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ABSTRACT Location Based Service (LBS) is one of the important aspects of a smart city. Accurate
indoor localization plays a vital role in LBS. The ability to localize various subjects in the area of interest
facilitates further ubiquitous environments. Specifically, device free localization using wireless signals is
getting increased attention as human location is estimated using its impact on the surrounding wireless
signals without any active device tagged with subject. In this paper, we proposeMuDLoc, the first multi-view
discriminant learning approach for device free indoor localization using both amplitude and phase features
of Channel State Information (CSI) from multiple Access Points (APs). The same location oriented CSI data
can be observed by different APs, thus generating multiple distinct even heterogeneous samples. Multi-view
learning is an emerging technique in machine learning which improve performance by utilizing diversity
from different view data. In MuDLoc, the localization is modeled as a pattern matching problem, where the
target location is predicted based on similarity measure of CSI features of an unknown location with those of
the training locations. MuDLoc implements Generalized Inter-view and Intra-view Discriminant Correlation
Analysis (GI2DCA), a discriminative feature extraction approach that incorporates inter-view and intra-view
class associations while maximizing pairwise correlations across multi-view data sets. Experimental results
from two cluttered environments show that MuDLoc can estimate location with high accuracy which
outperforms other benchmark approaches.

INDEX TERMS Indoor localization, device free, multi-view discriminant learning, amplitude and phase
features, CSI.

I. INTRODUCTION
Learning important human contextual information is one of
the fundamental features to establishing a smart environment.
The ability to localize various subjects indoor can potentially
support a broad array of applications including elder care, res-
cue operations, vehicle parking management, building occu-
pancy statistics, security enforcement, etc. Unlike outdoor
localization that can rely on the use of Global Positioning
System (GPS), that is based on transmission of Line-of-Sight
(LOS) paths, indoor localization suffers from a lot of chal-
lenges due to indoor radio propagation, such as multipath,
fading, shadowing, etc. [1], [2]. Wireless signals, specifically
Wi-Fi signals have emerged as one of the most pervasive
signals for this application. Human presence is interfering
with these signals. By observing the channel features over
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time, people’s location can be inferred by comparing them
against pre-constructed signal profiles, which is commonly
known as fingerprinting approach [3], [4]. In most of the
fingerprinting-based approaches, coarse-grained Received
Signal Strength (RSS) are used as the wireless signatures for
localization [5]–[9]. RSS varies over distance on the order
of the signal wavelength and fluctuates over time, which
degrades localization performance with lower accuracy [3].
In order to overcome the limitations of RSS, recently different
applications are widely using the fine grained PHY layer
CSI [10], [11]. Leveraging off-the-shelf commodity devices,
CSI is available in several Wi-Fi network interface cards
(NIC), such as Intel 5300 NIC [12], [13]. In IEEE 802.11n
communication, CSIs can be obtained from Multiple Input
Multiple Output (MIMO) Orthogonal frequency Division
Multiplexing (OFDM) systems. Unlike RSS, each CSI mea-
surement provides us with amplitude and phase information
for subcarrier level channels for each antenna link. These fine
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grained CSI is not only richer in multipath information, but
also more stable than RSS for a given location. Therefore,
CSI is considered as a preferable choice of wireless signature
to realize an improved indoor localization system [14]–[20].

There exists a rich body of previous work in the field of
device based indoor localization, where the target is required
to carry special devices, like WiFi-enabled smartphones or
RFID tags, etc. [14]–[16]. However, with the growth of
LBS, recently device free localization is drawing signifi-
cant interest to meet some emerging application demands
[8], [19], [21]. In device free localization, a transceiver free
target can be localized by utilizing the feature pattern of
the wireless signal that is being interfered by the presence
of the subject. To this end, a pattern matching approach of
device free indoor localization has emerged as an effective
technique, where CSI features of the unknown location is
matchedwith those of the training locations in order to predict
the location.

Indoor localization with device free approach has been
explored in various methods [8], [9], [19], [20], [22]–[24].
These methods consider either RSS value of wireless sig-
nals or only the amplitude of CSI. In [8], localization is
performed using probabilistic classification approaches that
are based on discriminant analysis of wireless sensor-based
RSS value. Another RSS based localization is proposed in [9],
where an adaptive spring relaxation approach is exploited
for localization. However, dependence upon the coarse RSS
measurements limits the performance of the above methods.
Indoor localization using CSI has been explored in [19], [20].
In [19], authors perform CSI based device free localization
through a probabilistic approach and showed improvement
in localization with 85% accuracy where [20] adopts a power
fading model-based localization and achieves 90% accuracy
with 1.5 meter localization error. Both methods considered
only the amplitude values of CSI from a single AP, as such,
lots of useful information embedded with the phase is not
used. Moreover, all these methods consider CSI measure-
ments either from a single AP or perform the localization
task by averaging CSI measurements from multiple APs.
However, a set of CSI measurements, simultaneously
recorded from multiple APs for a particular target location
should share some common features, which might be cor-
related. Some useful information, involved with multiple
OFDM channel correlations, may lost if measurements from
each AP are considered independently. As a result, ignor-
ing phase information from CSI measurements as well as
separate utilization of CSI measurements from multiple APs
limit the performance of existing state-of-the-art approaches
in achieving higher accuracy for localization.

In this paper, MuDLoc, a multi-view discriminant learning
approach for device free indoor localization using CSI is
proposed. InMuDLoc, the localization problem is formulated
as a cell classification problem, where the area is virtually
partitioned into some uniform square grid cells, which are
considered as class. Under this setting, MuDLoc uses CSI
fingerprints to classify a testing entity with an unknown cell

ID/class label. However, this method utilizes CSI measure-
ments recorded frommultiple APs for a particular target loca-
tion in order to extract common features shared by all APs.
In this case, CSI measurements obtained from each AP can be
referred to as a particular view and sets of CSI measurements,
simultaneously recorded from multiple APs for a particular
target location can be considered as multi-view data. For clas-
sification problems under multi-view setting, both inter-view
and intra-view class separations are important issues to con-
sider, where samples in one class from multiple views should
be close to each other (intra-view), while samples in differ-
ent classes from multiple views should be far away from
each other (inter-view). However, direct matching of the data
samples across various feature spaces is infeasible. Subspace
learning offers an effective approach to solving the problem,
which learn a common feature space from multi-view spaces.
Therefore, MuDLoc exploits a multi-view learning approach
to extract joint spatial features frommulti-view CSI data, that
are recorded from multiple APs.

Various multi-data processing techniques have been
reported in literature. The work in [25] proposes semi-
supervised multi-view correlation feature learning (SMCFL),
for webpage classification. In addition to maximizing the
correlation between intra-class samples, and the correla-
tion between inter-class samples, this work maximizes the
global correlation among both labeled and unlabeled samples.
In [26], another approach for semi supervised multi-view fea-
ture learning for webpage classification is proposed, which
jointly learns multiple view-individual transformations and
one sharable transformation to explore the view-specific
property for each view and the common property across
views. Amulti-view dictionary learning technique (MDVSD)
is proposed in [27], which learns a structured dictionary
shared by all views and multiple view-specific structured
dictionaries with each corresponding to a specific view.
MDVSD makes the view-specific dictionaries corresponding
to different views uncorrelated for effectively exploring the
diversity of different views. Canonical Correlation Analy-
sis (CCA) is one of the multi-data processing methods that
deals with linear relationship between two or more multi-
dimensional variables [28], [29]. Multi-view CCA (MCCA)
was developed as an extension of CCA to find multiple linear
transforms that maximize overall correlation among canoni-
cal variates frommultiple sets of random variables [30]–[32].
However, MCCA does not take discriminant information
into account, which may degrade classification performance
across classes. The supervised information was incorpo-
rated in a generalized multiview analysis framework (GMA),
leading to a discriminant common subspace [33]. However
only the intra-view discriminant information was consid-
ered in GMA, ignoring inter-view discriminant information,
which may degenerate performance of cross-view matching.
The work in [34] addressed the intra-view and inter-view
supervised correlation analysis method by studying the
CCA based multi-view feature learning technique. However,
in CCA basedmulti-view subspace learningmethods, learned
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features are dedicated to depicting only intrinsic correla-
tion among multiple views. Another approach of multi-view
learning is discriminant analysis based multi-view subspace
learning method which aims to achieve multiple linear trans-
formations, which maximizes the between-class variations of
low-dimensional embeddings and minimizes the within-class
variations of low-dimensional embeddings. Therefore,
in order to exploit class structures for cross-view recogni-
tion, the proposed MuDLoc method implements Generalized
Inter-view and Intra-view Discriminant Correlation Analysis
(GI2DCA), which, unlike [34], utilizes the principles of both
CCA and discriminant analysis based multi-view subspace
learning methods to take advantage of these two algorithms.
GI2DCA is a subspace learning approach that can learn
single unified discriminant common space from the joint
spatial filtering of multiple sets of CSI data recorded for a
particular target location. In this common space, the between-
class variations from both inter-view and intra-view are
maximized, while keeping the projections of different views
close to each other in the latent common space. Therefore,
unlikeMCCA andGMA, both inter-view and intra-view class
structures are preserved in GI2DCA, which helps to improve
the localization performance through cell classification
approach.

Finally, MuDLoc system exploits both the amplitude and
the phase information of multi-view CSI data to learn the
discriminative common space. In 5 GHz Intel 5300 NIC,
the phase difference between two receiver antennas is rel-
atively more stable than the raw CSI phase [35]–[37].
Therefore, in addition to amplitude information, the pro-
posed method utilizes CSI phase difference information
between adjacent receiver antennas for consecutive packets
under the multi-view setting. By utilizing both the ampli-
tude and the phase difference between receiver antennas
as location features, complete wireless propagation features
can be exploited for better localization. Once the discrim-
inant features are obtained with GI2DCA analysis, MuD-
Loc performs the localization through a pattern matching
approach. To achieve this goal, an euclidean distance-based
similarity measure approach is utilized, where it finds the
best cell match to localize a test subject. The whole system is
designed to localize single target in the area of interest. Multi
target localization involves different challenges and is left for
future research. The main contributions of the paper can be
summarized as follows.

1) Utilizing CSI measurements from multiple APs
through the multi-view learning approach using
GI2DCA, where both inter-view and intra-view class
structures are preserved. Since localization problem
is formulated as a cell classification approach, incor-
porating inter-view and intra-view class structures in
multi-view analysis facilitates to achieve significant
improvement in localization accuracy.

2) The MuDLoc system leverages both the amplitude
and phase difference of adjacent antennas in a
MIMO OFDM system, and thereby complete wireless

propagation features are utilized in order to achieve
higher localization accuracy.

3) Extensive experimentation performed in two cluttered
indoor environments are used to verify the effectiveness
of MuDLoc, demonstrating it outperforms previously
proposed state-of-the-art localization methods.

The rest of the paper is structured as follows. Section II
presents the motivation behind the proposed MuDLoc sys-
tem. Preliminaries on CSI, phase information and basic
multi-data processing using CCA are described in Section III.
The MuDLoc method, a multi-view discriminant learning
approach for indoor localization, is introduced in Section IV.
Section V describes the system experimental setup and eval-
uates the performance of the proposed method. Finally, con-
cluding remarks are discussed in Section VI.

II. MOTIVATION
In the proposed MuDLoc sytem, the area is considered as a
grid of small square cells. MuDLoc aims to use CSI finger-
prints collected at Detecting Point (DP) from multiple APs in
order to classify a testing entity with an unknown cell ID.

The motivation for utilizing multi-view learning of CSI
measurements stems from the idea that, people can see a
location from different views. Similarly, CSI data for a par-
ticular location can be observed at different viewpoints or by
different APs, thus generating multiple distinct even hetero-
geneous samples. In this case, we refer each variable group
to as a particular view and these CSI measurements from
multiple APs are known asmulti-view data. Thesemulti-view
CSI measurements should share some common features for a
particular target location, which might be correlated. Some
useful information, involved with multiple OFDM channel
correlations, may lost if measurements from each AP are
considered independently. Therefore, joint learning of mul-
tiple view-specific linear transforms facilitates to obtain a
discriminant common space for robust location estimation
from multiple views in contrast to that of a single view (AP)
based localization approach. Motivated by this idea, MuD-
Loc exploits CSI measurements recorded from multiple APs
through joint spatial filtering in order to utilize a multi-view
learning approach for better localization performance. Utiliz-
ing CSIs frommultiple APs also helps to improve localization
accuracy in indoor environment. Multi-view CSI data reflect
different characteristics of the multipath patterns, affected by
the presence of a subject at a particular location. However,
these CSI measurements of different APs are not affected
equally by indoor multipath. In a cluttered indoor environ-
ment, CSIs from one AP may be affected badly due to mul-
tipath effect while that from other APs may not. If CSIs of
one AP is blocked, CSIs from other APs might compensate
for that and thereby help to mitigate the multipath effect to a
great extent.

The motivation for utilizing different modalities of CSI
measurements in term of amplitude and phase stems from the
idea that, under some indoor scenarios, amplitude and phase
are usually complementary to each other. When a signal is
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blocked, the average amplitude will be significantly reduced,
but the phase difference between two receiver antennas will
be less affected. The opposite effect is obtained when the the
line of sight (LOS) components are weaker than the non line
of sight (NLOS) components. In such a scenario, the average
amplitude are more likely to help to improve the localization
accuracy than the phase difference data. Therefore, MuDLoc
aims to utilize both the amplitude and the phase of CSI for
obtaining better localization performance.

To validate the proposed idea, we carry out some pre-
liminary tests. We transform the CSI measurements from
multiple OFDM channels of each AP-DP link into a feature
matrix corresponding to an image. Since the OFDM channels
are correlated, for each AP-DP link, CSI measurements
received from multiple antenna channels are also correlated.
Therefore, instead of dealing the CSI measurements from
each antenna channel independently, joint utilization of CSI
measurements from all the antenna channels offers us to
leverage channel correlations for improved localization. This
motivates us to transform the CSI measurements of sub carri-
ers from multiple transmission-receiver antenna channels of
each AP-DP link into a feature matrix corresponding to the
pixel value of an image. Therefore, from the two-dimensional
perspective, each column (x-axis) corresponds to a packet
sample and for each sample, and the CSIs in the rows
(y-axis) correspond to subcarriers from all channels for one
AP. Fig. 1 and 2 illustrates someCSI amplitude and phase fea-

FIGURE 1. Feature images of different locations using CSI amplitude.

FIGURE 2. Feature images of different locations using CSI phase.

ture images, respectively; obtained from multiple APs while
a person is located at different locations. From the figures,
it can be seen that the CSI amplitude and phase feature images
from different locations have different patterns. In addition,
for both the amplitude and phase, features corresponding to
the same cell/location are different for two different APs.
Therefore, CSI amplitude and phase feature images that are
collected from different APs can be considered as good
candidates for designing a robust localization system through
multi-view learning approach.

III. PRELIMINARIES
A. CHANNEL STATE INFORMATION
The wireless channel in MIMO-OFDM technology is parti-
tioned into orthogonal subcarriers. Each of these subcarriers
represents a narrow-band flat fading channel. In the frequency
domain, these narrow-band flat fading channel is modeled as,

y =H x + ζ, (1)

where y and x are the received and the transmitted signal
vectors respectively, ζ is the noise vector and H denotes the
channel matrix. The channel matrix H can be estimated by,

Ĥ =
y
x
, (2)

where Ĥ represents the PHY layer CSIs over multiple sub-
carriers. For one transmitter-receiver (Tx-RX) antenna pair,
Ĥ is a S × N matrix for each AP-DP link, where S denotes
the number of subcarriers for each antenna pair and N is the
number of measurements. CSI of a single subcarrier k is a
complex value [38],

hk = Rk + jIk = |hk |ejsinθk , (3)

where Rk and Ik are the in-phase and quadrature components,
respectively; |hk | is the amplitude, and θk is the phase of
k-th subcarrier. The amplitude response of subcarrier k is

|hk | =
√
R2k + I

2
k , and the phase response is computed by

6 hk = arctan(Ik/Rk ). We group CSIs of all Tx-Rx antenna
pairs of each AP-DP link as,

H = [Ĥ1; Ĥ2; . . . ; Ĥ l], (4)

where l denotes the Tx-Rx antenna pair index for eachAP-DP
link and H ∈ Rd×N , where d = S × l, the total number of
subcarriers from all Tx-Rx antenna pairs. We can considerH
as the feature image of CSI, where each column corresponds
to an image sample and for each sample, the CSIs in the rows
corresponds to the pixel values of an image.

B. CSI PHASE INFORMATION
Although off-the-shelf commodity device, such as Intel
5300NIC, provides us with CSI phase information, this phase
is highly random. The performance of indoor localization
degrades with high localization error if the raw phase data is
directly used. The randomness in the phase stems from hard-
ware imperfection of the commodity device, specifically from
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the lack of time and frequency synchronization of the trans-
mitter and receiver. Therefore, state-of-the-art research works
utilize only the amplitude information of CSI and ignore the
phase information. Consequently, some useful information,
involved with phase, may lost if the phase information is
discarded. In order to utilize CSI phase, phase sanitization
can be done by linear transformation of the phase values
or by utilizing the phase difference between two antennas
in 2.4 GHz band [39], [40]. Although CSI phase can be
stabilized with the above methods, the average phase value
obtained from these methods becomes different from the
actual phase of themeasuredCSI due to the firmware problem
in the 2.4 GHz band [36]. In order to avoid the problem
of random phase error, we exploit the difference in phase
values between two receiver antennas in 5GHz band. In [35],
we showed that in 5GHz 5300 NICs, the phase difference
between two receiver antennas becomes highly stable for
consecutively received data packets. Based on the work in
[35], here we utilize the phase difference information instead
of raw phase. Let, θk denotes the phase of measured CSI from
any subcarrier k of one AP. According to [41], [42], θk can be
expressed as,

θk = φk + k(δPB + δSF )+ δCF , (5)

where φk is the original phase of subcarrier k caused by
the channel propagation, δPB, δSF , and δCF represents phase
errors arising from the packet boundary detection (PBD),
the sampling frequency offset (SFO), and central frequency
offset (CFO), respectively. Our aim is to eliminate the impact
of error parameters δPB, δSF , and δCF from the measured
phase value θk in order to avoid the effect of random phase
error on localization.

Generally, the time shift parameter τPB from the packet
boundary detection give rise to the phase error uncer-
tainty δPB. On the other hand, δSF is caused by the offset of the
sampling frequencies of the sender and the receiver. In addi-
tion, the phase error δCF is generated from the incom-
plete central frequency offset compensation due to hardware
imperfection of the transmitter and receiver. In [35], it has
been shown that all of these error parameters of CSI phase
depend upon a number of OFDM system parameters, such
as, packet boundary detection delay, sampling periods of the
receiver and the transmitter, current packet sampling time
offset, difference of center frequency between the transmitter
and receiver, etc. Since off-the-shelf devices provide us with
only physical layer CSI data, some of the parameters are
unknown. In addition, some of these parameters varies for
different packets which in turn causes variation in δPB, δSF ,
and δCF over time [42]. Hence, the original phase cannot be
properly detected by the measured CSI phase.

However, the receiver antennas of a particular NIC have the
same clock and same down-converter frequency. As a result,
for a particular subcarrier k , the measured CSI phase will also
have the same central frequency difference, same delay in
packet detection and same sampling period. The difference
in measured CSI phase between two receiver antennas at

subcarrier k becomes stable can be approximated as,

1θk ≈ 1φk , (6)

where 1φk is the phase difference of original phase between
two adjacent antennas on subcarrier k . From (6) it can be
seen that the effect of random phase errors are minimized
since the random terms associated with δPB, δSF , and δCF
are eliminated. The phase differences are further shifted to be
zero mean in order to ensure that initial phase offset errors for
each packet are also minimized. Consequently, over different
packets,1θk becomesmore stable compared to the individual
CSI phase value.

C. CANONICAL CORRELATION ANALYSIS
For multi-data processing, Canonical Correlation Analysis
(CCA) is considered as one of the useful tools for finding
a linear relationship between two feature sets [28]. CCA
finds a common space for two views such that the correlation
between these transformed feature sets are maximized in the
common subspace.

Suppose that n training feature vectors of the data from two
different views are denoted by two matrices, X1 ∈ Rp×n and
X2 ∈ Rq×n, with dimension p and q for each training vector,
respectively. For simplicity, we assume that the observed
samples are mean-centered. CCA aims to find a common
subspace such that the pair-wise correlation across the two
feature sets are maximized. In order to project the samples
from two views into the common subspace respectively, two
linear transforms w1 and w2 are obtained by maximizing the
correlation between wT1X1 and wT2X2 as below [28], [43]:

max
w1,w2

wT1X1XT
2w2

subject to wT1X1XT
1w1 = 1, wT2X2XT

2w2 = 1. (7)

Applying Lagrange multiplier on (7), the optimization prob-
lem of CCA can be solved by a generalized eigenvalue prob-
lem as follows [30]:[

0 X1XT
2

X2XT
1 0

] [
w1
w2

]
= λ

[
X1XT

1 0

0 X2XT
2

] [
w1
w2

]
, (8)

where the degree of correlation between projections are
reflected by the generalized eigenvalue λ.
The CCA based approach described above is unsupervised.

For pattern recognition problems, separating the classes is
an important issue to consider. In CCA, the features are
decorrelated, but the concept of class structure among the
samples are not considered. In order to exploit class struc-
tures, discriminant CCA (DCCA) is proposed which takes
into consideration both within-class and between-class cor-
relation in CCA [44]. DCCA preserves the class structures
for C classes between two views through the following opti-
mization problem:

max
w1,w2

wT1X1GXT
2w2

subject to wT1X1XT
1w1 = 1, wT2X2XT

2w2 = 1. (9)
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where

G =



In1×n1
. . . 0

Inc×nc

0 . . .

InC×nC

 . (10)

Applying Lagrange multiplier on (9), the optimization prob-
lem of DCCA can be solved by a generalized eigenvalue
problem as follows [44]:[

0 X1GXT
2

X2GXT
1 0

] [
w1
w2

]
= λB

[
w1
w2

]
. (11)

where,

B =
[
X1XT

1 0

0 X2XT
2

]
. (12)

IV. THE MuDLoc SYSTEM
In MuDLoc the overall localization is performed through an
offline phase and an online phase as described below.

A. OFFLINE PHASE
1) CONSTRUCTION OF CSI AMPLITUDE AND PHASE
FEATURE IMAGE
Exploiting both amplitude and the phase features of CSI from
commodity WiFi device facilitates to utilize complete multi-
path features to achieve a high precision indoor localization
system. In MuDLoc, the area is considered as a grid of small
square cells. Let, there are C cells and M APs in that area
of interest. In the offline stage, a set of CSI measurements
are collected with the subject present in a cell, c, where c =
1,2,. . . ,C. Each cell can be considered as a class. Let class c
has nc data samples. Next, CSI feature imageHc

i is generated
for each cell using (4), where i = 1,2,. . . ,M. Hc

i represents
the effect of the presence of an entity on the i-th AP’s CSI for
the entity located at a particular position or cell, c. From Hc

i ,
CSI amplitudes are extracted to generate amplitude feature
image, X i of size dXi × n, where n =

∑C
j=1 nc. Similarly,

the phase information is also extracted from Hc
i in order to

generate CSI phase based feature image for each cell and
then phase feature image, Y i of size dXi × n is generated
based upon the CSI phase difference of two adjacent receiver
antennas for each AP using (6). These phase differences on a
particular subcarrier between two receiver antennas inMIMO
OFDM system are relatively stable compared to the raw
phase information, since the effect of random phase errors
are minimized as described in section III-B.

Once both the amplitude and phase features of CSI in
terms of amplitude and the phase difference-based feature
images for all the APs in the area of interest are obtained,
the system then exploits multi-view discriminant learning
approach in order to obtain a discriminant common spaces
for localization.

2) MULTI-VIEW DISCRIMINANT LEARNING OF CSI
Good performance of the CCA-based indoor localization has
been confirmed by the study on amplitude-based CSIs [21].
However, in [21] only the CSI amplitude from a single
AP (view) has been considered for location estimation.
We consider that some common features should be shared by
a set of CSI measurements recorded from multiple APs for a
particular target cell. Motivated by the CCA based discrimi-
nant learning of CSI for indoor localization, in this section we
propose multi-view discriminant learning of CSI to achieve
better localization performance. The optimal amplitude and
phase feature sets of CSIs are first learned from the joint
spatial filtering of multiple sets of CSI amplitude and phase
feature images, respectively; and are subsequently used in
the feature fusion [45], where the transformed amplitude
and phase feature images are stacked to obtain the complete
feature set for cell recognition.

CCA based approach, described in section III-C is only
designed for two-view case, and thus the pairwise strategy
is needed when applied to the multi-view scenario. However,
generalization of the CCA to multiple sets has to be equiva-
lent to the case of two set CCA. MCCA is a generalization
of CCA to more than two views of data, where the overall
correlation among canonical variates from multiple sets of
random variables is maximized through the optimization of
the objective function of correlation matrix of the canoni-
cal variates [30]–[32]. The five most discussed versions of
MCCA are: (1) SUMCOR, maximize the sum of all entries
in the correlationmatrix; (2)MAXVAR,maximize the largest
eigenvalue of the correlation matrix; (3) SSQCOR, maximize
the sum of squares of all entries in the correlation matrix;
(4) MINVAR, minimize the smallest eigenvalue of the cor-
relation matrix; (5) GENVAR, minimize the determinant of
the correlation matrix. Similar results are obtained for all of
the five objective functions on a group dataset [46], [47].
This paper summarizes the classical sum of correlations gen-
eralization (SUMCOR) and MCCA is used as an abbrevi-
ation for SUMCOR maximization approach throughout the
paper. [30], [31].

Let, for M APs, multiple sets of random variables with n
samples of di dimension are denoted by X i ∈ Rdi×n, where,
i = 1, 2, . . . , M. We assume that X i’s are normalized to
have zero mean and unit variance. MCCA aims to find a
set of linear transforms wi

∣∣M
i=1, to respectively project the

samples of M views {X1, ...,XM} to one common space,
i.e., {wT1X1, . . . ,wTMXM}. The total correlation in the com-
mon space is maximized as below:

max
w1,...,wN

ρ =

M∑
i,j=1
i 6=j

wTi X iXT
j wj

s.t. wTi X iXT
i wi = 1, i = 1, 2, . . . ,M (13)

where wi are the unknown transforms that have to be esti-
mated for each matrix X i, which are M known full-rank
data matrices. The full-rank constraint of data matrices may
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be relaxed by regularizing the estimated covariance matri-
ces [48]. We can rewrite Eq. (13) as,

max
w
ρ = wT (C − D)w

s.t. wTDw = 1, (14)

where,

C =

X1XT
1 . . . X1XT

M
...

. . .
...

XMXT
1 . . . XMXT

M

 , (15)

D =

X1XT
1 . . . 0

...
. . .

...

0 . . . XMXT
M

 , (16)

w =

w1
...

wM

 . (17)

Applying Lagrange multiplier on (14), the optimization prob-
lem of MCCA can be solved by a generalized eigenvalue
problem. Using the Lagrange multiplier λ, the cost function J
is formed as below, and the unknown transforms w is found
to maximize it:

J = wT (C − D)w+ λ(wTDw− 1). (18)

Taking the derivative with respect to w, one can write,

(C − D)w = λDw. (19)

Eq. (19) represents a general eigenvalue decomposition prob-
lem and the largest eigenvector maximizes the cost function
in Eq. (18). Therefore, the eigenvector corresponding to the
largest eigenvalue in the general eigen decomposition of
Eq. (19) provides the solution for the optimization problem
of MCCA. The λ in Eq. (19) can be obtained by left multipli-
cation with wT , which, applying the constraint from Eq. (14),
implies λ = ρ. Similar to CCA, the number of samples in
each view forMCCA should be the same. In addition, MCCA
is an unsupervised method. MCCA only obtain a common
space by maximizing the correlation between multiple views,
neither intra-view correlation nor label information is consid-
ered. In order to obtain discriminative common subspace for
all views, GMA in [33] proposed a general framework for
multiview analysis, where the supervised structure of each
view is preserved while keeping the projections of different
views in the latent common space close to each other as
follows:

max
w1,...,wN

M∑
i=1

αiwTi Siwi +
M∑

i,j=1
i 6=j

βi,jwTi X iXT
j wj

s.t.
M∑
i

γiwTi X iXT
i wi = 1, (20)

where αi, βi,j and γi are the balance parameters; and Si is
the between-class scatter matrix for the i-th view, which is
defined as:

Si =
C∑
c=1

nic(µ
i
c − µ

i)(µic − µ
i)T , (21)

where µic is the mean of class c of i-th view, µi is the overall
mean of all classes under i-th view, and nic are the samples of
class c for i-th view. In the objective function of (20), the first
part arises from the idea of classical Linear Discriminant
Analysis (LDA) in order to exploit discriminant vectors in
each view [49]. The positive term α is to make a balance
among the objectives, and hence usually set to 1 so that
the joint objective will be unbiased towards optimizing wi.
In order to balance the relative significance between the CCA
part and the LDA part in (20), a tunable parameter βi,j is intro-
duced, where βi,j > 0. Since all the constraints in (13) are
nonlinear and the current form has no closed form solution,
the constraints are coupled with γ = trace ratio, in order to
simplify the problem with a relaxed version using a single
constraint.

From (20), it is seen that the class label information within
each view are considered in GMA, which makes it discrim-
inative for multiple view recognition [50]. However, only
the discriminant information within each individual view
are employed in GMA while the discriminant information
from the inter-view are left unconsidered, which may degrade
the performance of inter-view matching. As discussed in
section III-C, DCCA in [44] proposes an effective supervised
feature extraction method for CCA, by exploiting discrim-
inant information between views. From (11) it is seen that
DCCA and CCA has similar optimization objectives [51].
In order to effectivelymake full use of correlation information
within each view and between different views, this work
proposes to combine intra-view and inter-view discriminant
correlation analysis, and therefore designs the following Gen-
eralized Inter-view and Intra-view Discriminat Correlation
Analysis (GI2DCA), which preserves both interview and
intraview class structures as follows:

max
w1,...,wN

M∑
i

αiwTi Siwi +
M∑

i,j=1
i 6=j

βi,jwTi X iGXT
j wj

s.t.
M∑
i

γiwTi X iXT
i wi = 1, (22)

where G is formulated according to (10). In GI2DCA, sam-
ples from different views are projected into a discriminant
common space by using M transforms, one for each view.
In this common space, samples in one class from multi-
ple views are close to each other, while samples in dif-
ferent classes from multiple views are far away from each
other. Therefore, both inter-view and intra-view class struc-
tures are preserved. Applying Lagrange multiplier on (22),
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the optimization problem of GI2DCA can be solved by a gen-
eralized eigenvalue problem following the similar approach
of MCCA:

Tw = λD̂w, (23)

where T and D̂ are defined as follows, respectively:

T =

 α1S1 . . . β1,NX1GXT
N

...
. . .

...

βN ,1XNGXT
1 . . . αNSN

 . (24)

D̂ =

γ1X1XT
1 . . . 0

...
. . .

...

0 . . . γMXMXT
M

 . (25)

The number of non-negative eigenvalues for the general
eigenvalue decomposition in Eq. (23) is r ≤ min(d1, ..., dM ),
with the assumption that allX i are of full rank. It can be noted
that, this GI2DCA scheme requires finding the eigenvectors
of matrices with di × di dimensionalities. Defining d :=
maxidi, it can be checked that GI2DCA incurs complexity of
orderO(d3M ). Once the linear transformswi

∣∣M
i=1 are obtained

through the above approach, the transformed features, Zi are
calculated by projecting X i on the calculated wi as,

Zi = wTi X i, (26)

where Zi ∈ Rr×n and i = 1, 2, . . . ,M . Finally, the average
canonical variate of the M datasets is calculated as,

Z =
1
M

M∑
i=1

Zi. (27)

Z in (27) represents the most common features that are shared
among M sets of training data.

As described in section IV-A.1, in the proposed MuDLoc
system, the CSI amplitude and phase feature images collected
from M APs (views) are denoted by Xi ∈ RdXi×n and Yi ∈
RdYi×n, respectively. GI2DCA is implemented to find multi-
ple linear transforms (i.e. spatial filters) wX1 ,wX2 ,...,wXN that
result in the maximization of overall correlation among the
canonical variates ZX1 ,ZX2 ,...,ZXN obtained using (26). The
transformed amplitude feature from M views, ZX ∈ RrX×n is
then calculated using (27). In a similar approach, the trans-
formed phase feature from M views are calculated as ZY ∈
RrY×n. Finally, these amplitude and phase difference features
extracted from multi-view CSI Data are stacked to obtain the
single unified discriminant feature set, Z as follows:

Z =
(
ZX
ZY

)
. (28)

Z is called the Multi-view Discriminant Feature Image
(MDFI) of CSI. MDFI is more discriminative than any of
the input feature image. GI2DCA not only finds effective
discriminant information over the multiple views of data but
also eliminates redundant information within the features of
each view, thereby improves the localization performance.

B. ONLINE PHASE
After the aforementioned calibration procedure of training
feature optimization in the offline phase, the linear transfor-
mations for the amplitude feature, x̂i of test location t are
calculated as,

Zx̂i = wXTi x̂i, i = 1, 2, . . . .,M . (29)

Similarly, the linear transformations for the phase feature,
ŷi of test location, t are calculated as,

Zŷi = wYi
T ŷi. (30)

The average canonical variate, Zx̂ and Zŷ for test location
t are then calculated using (27). Finally the MDFI for test
location t is calculated as,

Ztest,t =
(
Zx̂
Zŷ

)
(31)

Finally, the test location’s cell Id is recognized using the
simple but efficient Euclidean Distance (ED) based similarity
measure as following,

argmin
c
‖Ztest,t − Ztrain,c‖2, (32)

where, c ∈ [1, 2, . . . ,C]. The overall system architecture for
MuDLoc system is shown in Fig. 3.

V. EXPERIMENTAL STUDY
A. EXPERIMENTAL CONFIGURATION
The proposed MuDLoc system consists of three basic hard-
ware elements in aWLAN infrastructure: access points (AP),
detecting points (DP) and a server. A radio frequency (RF)
link is established for each pair of AP and DP. In order to
measure CSI data in 5 GHz band, the system uses Lenovo
laptops as the access points (AP) and a desktop computer
as the detection point (DP). Both devices are equipped with
an Intel 5300 Network Interface Card (NIC). The operating
system is Ubuntu desktop 14.04 LTS OS. The transmitter
or access points are set in the injection mode. The receiver
or DP is set in the monitor mode. Then 5 GHZ CSI data
are obtained by using the packet injection technique based
on LORCON version 1 from the receiver NIC. The APs
periodically broadcast beacon messages. Once the beacon
message is received, the raw PHY layer CSIs across multiple
subcarriers from the multiple APs (views) are recorded by
the DP and sent to the server in order to store and process.1

Finally the localization is performed by the server through
multi-view discriminant learning approach. We use a host
PC (Intel i7-4790CPU 3.60 GHz, 8GB RAM), that serves
as the centralized server for location estimation. Using the
Linux 802.11n tool [12], [13], for each AP, the DP collects
CSI data for 30 subcarriers for each Tx-Rx antenna pair.
Therefore, 3× 3 Tx-Rx antenna pairs for each AP-DP link is
utilized. Finally, the amplitude and phase data are extracted
for the training and test stages as described in Section IV-A.1

1sample data used in the experiment can be found here:
https://github.com/tfsanam/MuDLoc/tree/exp1
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FIGURE 3. MuDLoc system architecture.

in order to implement MuDLoc with GI2DCA approach.
The performance of MuDLoc is verified in various scenarios
and the resulting location errors in different environments
are compared with several benchmark schemes. It is found
from the experimental results that in an open indoor space,
where there are fewer or no obstacles in the area of interest,
the performance of indoor localization is better than that in a
complex environment where there are fewer LOS paths. The
experimental results are presented from two typical indoor
localization environments, as described in the following.

1) RESEARCH LABORATORY
This is a research laboratory with an area of 6 m × 5 m
in the CoRE Building of Rutgers University. Fig. 4 shows
the testbed layout of MuDLoc in the research laboratory.
The lab represents a cluttered environment, equipped with
office desks, shelfs, desktops, chairs etc., which block most
of the LOS paths and form a complex radio propagation
environment. The area is virtually partitioned into 20 uniform
square grids/cells, each of which is 0.50m × 0.50m in size.
3 different APs are placed in 3 different random places in
order to exploit the multi-view approach.

2) CORRIDOR
This is a long corridor at fifth floor of CoRE Building of
Rutgers University with dimension 2 m× 10 m. The corridor
we choose is almost empty; therefore, most of the measured

FIGURE 4. The layout of the testbed in a research laboratory.

locations have LOS receptions. As in Fig. 5, we place 3APs at
different random locations on the floor to measure CSI data.
20 positions are chosen uniformly scattered with half-meter
spacing along a straight line for the corridor experiments.

FIGURE 5. The layout of the testbed in a corridor.

All experiments are conducted during weekdays. For each
location, we get 3000 samples for each of the APs (views).
These time domain samples collected for each of the APs are
grouped in order to create feature images for each location.
The entire dataset is partitioned into training sets, validation
sets and test sets using a ratio of 6:2:2. Following the sug-
gestions in [33], µ is set to 1, γ is set as trace ratio, and
5-fold cross validation are used to select tuning parameter
β among [0, 1000]. Time consumption of the training and the
online localization stage are 2.74 s and 1.68 s, respectively.
Four representative schemes are built from the literature,
i.e., PC-DfL [8], Pilot [19], Pairwise CCA (PWCCA) [28]
and MCCA [30], which are discussed in Section I. In order to
ensure a fair comparison, same dataset obtained for the 5 GHz
band is used by all the schemes. Extensive experiments with
the schemes are conducted in the above two representative
indoor environments to evaluate the performance of the
proposed method.

B. LOCALIZATION PERFORMANCE
First the performance of MuDLoc system with proposed
GI2DCA approach is evaluated in terms of mean distance
error and standard deviation; and are compared with the
RSS-based localization approach PC-DfL [8] and CSI-based
approach Pilot [19]. The proposed system is also compared
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with related existing multi-data processing methods includ-
ing pairwise CCA (PWCCA) [28] and MCCA [30], when
applied for indoor localization. Among them, PWCCA,
is a two-view method; therefore, the pairwise strategy for
multi-view classification is exploited for comparison. The
results are presented for laboratory and corridor scenarios
in Table 1 and 2, respectively. For the laboratory scenario,
where there exists abundant multipath and shadowing effect,
the mean error of MuDLoc is 0.2449 m and the STD error is
0.4449 m, as shown in Table 1. In the corridor environment,
where there exists more LOS receptions, the mean error of
MuDLoc is 0.15 m and the STD error is 0.3095 m, as shown
in Table 2. MuDLoc outperforms the other multi-view
learning approach, PWCCA and MCCA in both scenarios.
MuDLoc achieves a 65% improvement over MCCA by
exploiting a inter-view and intra-view discriminnat learning
approach in multi-view analysis. Moreover, all the CSI based
schemes outperforms the RSS based approach, i.e., PC-DfL.
The latter has a mean error of 1.3 m in the laboratory scenario
and 1.16 m in the corridor scenario.

TABLE 1. Comparison of mean distance error and standard deviation for
different schemes in the laboratory environment.

TABLE 2. Comparison of mean distance error and standard deviation for
different schemes in the corridor environment.

Fig. 6 presents the CDF of distance errors for different
methods in the laboratory environment. MuDLoc has 65% of
the test locations having an error less than or equal to 0.5 m,
while that for the other methods is 42% or less. We also find
that approximately 90% of the test locations for MuDLoc
have an error under 1 m, while the percentage of test locations
having a smaller error than 1 m are 75%, 68%, 37% and 33%
for MCCA, PWCCA, Pilot and PC-DfL, respectively. Thus,
MuDLoc achieves the best performance in terms of distance
error in this experiment.

In Fig. 7, the CDF of distance errors for different methods
in the corridor environment are presented. With MuDLoc,
78% of the test positions have an error smaller than 0.5mm,
while with MCCA, PWCCA, Pilot and PC-DfL, close to
27%, 48%, 5% and 10% of the test positions, respectively,
have an error smaller than 0.5 m. Results also show that
approximately 95% of the test locations for MuDLoc have
an error under 1 m, while that for the other methods is 67%

FIGURE 6. CDF of distance error for laboratory scenario.

FIGURE 7. CDF of distance error for corridor scenario.

or less. Thus, MuDLoc also achieves the best performance
for corridor environment. This is because the other methods
are either designed to work with single AP or consider the
average value for multiple APs. Morover, all other meth-
ods use only the amplitude feature of CSI or RSS value
for localization, while MuDLoc exploits CSIs from multi-
ple APs through multiview discriminant analysis and fuses
transformed amplitude and phase-based features of CSI into a
single feature, which is more discriminative than the individ-
ual ones. This feature fusion method reduces the redundant
information between two input features, and therefore will
be more effective for better localization.

C. IMPACT OF USING AMPLITUDE AND PHASE
DIFFERENCE FEATURES OF CSI
The proposed MuDLoc system utilizes CSI as observation
measurements for indoor localization, which provides ampli-
tude and phase information. The contribution of these ampli-
tude and phase features of CSI data are analyzed through the
evaluation of the system performance when using amplitude
information, phase information, and both the amplitude and
phase information of CSI. Fig. 8 reveals that The performance
for corridor scenario is always better than the laboratory
scenario in all the cases due to more LOS reception for most
of the measured positions. However, the MuDLoc system
with GI2DCA approach could achieve reasonable localiza-
tion accuracy for both indoor scenarios even using only one
type of measurement (either amplitude or phase). The mean
distance error can be further decreased to as low as 0.25 m for
laboratory scenario and 0.15 m for corridor scenario if using
both the amplitude and phase measurements. Thus, utilizing
the amplitude and phase difference features of CSI in terms of
amplitude and phase information fromMIMOOFDM system
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FIGURE 8. Mean distance error for different modality of CSI
measurements.

facilitates to improve the localization performance to a great
extent.

D. IMPACT OF THE NUMBER OF SAMPLES IN THE
ONLINE TEST
The effect of the number of packets used in the online test
phase of MuDLoc are also evaluated in the study. In the
experiments, the location of the target is estimated using
different numbers of packets for the two indoor environments.
The experiments are performed using 100, 200, 300, 400,
and 500 packets in the online test for location estimation.
In Table 3, the mean distance errors for different numbers of
packets in the laboratory and corridor experiments are shown.
Results show that the mean distance error in the corridor
experiment is lower than that in the laboratory experiment
for different amounts of packets. Moreover, with the increase
of packets, the mean distance error for both experiments is
decreased. It can be noted that the maximum distance errors
for the laboratory and corridor experiments are 0.458 m and
0.391 m, respectively, while the minimum distance errors
for the laboratory and corridor experiments are 0.205 m and
0.109 m, respectively. Intuitively, with very low number of
packets, we do not have sufficient samples to localize a target
with better precision, while larger number of samples enables
us to have sufficient data to localize a target more precisely.
However, the processing time increases with the increase in
number of samples. Therefore, MuDLoc chooses 300 packets
in online test for all experiments, with which the system can
obtain a satisfactory localization performance with a lower
computational complexity.

TABLE 3. Mean distance error versus the number of packets used in
online test phase.

E. IMPACT OF THE NUMBER OF VIEWS (APs)
Finally, the impact of the number of views (APs) on local-
ization performance is evaluated for the proposed method in
the two indoor environments. The experiments are conducted
with multiple views (APs) to evaluate the performance of
the proposed system. Fig. 9 presents the performance of
MuDLoc (GI2DCA) system in terms of the mean distance

FIGURE 9. Mean distance error in laboratory for different no of views
(APS).

errors for different number of APs in laboratory and corridor
environments. However the results for one AP is not included,
since with one AP, multi-view strategy does not work (which
requires two or more APs), and therefore we are unable to
extract the inter-view discriminant features of CSIs while
considering only one AP. It is noticed that, with the increase
in number of views/APs, the mean error is decreased for both
indoor deployments. This is because, the more the number
of APS, the richer the multipath information that can be
obtained to estimate the location. However, results show that,
for both environments, the decrease inmean distance error are
relatively small when the number of AP is increased to 4 or
more. SinceMuDLoc can obtain fairly low localization errors
using only 3 APs for both indoor deployments, this work
considers using 3 AP for exploiting the multi-view approach
in order to achieve the higher localization accuracywith lower
deployment cost.

Although the MuDLoc scheme with three or more AP
achieves lower mean distance errors, it takes more time for
processing the CSI values from multiple AP as input data for
each packet. We evaluate the average processing time to esti-
mate the target position in the test phase using 300 received
packets. The processing time is measured as the CPU occu-
pation time for the MATLAB R2016a program running on
the centralized server. Results in Table 4 show that, in the
laboratory scenario, the single-view scheme (i.e. Pilot) takes
1.89 s, on average, to estimate the target position, whereas
the multi-view scheme (MuDLoc) takes around 2.18 s, 2.35 s,
2.73 s and 3.09 s for processing CSI values from 2, 3, 4, and
5 APs, respectively, as input data to estimate the location.
Therefore, with the increase in no of views (APs), the execu-
tion time increases. As shown in Fig. 9, MuDLoc can obtain
fairly low localization errors using only 3 APs for laboratory
scenario and the mean processing time is 2.35 s, which is
lower than that for 4 AP or 5 AP systems. Moreover, the dif-
ference in execution time is small when compared with single
view approach, although the multi-view approach processes

TABLE 4. Comparison of mean processing time for single-view vs,
multi-view scheme in the laboratory environment.
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FIGURE 10. Mean distance error versus cell width of square grid.

three times input data than that in the single view (single-
AP) scheme. The three-view MuDLoc takes about 29% extra
processing time than single-view approach, but it can achieve
a 83% improvement in localization precision for laboratory
environment and the latter is generally more important for
indoor localization.

F. IMPACT OF CELL RESOLUTION
The performance of localization varies with the cell resolu-
tion. It is intuitive that with the increase in cell resolution
the accuracy increases and vice versa. We conducted several
experiments by varying cell resolution and chose 0.5 m ×
0.5 m as our cell size for this experiment. The impact of cell
resolution on the mean distance error for research laboratory
and corridor are presented in Fig. 10. As we can see, the mean
distance error decreases if the cell width of the square cell
is increased from 0.5 m to 0.65 m or more. On the other
hand, if we decrease the cell width from 0.5 m to 0.35 m
or less, the error increases. However, assuming that the target
is located at the center of a cell, we achieved mean distance
error of 0.24 m and 0.15 m when the cell width is 0.50 m
for laboratory and corridor experiments, respectively. These
results indicate that the target is localized within the cell with
mean distance error of 0.24 m and 0.15 m from the center of
the cell for the above experimental scenarios. When the cell
resolution is decreased, the mean distance error increases to
more than half of the cell width. Therefore, in this experiment
we chose 0.5 m × 0.5 m as our cell size for both experiment
scenarios.

VI. CONCLUSION
This paper presents MuDLoc, a multi-view discriminant
learning approach for indoor localization that exploits both
the amplitude and the phase information of CSI in MIMO
OFDM systems. In MuDLoc, CSI information for all the
subcarriers from 3 × 3 MIMO channels are collected from
multiple APs and analyzed with a multi-view learning
approach to extract joint spatial features. In order to take
discriminant information across multiple cells/locations and
multiple views into account, the proposed MuDLoc system
implements GI2DCA, which preserves both inter-view and
intra-view class structures through a discriminant correlation
analysis. Both amplitude and phase information are utilized in
order to exploit the complete multipath information from CSI

measurements. These discriminant features extracted from
the GI2DCA are used for effective, high accuracy device free
indoor localization by transforming the localization problem
into a cell classification problem using pattern matching.
The proposed MuDLoc scheme was validated in two repre-
sentative indoor environments and was found to outperform
several existing RSS and CSI based localization schemes.
The effect of different modalities of CSI data as well as
system parameters on MuDLoc performance are examined.
It was found that MuDLoc can achieve good performance
with lower localization error under such scenarios.
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