
A Multi-version Approach to Conflict Resolution in Distributed Groupware Systems

Chengzheng Sun and David Chen
School of Computing and Information Technology

Griffith University
Brisbane, Qld 4111, Australia

Email: fC.Sun, D.Cheng@cit.gu.edu.au
URL: http://www.cit.gu.edu.au/�scz

Abstract – Groupware systems are a special class of distributed
computing systems which support human-computer-human interac-
tion. Real-time collaborative graphics editors allow a group of users
to view and edit the same graphics document at the same time from
geographically dispersed sites connected by communication net-
works. Resolving conflict access to shared objects is one of the core
issues in the design of this type of systems. This paper proposes a
novel distributed multi-versionapproach to conflict resolution. This
approach aims to preserve the work concurrently produced by mul-
tiple users in the face of conflicts, and to minimize the number of
object versions for accommodating combined effects of conflicting
and compatible operations. Major technical contributions of this
work include a formal specification of a unique combined effect for
any group of conflicting and compatible operations, a distributed al-
gorithm for incremental creation of multiple object versions, and a
consistent object identification scheme for multi-version and multi-
replica graphics editing systems. All algorithms and schemes pre-
sented in this paper have been used in the GRACE (GRAphics Col-
laborative Editing) system implemented in Java.

Keywords
Collaborative graphics editors, consistence maintenance, multiple
object versions, real-time groupware systems, distributed comput-
ing.

I. Introduction

Groupware systems are a special class of distributed comput-
ing systems which supporthuman-computer-humaninteraction [2,
4, 13]. A commonly used groupware system is the real-time col-
laborative editor which allows a group of users to view and edit
the same document at the same time from geographically dispersed
sites connected by communication networks. Collaborative editors
are very useful facilities in advanced Computer-Supported Coop-
erative Work (CSCW) applications [1], such as electronic confer-
ence/meeting, collaborative CAD/CASE, and collaborative docu-
mentation systems.

The goal of our research is to investigate the principles and tech-
niques underlying the construction of collaborative editors with the
following three major characteristics [13, 18]. (1)Real-time:The
response to local user actions should be quick (without noticeable
delay) and the latency for remote user actions should be low. The
key performance parameter here is the response time observable
by the user, rather than the number of operations per second as in
non-interactive application systems. (2)Distributed: Collaborating
users may reside on different machines connected by the Internet
with non-negligible and non-deterministic latency. While there is
no limit on the bandwidth increase of the Internet using fiber op-
tic communication technologies, the communication latency over
an inter-continental connection cannot be reduced considerably be-
low 100 milliseconds (the threshold value for user noticeable delay)

due to the speed limit of electronic signals. It is the communica-
tion latency, rather than the bandwidth, which presents a major chal-
lenge to achieving high responsivness for Internet-based collabora-
tive editing systems. (3)Unconstrained:Multiple users are allowed
to concurrently and freely edit any parts of the document at any time,
in order to facilitate free and natural information flow among col-
laborating users. The major challenge of supporting unconstrained
collaborative editing is the management of the multiple streams of
concurrent activities so that system consistency can be maintained
in the face of conflicts.

The requirements for high responsiveness and for supporting un-
constrained collaboration over the Internet have led us to adopt a
replicated architecturefor the storage of shared documents: the
shared documents are replicated at the local storage of each par-
ticipating site, so editing operations can be performed at local
sites immediately and then propagated to remote sites. Because
of concurrent generation of operations and non-negligible and non-
deterministic communication latency of the Internet, there exist
three major inconsistency problems associated with the replicated
architecture [13]: (1)divergence- operations may arrive and be exe-
cuted at different sites in different orders, resulting in different final
documents at different sites; (2)causality violation– operations may
arrive and be executed out of their natural cause-effect order, causing
confusion to both the system and its users; and (3)intention violation
- theactualeffect of an operation at the time of its execution may be
different from theintendedeffect of this operation at the time of its
generation. To address these inconsistency problems systematically,
a consistency model has been proposed in the context of the RE-
DUCE (REal-time Distributed Unconstrained Cooperative Editing)
project [13]. The REDUCE consistency model has been applied to
the collaborative text editing domain for solving various challeng-
ing technical problems [14, 15, 16, 18]. In this paper, we will report
new research findings in applying the REDUCE framework to the
GRACE (GRAphics Collaborative Editing) project.

Collaborative graphics editing systems can be classified into two
types: object-based and bitmap-based. This paper is confined to
the issues associated with object-based collaborative graphics edit-
ing systems only. Graphic objects such as lines, rectangles, circles,
etc., can be created and updated. Each object is represented by at-
tributes such as type, size, position, color, group, etc.. ACreate
operation is used to create an object. After an object has been cre-
ated, updating operations can be applied to change the attributes of
that object. For example, aMoveoperation changes the position at-
tribute of the target object. In a collaborative editing environment,
operation conflict may occur when multiple concurrent operations
try to update the same object in different ways. Resolving conflict
accesses to shared objects is one of the core issues in the design of
this type of systems and will be the focus of this paper.

The rest of this paper is organized as follows. In Section II, some
background information about the REDUCE framework is briefly
discussed. In Section III, a multiple version strategy for conflict

resolution is proposed, and the rules for determining combined ef-
fects of conflicting and compatible operations are derived. Then,
a formal specification of a unique combined effect for any group
of conflicting and compatible operations is presented in Section IV.
A distributed algorithm for incremental creation of multiple object
versions is described in Section V. A consistent object identification
scheme for multi-version and multi-replica graphics editing systems
is presented in Section VI. Our work is compared to related work in
Section VII. Lastly, major results are summarized and further work
is discussed in Section VIII.

II. Previous work

In this section, the basic concepts, definitions, and techniques
adopted from our previous work are briefly described. For details,
the reader is referred to [13].

A. A consistency model

Following Lamport [8], we define a causal (partial) ordering re-
lation of operations in terms of their generation and execution se-
quences as follows.

Definition 1: Causal ordering relation “!”
Given two operationsO1 andO2, generated at sitesi andj, then
O1 ! O2, iff: (1) i = j and the generation ofO1 happened before
the generation ofO2, or (2) i 6= j and the execution ofO1 at sitej
happened beforethe generation ofO2, or (3) there exists an opera-
tionOx, such thatO1 ! Ox andOx ! O2. 2

Definition 2: Dependent and independent operations
Given any two operationsO1 andO2. (1) O2 is dependentonO1

iff O1 ! O2. (2) O1 andO2 are independent(or concurrent), ex-
pressed asO1 k O2, iff neitherO1 ! O2, norO2 ! O1. 2

Definition 3: Intention of an operation
Given an operationO, the intention ofO is the execution effect
which could be achieved by applyingO on the document state from
whichO was generated. 2

Definition 4: A consistency model
A collaborative editing system is said to be consistent if it always
maintains the following properties: (1)Convergence: when all sites
have executed the same set of operations, the copies of the shared
document at all sites are identical. (2)Causality-preservation: for
any pair of operationsO1 andO2, if O1 ! O2, thenO1 is executed
beforeO2 at all sites. (3)Intention-preservation: for any opera-
tion O, both the local and remote execution effects ofO equal to
O’s intention, and if there exists an operationOx such thatOx k O,
then the execution effect ofOx does not interfere with the execution
effect ofO, and vice versa. 2

It should be highlighted that the consistency model imposes an
execution order constraint only on dependent operations, but leaves
it open for the execution order of independent operations as long
as the convergence and intention-preservation properties are main-
tained. This feature of the consistency model lays the theoretical
foundation for achieving good responsiveness by permitting local
operations to be executed immediately after their generation. More-
over, the intention-preservation property makes a further promise to
the users that their individual operations’ effects can be protected
against each other’s interference. Finally, it should be pointed out
that the three properties areindependentin the sense that the main-

tenance of any two of them does not automatically ensure the other
one [13, 14].

B. Concurrency control techniques

The consistency model specifies, on the one hand, what assurance
a collaborative editing system promises to its users, and on the other
hand, what properties the underlying concurrency control mecha-
nisms must support. To capture the causal relationships among all
operations in the system, a timestamping scheme based onvector
logical clockcan be used [13, 16]. Causality-preservation can be
achieved by using either a distributed algorithm [13] or a central
notification server [16]. Since causality is an issue without any re-
lationship with the semantics of operations, causality-preservation
techniques are generic and applicable to both text and graphics edi-
tors.

For supporting convergence and intention-preservation, however,
different editing domains require different techniques. In the text
editing domain, an optimistic concurrency control technique, called
operational transformation has been devised [14]. In the GRACE
project, convergence and intention-preserving techniques for the
graphics editing domain have been investigated. Since achieving
convergence is a relatively simple and independent issue, this paper
will focus on the issues and results related to achieving intention-
preservation only.

III. Operation conflicts and multiple versions

A. Conflict and compatible relations

In the graphics editing domain, concurrent operations may target
the same object and may conflict with each other. For example,
suppose user 1 generates operationO1 = Move(G;X) to move
objectG to positionX, and user 2 concurrently generates operation
O2 = Move(G;Y) to moveG to positionY , whereX 6= Y . Both
operations will be executed at their local sites immediately to give
a quick response, and then propagated to the other sites. SinceO1

andO2 are moving the same objectG to two different positions, it
is impossible to accommodate their conflicting effects in the same
target object. In general, two concurrent operations are in conflict if
they are targeting the same object but changing the same attribute to
different values.

To give a precise definition of operation conflict, the following
notations are introduced: (1)Tgt(O) denotes the target object of
operationO; (2)Att:Type(O) denotes the attribute type ofO; and
(3)Att:V alue(O) denotes the attribute value ofO.

Definition 5: Conflict relation “
”
Given two operationsO1 andO2, they conflict with each other, ex-
pressed asO1
 O2, iff (1) O1 k O2; (2) Tgt(O1) = Tgt(O2);
(3) Att:Type(O1) = Att:Type(O2); and (4)Att:V alue(O1) 6=
Att:V alue(O2). 2

In contrast, if a pair of operations are not conflicting, then they
are compatible, as defined below.

Definition 6: Compatible relation “�”
Given two operationsO1 andO2, if they do not conflict with each
other, they are compatible, expressed asO1 �O2. 2

B. Accommodating all operation effects

For compatible operations, if they are targeting the same object,
they can be applied to the same object. For conflicting operations,

what combined effects could they have without violating their inten-
tions?

One possible combined effect is thenull-effect, which means none
of the two conflicting operations has any final effect on the target ob-
ject. This can be achieved by rejecting/undoing an operation when it
is found to be conflicting with another operation, as shown in Fig 1.
The final results at both sites are identical (empty). However, this
null effect does not preserve the intentions of the two operations
since none of the two operations has any effect at the remote site
and the effect of one operation has been undone by another indepen-
dent operation. The consequence of this intention violation is that
whenever there is a conflict, the work concurrently done by involved
users will be destroyed. This effect is highly undesirable in the col-
laborative working environment because users involved in a conflict
are provided with no explicit information about what other users in-
tended to do, and hence may not be able to take proper actions to
resolve their conflict.

G G

G
G

GG

�
�
�
�

�
�
�
�

Initial state User 1 User 2

Undo O1
Reject O2

After ex O2

After ex. O1

O1 = Move(G, X)
O2 =Move(G, Y)

Rejcct O1
Undo O2

After ex. O2

After ex. O1

Fig. 1. The null-effect for conflicting operations

The second possible combined effect is thesingle-operation-
effect, which is to retain the effect of only one operation, eitherO1

or O2. This can be achieve by enforcing a serialized effect among
all operations. As shown in Fig. 2, whenO2 arrives at user 1, it
movesG to positionY (effectively undoingO1); whenO1 arrives
at user 2, it is rejected. The final results at both users sites are iden-
tical. However, this single operation effect violates the intentions of
both operations since one operation (O1) has no effect at user 2, and
the other operation (O2) has changed the effect of an independent
operation (O1) at user 1. One consequence of this intention viola-
tion is that whenever there is a conflict, only one user’s work can
be preserved. Another consequence is that users are not ensured to
see the effects of the same set of operations: e.g., user 1 sees the
effects of bothO1 andO2, but user 2 never sees the effect ofO1.
Generally, when there are multiple conflicting operations,each user
may see the effects of arbitrary number of operations, depending on
the order in which operations arrive at each site. Therefore, when a
conflict occurs, users may not see a consistent and explicit picture
about what other users intended to do, and hence they may not be
able to take proper actions to resolve their conflict.

To preserve all work concurrently produced by multiple users in
the face of conflicts, we propose anall-operations-effectbased on a
multiple versionsstrategy: two versions ofG, G1 andG2, will be
created, withO1 andO2 being applied toG1 andG2, respectively.
In this way, the effects of both operations are accommodated in two
separate versions, as shown in Fig. 3.

This all-operations-effect preserves the intentions of both opera-
tions since the effects ofO1 andO2 at their local sites are the same
as their effects at the remote sites and they do not change the effects
of each other. With this all-operations-effect, the system is able to
ensure that the work produced by all users be always retained regard-
less whether there is a conflict or not. The only side effect of this

G G

G

G
G

G

�
�
�
�

�
�
�
�

rejected

Initial state User 1 User 2

After ex O2

After ex. O1

O1 = Move(G, X)
O2 =Move(G, Y)

After ex. O2

After ex: O1 (rejected)

Fig. 2. Single operation effect for conflicting operations

G G

G
G �

�
�
�

�
�
�
�

Initial docu state: Initial docu state:User 1 User 2

After ex. O1:

After ex. O2

G1 G2 G1 G2

After ex. O2

After ex O1

O1=Move(G, X)
O2 =Move(G, Y)

Fig. 3. All operations effect for conflicting operations

approach is that the single version object may be converted to mul-
tiple versions if a conflict occurs. The system could notify the users
that there is a conflict, e.g., by highlighting the multiple versions of
the same object. Since all users are provided with a consistent and
explicit picture about what other users intended to do, they could
make better assessment of the situation and may decide to keep one
of the versions or even all of them if that is desired.

It is worth pointing out that a similar all-operations-effect strategy
has also been used in the collaborative text editing domain [13, 14]:
when there are two concurrentInsertoperations inserting two strings
S1 andS2 at the same position, even ifS1 is a substring ofS2, both
strings are maintained in the document (one after the other) rather
than being merged into one. In general, we advocate a groupware
design principle: In the face of a conflict, it is usually better to pre-
serve and display all users’ work to facilitate a user-decided solu-
tion to the conflict, rather than to destroy or hide users’ work to
impose a system-decided solution to the conflict. Because it is gen-
erally infeasible for the system to have the knowledge to properly
resolve conflicts among concurrent users, conflicts are best resolved
by collaborative users, with the system providing explicit informa-
tion about other users’ actions.

C. Combined effect rules

Given a group ofN operations targeting the same object, if they
are all mutually compatible with each other, then they can be ap-
plied to the original target object without creating new versions; and
if they are all mutually conflicting with each other, thenN versions
can be created to accommodate each operation’s effect in a separate
version. However, if there is a mixture of compatible and conflict-
ing operations in the group, it becomes non-trivial to determine how
many versions to create and how to apply which operations to which
versions. In the following discussion, the notationGfOxg will be
used to represent an objectG with the effect ofOx and Gf g repre-
sents its initial state.

To start with, consider a simple scenario with three operations:
O1, O2, andO3. Suppose they are targeting the same objectG, and
their mutual conflict relations are:O1
O2,O1
O3, andO2�O3.
What combined effects should these three operations have?

SinceO1
 O2, they must be separately applied to two versions
GfO1g andGfO2g according to the multiple versions strategy. In
general, we have the following combined effect rule:

Combined Effect Rule 1 (CER1): Given two operationsO1, and
O2 targeting objectG. If O1
O2, they must be applied to different
versionsGfO1g andGfO2gmade fromG.

The question is: how to combineO3 ’s effect? One possibility is
to make a separate versionGfO3g. The problem with this approach
is that it unnecessarily creates two versionsGfO2g andGfO3g for
two compatible operations. To avoid unnecessary versions, we pro-
pose to combine two compatible operationsO2 andO3 in a common
versionGfO2;O3g. In general, to minimize the number of versions
for an object, the following combined effect rule is used to justify
the creation of different versions.

Combined Effect Rule 2 (CER2): Given any two versionsG1

andG2 made from the same objectG, there must be at least one
operationO1 applied toG1, and at least one operationO2 applied
toG2, such thatO1
O2.

Furthermore, consider another scenario with three operations:
O1, O2, andO3, targeting the same objectG. Suppose their mu-
tual conflict relations are:O1
O2,O1 �O3, andO2 �O3. Since
O1
 O2, two versionsGfO1g andGfO2g need to be created ac-
cording toCER1. The question is: which one of the two versions
shouldO3 be applied to?

One possibility is to combineO3 with either O1 (i.e.,
GfO1;O3g) or O2 (i.e., GfO2;O3g), chosen by the system (ran-
domly or by using their total ordering). This approach does not pro-
duce any unnecessary version (according toCER2), but may have
an abnormal phenomenon at the user interface, as shown in Fig. 4.

��
��
��

��
��
��

�
�
�
�

��
��
��
��

-- undo O3
-- redo O3

G{O1,O3}

G{O1,O3}

G{O2}

O2O1G{O1} G{O2}

G{O2}
G{O1}

G{O2}

G{O3}O3

G{ }

G{O3, O2}

G{O3,O1}

G{O2}

G{ } G{ }
User 1 User 2 User 3

G{O1,O3}

Fig. 4. A scenario for motivating CER3

Suppose the system has chosen to combineO3 with O1. At the
site of user 3, the following abnormal phenomenon occurs:O3 is
first applied to its target objectG to produceGfO3g; thenO2 ar-
rives and is combined withO3 to produceGfO3;O2g since they
are compatible (site 3 has no knowledge aboutO1 at this stage); fi-
nally O1 arrives and is found to be conflicting withO2, soO3 has
to be undone to produceGfO2g, and then redone in a new version
to produceGfO3;O1g (to achieve the system chosen combined ef-
fect). In this scenario, user 3 will observe thatO3’s effect is chang-
ing from one version to another version, due to the inconsistence
between its initial effect and its final effect. This abnormal effect
is undesirable, and also violates the intentions of operations since
one operation (e.g.,O1) changes (by undoing) the effect of another
independent operation (e.g.,O3). It should be pointed out that no
matter which combined effect (O3 combined withO1 or O2) the

system chooses, at least one user (user 1 or user 3) in this scenario
will observe that the original execution effect ofO3 is undone and
then redone in another object.

To avoid this abnormal interface effect, we propose to combine
O3 with bothO1 andO2 to produceGfO1;O3g andGfO2;O3g.
In this way, no matter which orders these three operations are exe-
cuted, the final combined effect will be the same at all sites, without
any abnormal interface effect. In general, we have the following
additional rule to determine the combined effects of compatible op-
erations in the face of mixed compatible and conflict operations.

Combined Effect Rule 3 (CER3): Given any group of opera-
tions, if they are mutually compatible and target the same object,
then their effects must be combined in at least one common version
of the target object.

In summary,CER1, CER2 andCER3 are the three criteria for
judging whether a combined effect for a group of operations target-
ing the same object is correct or not. By applying these criteria, the
following combined effects can be achieved: (1) conflicting opera-
tions are accommodated in different versions; (2) compatible oper-
ations are combined in common versions; (3) there is at least one
pair of conflicting operations between any pair of versions; and (4)
there is at least one version combining the effects of any group of
compatible operations.

IV. Combined effects for any group of operations

In the previous section, simple scenarios have been used to derive
and illustrate the criteria (i.e.,CER1, CER2 andCER3) to deter-
mine the combined effects of conflicting and compatible operations.
However, in a highly concurrent real-time collaborative editing en-
vironment, a group of operations may have rather arbitrary and com-
plex conflict relationships among them. A major technical problem
here is: given an arbitrary group of operations targeting the same
object, how to determine their combined effect, which is complying
with CER1, CER2 andCER3?

A. Conflict relation matrix and triangle

To solve this problem, we first introduce theconflict relation ma-
trix to capture the complete picture of conflict relationships among
any group of operations targeting the same object.

Given a group ofn operations,O1;O2; :::;On, targeting the same
object, their conflict relationships can be fully and uniquely ex-
pressed by an � n Conflict Relation Matrix (CRM), in which el-
ementCRM [i; j]; 1 � i; j � n is filled with “
” if Oi
 Oj ,
otherwise it is filled with “�”. For example, a3� 3 CRM for three
operations is shown in Fig. 5-(a).

OP O1 O2 O3

O1 �
 �
O2
 � �
O3 � � �

(a) CRM

OP O2 O3

O1
 �
O2 �

(b) CRT

Fig. 5. CRM versus CRT

Since
 and� relations are symmetric (i.e.,CRM [i; j] =
CRM [j; i]), and an operation is always compatible with itself (i.e.,
CRM [i; i] = �), by omitting these redundant and constant relation
elements, the conflict matrix can be compressed to a(n�1)�(n�1)
Conflict Relation Triangle (CRT). For example, the3 � 3 CRM in

Fig 5-(a) can be compressed into an equivalent2� 2 CRTin Fig. 5-
(b).

B. Compatible groups set

An alternative way of expressing the conflict/compatible relation-
ships for a group of operations is calledCompatible Groups Set
(CGS), which is defined as follows.

Definition 7: Compatible Groups Set
Given a group of operationsGO, its corresponding Compatible
Groups Set (CGS) is expressed as follows:

CGS = fCG1; CG2; :::;CGng

whereCGi = fO1;O2; :::;Okg, and (1) all operations in anyCGi

must be mutually compatible; (2) for any operationO 2 GO, there
must be at least oneCGi 2 CGS, such thatO 2 CGi; and (3) for
any pair of operationsOx, Oy 2 GO, if Ox �Oy, there must be at
least oneCGi 2 CGS, such thatOx;Oy 2 CGi. 2

For example, the conflict relation expressed by theCRT in
Fig. 5-(b) can also be captured by:CGS = ffO1;O3g; fO2;O3gg:
In general, given aCRT , a CGS can be derived by using the follow-
ing algorithm.

Algorithm 1: Given aCRT for a group ofN operationsGO, a
CGS corresponding to thisCRT can be obtained as follows:

1. CGS = f g;
2. For1 � i � N � 1, andi < j � N

If CRT [i; j � 1] = �
ThenCGS = CGS + ffOi; Ojgg;

3. For1 � i � N ,
If Oi 62 CGk for all k 2 f1; 2; :::; jCGSjg
ThenCGS = CGS + ffOigg. 2

For example, as shown in Fig. 6,fO2;O3g 2 CGS since
CRT [2; 3 � 1] = �, andfO1g 2 CGS sinceO1 is not in any
otherCG in CGS.

OP O2 O3

O1

O2 �

CGS = ffO1g; fO2;O3gg

Fig. 6. A CRT and its correspondingCGS.

It should be noted that in theCGS, the compatible relationships
among operations areexplicitlyexpressed by their co-existence in at
least oneCG. However, the conflict relationships among operations
areimplicitly expressed by their non-coexistence in anyCG.

C. Equivalent CGS

If two compatible groups setsCGSi andCGSj capture the same
compatible relationships for the same group of operations, then they
areequivalent, denoted asCGSi � CGSj . There exist some trans-
formation rules which can be used to transform aCGS into another
equivalentCGS.

In the following, we use the notationCGi � CGj to mean that
all operations in bothCGi andCGj are mutually compatible.

Rule 1: Given aCGS, for any pairCGi; CGj 2 CGS, if
CGi 6� CGj, CGj 6� CGi, andCGi � CGj, thenCGS �

CGS � fCGi; CGjg+ fCGi [CGjg: 2

Rule 1 says that if none of the two groups embraces the other
(non-embracing groups) and all operations in the two groups are
mutually compatible (mutually-compatible groups), then these two
groups can be replaced by their union. This rule can be extended to
anym(> 2) non-embracing but mutually-compatible groups. With
this rule, multiple small groups can be merged into a single big group
which includes all mutually compatible operations.

Rule 2: Given aCGS, if there existCGi; CGj 2 CGS, i 6= j,
such thatCGi � CGj , thenCGS � CGS � fCGig: 2

Rule 2 says that if one group is a subgroup of another group in a
CGS, then the subgroup can be removed.

D. Normalized CGS

We are particularly interested in a special form ofCGS, called
Normalized Compatible Groups Set (NCGS),which is defined be-
low.

Definition 8: Normalized Compatible Groups Set
Given aCGS for any group of operationsGO targeting the same
object, theCGS is a NormalizedCGS (NCGS), iff: (1) for any
group of mutually compatible operations inGO, there must be at
least oneCG 2 CGS, such that all these compatible operations co-
exist inCG; and (2) for any pairCGi; CGj 2 CGS, there must be
at least oneOx 2 CGi, and oneOy 2 CGj , such thatOx
Oy. 2

By using Rules 1 and 2, aCGS can always be transformed into
aNCGS. The following algorithm can be used to obtain aNCGS

from a givenCRT for any group of operations targeting the same
object.

Algorithm 2: Given aCRT for a group of operations, aNCGS

corresponding to thisCRT can be obtained as follows:
1. Obtain aCGS for thisCRT by using Algorithm 1.
2. Apply Rule 1 to transformCGS into CGS0, so that all non-

embracing but mutually-compatible groups are replaced by
their unions.

3. Apply Rule 2 to transformCGS0 intoCGS00, so that all sub-
groups are removed.

4. ReturnNCGS = CGS00. 2

An example of applying Algorithm 2 to transform aCGS into a
NCGS is given in Fig 7.

OP O2 O3 O4

O1
 � �
O2 � �
O3 �

CGS = ffO1;O3g; fO1;O4g; fO2;O3g; fO2;O4g; fO3; O4gg
� ffO1;O3;O4g; fO2;O3;O4g; fO3;O4gg (by Rule 1)
� ffO1;O3;O4g; fO2;O3;O4gg (by Rule 2)
� NCGS

Fig. 7. A CRT, and its correspondingCGS andNCGS.

The following theorem establishes theuniquenessproperty of the
NCGS.

Theorem 1: Given a group of operationsGO targeting the same
object, theNCGS for thisGO is unique.

Proof: Suppose there are twoNCGS1 andNCGS2 for the same
GO. First, we prove that forCGx 2 NCGS1, there must exist a
CGy 2 NCGS2, such thatCGx = CGy. Since bothNCGS1 and
NCGS2 are for the sameGO, all operations inCGx of NCGS1
must also be inNCGS2. Moreover, since all operations inCGx

are mutually compatible, they must all be in at least one compatible
groupCGy in NCGS2 according to Condition (1) of Definition 8.
Furthermore, it is impossible forCGy to contain one extra compat-
ible operationOy. Otherwise, there must be at least one compatible
groupCG0

x in NCGS1, which contains bothOy and all operations
in CGx according to Condition (1) of Definition 8. Then,CGx

must be subgroup ofCG0

x, which is contradicting to Condition (2)
of Definition 8. Thus,CGx andCGy must contain the same group
of compatible operations and henceCGx = CGy. By the same
reasoning, it can be proven that for anyCGy 2 NCGS2, there
must exists aCGx 2 NCGS1, such thatCGx = CGy. Thus the
theorem follows. 2

E. Combined effect specified by NCGS

The significance of theNCGS is that it gives a formal specifica-
tion of the combined effect for any group of operations targeting the
same object.

Definition 9: NCGS specified combined effect
Given theNCGS for a group of operationsGO targeting ob-
ject G, the combined effect forGO is as follows: (1) For each
CG 2 NCGS, there is one object version made fromG. (2) For all
operations in the sameCG, they will be applied to the same version
corresponding to theCG. 2

The combined effect specified by theNCGS is unique because
theNCGS for a group of operationsGO is unique. Furthermore,
the following theorem establishes that this combined effect complies
with CER1, CER2, andCER3.

Theorem 2: The combined effects specified by theNCGS sat-
isfy CER1, CER2 andCER3.

Proof: (1) For any pair of operationsO1 andO2 in theNCGS,
if O1
O2, they could never coexist in the sameCG in theNCGS

according to Condition (1) of Definition 7. and hence they could
never be applied to the same object version, which complies with
CER1. (2) For any pair of compatible groupsCGi andCGj in the
NCGS, there must be at least oneOx 2 CGi, and oneOy 2 CGy,
such thatOx
Oy according to Condition (2) of Definition 8. Since
there is one-to-one correspondence between the compatible groups
in theNCGS and the object versions made according to theNCGS

specified combined effect,CER2 is satisfied. (3) For a group of op-
erations, if they are mutually compatible, they must coexist in at
least one commonCG according to Condition 1 of Definition 8, so
they will be combined in at least one common object version, which
complies withCER3. 2

In summary, the major result in this section is that given a group
of operations targeting the same object, their combined effect can be
uniquely determined by theNCGS, and this combined effect com-
plies with CER1, CER2, andCER3. The following sections will
discuss how to achieve this unique and correct combined effect in a
distributed, incremental, and consistent way.

V. Incremental creation of multiple versions

If the group of operationsGO targeting the same object are all
known in advance, theNCGS for thisGO can be constructed by
using Algorithm 2; then multiple versions can be created and oper-
ations can be applied to proper versions according to the combined
effects specified by theNCGS. However, in real-time collabora-
tive editing sessions, operations can be generated concurrently and
may arrive at different sites in different orders. Because of high re-
sponsiveness consideration, it is not proper (or feasible) to postpone
executing an operation until all other potentially concurrent opera-
tions have arrived. An operation should be allowed to execute as
long as it is in the right causal order. This means that the system
has to execute the group of operations one after another to incre-
mentally create versions (if necessary) and combine the effects of
all operations. In other words, a distributed algorithm is needed to
incrementally construct theNCGS at all sites.

Suppose a group ofn operations targeting the same object arrive
(and become causally ready for execution) at a site in the follow-
ing order:O1, O2, ...,On. The algorithm will construct a sequence
of NCGSs: NCGS1, NCGS2, ..., NCGSn in such a way that
NCGSi is theNCGS for the group of operations fromO1 to Oi,
and the finalNCGSn is theNCGS for the whole group of opera-
tions. To achieve this, two technial problems need to be solved: one
is how to apply operationOi onNCGSi�1 to produceNCGSi;
and the other is how to identify all object versions corresponding to
NCGSi�1 at each step. The second problem will be addressed in
the next section. In this section, aMultiple Object Versions Incre-
mental Creation (MOVIC)algorithm will be proposed to address the
first problem.

A. The MOVIC algorithm

The following notations will be used in the description of the
MOVIC algorithm: (1)Oi represents theith operation to execute
at any site. (2)NCGSi�1 represents the(i�1)thNCGS for oper-
ations fromO1 to Oi�1. (3)NCGSi represents theith NCGS for
operations fromO1 toOi. (4)Oi�CGmeans thatOi is compatible
with all operations inCG. (5)Oi
CGmeans thatOi is conflicting
with all operations inCG.

The objective of the MOVIC algorithm is to applyOi to the
NCGSi�1 (i.e., to addOi to proper existing compatible groups in
theNCGSi�1 or to create new compatible groups if necessary) to
produce theNCGSi.

Algorithm 3: MOV IC(Oi;NCGSi�1) : NCGSi
1. NCGSi := f g; C := jNCGSi�1j;
2. Repeat untilNCGSi�1 = f g:

(a) Remove oneCG fromNCGSi�1;
(b) If Oi � CG, thenCG := CG+ fOig;
(c) Else ifOi
CG, thenC := C � 1;
(d) Else

� CGnew := fOj(O 2 CG) ^ (O� Oi)g;
� CGnew := CGnew + fOig;
� NCGSi := NCGSi + fCGnewg.

(e) NCGSi := NCGSi + fCGg;
3. If C = 0, then

(a) CGnew := fOig;
(b) NCGSi := NCGSi + fCGnewg;

4. For anyCGnew 2 NCGSi, if there is anotherCG 2
NCGSi, such thatCGnew � CG, then NGCSi :=
NCGSi � fCGnewg. 2

In the MOVIC algorithm, theNCGSi is first initialized to an
empty set, andC (a counter for the number ofCGs which are not
fully conflicting with Oi) is initialized to the size of the current
NCGSi�1.

Then,Oi is checked against everyCG in theNCGSi�1 one by
one (Note: the order is not significant). IfOi is compatible with
all operations inCG, thenOi is added toCG, which means thatOi

can be directly applied to that object version. Else ifOi is conflicting
with all operations inCG, thenOi is not added toCG, which means
Oi cannot be applied to that object version. In this case, the counter
C is decremented. Otherwise,Oi must be partially compatible with
some operations inCG. In this case, a new groupCGnew is created,
which contains all operations inCG which are compatible withOi,
and thenOi is added toCGnew, which meansOi is applied to a
new object version corresponding toCGnew. The newly created
CGnew and the existingCG (with possibly an additionalOi) are
all added to theNCGSi. SinceOi is added only to groups with op-
erations which are all compatible withOi, the resulting groups are
ensured to be compatible groups (for Conditions 1 and 2 of Defini-
tion 7). Moreover, whenOi is compatible with multiple operations
in an existing group, it is always added to that group or a new group
containing all these compatible operations. In this way, Condition 1
of Definition 8 is satisfied.

After checking allCGs in theNCGSi�1, if C = 0, thenOi

must be either the first operation (i.e.,Oi = O1) or conflicting with
all CGs in theNCGSi�1. In this case, a new groupCGnew =
fOig is created (for Condition 2 of Definition 7).

A last but very important step in the MOVIC algorithm is to check
each newly created groupCGnew to see whether it is a subgroup of
another group in theNCGSi. If this is the case,CGnew should
be removed according to Rule 2 to ensure that there shall be at least
one pair of conflicting operations in each pair ofCGs in the new
NCGSi (for Condition 2 of Definition 8).

Since creating a new compatible group corresponds to creating a
new object version, and addingOi to an existing group or a new
group corresponds to applyingOi to the object version for that
group, it is straightforward to derive the method of executingOi

on the object versions corresponding to theNCGSi�1 as follows:

1. If Oi is added to an existingCG in Step 2-(b) of Algorithm 3,
thenOi is applied to the existing object version corresponding
toCG.

2. If a CGnew is created out of an existingCG in Step 2-(d),
and thisCGnew is not removed in Step 4, then a new object
version corresponding toCGnew is created andOi is applied
to it.

3. If aCGnew with onlyOi is created in Step 3-(a), then a new
object version corresponding to theCGnew is created andOi

is applied to it.

B. Order independency property

TheMOV IC algorithm has a very important property: no mat-
ter in which orders a group ofn operations are processed, the final
NCGSn constructed by the MOVIC algorithm is the same because
there is only one uniqueNCGS for any group of operations (see
Theorem 1). This property is calledorder-independency, which en-
sures that a consistent final result can be achieved at all collaborat-
ing sites regardless of different operation execution orders. A formal
verification of this property is beyond the scope of this paper. Some
examples are given below to illustrate the order-independency prop-
erty.

Example 1: Given four operationsO1; O2;O3, andO4, with their
conflict relationships expressed in Fig. 81.

OP O2 O3 O4

O1

 �
O2
 �
O3 �

Fig. 8. The CRT for Example 1

Consider the following two different execution orders:
Execution Order 1: O1,O2, O3, andO4.

1. NCGS1 = ffO1gg
2. NCGS2 = ffO1g; fO2gg
3. NCGS3 = ffO1g; fO2g; fO3gg
4. NCGS4 = ffO1;O4g; fO2;O4g; fO3;O4gg

Execution Order 2: O1,O2, O4, andO3.
1. NCGS1 = ffO1gg
2. NCGS2 = ffO1g; fO2gg
3. NCGS3 = ffO1;O4g; fO2;O4gg
4. NCGS4 = ffO1; O4g; fO4; O3g; fO2; O4g; fO4; O3gg

� ffO1;O4g;fO2;O4g;fO4;O3gg (by Rule 2)

It can be seen that at Step 4 of Execution Order 2,O3 is first
checked againstfO1;O4g and a new groupfO4;O3g is created
sinceO4 � O3 butO1
 O3; thenO3 is checked againstfO2;O4g
and another (exactly the same) new groupfO4;O3g is created for
the same reason. However, one of the two new groups is removeed
according to Rule 2. In this way, the finalNCGS4 is the same for
two different execution orders.

Example 2: Given four operationsO1;O2;O3, andO4, with their
conflict relationships expressed in Fig. 9.

OP O2 O3 O4

O1

 �
O2 � �
O3 �

Fig. 9. The CRT for Example 2

Consider the following two different execution orders:
Execution Order 1: O1,O2, O3, andO4.

1. NCGS1 = ffO1gg
2. NCGS2 = ffO1g; fO2gg
3. NCGS3 = ffO1g; fO2; O3gg
4. NCGS4 = ffO1;O4g; fO2;O3;O4gg

Execution Order 2: O1,O2, O4, andO3.
1. NCGS1 = ffO1gg
2. NCGS2 = ffO1g; fO2gg
3. NCGS3 = ffO1;O4g; fO2;O4gg
4. NCGS4 = ffO1;O4g; fO4;O3g; fO2;O4;O3gg

� ffO1;O4g; fO2;O4;O3g (by Rule 2)

As shown in Step 4 of Execution Order 2, whenO3 is first
checked againstfO1;O4g, a new groupfO4;O3g is created since
O4�O3 butO1
O3; thenO3 is checked againstfO2;O4g, and is

1 It should be noted that the conflict relationships betweenOi and operations inNCGSi�1 can
be detected on-the-fly by examining the state-vector timestamps and other parameters of operations.
TheCRT is used here just to give a complete picture of the conflict relationships among all oper-
ations, which does not imply that a completeCRT for a group of operations has to be constructed
before applying the MOVIC algorithm.

added into this existing group (becomingfO2;O4;O3g) sinceO3

is compatible with all operations in this group. However, the new
groupfO4;O3g is removeed since it is a subgroup offO2;O4;O3g
according to Rule 2. In this way, the finalNCGS4 is the same for
two different execution orders.

VI. Consistent object identification

For the MOVIC algorithm to work, one important parameter has
to be provided: the currentNCGSi�1, on which the new opera-
tion Oi is applied to produceNCGSi. The technical issue here is:
how to find theCGs in theNCGSi�1 for Oi? Since aCG in the
NCGSi�1 corresponds to an object version made from the original
object targeted byOi, the above issue is converted into the question:
how to find the object versions made from the original object tar-
geted by the new operationOi? The key to solving this problem is
to devise an object identification scheme which is able to identify all
object versions made from the same original object.

A. Requirements for object identification

To work in a multi-version and multi-replica (due to replicated ar-
chitecture for the storage of shared documents) object-based graph-
ics editing system, the object identification scheme must maintain
the following three properties: (1)Uniqueness:every object at a site
must have a unique identifier. (2)Traceability: multiple versions
of the same objectG must have identifiers which can be traced by
using the identifier ofG. (3) Consistency:multiple replicas of the
same object at different sites must have the same identifier.

The uniqueness property ensures different objects at a site be dis-
tinguishable from each object. The traceability property ensures
multiple versions of the same object be traceable by using the identi-
fier of the original object. The consistency property ensures multiple
replicas of the same object have the same identifier so that operations
applied on one replica be also applied the other replicas. The three
properties together ensure that an operation targeting an object be
applied to all versions and all replicas of the same object at all sites.

B. Analysis of object identification issues

We start from a simple object identification scheme which is able
to uniquely identify every object. LetId(G) denote the identifier of
objectG. Suppose each operationO has a unique identifier, denoted
asId(O) 2. Then, each object can be uniquely identified by the iden-
tifier of the operation which created this object. Under this scheme,
when objectG is created by operationO at a local site,G is assigned
a unique identifier which is equal toId(O), i.e., Id(G) = Id(O).
WhenO is propagated to a remote site, a replica of the same object
will be created and assigned the same identifier. When a non-create
operationO is applied to an existing objectG at the local site,O will
takeId(G) as one of its parameters (i.e.,Tgt(O) = Id(G)). When
O arrives at a remote site, its parameterTgt(O) can be used to find
the right replica of the same object to apply. This simple identifica-
tion scheme works well for single version systems, but fails when
multiple versions of the same object can be created due to operation
conflicts.

For example, consider three operationsO1,O2, andO3, targeting
the same objectG. Suppose their conflict relationships are:O1

O2, O1 � O3, andO2 � O3. Assume these three operations are
executed at a site in the order ofO1, O2, andO3. To executeO1,
the target objectG can be found by its original identifierId(G)
(= Tgt(O1)). To executeO2, the target objectG can still be found

2One way of making theId(O) is to use a pair(sid; lc), wheresid is the identifier of the site
at whichO is generated, andlc is the sum of the state vector value associated withO

by Id(G) (= Tgt(O2)) because the previous execution ofO1 does
not change the identifier ofG. However, after executing bothO1

andO2, two versionsGfO1g andGfO2g have been made fromG
and the originalG disappeared. WhenO3 arrives withTgt(O3) =
Id(G), bothGfO1g andGfO2gmust be found in order to combine
O3’s effect with them. The question is: how shouldGfO1g and
GfO2g be identified so that they can be traced by usingId(G)?

To address the multiple versions identification problem, the sim-
ple identification scheme can be extended (1) to let both versions
inherent the identifier of the original object so that they are trace-
able by usingId(G); and (2) to let one version include one addi-
tional identifier of the operation which triggers the creation of that
new version so that multiple versions are distinguishable from each
other.

In this example, sinceO2 triggers the creation of a new version,
GfO1g could simply take the identifier ofG, i.e., Id(GfO1g) =
Id(G), but GfO2g will take Id(G) plus Id(O2) as its identi-
fier, i.e., Id(GfO2g) = Id(G) + Id(O2) (the precise mean-
ing of “+” will become clear at the end of this subsection).
Clearly,Id(GfO1g) 6= Id(GfO2g), and bothGfO1g andGfO2g
are traceable by usingId(G) since Id(G) is included in both
Id(GfO1g) andId(GfO2g).

The above extended identification scheme is able to ensure mul-
tiple versions of the same object be distinguishable from each other
and traceable from the identifier of the original object. However, it
is not able to ensure consistency of the identifiers of multiple repli-
cas of the same object. To illustrate this problem, assume the two
conflicting operations in the previous example are executed at a dif-
ferent site in a different order:O2 followed byO1. In this scenario,
it will be O1 which triggers the creation of a new version, soGfO1g
will take Id(G) plusId(O1) as its identifier, butGfO2gwill simply
take the identifier ofG, i.e.,Id(GfO2g) = Id(G). Clearly, the two
replicas of the same objectGfO2g have been identified differently
when the two conflicting operations are executed in different orders.

To solve this problem, the previous identification scheme is re-
vised to let both versions include one additional identifier of the cor-
responding conflicting operation. For the previous example,GfO1g
should takeId(G) plusId(O1) as its identifier, i.e.,Id(GfO1g) =
Id(G) + Id(O1); andGfO2g should takeId(G) plusId(O2) as
its identifier, i.e.,Id(GfO2g) = Id(G) + Id(O2). With this re-
vised scheme, no matter in which order conflicting operations are
executed, multiple replicas of the same object version will be iden-
tified consistently.

The object identification scheme would not be completely correct
if the following more subtle inconsistency scenario was not discov-
ered and resolved. Given three operations:O1, O2, andO3 tar-
geting the same objectG. Suppose their conflict relationships are:
O1
 O2, O1
 O3, andO2 � O3. First, consider the outcome of
executing these operations in the order ofO1, O2 andO3. After
executingO1, G becomesGfO1g, but Id(GfO1g) = Id(G). Af-
ter executingO2, a new versionGfO2g is created and is identified
by Id(GfO2g) = Id(G) + Id(O2). In the meanwhile, another
versionGfO1g is identified byId(GfO1g) = Id(G) + Id(O1)
according to the revised identification scheme. Finally, whenO3 ar-
rives, it will be applied to the existing versionsGfO2g directly since
O3 � O2. The final outcome of executing the three operations will
be two versions:GfO1g with an identifier ofId(G)+ Id(O1), and
GfO2;O3g with an identifier ofId(G) + Id(O2).

However, if the three operations are executed at a different site in
a different order:O1,O3 andO2, the final outcome of executing the
three operations will also be two versions:GfO1g with an identifier
of Id(G) + Id(O1), andGfO3;O2g with an identifier ofId(G) +

Id(O3) (becauseO3 triggers the creation ofGfO3g). Clearly, the
two replicas of the same object versionGfO2;O3g are identified
by two different identifiers (i.e.,Id(G) + Id(O3), andId(G) +
Id(O2))!

In recognizing this problem, the previous object identification
scheme is further revised to let a version’s identifier include the iden-
tifiers of all operations (e.g., bothO2 andO3) which are conflicting
with another operation (e.g.,O1), regardless which operation trig-
gers the creation of this new version. Furthermore, it becomes clear
that the collection of operation identifiers in the object identifier
should be treated as aset, rather than alist. In a set representa-
tion, the order of adding a conflicting operation identifier into the
object identifier is not significant.

C. The COID scheme

Based on the above analysis, aConsistent Object IDentification
(COID) scheme is defined below.

Definition 10: The COID scheme
The identifier of objectG consists of a set of operations identifiers:

Id(G) = fId(O1); Id(O2); :::; Id(On)g;

whereId(Oi) 2 Id(G), 1 � i � n, iff: (1) Oi is the operation
which createdG, or (2)Oi has been applied toG, andO is conflict-
ing with an operationOx, which has been applied to another version
made fromG. 2

In the context of the MOVIC algorithm, the COID scheme can be
realized as follows:

1. When operationO creates an original objectG, Id(G) is con-
structed as follows:Id(G) := fId(O)g.

2. When operationO triggers the creation of a new versionG0

from the target objectG, Id(G0) is constructed as follows:
Id(G0) := Id(G) + fId(O)g.

3. When operationO is applied to an existing objectG, Id(G)
is extended to includeId(O) if O is conflicting with any other
operation (inG or in any other version).

4. When operationO is applied to one version of objectG, every
other version ofG, denoted asG0, is checked to see whether
G0 has the effect of an operationOx, such thatOx
 O. If
there exists such anOx and Id(Ox) has not been included
in Id(G0), thenId(G0) is extended as follows:Id(G0) :=
Id(G0) + fId(Ox)g.

The COID scheme maintains theuniquenessproperty because the
Createoperation is unique, and any two versions of the same object
must have at least one pair of conflicting operations. Moreover, the
COID scheme maintains theconsistencyproperty because for an ob-
ject, the same set of versions will be replicated at all sites (due to the
uniqueness property of the NCGS), and conflict relationships among
all operations are the same at all sites. Finally, the COID scheme
maintains thetraceabilityproperty because the identifiers of all ver-
sions of the same objectG are supersets ofId(G). To answer the
question raised at the beginning of this section, the followingTarget
Object VErsion Recognition (TOVER)scheme is defined.

Definition 11: The TOVER scheme
Given any operationOi, any objectG is a version corresponding to
a compatible groupCG in the currentNCGSi�1 iff Tgt(Oi) �
Id(G). 2

VII. Comparison to related work

Most existing collaborative graphics editing systems have
adopted a conflict-prevention approach based on locking. Exam-
ple systems based on locking include: Aspects [17], Ensemble [11],
GroupDraw [3], and GroupGraphics [12]. In these systems, a user
has to place a lock on an object before editing it, thus preventing
other users from generating conflicting operations on the same ob-
ject. For locking to work, however, there has to be a coordinating
process in the system which keeps track of which object(s) has been
locked so it can grant/deny permissions for locking requests. The
problem with locking is that when an editing operation is gener-
ated, it has to wait for at least a round trip time of sending a request
message to the coordinating process and receiving a grant message
back, before it can be executed (if it is allowed) at the local site.
This round trip delay in the Internet environment may significantly
degrade the system’s responsiveness. Various techniques have been
proposed to overcome this problem. For example, Ensemble allows
conflict-free operations to execute immediately without waiting for
approval. While in GroupDraw, locally generated operations are ex-
ecuted right away and a message is sent to the coordinating process.
If the coordinating process does not approve the operation, then the
effect of that operation is undone, which may cause abnormal phe-
nomena at the user interface.

In contrast to conflict-prevention approaches like locking, the
multi-version strategy proposed in this paper allows conflict to oc-
cur. It provides a mechanism (i.e., multiple object versions) to ac-
commodate conflicting operations in a consistent way. Conflict res-
olution is left to the users. Major advantages of this approach are:
it helps achieve high responsiveness of the system and preserve the
work concurrently produced by multiple users in the face of con-
flicts. However, locking does have its merit of reducing conflicts
by enforcing mutual exclusion. In fact, we have found locking is
actually complementary and compatible with the optimistical con-
currency control strategies and proposed a noveloptional locking
scheme (in contrasting to existingcompulsorylocking schemes) to
enhance the consistency maintenance capability of the system [15].
Our investigation into the integration of this optional locking scheme
with the multi-version approach in the graphics editing domain will
be reported in a forthcoming paper.

Another alternative conflict-resolution approach isserialization.
With this approach, operations can be executed as soon as they are
generated to give a quick response. Before an operation is executed,
it must be checked against executed operations for possible conflict.
If a conflict is detected, a total ordering (i.e., serialization) between
operations is used to determine which operation’s effect will appear.
Examples of such systems are: GroupDesign [7] and LICRA [5].
This approach is essentially thesingle-operation-effect(determined
by a total ordering) approach discussed in Section III. For problems
with this approach and its major differences with ourall-operations-
effectapproach, please refer to the analysis in Section III.

The most closely related work is the Tivoli whiteboard meeting-
supporting tool developed at Xerox PARC [9]. Tivoli also used mul-
tiple object versions (calledreplicasin Tivoli) to accommodate the
effects of conflicting operations. The major difference between the
Tivoli approach and our GRACE approach is that in Tivoli conflict
is defined at the object level, i.e., a conflict occurs whenever two
concurrent operations target the same object; whereas in GRACE,
conflict is defined at object attribute level, i.e., a conflict occurs only
when two concurrent operations target the same objectandchange
the same attribute to different values. Consequently, Tivoli does not
allow compatible operations (according to GRACE conflict defini-
tion) to be applied to the same object (e.g. concurrentMoveandFill

operations cannot be applied to the same object), resulting in unnec-
essary object versions. To our knowledge, the GRACE system is the
only one in which operation conflict is defined at the object attribute
level to minimize the number of object versions. Consequently, the
technical issues and solutions reported in this paper are unique and
have never been addressed by any other work.

VIII. Conclusions and future work

In this paper, we have proposed a novel multi-version approach
to conflict resolution in real-time collaborative graphics editing sys-
tems. This approach is able to preserve the work concurrently pro-
duced by multiple users in the face of conflicts, and to minimize
the number of object versions for accommodating combined effects
of conflicting and compatible operations. Major technical contribu-
tions of this work include a formal specification of a unique com-
bined effect for any group of conflicting and compatible operations,
a distributed algorithm for incremental creation of multiple object
versions, and a consistent object identification scheme for multi-
version and multi-replica graphics editing systems.

All algorithms and schemes presented in this paper have been im-
plemented in the Internet-based GRACE prototype system in Java.
The current GRACE prototype system has been developed mainly to
test the feasibility of our approach and to explore system design and
implementation issues. Efforts are being directed towards building a
more robust and useful system, which will be used by external users
in real application contexts to evaluate the research results from end-
users’ perspective.

The multi-version approach alone is not a complete solution to
resolving conflicts in collaborative systems. Other complementary
techniques should be intergrated to work in conjunction with the
multi-version technique. We are in the process of devising a group
awareness mechanism and an optional locking scheme to help min-
imize the chance of conflict. Work is underway to apply GRACE
techniques to other advanced object-based graphics editing systems
as well.

Acknowledgement

The work reported in this paper has been partially supported by
ARC (Australia Research Council) Large Grants A49601841 and
A00000711 and an ARC Small Grant.

References

[1] R.M. Baecker, Readings in groupware and computer-
supported cooperative work, Morgan Kaufmann Publishers
Inc., 1992.

[2] C. A. Ellis, et al: “Groupware: some issues and experiences,”
CACM 34(1), pp.39-58, Jan. 1991.

[3] S. Greenberg, et al: “Issues and experiences designing and im-
plementing two group drawing tools,” InProc. of the 25th An-
nual Hawaii International Conference on the System Science,
pp. 139-250, Jan. 1992.

[4] S. Greenberg and D. Marwood:“Real time groupware as a dis-
tributed system: concurrency control and its effect on the in-
terface,” InProc. of ACM Conference on Computer Supported
Cooperative Work,pp. 207-217, Nov. 1994.

[5] R. Kanawati: “Licra: a replicated-data management algorithm
for distributed synchronous groupware application,”Parallel
Computing,Vol. 22, pp.1733-1746, 1997.

[6] A. Karsenty and M. Beaudouin-Lafon: “An algorithm for dis-
tributed groupware applications,” InProc. of 13th Interna-

tional Conferenceon Distributed Computing Systems,pp. 195-
202, May 1993.

[7] A. Karsenty, et al: “Groupdesign: shared editing in a hetero-
geneous environment,”Usenix Journal of Computing Systems,
6(2), pp. 167-195, 1993.

[8] L. Lamport: “Time, clocks, and the ordering of events in a
distributed system,”CACM 21(7), pp.558-565, July 1978.

[9] T.P. Moran, et al: “Some design principles for sharing in
Tivoli, a whiteboard meeting-support tool,” InGroupware for
Real-time Drawing: A Designer’s Guide,ed. by S. Geernberg,
et al, pp. 24-36. McGraw-Hill,1995.

[10] D. Nichols, et al: “High-latency, low-bandwidth windowing
in the Jupiter collaboration system,” InProc. of ACM Sympo-
sium on User Interface Software and Technologies,pp. 111-
120, Nov. 1995.

[11] R.E. Newman-Wolfe, et al: “Implicit locking in the Ensemble
concurrent object-oriented graphics editor,” InProc. of ACM
Conference on Computer Supported Cooperative Work,pp.
265-272, Nov. 1992.

[12] M.O. Pendergast:“ Groupgraphics: prototype to product,” In
Groupware for Real-time Drawing: A Designer’s Guide,Ed.
by S. Geernberg, et al, pp. 209-227, McGraw-Hill, 1995.

[13] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen: “Achiev-
ing convergence, causality preservation, and intention preser-
vation in real-time cooperative editing systems,”ACM Trans-
actions on Computer-human Interaction,5(1), March 1998,
pp.63-108.

[14] C. Sun and C. A. Ellis: “Operational transformation in real-
time group editors: issues, algorithms, and achievements,” In
Proc. of ACM Conference on Computer-Supported Coopera-
tive Work,pp.59-68, Seattle, USA, Nov.14-18,1998.

[15] C. Sun and R. Sosiˇc “Optional locking integrated with oper-
ational transformation in distributed real-time group editors,”
In Proc. of The 18th ACM Symposium on Principles of Dis-
tributed Computing,pp.43-52, Atlanta, USA, May 4-6, 1999.

[16] C. Sun and R. Sosiˇc: “Consistency maintenance in Web-based
real-time group editors,”Proceedings of 19th IEEE Interna-
tional Conference on Distributed Computing Systems (work-
shop),pp. 15-22, Austin, TX, USA, May 31- June 4, 1999.

[17] Von Biel: “Groupware grows up,” InMacUser,Pp.207-211,
June, 1991.

[18] Y. Yang, C. Sun, Y. Zhang, and X. Jia: “REDUCE approach to
achieving high responsiveness in Internet-based collaborative
systems,” To appear inIEEE Internet Computing,2000.

