
{{01, 01,04}, {02,05,04}} (by Rule 2)

NCGS

Fig. 7. A CRT, and its correspondifigG.s and NCG'S.

The following theorem establishes theiquenesproperty of the
NCGES.

Theorem 1: Given a group of operatiorgO targeting the same
object, theNC'G S for this GO is unique.

Proof: Suppose there are twéC'G.S; andN CG.S; for the same
GO. First, we prove that fo€'G, € NCGS,, there must exist a
CGy € NCGS,, suchthal'G, = C'Gy,. Since bothVC'G'S: and
NCGS; are for the samé& O, all operations iCG, of NCGS;
must also be iINVC'GS2. Moreover, since all operations G,

V. Incremental creation of multiple versions

If the group of operation&/O targeting the same object are all
known in advance, th&/C'G S for this GO can be constructed by
using Algorithm 2; then multiple versions can be created and oper-
ations can be applied to proper versions according to the combined
effects specified by th&/CGS. However, in real-time collabora-
tive editing sessions, operations can be generated concurrently and
may arrive at different sites in different orders. Because of high re-
sponsiveness consideration, it is not proper (or feasible) to postpone

are mutually compatible, they must all be in at least one compatiblgyecting an operation until all other potentially concurrent opera-

groupCd, in NCGS; according to Conition (1) of Definition 8.
Furthermore, it is impossible far'GG, to contain one extra compat-

tions have arrived. An operation should be allowed to execute as
long as it is in the right causal order. This means that the system

ible operatior,. Otherwise, there must be at least one compatibley 55 19 execute the group of operations one after another to incre-

groupCG?, in NCGSy, which contains botl®, and all operations
in CG, according to Conition (1) of Definition 8. Then(CG,
must be subgroup af'G,, which is contradicting to Condition (2)
of Definition 8. ThusC G, andC G, must contain the same group
of compatible operations and hen€¢’, = CG,. By the same
reasoning, it can be proven that for a6z, € NCGS,, there
must exists &G, € NCGS,, such thal’ G, = CG,y,. Thus the
theorem follows. o

E. Combined effect specified by NCGS
The significance of thé&/ CG S is that it gives a formal specifica-

mentally create versions (if necessary) and combine the effects of
all operations. In other words, a distributed algorithm is needed to
incrementally construct th& C'G.S at all sites.

Suppose a group of operations targeting the same object arrive
(and become causally ready for execution) at a site in the follow-
ing order:04, Oy, ..., O,. The algorithm will construct a sequence
of NCGSs: NCGS:, NCGSy, ..., NCGS, in such a way that
NCGS; is the NCGS for the group of operations fro@, to O;,
and the finalNCGS,, is the NC'GS for the whole group of opera-
tions. To achieve this, two technial problems need to be solved: one
is how to apply operatio®; on NCGS;_; to produceNCGS;;

tion of the combined effect for any group of operations targeting theand the other is how to identify all object versions corresponding to

same object.

Definition 9: NCGS specified combined effect
Given the NC'GS for a group of operationg7O targeting ob-
ject G, the combined effect fof7O is as follows: (1) For each
CG € NCGS, there is one object version made frém (2) For all
operations in the sam@d, they will be applied to the same version
corresponding to thé€'G. o

The combined effect specified by tAéC'G'S is unique because
the NCGS for a group of operation&'O is unique. Furthermore,

NCGS;_; at each step. The second problem will be addressed in
the next section. In this section Multiple Object Versions Incre-
mental Creation (MOVICalgorithm will be proposed to address the
first problem.

A. The MOVIC algorithm

The following notations will be used in the description of the
MOVIC algorithm: (1) O; represents théth operation to execute
atany site. (2)VCGS;_, represents the — 1)th NCG'S for oper-
ations fromO; to O;_,. (3) NCGS; represents théth NCG.S for
operations fron0, to O;. (4) O; @ C'G means tha®; is compatible

the following theorem establishes that this combined effect compliegyith all operationsirC'G. (5) 0; @ CG means tha®; is conflicting

with CER1, CER2, andCERS.

Theorem 2: The combined effects specified by tha”'G S sat-
isfy CER1, CER2 andCER3.

Proof: (1) For any pair of operation@; andO in the NCGS,
if O1 ® O3, they could never coexist in the safié/ in the NCG.S
according to Conition (1) of Definition 7. and hence they could

with all operations ilC'G.

The objective of the MOVIC algorithm is to appl§; to the
NCGS;_; (i.e., to addO; to proper existing compatible groups in
the NCGS;_; or to create new compatible groups if necessary) to
produce theVCGS;.

never be applied to the same object version, which complies with Algorithm 3: MOV IC(O;, NCGS;_1) : NCGS;

CERL. (2) For any pair of compatible grougsG;; andC'G; in the
NCGS, there must be at leastog € CG,, andon&), € CG,,
such thaD, @ O, according to Conition (2) of Definition 8. Since

1. NCGS; :={};C:=|NCGS;_|;
2. RepeatuntiVCGS;—, ={ }:
(@) Remove on€'G from NCGS;_1;

there is one-to-one correspondence between the compatible groups (b) If O; ® CG, thenCG := CG + {0;};

inthe NC'GS and the object versions made according totheéG.S

(c) ElseifO; ® CG, thenC := C — 1;

specified combined effedEER2 is satisfied. (3) For a group of op- (d) Else

erations, if they are mutually compatible, they must coexist in at o Clrew :={0|(0 € CG)A(O® O}
least one commo@’'G according to Conition 1 of Definition 8, so o CGrew = CGrew + {O:};

they will be combined in at least one common object version, which o NCGS; := NCGS; + {CGrnew}.
complies withCER3. m (e) NCGS; := NCGS; + {CGY;

3. IfC =0, then

In summary, the major result in this section is that given agroup (@) CGrew := {O0:};
of operations targeting the same object, their combined effectcanbe (b) NCGS; := NCGS; + {CGnew };

uniquely determined by thRCGS and this combined effect com-
plies with CER1, CER2, andCERS3. The following sections will

discuss how to achieve this unique and correct combined effectina NCGS; — {CGrew}.

distributed, incremental, and consistent way.

4. For anyCGpew € NCGS;, if there is anothelC'G
NCGS;, such thatCG,.., C CG, then NGCS;

ol m

In the MOVIC algorithm, theNCG'S; is first initialized to an
empty set, andC (a counter for the number @fGs which are not
fully conflicting with O;) is initialized to the size of the current
NCGS;i_1.

Then,O; is checked against evefyG in the NCG.S;_; one by
one (Note: the order is not significant). df; is compatible with
all operations ilC'G, thenO; is added ta”' GG, which means thab;
can be directly applied to that object version. Els@ifis conflicting
with all operations irC'GG, thenO; is not added t@’' G, which means

Example 1: Given four operation$, Oz, Os, andO,, with their
conflict relationships expressed in Fid. 8

OP | Oy | Os | O4
O | ® ® O]
O: & ®©
O3 O]

Fig. 8. The CRT for Example 1

O; cannot be applied to that object version. In this case, the counteZonsider the following two different execution orders:

C is decremented. Otherwis@; must be partially compatible with
some operations i@'G. Inthis case, a new groUpG .., is created,
which contains all operations iiG which are compatible witi®;,
and thenO; is added toC'G..,, which meansD; is applied to a
new object version corresponding €G.... The newly created
CGhew and the existing” G (with possibly an additionaD;) are
all added to theVC'G.S;. SinceO; is added only to groups with op-
erations which are all compatible with;, the resulting grups are

Execution Order 1: Oy, O3, O3, andOy,.
1. NCGS, = {{0,}}
2. NCGS; = {{0:},{0:}}
3. NCGS; = {{01},{0:},{0:}}
4. NCGSs = {{01,04},{02,04},{03,04}}

Execution Order 2: Oy, O3, O4, andOs.
1. NCGS, = {{0,}}

ensured to be compatible groups (for Citioths 1 and 2 of Defini- 2. NCGS; = {{0:},{0:2}}

tion 7). Moreover, whei®; is compatible with multiple operations 3. NCGSs = {{01,04},{02,0,}}

in an existing group, it is always added to that group or a new group 4. NcGs, = {{01, 04}, {04, 05}, {02, 04}, {04, 031}
containing all these compatible operations. In this way, Condition 1 = {{01,04},{02,04},{04,05}} (by Rule 2)
of Definition 8 is satisfied.

After checking allCGs in the NCGS;_1, if C = 0, thenO;
must be either the first operation (i.€; = O,) or conflicting with
all CGs inthe NCGS;—1. In this case, a new groupGpe., = since0, ® O; butO; ® Os; thenOs is checked againgiOs, O, }

{0;} is created (for Condition 2 of Definition 7). and another (exactly the same) new grddp, O} is created for

A last but very important step in the MOVIC algorithm is to check the same reason. However, one of the two new groups is removeed
each newly created groupG ..., to see whether it is a subgroup of according to Rule 2. In this way, the finAC'G S, is the same for
another group in theVC'GS;. If this is the case{'G .., should two different execution orders.
be removed according to Rule 2 to ensure that there shall be at least
one pair of conflicting operations in each pair@s in the new Example 2: Given four operation®;, Oz, Os, andO,, with their
NCGS; (for Condition 2 of Definition 8). conflict relationships expressed in Fig. 9.

Since creating a new compatible group corresponds to creating a

It can be seen that at Step 4 of Execution Orde©2,is first
checked againsfO., 04} and a new groudO4, Os} is created

new object version, and adding; to an existing group or a new OP| 0> | Os | Os
group corresponds to applyin@; to the object version for that O | ® ® ©
group, it is straightforward to derive the method of executihg % © ©
on the object versions corresponding to fié'G.S;_; as follows: Oz ©

1. If O; is added to an existing'G in Step 2-(b) of Algorithm 3,
thenO; is applied to the existing object version corresponding
to CG.

2. If a CGypeqw is created out of an existingG in Step 2-(d),
and thisC'G.., is not removed in Step 4, then a new object
version corresponding t6'G,,.., is created an@; is applied
to it.

3. IfaCGy. With only O; is created in Step 3-(a), then a new
object version corresponding to thi&7,,.., is created an@;
is applied to it.

Fig. 9. The CRT for Example 2

Consider the following two different execution orders:
Execution Order 1: Oy, Oz, Os, andO,.

1. NCGS, = {{0,}}

2. NCGS; = {{0:},{0:}}

3. NOGSs = {{0:},{02,0:}}

4. NCGSy = {{01,04},{02,0:,04}}

Execution Order 2: Oy, O3, O4, andOs.
1. NCGS: = {{O:1}}
2. NCGS> = {{0:1},{0:}}
3. NCGS; = {{01,04},{02,04}}
4. NCGSs = {{01,04},{04,0:},{02,04,03}}
= {{01 s 04}7 {027 047 03} (by Rule 2)

B. Order independency property

The MOV IC algorithm has a very important property: no mat-
ter in which orders a group of operations are processed, the final
NCGS, constructed by the MOVIC algorithm is the same because
there is only one uniqu&’C'GS for any group of operations (see As shown in Step 4 of Execution Order 2, whéhn is first
Theorem 1). This property is calledder-independencyhich en- checked againgtO,, 0.}, a new groupg{O4, O; } is created since
sures that a consistent final result can be achieved at all collabora®, » Os butO; ® Os; thenOs is checked againgtD-, O4}, and is
ing sites regardless of different operation execution orders. A formal
verification of this property is beyond the scope of this paper. Some it should be noted that the conflict relationships betwegnand operations iV C' G S; _ 1 can

examp|es are given bE|OW to iIIustrate the order-independency pl’Oﬂg detecteq on-the-fly b)_/ examir?ing the state-ve(?tor timestamps a.nd othe.r parfflmeters of operations.

The C' RT is used here just to give a complete picture of the conflict relationships among all oper-
erty' ations, which does not imply that a complefeR T for a group of operations has to be constructed
before applying the MOVIC algorithm.

added into this existing group (becomif@-, O4, Os}) sinceOs by Id(G) (= Tgt(02)) because the previous execution®f does
is compatible with all operations in this group. However, the newnot change the identifier af. However, after executing both;
group{ 04, O3 } is removeed since it is a subgroup{@¥., O4, O3 } andO-, two versiong5{0; } andG{O-} have been made fro¥
according to Rule 2. In this way, the finAlC'GS, is the same for and the originat7 disappeared. Whef: arrives withT'g¢t(Os) =

two different execution orders. 1d(G), bothG{0, } andG{O-} must be found in order to combine
_ o o O-’s effect with them. The question is: how shoui{O; } and
VI. Consistent object identification G{0.} be identified so that they can be traced by udid¢~)?

For the MOVIC algorithm to work, one important parameter has 10 address the multiple versions identification problem, the sim-
to be provided: the curren¥ CGS;_1, on which the new opera- Ple identification scheme can be extended (1) to let both versions
tion O; is applied to produc&/ C'GS;. The technical issue here is: inherent the identifier of the original object so that they are trace-
how to find theC'G's in the NCGSi—, for O;? Since &G inthe ~ able by using/d(G); and (2) to let one version include one addi-
NCGS;i_; correspondsto an object version made from the originaltional identifier of the operation which triggers the creation of that
object targeted b, the above issue is converted into the question:Ne€W version so that multiple versions are digtiishable from each
how to find the object versions made from the original object tar-other.

geted by the new operatiah;? The key to solving this problem is In this example, sinc®: triggers the creation of a new version,
to devise an object identification scheme which is able to identify allG{O1 } could simply take the identifier of, i.e., Id(G{O.}) =
object versions made from the same original object. Id(G), but G{O:} will take Id(G) plus Id(O-) as its identi-
fier, i.e., Id(G{0.}) = [1d(G) + 1d(O:) (the precise mean-
A. Requirements for object identification ing of “+" will become clear at the end of this subsection).

Clearly,Id(G{0.}) # Id(G{0-}), and bothG{O; } andG{O-}
re traceable by usingd(G) since Id(G) is included in both
d(G{0,}) andId(G{0-}).

The above extended identification scheme is able to ensure mul-
tiple versions of the same object be distinguishable from each other
and traceable from the identifier of the original object. However, it
is not able to ensure consistency of the identifiers of multiple repli-
cas of the same object. To illustrate this problem, assume the two
gonflicting operations in the previous example are executed at a dif-
ferent site in a different order?, followed by O, . In this scenario,
it will be O, which triggers the creation of a new version (60, }

To work in a multi-version and multi-replica (due to replicated ar-
chitecture for the storage of shared documents) object-based grap
ics editing system, the object identification scheme must maintai
the following three properties: (niquenessevery object at a site
must have a unique identifier. (2yaceability: multiple versions
of the same objeat’ must have identifiers which can be traced by
using the identifier of5. (3) Consistencymultiple replicas of the
same object at different sites must have the same identifier.

The uniqueness property ensures different objects at a site be di
tinguishable from each object. The trac#igb property ensures
multiple versions of the same object badeable by using the identi- ™' I . S
fier of the original object. The consistency property ensures muItipIé"’III take {d(G_) _pIusId(_Ol) as its identifier, buG {0 } will simply
replicas of the same object have the same identifier so that operatiof&k€ the identifier ofs, i.e., 1d(G{0- }) = 1d(G). Clearly, the two
applied on one replica be also applied the other replicas. The thre€Plicas of the same objet{O- } have been identified differently
properties together ensure that an operation targeting an object 416N the two conflicting operations are executed in different orders.
applied to all versions and all replicas of the same object at all sites. 10 Solve this problem, the previous identification scheme is re-

vised to let both versions include one additional identifier of the cor-
B. Analysis of object identification issues risp?gd"lg (Zlczr(l;f;iﬁ:ng [?(eof a;ion-_ FQLthe_?TEV!OU?d'E(gyoﬁ{ﬁl}
. . S . should ta plus 1) as its identifier, i.e. 1} =

We start f_rom a simple obJ_ect identification schemt_e Whlp_h is able]d(G) + 1d(0,); andG{0,} should takeld(G) plus Id(O3) as
to uniquely identify every object. Lét(G) denote the identifier of ;. identifier, i.e./d(G{0,}) = Id(G) + 1d(O,). With this re-
objectG. Suppose each operationhas a unique identifier, denoted vised scheme, no matter in which order conflicting operations are

asld(O) 2. Then, each object can be uniquely identified by the iden- . . . g . .
tifier of the operation which created this object. Under this schemeexecmed’ multiple replicas of the same object version wil be iden

. . X S i ifi i ly.
when objecti is created by operatioft at alocal site(:'is assigned ' I?ig?)rgfésctteizte);ltification scheme would not be completely correct
a unique identifier which is equal ti(0), i.e., [d(G) = 1d(O). .) pletely

. . : ._ if the following more subtle inconsistency scenario was not discov-
WhenO is pr rem i repli f th m . ?
© s propagated to a remote site, a replica of the same ObJe‘:[red and resolved. Given three operations;, O», andO- tar-

will be created and assigned the same identifier. When a non-crea?%tin the same obiect. Suppose their conflict relationshios are:
operationO is applied to an existing obje¢t at the local site(Q will gO ®go 0,0 Jand.O £pO First consider the outcoFr)ne of.
takeld(G) as one of its parameters (i.>(O) = Id(G)). When Lo e L e z ’

. o . executing these operations in the orderaf, O, andOs. After
O arrives at a remote site, its parameiest(O) can be used to find . ~
the right replica of the same object to apply. This simple identifica-SXeCUlingO1, G becomes {0 }, but [d(G{O13) = 1d(G). Af-

tion scheme works well for single version systems, but fails whe fer executing);, a new versiot{0: } is created and is identified

; . : by 1d(G{0.}) = 1d(G) + 1d(0O2). In the meanwhile, another
cr;ur::cllﬁnclfsver&ons of the same object can be created due to Operatlg\%evrsion(}{ol} is identified by/d(G{01}) = Id(G) + 1d(O:)

For example, considerthree operatidhs O, andOs, targeting "’?°°°r9"”9 to the re_vlsed |dent|f_|c§1t|on scheme. F'“?”y' W@Q_m

. . . . ;] rives, it will be applied to the existing versioi§ O } directly since

the same objeat’. Suppose their conflict relationships a@i © ; . ! .
i O3 ® O,. The final outcome of executing the three operations will
02, 01 ® O3, andO; ® Os. Assume these three operations are . . . o
h be two versionsG{O; } with an identifier of/d(G) + 1d(O1), and

executed at a site in the order@f, O, andO;. To executeD, G{0,, 02} with an identifier of d(G) + 1d(O,)
the target objectz can be found by its original identifiefd(G) 28 2/

: . However, if the three operations are executed at a different site in
= Tgt(01)). To execute),, the target objeadfr can still be bund . ’ 8 :
(= Tgt(01) ? 9 J a different order0;, Os; andO-, the final outcome of executing the

20ne way of making thd d(O) is to use a paif sid, Ic), wheres:d is the identifier of the site three operations will also be two VerS_IO@{O_l } Wlth an identifier
at whichO is generated, anit is the sum of the state vector value associated With of]d(G) +]d(Ol), andG{Og, 02} with an identifier Of]d(G) +

Id(Os) (becaus@®s triggers the creation aff{Os }). Clearly, the VII. Comparison to related work

two replicas of the same object versiGH{ Oz, Os } are identified Most existing collaborative graphics editing systems have

% t\ONO (ljifferent identifiers (i.e./d(G) + 1d(Os), and/d(G) + adopted a conflict-prevention approach based on locking. Exam-
(O:2))! . .) L .. _..__plesystems based on locking include: Aspects [17], Ensemble [11],

In recognizing this problem, the previous object identification GroupDraw [3], and GroupGraphics [12]. In these systems, a user
scheme s further revised to let a version’s identifier include the idenhas to place a lock on an object before editing it, thus preventing

tifiers of all operations (e.g., botk; andO:) which are conflicting other ysers from generating conflicting operations on the same ob-
with another operation (e.g(1), regardless which operation trig- ;

. . . ; ect. For locking to work, however, there has to be a coordinating
gers the creation of this new version. Furthermore, it becomes Cle%rocess in the system which keeps track of which object(s) has been

that the collection of operation identifiers in the object identifier |14 so it can grant/deny permissions for locking requests. The
should be treated ass®{ rather than dist. In a set representa- roniem with locking is that when an editing operation is gener-
tion, the order of adding a conflicting operation identifier into the yieq it has to wait for at least a round trip time of sending a request
object identifier is not significant. message to the coordinating process and receiving a grant message
back, before it can be executed (if it is allowed) at the local site.

C. The COID scheme This round trip delay in the Internet environment may significantly
Based on the above analysisCansistent Object IDentification d€grade the system’s responsiveness. Various techniques have been
(COID) scheme is defined below. proposed to overcome this problem. For example, Ensemble allows
conflict-free operations to execute immediatelyhwiit wating for
Definition 10: The COID scheme approval. While in GroupDraw, locally generated operations are ex-

ecuted right away and a message is sent to the coordinating process.
If the coordinating process does not approve the operation, then the
effect of that operation is undone, which may cause abnormal phe-
nomena at the user interface.

In contrast to conflict-prevention approaches like locking, the
multi-version strategy posed in this paper allows conflict to oc-
cur. It provides a mechanism (i.e., multiple object versions) to ac-
commodate conflicting operations in a consistent way. Conflict res-
olution is left to the users. Major advantages of this approach are:
it helps achieve high responsiveness of the system and preserve the
work concurrently produced by multiple users in the face of con-
flicts. However, locking does have its merit of reducing conflicts
by enforcing mutual exclusion. In fact, we have found locking is
actually complementary and compatible with the optimistical con-

- : currency control strategies and proposed a noypgional locking
from the target objecti, /d(G") is constructed as follows: scheme (in contrasting to existimpmpulsorylocking schemes) to
1d(G') =]d(_G) + {Id(Q)}. o) enhance the consistency maintenance capability of the system [15].
3. When operatio is applied to an existing obje¢t, /d(G) ourinvestigation into the integration of this optional locking scheme
is extended to includéd(O) if O is conflicting with any other yith the multi-version approach in the graphics editing domain will
operation (inG_ or in any qther version). _ _ be reported in a forthcoming paper.
4. When operatio® is applied to one version of objeGt every Another alternative conflict-resolution approaclsésialization
ot/her version of+, denoted a&+", is checked to see whether \yi, this approach, operations can be executed as soon as they are
G' has the effect of an operatidi, such thatl, © O. If yenerated to give a quick response. Before an operation is executed,
there exists such ag, andd(O) has not been |r/1cluded it must be checked against executed operations for possible conflict.
In MgG), thenId(G") is extended as follows1d(G') := 3 conflict is detected, a total ordering (i.e., serialization) between
1d(G") +{1d(O0z)}. operations is used to determine which operation’s effect will appear.
Examples of such systems are: GroupDesign [7] and LICRA [5].

The COID scheme maintains tbeiquenesproperty becausethe This approach is essentially tsingle-operation-effe¢tetermined
Createoperation is unique, and any two versions of the same objedby a total ordering) approach discussed in Section Ill. For problems
must have at least one pair of conflicting operations. Moreover, theuith this approach and its major differences with ailroperations-
COID scheme maintains tlewnsistencproperty because for an ob- effectapproach, please refer to the analysis in Section Ill.
ject, the same set of versions will be replicated at all sites (due to the The most closely related work is the Tivoli whiteboard meeting-
uniqueness property of the NCGS), and conflict relationships amongupporting tool developed at Xerox PARC [9]. Tivoli also used mul-
all operations are the same at all sites. Finally, the COID schemgple object versions (callerkplicasin Tivoli) to accommodate the
maintains theraceability property because the identifiers of all ver- effects of conflicting operations. The major difference between the
sions of the same object are supersets dfd(G). To answer the Tivoli approach and our GRACE approach is that in Tivoli conflict
question raised at the beginning of this section, the folloWiaget is defined at the object level, i.e., a conflict occurs whenever two

The identifier of objecty consists of a set of operations identifiers:
1d(G) = {Id(01), 1d(02), ..., 1d(Ox)},

whereld(0;) € Id(G), 1 < ¢ < n, iff: (1) O; is the operation
which created?, or (2) O; has been applied 6, andO is conflict-

ing with an operatioi®, , which has been applied to another version
made fromd.

In the context of the MOVIC algorithm, the COID scheme can be
realized as follows:
1. When operatio) creates an original obje¢t, Id(G) is con-
structed as followsid(G) := {Id(0)}.
2. When operatioi® triggers the creation of a new versi¢t

Object VErsion Recognition (MER)scheme is defined. concurrent operations target the same object; whereas in GRACE,
conflictis defined at object attribute level, i.e., a conflict occurs only
Definition 11: The TOVER scheme when two concurrent operations target the same objedthange

Given any operatio®;, any object7 is a version correspondingto the same attribute to different values. Consequently, Tivoli does not
a compatible groug®'G in the currentNCGS;_; iff Tgt(O;) C allow compatible operations (according to GRACE conflict defini-
1d(G). o tion) to be applied to the same object (e.g. concumteandFill

operations cannot be applied to the same object)|thegin unnec-
essary object versions. To our knowledge, the GRACE systemiis the

only one in which operation conflictis defined at the object attribute[7]

level to minimize the number of object versions. Consequently, the

technical issues and solutions reported in this paper are unique and
have never been addressed by any other work.

VIIl. Conclusions and future work

In this paper, we have proposed a novelltintersion approach

to conflict resolution in real-time collaborative graphics editing sys-

tems. This approach is able to preserve the work concurrently Pro10]

duced by multiple users in the face of conflicts, and to minimize
the number of object versions for accommodating combined effects
of conflicting and compatible operations. Major technical contribu-

tions of this work include a formal specification of a unique com- [11]

bined effect for any group of conflicting and compatible operations,
a distributed algorithm for incremental creation of multiple object
versions, and a consistent object identification scheme for multi-

version and multi-replica graphics editing systems.
All algorithms and schemes presented in this paper have been im-

plemented in the Internet-based GRACE prototype system in Java.

The current GRACE prototype system has been developed mainly tg 3]

test the feasibility of our approach and to explore system design and
implementation issues. Efforts are being directed towards building a
more robust and useful system, which will be used by external users

in real application contexts to evaluate the research results from end-
users’ perspective.
The multi-version approach alone is not a complete solution to

resolving conflicts in collaborative systems. Other complementary
techniques should be intergrated to work in conjunction with the

multi-version technique. We are in the process of devising a grouf15]
awareness mechanism and an optional locking scheme to help min-

imize the chance of conflict. Work is underway to apply GRACE

techniques to other advanced object-based graphics editing systems
as well.

Acknowledgement

The work reported in this paper has been partially supported b 17] Von Biel:

ARC (Australia Research Council) Large Grants A49601841 an

A00000711 and an ARC Small Grant.

References

(1]

(2]
(3]

[4]

R.M. Baecker, Readings in groupware and computer-
supported cooperative workMorgan Kaufmann Publishers
Inc., 1992.

C. A. Ellis, et al: “Groupware: some issues and experiences,”
CACM 34(1) pp.39-58, Jan. 1991.

S. Greenberg, et al: “Issues and experiences designing and im-
plementing two group drawing tools,” Froc. of the 25th An-
nual Hawaii International Conference on the System Science,
pp. 139-250, Jan. 1992.

S. Greenberg and D. Marwood:“Real time groupware as a dis-
tributed system: concurrency control and its effect on the in-
terface,” InProc. of ACM Conference on Computer Supported
Cooperative Workpp. 207-217, Nov. 1994.

R. Kanawati: “Licra: a replicated-data management algorithm
for distributed synchronous groupware applicatioPgrallel
ComputingVol. 22, pp.1733-1746, 1997.

A. Karsenty and M. Beaudouin-Lafon: “An algorithm for dis-
tributed groupware applications,” IRroc. of 13th Interna-

(8]
(9]

[12]

[14]

[16]

tional Conference on Distributed Computing Systemps195-
202, May 1993.

A. Karsenty, et al: “Groupdesign: sharedtéd in a hetero-
geneous environmentJsenix Journal of Computing Systems,
6(2), pp. 167-195, 1993.

L. Lamport: “Time, clocks, and the ordering of events in a
distributed systemCACM 21(7) pp.558-565, July 1978.

T.P. Moran, et al: “Some design principles for sharing in
Tivoli, a whiteboard meeting-support tool,” Broupware for
Real-time Drawing: A Designer’s Guided. by S. Geernberg,
et al, pp. 24-36. McGraw-Hill1995.

D. Nichols, et al: “High-latency, low-bandwidth windowing
in the Jupiter collaboration system,” Rroc. of ACM Sympo-
sium on User Interface Software and Technologjgs,111-
120, Nov. 1995.

R.E. Newman-Wolfe, et al: “Implicit locking in the Ensemble
concurrent object-oriented graphics editor,”"Rroc. of ACM
Conference on Computer Supported Cooperative \Wopk,
265-272, Nov. 1992,

M.O. Pendergast:* Groupgraphics: prototype to product,” In
Groupware for Real-time Drawing: A Designer’s Guidgd.

by S. Geernberg, et al, pp. 209-227, McGravil;H 995.

C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen: “Achiev-
ing convergence, causality preservation, and intention preser-
vation in real-time cooperative #ithg systems,”ACM Trans-
actions on Computer-human Interactiob(l), March 1998,
pp.63-108.

C. Sun and C. A. Ellis: “Operational transformation in real-
time group editors: issues, algorithms, and achievements,” In
Proc. of ACM Conference on Computer-Supported Coopera-
tive Work,pp.59-68, Seattle, USA, Nov.14-18998.

C. Sun and R. Sosi"Optional locking integrated with oper-
ational transformation in distributed real-time group editors,”
In Proc. of The 18th ACM Symposium on Principles of Dis-
tributed Computingpp.43-52, Atlanta, USA, May 4-6, 1999.
C. Sun and R. Sosi*“Consistency maintenance in Web-based
real-time group editors,Proceedings of 19th IEEE Interna-
tional Conference on Distributed Computing Systems (work-
shop),pp. 15-22, Austin, TX, USA, May 31- June 4, 1999.
“Groupware grows up,” IrMacUser,Pp.207-211,
June, 1991.

[18] Y. Yang, C. Sun, Y. Zhang, and X. Jia: “REDUCE approach to

achieving high responsiveness in Internet-based collaborative
systems,” To appear ifEEE Internet Computind2000.

