
Techinical Report

A Multi-View Embedding Space for Modeling Internet Images, Tags,
and their Semantics

Yunchao Gong · Qifa Ke · Michael Isard · Svetlana Lazebnik

Abstract This paper investigates the problem of modeling

Internet images and associated text or tags for tasks such as

image-to-image search, tag-to-image search, and image-to-

tag search (image annotation). We start with canonical cor-

relation analysis (CCA), a popular and successful approach

for mapping visual and textual features to the same latent

space, and incorporate a third view capturing high-level im-

age semantics, represented either by a single category or

multiple non-mutually-exclusive concepts. We present two

ways to train the three-view embedding: supervised, with

the third view coming from ground-truth labels or search

keywords; and unsupervised, with semantic themes auto-

matically obtained by clustering the tags. To ensure high

accuracy for retrieval tasks while keeping the learning pro-

cess scalable, we combine multiple strong visual features

and use explicit nonlinear kernel mappings to efficiently ap-

proximate kernel CCA. To perform retrieval, we use a spe-

cially designed similarity function in the embedded space,

which substantially outperforms the Euclidean distance. The

resulting system produces compelling qualitative results and

outperforms a number of two-view baselines on retrieval

tasks on three large-scale Internet image datasets.
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1 Introduction

The goal of this work is modeling the statistics of images

and associated textual data in large-scale Internet photo col-

lections in order to enable a variety of retrieval scenarios,

including similarity-based image search, keyword-based im-

age search, and automatic image annotation. Practical mod-

els for these tasks must meet several requirements. First,

they must be accurate, which is a big challenge given that

the imagery is extremely heterogeneous and user-provided

annotations are noisy. Second, they must be scalable to mil-

lions of images. Third, they must be flexible, accommodat-

ing cross-modal retrieval tasks such as tag-to-image or image-

to-tag search in the same framework, and enabling, for ex-

ample, tag-based search of images without any tags.

Several promising recent approaches for modeling im-

ages and associated text (Gong and Lazebnik, 2011; Hardoon

et al., 2004; Hwang and Grauman, 2010, 2011; Rasiwasia

et al., 2010) rely on canonical correlation analysis (CCA),

a classic technique that maps two views, given by visual and

and textual features, into a common latent space where the

correlation between the two views is maximized (Hotelling,

1936). This space is cross-modal, in the sense that embed-

ded vectors representing visual and textual information are

treated as the same class of citizens, and thus image-to-image,

text-to-image, and image-to-text retrieval tasks can in prin-

ciple all be handled in exactly the same way.

While CCA is very attractive in its simplicity and flex-

ibility, existing CCA-based approaches have several short-

comings. In particular, the works cited above use classic

two-view CCA, which only considers the direct correlations

between images and corresponding textual feature vectors.

However, as we will show in this paper, significant improve-

ments can be obtained by considering a third view with which

the first two are correlated – that of the underlying semantics

of the image.
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Text: 1024 x 768 Au Revoir Trompette . All Things 

Chill » Blog Archive » Wallpapers  

Keywords: trumpet 

Text:  Arc de Triomphe and Champs Elysees.  

Arc de Triomphe If you are foolhardy enough to. 

Arc de Triomphe and Champs Elysees, Paris,  

France - intoFrance . 

Keywords: Arc de Triomphe 

  

 (a)  Flickr-CIFAR                 (b) NUS WIDE                  (c) INRIA web images  

Tags:  sunset, night, 

colors, pink, tower, 

shot, kuwait, stunning 

Keywords: buildings 

sky tower water 

 

Tags: keywest, 

Florida, tropics, 

fauna, deer, keywest, 

wedding… 

Keywords: deer 

 

Tags: yellow, frog, 

amphibian, canon, 

550d, eos, picture, 

image… 

Keywords: frog 

Tags: interestingness, 

window, mexico, 

balcony 

Keywords: window 

Number of images: 230,173       

Number of tags:  2494       

Number of keywords: 10                      

Number of images: 269,648 

Number of tags:  1000 

Number of keywords: 81           

Number of images: 71,478      

Number of tags:  20,602 

Number of keywords: 353                     

 

Tags: ladder, truck, 

sparten, quint, 

1500gpm… 

Keywords: truck 

Text: PSG-ASSE: les Notes - MoreFoot.com. Beckham

amoureux du maillot blanc PSG ASSE les Notes.  

France Une fin de match haletante n aura pas  

 

Keywords: Paris Saint-Germain FC 

  

Tags: red, natural, 

landscape, sunset, 

evening, seascape, 

marsh 

Keywords: lake, plants, 

sunset 

Fig. 1 An overview of the large-scale Internet image datasets used in this paper. For each sample image, we show its associated noisy tags or text, as

well as ground-truth keywords. For Flickr-CIFAR dataset (collected by ourselves as described in Section 5) and INRIA-Websearch dataset (Krapac

et al., 2010), each image only has one ground truth label. For NUS-WIDE dataset (Chua et al., 2009), each image has multiple ground truth labels.

Figure 1 shows a few instances of the kind of three-view

image data considered in this work, taken from three large-

scale Internet image datasets. As in Figure 1 (a), the seman-

tics of an image may be described by a single high-level

category, typically that of the most prominent object in the

image (“deer”), while the user-provided tags may include a

number of additional terms correlated with that category or

with the broader scene setting (“keywest, Florida, tropics,

fauna, wedding” etc.). Alternatively, the semantics might be

given by labels of multiple objects or attributes. Thus, as

in Figure 1 (b), an image may have the ground-truth labels

“buildings, sky, tower, water” and tags “sunset, night, col-

ors, pink, tower, shot, kuwait, stunning.” Or, as in Figure 1

(c), the ground-truth semantics may be given by the name of

a logo or landmark, and the text may be taken from the sur-

rounding webpage, and may or may not explicitly mention

the ground-truth category.

In this paper, we present a three-view CCA model that

explicitly incorporates the high-level semantic information

as a third view. The difference between the standard two-

view CCA and our proposed three-view embedding is visu-

alized in Figure 2. In the two-view embedding space (Fig-

ure 2 (a)), which is produced by maximizing the correlations

between visual features and the corresponding tag features,

images from different classes are very mixed. On the other

hand, the three-view embedding (Figure 2 (b)) provides a

much better separation between the classes. As our experi-

ments will confirm, a third semantic view – which may be

derived from a variety of sources – is capable of consid-

erably increasing the accuracy of retrieval on very diverse

datasets.

In all the examples of Figure 1, the ground-truth seman-

tics is defined ahead of time and accurately annotated for the

express purpose of training recognition algorithms. How-

ever, in most realistic situations, it is easy to gather noisy

text and tags, but not so easy to get at the underlying se-

mantics. Fortunately, we will show that even in cases when

clean ground-truth annotation for the third view is unavail-

able, it is still possible to learn a better embedding for the

photo collection by representing the semantics explicitly.

In some cases, we can get an informative additional signal

from search keywords. For example, if we retrieve a num-

ber of images together with their tags from Flickr using a

search for “frog,” then knowing the original search keyword

gives us additional modeling power even if many of these

images do not actually depict frogs. Furthermore, if ground

truth category or search keyword information is absent com-

pletely, we will demonstrate that an effective third view can

be derived in an unsupervised way by clustering the noisy

tag vectors constituting the second view. In effect, the tag

clustering can be thought of as “reconstructing” or “recov-

ering” the absent topics or distinct types of image content.

To obtain high retrieval accuracy, most modern methods

have found it necessary to combine multiple high-dimensional

visual features, each of which may come with a different

similarity or kernel function. Retrieval approaches of Hwang

and Grauman (2010, 2011); Yakhnenko and Honavar (2009)

accomplish this combination using nonlinear kernel CCA

(KCCA) (Bach and Jordan, 2002; Hardoon et al., 2004),

but the standard KCCA formulation scales cubically in the

number of images in the dataset. Instead of KCCA, we use

a scalable approximation scheme based on efficient explicit
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Fig. 2 A visualization of the first two directions of the common latent space for (a) standard two-view CCA and (b) our proposed three-view

CCA model. Different colors indicate different image categories (though note that category information is not used in learning the three-view

embedding). Black points indicate sample tag queries, and the corresponding images are their nearest neighbors in the latent space.

kernel mapping followed by linear dimensionality reduction

and linear CCA. Finally, we specifically design a distance

function suitable for our learned latent embedding, and show

that it achieves significant improvement over the Euclidean

distance. Experiments on the three large-scale datasets of

Figure 1 show the promise of the proposed approach.

Here is a summary and a preview of the main contribu-

tions of this paper:

– A novel three-view CCA framework that explicitly in-

corporates the dependence of visual features and text on

the underlying image semantics (Section 3.1).

– A distance function specially adapted to CCA that im-

proves the accuracy of retrieval in the embedded space

(Section 3.2).

– Scalable yet discriminative representations for the visual

and textual views based on multiple feature combina-

tion, explicit kernel mappings, and linear dimensionality

reduction (Sections 4.1 and 4.2).

– Two methods for instantiating the third semantic view:

supervised, or derived from ground-truth annotations by

unsupervised clustering; and unsupervised, or derived

by clustering the tag vectors from the second (textual)

view. In both cases, our experiments confirm that adding

the third view helps to improve retrieval accuracy. For

the unsupervised case, we perform a comparative eval-

uation of several tag clustering methods from the litera-

ture (Section 4.3).

– Evaluation of three retrieval tasks – image-to-image, tag-

to-image, and image-to-tag search – on three large-scale

datasets introduced in Figure 1 (Sections 5-8).

2 Related Work

In the vision and multimedia communities, jointly modeling

images and text has been an active research area. This sec-

tion gives a non-exhaustive survey of several important lines

of research related to our work.

Some of the earliest research on images and text (Barnard

and Forsyth, 2001; Blei and Jordan, 2003; Blei et al., 2003;

Duygulu et al., 2002; Lavrenko et al., 2003) has focused on

learning the co-occurrences between image regions and tags

using a generative model. Since most datasets used for train-

ing such models lack image annotation at the region level,

learning to associate tags with image regions is a very chal-

lenging problem, especially for contaminated Internet photo

collections with very large tag vocabularies. Moreover, im-

age tags frequently refer to global properties or characteris-

tics that cannot be easily localized. Therefore, we focus on

establishing relationships between whole images and words.

The major goal of our work is learning a joint latent

space for images and tags, in which corresponding images

and tags are mapped to nearby locations, so that simple nearest-

neighbor methods can be used to perform cross-modal tasks,

including image-to-image, tag-to-image, and image-to-tag

search. A number of successful recent approaches to learn-

ing such an embedding rely on Canonical Correlation Anal-

ysis (CCA) (Hotelling, 1936). Hardoon et al. (2004) and

Rasiwasia et al. (2010) have applied CCA to map images

and text to the same space for cross-modal retrieval tasks.

Hwang and Grauman (2010, 2011) have presented a cross-

modal retrieval approach that models the relative importance

of words based on the order in which they appear in user-

provided annotations. Blaschko and Lampert (2008) have

used KCCA to develop a cross-view spectral clustering ap-

proach that can be applied to images and associated text.
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CCA embeddings have also been used in other domains,

such as cross-language retrieval (Udupa and Khapra, 2010;

Vinokourov et al., 2002). Unlike all the other CCA-based

image retrieval and annotation approaches, ours adds a third

view that explicitly represents the latent image semantics.

Conceptually, our three-view formulation may be com-

pared to the generative model that attempts to capture the

relationships between the image class, annotation keywords,

and image features. One example of such a model in the lit-

erature is Wang et al. (2009a). Unlike Wang et al. (2009a),

though, we do not concern ourselves with the exact gener-

ative nature of the dependencies between the three views,

but simply assign symmetric roles to them and model the

pairwise correlations between them. Also, while Wang et al.

(2009a) tie annotation keywords to image regions follow-

ing Blei and Jordan (2003); Blei et al. (2003), we treat both

the image appearance and all the tags assigned to the im-

age as global feature vectors. This allows for much more

scalable learning and inference (the approach of Wang et al.

(2009a) is only tested on datasets of under 2,000 images and

eight classes each).

Our approach also has connections to supervised multi-

view learning, in which images are characterized by visual

and textual views, both of which are linked to the underlying

semantic labels. The literature contains a number of sophis-

ticated methods for multi-view learning, including general-

izations of CCA/KCCA (Sharma et al., 2012; Yakhnenko

and Honavar, 2009), metric learning (Quadrianto and Lam-

pert, 2011) and large-margin formulations (Chen et al., 2012).

Fortunately, we have found that our basic CCA formulation

already gives very promising results without having to pay

the price of increased complexity for learning and inference.

The two main tasks we use for evaluating our system are

image-to-image search, which has been traditionally studied

as content-based image retrieval (Datta et al., 2008; Smeul-

ders et al., 2000), and tag-to-image search, or image retrieval

using text-based queries (Grangier and Bengio, 2008; Kra-

pac et al., 2010; Liu et al., 2009; Lucchi and Weston, 2012).

A task related to tag-to-image search, though one we do

not consider directly, is re-ranking of contaminated image

search results for the purpose of dataset collection (Berg and

Forsyth, 2006; Fan et al., 2010; Frankel et al., 1997; Schroff

et al., 2007).

The third task we are interested in evaluating is image-

to-tag search or automatic image annotation (Carneiro et al.,

2007; Li and Wang, 2008; Monay and Gatica-Perez, 2004).

This task has traditionally been addressed with the help of

sophisticated generative models such as Blei and Jordan (2003);

Carneiro et al. (2007); Lavrenko et al. (2003). More recently,

a number of publications have reported better results with

simple data-driven schemes based on retrieving database im-

ages similar to a query and transferring the annotations from

those images (Chua et al., 2009; Guillaumin et al., 2009;

Makadia et al., 2008; Verma and Jawahar, 2012; Wang et al.,

2008). We will adopt this strategy in our experiments and

demonstrate that retrieving similar images in our embedded

latent space can improve the accuracy of tag transfer.

The data-driven image annotation approaches of Guil-

laumin et al. (2009); Makadia et al. (2008); Verma and Jawa-

har (2012) use discriminative learning to obtain a metric or

a weighting of different features to improve the relevance

of database images retrieved for a query. Unfortunately, the

learning stage is very computationally expensive – for ex-

ample, in the TagProp method of Guillaumin et al. (2009),

it scales quadratically with the number of images. In fact,

the standard datasets used for image annotation by Makadia

et al. (2008); Guillaumin et al. (2009); Verma and Jawa-

har (2012) consist of 5K-20K images and have 260-290 tags

each.By contrast, our datasets (shown in Figure 1) range in

size from 71K to 270K and have tag vocabularies of size 1K-

20K. While it is possible to develop scalable metric learning

algorithms using stochastic gradient descent (e.g., Mensink

et al. (2012)), our work shows that learning a linear embed-

ding using CCA can serve as a simpler attractive alternative.

Perhaps the largest-scale image annotation system in the

literature is the Wsabie (Web Scale Annotation by Image

Embedding) system by Weston et al. (2011). It uses stochas-

tic gradient descent to optimize a ranking objective function

and is evaluated on datasets with ten million training exam-

ples. Like our approach, Wsabie learns a common embed-

ding for visual and tag features. Unlike ours, however, it has

only a two-view model and thus does not explicitly represent

the distinction between the tags used to describe the image

and the underlying image content. Also, Wsabie is not ex-

plicitly designed for multi-label annotation, and evaluated

on datasets whose images come with single labels (or single

paths in a label hierarchy).

One of the shortcomings of data-driven annotation ap-

proaches (Guillaumin et al., 2009; Makadia et al., 2008;

Verma and Jawahar, 2012) as well as Wsabie is that they not

account for co-occurrence and mutual exclusion constraints

between different tags for the same image. If the retrieved

nearest neighbors of an image belong to incompatible se-

mantic categories (e.g., “bird” and “plane”), then the tags

transferred from them to the query may be incoherent as

well (see Figure 10 (a) for an example). To better exploit

constraints between multiple tags, it is possible to treat im-

age annotation as a multi-label classification problem (Chen

et al., 2011; Zhu et al., 2005). In the present work, we limit

ourselves to learning the joint visual-textual embedding. It

would be interesting to impose multi-label prediction con-

straints in the joint latent space – in fact, Zhang and Schnei-

der (2011) have recently proposed an approach combining

CCA with multi-label decoding – but doing so is outside the

scope of our paper.
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Finally, our work has connections to approaches that use

Internet images and accompanying text as auxiliary training

data to improve performance on tasks such as image clas-

sification, for which cleanly labeled training data may be

scarce (Guillaumin et al., 2010; Quattoni et al., 2007; Wang

et al., 2009b). In particular, Quattoni et al. (2007) use the

multi-task learning framework of Ando and Zhang (2005)

to learn a discriminative latent space from Web images and

associated captions. We will use this embedding method as

one of our baselines, though, unlike our approach, it can

only be applied to images, not to tag vectors. Apart from

multi-task learning, another popular way to obtain an inter-

mediate embedding space for images is by mapping them to

outputs of a bank of concept or attribute classifiers (Rasiwa-

sia and Vasconcelos, 2007; Wang et al., 2009c). Once again,

unlike our method, this produces an embedding for images

only; also, training of a large number of concept classifiers

tends to require more supervision and be more computation-

ally intensive than training of a CCA model.

3 Modeling Images, Tags, and High-Level Semantics

3.1 Scalable three-view CCA formulation

In this section, we introduce a three-view kernel CCA for-

mulation for learning a joint space for visual, textual, and se-

mantic information. Then we show how to obtain a scalable

approximation using explicit kernel embeddings and linear

CCA.

We assume we have n training images each of which is

associated with a v-dimensional visual feature vector and a

t-dimensional tag feature vector (our specific feature repre-

sentations for both views will be discussed in Section 4).

The respective vectors are stacked as rows in matrices V ∈

R
n×v and T ∈ R

n×t. In addition, each training image is also

associated with semantic class or topic information, which

is encoded in a matrix C ∈ R
n×c, where c is the number

of classes or topics. Each image may be labeled with ex-

actly one of the c classes (in which case only one entry in

each row of C is 1 and the rest are 0); alternatively, each

image may be described by several of the c keywords (in

which case, multiple entries in each row of C may be 1). An-

other possibility is that C is a soft indication matrix, where

the i, jth entry indicates the degree (or posterior probability)

with which image i belongs to the jth class or topic. In the

supervised learning scenario, C is obtained from (possibly

noisy) annotations that come with the training data. In the

unsupervised scenario (where only images and tags are ini-

tially given), C is “latent” and must be obtained by cluster-

ing the tags, as will be discussed in Section 4.3. To simplify

the notation in the following, we will also use X1, X2, X3

to denote V, T, C respectively.

Let x,y denote two points from the ith view. The sim-

ilarity between these points is defined by a kernel function

Ki such that Ki(x,y) = ϕi(x)ϕi(y)
⊤, where ϕi(·) is a

function embedding the original feature vector into a nonlin-

ear kernel space. Practical kernel-based learning schemes do

not work in the embedded space directly, relying on the ker-

nel function instead. However, we will formulate KCCA as

solving for a linear projection from the kernel space, because

this leads directly to our scalable approximation scheme based

on explicit embeddings.

In KCCA, we want to find matrices Wi that project the

embedded vectors ϕi(x) from each view into a low-dimen-

sional common space such that the distances in the resulting

space between each pair of views for the same data item

are minimized. The objective function for this formulation

is given by

min
W1,W2,W3

3∑

i,j=1

‖ϕi(Xi)Wi − ϕj(Xj)Wj‖
2

F (1)

subject to W⊤

i ΣiiWi = I, w
⊤

ikΣijwjl = 0,

i, j = 1, . . . , 3, i 6= j , k, l = 1, . . . , d, k 6= l,

where Σij is the covariance matrix between ϕ(Xi) and ϕ(Xj),

and wik is the kth column of Wi (the number of columns in

each Wi is equal to the dimensionality of the resulting com-

mon space). To better understand this objective function, let

us consider its three terms:

min
W1,W2,W3

‖ϕ1(V )W1 − ϕ2(T )W2‖
2

F+

‖ϕ1(V )W1 − ϕ3(C)W3‖
2

F + ‖ϕ2(T )W2 − ϕ3(C)W3‖
2

F .

The first term tries to align corresponding images and tags,

and it is the sole term in the standard two-view CCA objec-

tive (Hardoon et al., 2004). The remaining two terms, which

are introduced in our three-view model, try to align images

(resp. tags) with their semantic topic. Figure 3 illustrates

the difference between the two- and three-view formulations

graphically.

In the standard KCCA formulation, instead of directly

solving for linear projections of data explicitly mapped into

the kernel space by ϕi, one applies the “kernel trick” and

expresses the coordinates of a data point in the CCA space as

linear combinations of kernel values of that point and several

training points. To find the weights in this combination, one

must solve a 3n × 3n generalized eigenvalue problem (see

Bach and Jordan (2002); Hardoon et al. (2004) for details),

which is infeasible for large-scale data.

To handle large numbers of images and high-dimensional

features, we propose a scalable approach based on the idea

of approximate kernel maps (Maji and Berg, 2009; Perronnin

et al., 2010; Rahimi and Recht, 2007; Vedaldi and Zisser-

man, 2010). Let ϕ̂(x) denote an approximate kernel map-

ping such that Ki(x,x
′) ≃ ϕ̂i(x)ϕ̂i(x

′)⊤. The dimension-

ality of ϕ̂(x) needs to be much lower than n to reduce the
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(a) Two-view model.

 

(b) Three-view model.

Fig. 3 (a) Traditional two-view CCA minimizes the distance (equiva-

lently, maximizes the correlation) between images (triangles) and their

corresponding tags (circles). (b) Our proposed approach is to incorpo-

rate semantic classes or topics (black squares) as a third view. Images

and tags belonging to the same semantic cluster are forced to be close

to each other, imposing additional high-level structure. See also Figure

2 for a visualization of two embeddings on real data.

complexity of the problem. The specific kernel mappings

used in our implementation will be described in Section 4.1.

Then, instead of using the kernel trick, we can directly sub-

stitute ϕ̂(x) into the linear CCA objective function (1). The

solution is given by the following generalized eigenvalue

problem:



S11 S12 S13

S21 S22 S23

S31 S32 S33






w1

w2

w3


 = λ



S11 0 0
0 S22 0

0 0 S33






w1

w2

w3


 ,

where Sij = ϕ̂i(Xi)
⊤ϕ̂j(Xj) is the covariance matrix be-

tween the ith and jth views, and wi is a column of Wi. The

size of this problem is (d1 + d2 + d3) × (d1 + d2 + d3),

where the di are the dimensionalities of the respective ex-

plicit mappings ϕ̂i(·). This is independent of training set

size, and much smaller than 3n×3n. To regularize the prob-

lem, we add a small constant (10−4 in the experiments) to

the diagonal of the covariance matrix.

In order to obtain a d-dimensional embedding for differ-

ent views, we form projection matrices Wi ∈ R
di×d from

the top d eigenvectors corresponding to each wi. Then the

projection of a data point x from the ith view into the la-

tent CCA space is given by ϕ̂i(x)Wi. Note that once they

are learned, the respective projection matrices are applied to

each view individually, which means that at test time, we can

compute the embedding for data for which one or two more

views are missing (e.g., an image without tags or ground-

truth semantic labels). In the latent CCA space, points from

different views are directly comparable, so we can do image-

to-image, image-to-tag, and tag-to-image retrieval by near-

est neighbor search.

3.2 Similarity function in the latent space

In the CCA-projected latent space, the function used to mea-

sure the similarity between data points is important. An ob-

vious choice is the Euclidean distance between embedded

data points, as used in Foster et al. (2010); Hwang and Grau-

man (2010); Rasiwasia et al. (2010). However, for our learned

embedding, we were able to find a similarity function that

produces better empirical results. In particular, we scale the

dimensions in the common latent space by the magnitude of

the corresponding eigenvalues (Chapelle et al., 2003), and

then compute normalized correlation between projected vec-

tors. Indeed, the CCA objective can be reformulated as max-

imizing the normalized correlation between different views

(Hardoon et al., 2004).

Let x and y be points from the ith and jth views, respec-

tively (we can have i = j). Then we define the similarity

function between x and y as

sim(x,y) =
(ϕ̂i(x)WiDi)(ϕ̂j(y)WjDj)

⊤

‖ϕ̂i(x)WiDi‖2‖ϕ̂j(y)WjDj‖2
, (2)

where Wi and Wj are the CCA projections for data points x

and y, and Di and Dj are diagonal matrices whose diago-

nal elements are given by the p-th power of the correspond-

ing eigenvalues (Chapelle et al., 2003). We fix p = 4 in all

our experiments as we have found this leads to the best per-

formance. Section 6.4 will experimentally confirm that the

above similarity measure leads to much higher retrieval ac-

curacy than Euclidean distance.

4 Representations of the Three Views

In Sections 4.1 and 4.2, we will present our visual and text

features with their respective kernel mappings. Next, in Sec-

tion 4.3, we will discuss different text clustering approaches

that can be used to extract semantic topics in the unsuper-

vised scenario, where the third view is not given for the

training data.

4.1 Visual feature representation

We represent image appearance using a combination of nine

different visual cues:

GIST (Oliva and Torralba, 2001): We resize each image to

200×200 and use three different scales [8, 8, 4] to filter each

RGB channel, resulting in 960-dimensional (320× 3) GIST

feature vectors.

SIFT: We extract six different texture features based on two

different patch sampling schemes: dense sampling and Har-

ris corner detection. For each local patch, we extract SIFT

(Lowe, 2004), CSIFT (van de Sande et al., 2010), and RG-

BSIFT (van de Sande et al., 2010). For each feature, we

form a codebook of size 1,000 using k-means clustering and

build a two-level spatial pyramid (Lazebnik et al., 2006), re-

sulting in a 5000-dimensional vector. We will refer to these

six features as D-SIFT, D-CSIFT, D-RGBSIFT, H-SIFT, H-

CSIFT, and H-RGBSIFT.
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HOG (Dalal and Triggs, 2005): To represent texture and

edge information on a larger scale, we use 2 × 2 overlap-

ping HOG as described in Xiao et al. (2010). We quantize

the HOG features to a codebook of size 1,000 and use the

same spatial pyramid scheme as above, once again resulting

in 5,000-dimensional feature vectors.

Color: We use a joint RGB color histogram of 8 bins per

dimension, for a 512-dimensional feature.

Recall from Section 3.1 that we transform all the fea-

tures by nonlinear kernel maps ϕ̂(x) and then apply linear

CCA to the result. We discuss the specific feature maps we

use here. For GIST features, we use the random Fourier fea-

ture mapping (Rahimi and Recht, 2007) that approximates

the Gaussian kernel. We compute this mapping with 3,000

dimensions and set its standard deviation equal to the av-

erage distance to the 50th nearest neighbor in each dataset.

All the other descriptors above are histograms, and for them

we adopt the exact Bhattacharyya kernel mapping given by

term-wise square root (Perronnin et al., 2010). To combine

different features, we simply average the respective kernels,

which has been proven to be quite effective in Gehler and

Nowozin (2009). This corresponds to concatenating all the

different visual features after putting them through their re-

spective explicit kernel mappings. However, the resulting

concatenated feature has 38,512 dimensions, necessitating

additional dimensionality reduction. To do this, we perform

PCA on top of each kernel-mapped feature ϕ̂i(·). This is es-

sentially using the low-rank approximation of kernel PCA

(KPCA) (Scholkopf et al., 1997) to approximate the com-

bined multiple feature kernel matrix.

In our experiments, we reduce each kernel-mapped fea-

ture to 500 dimensions and the final concatenated feature is

a 4, 500-dimensional vector. As validated in Section 6.2, this

dimensionality achieves good balance between efficiency and

accuracy. Note that for multiple feature combination, we

have found it important to center all feature dimensions at

the origin.

4.2 Tag feature representation

For the tags associated with the images, we construct a dic-

tionary consisting of t most frequent tags (the vocabulary

sizes used for the different datasets are summarized in Fig-

ure 1 and will be further detailed in Section 5) and manu-

ally remove a small set of stop words. These include cam-

era brands (e.g., “canon,” “nikon,” etc.), lens characteristics

(e.g., “eos,” “70-200mm,” etc.), and words like “geo.” The

tag feature matrix T is binary: Tij = 1 if image i is tagged

with tag j and 0 otherwise. Note that even though the dimen-

sionality of the tag feature may be high (our vocabularies

range from 1,000 to over 20,000 on the different datasets),

this representation is highly sparse.

Like Guillaumin et al. (2010), we use the linear kernel

for T , which corresponds to counting the number of com-

mon tags between two images. However, because of the high

dimensionality of the tag features, additional compression is

required, just as with the concatenated visual features. We

apply sparse SVD (Larsen, 1998) to the tag feature T to ob-

tain a low-rank decomposition as T = USV ⊤. It is easy

to show that US is actually the PCA embedding for T , but

directly applying sparse SVD to T is more efficient. In our

implementation, the compressed representation of T is given

by the top 500 columns of US.

4.3 Semantic view representation

As initially discussed in Section 3, the third view of our

CCA model is given by the class or topic indicator matrix

C ∈ R
n×c for n images and c topics. In the supervised

training scenario, C is straightforwardly given by ground-

truth annotations or noisy search keywords used to down-

load the data. In the more interesting unsupervised scenario,

training images come with noisy text or tags, but no addi-

tional semantic annotations. In this case, we choose to ob-

tain C by clustering the tags. Given the raw tag feature T

(prior to the application of sparse SVD), our goal is to find

c semantic clusters. For this purpose, we investigate several

models that have proven successful for text clustering. We

briefly describe these models below; quantitative and quali-

tative evaluation results will be presented in Section 6.3.

K-means clustering: The simplest baseline approach is k-

means clustering on raw tag feature T using c centers. The

resulting matrix C has a 1 in the i, jth position if the ith tag

feature vector belongs to the jth cluster.

Normalized cut (NC) (Ng et al., 2001; Shi and Malik, 2000):

For text clustering, the normalized cut model is usually for-

mulated as computing the eigenvectors of

L = I −D−1/2TT⊤D−1/2 ,

in which D = diag(T (T⊤
1)). This is equivalent to comput-

ing the first c singular vectors of the sparse matrix D−1/2T .

Following Ng et al. (2001), we normalize each row of the

matrix of top c eigenvectors to have unit norm and perform

k-means clustering of rows of the resulting matrix Ũ . Di-

rectly using Ũ as C would represent a “soft” version of NC,

but we have found that the “hard” version obtained by k-

means produces better results.

Nonnegative matrix factorization (NMF) (Xu et al., 2003):

The data matrix is normalized as D−1/2T , where D is de-

fined the same way as for NC, and then factorized into two

nonnegative matrices U and V such that T = U⊤V (if T

is n × t, then U is c × n and V is c × t). Then, as in Xu

et al. (2003), we obtain a normalized matrix Ũ with entries
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Uij/
√∑

j V
2

ij . Finally, we do hard cluster assignment based

on the highest value of Ũ in each row. Just as with NC, this

produces better results than using Ũ as a “soft” cluster indi-

cator matrix directly.

Probabilistic latent semantic analysis (pLSA) (Hofmann,

1999): This approach models each document (vector of tags

for an image) as a mixture of topics. The output of pLSA

is the posterior probability of each topic given each docu-

ment. Directly using this matrix of posterior probabilities

as C leads to “soft” pLSA clustering. However, once again,

we get better performance with “hard” pLSA where we map

each document to the cluster index with the highest posterior

probability. We have also investigated latent Dirichlet allo-

cation (LDA) (Blei et al., 2003) and found the performance

to be similar to pLSA, so we omit it.

Because the number of topics used in this work is not

very high (from 10 to 100), we simply use a linear kernel on

C with no further dimensionality reduction.

5 Datasets and Retrieval Tasks

Our selection of datasets is motivated by two considerations.

First, we want datasets that are as large as possible, both in

the number of images and in the number of tags. Second,

we want datasets that have the right kind of annotations for

evaluating our method – specifically, images that are accom-

panied both by noisy text or tags, and ground-truth labels.

We have considered a number of datasets used in re-

cent related papers, but unfortunately, most of them are un-

suitable for our goals. In particular, standard image anno-

tation datasets used by Makadia et al. (2008); Guillaumin

et al. (2009); Rasiwasia and Vasconcelos (2007); Verma and

Jawahar (2012) – namely, Corel5K (Duygulu et al., 2002),

ESP Game (von Ahn and Dabbish, 2004), and IAPR-TC

(Grubinger et al., 2006) – have only two views and are rather

small-scale (5K-20K images and 260-290 tags). Rasiwasia

et al. (2010), who have first proposed a two-view CCA model

for cross-modal retrieval of Internet images, perform exper-

iments on a Wikipedia dataset that has rich textual views

as well as ground-truth labels, but it consists of only 2,866

documents. Weston et al. (2011) evaluate their Wsabie an-

notation system on millions of images. However, one of their

datasets is drawn from ImageNet (Deng et al., 2009), which

is more appropriate for image classification, and the other

one is proprietary; neither has the three-view structure we

are looking for.

The three datasets we have chosen are shown in Figure

1. The first one is collected by ourselves, while the other two

are publicly available.

Flickr-CIFAR dataset: We have downloaded 230,173 im-

ages from Flickr by running queries for categories from the

CIFAR10 dataset (Krizhevsky, 2009): airplane, automobile,

bird, cat, deer, dog, frog, horse, ship, and truck. We keep tags

that appear at least 150 times, resulting in a tag dictionary

with dimensionality 2,494. On average, there are 6.84 tags

per image. The Flickr images come with search keywords

and user-provided tags, but no ground-truth labels. To quan-

titatively evaluate retrieval performance we need another set

of cleanly labeled test images. We get this set by collecting

the same ten categories from ImageNet (Deng et al., 2009),

resulting in 15,167 test images with no tags but ground-truth

class labels.

NUS-WIDE dataset: This dataset (Chua et al., 2009) was

collected at the National University of Singapore. It also

originates from Flickr, and contains 269,648 images. The

dataset is manually annotated with 81 ground truth concept

labels, e.g., animal, snow, dog, reflection, city, storm, fog,

etc. One important difference between NUS-WIDE and other

datasets is that NUS-wide images may be associated with

multiple ground truth labels. For the tags, we use the list

of 1,000 words provided by Chua et al. (2009); on average,

each image has 5.78 tags and 1.86 ground truth annotations.

Each ground truth concept is also in the tag dictionary.

INRIA-Websearch dataset: Finally, we use the INRIA Web

query dataset (Krapac et al., 2010), which contains 71,478

web images and 353 different concepts or categories, which

include famous landmarks, actors, films, logos, etc. Each

concept comes with a number of images retrieved via In-

ternet search, and each image is marked as either relevant

or irrelevant to its query concept. This dataset is especially

challenging in that it contains a very large number of con-

cepts relative to the total number of images. The second

view for this dataset consists of text surrounding images on

web pages, not tags. We keep words that appear more than

20 times and remove stop words using a standard list for

text document analysis, which gives us a tag dictionary of

size 20,602. On this dataset, we also apply tf-idf weighting

to the tag feature.

The above three datasets have different characteristics

and present different challenges for our method. Flickr-CIFAR

has the fewest classes but the largest number of images per

class. It is also the only dataset whose training images have

no ground-truth semantic annotation, and whose test images

come from a different distribution than the training images.

We use this dataset for detailed comparative validation of

the different implementation choices of our method (Sec-

tion 6). NUS-WIDE images are fully manually annotated

and come with multiple ground truth concepts per image.

INRIA-Websearch is the only one not collected from Flickr,

and its images are the most inconsistent in quality. It has the

largest number of classes but the smallest number of images

per class. It also has by far the largest vocabulary for the

second view and the noisiest statistics for this view.



A Multi-View Embedding Space for Modeling Internet Images, Tags, and their Semantics 9

For evaluation, we consider the following tasks.

Image-to-image search (I2I): Given a query image, project

its visual feature vector into the CCA space, and use it to

retrieve the most similar visual features from the database.

Recall that our similarity function in the CCA space is given

by eq. (2).

Tag-to-image search (T2I): Given a search tag or combina-

tion of tags, project the corresponding feature vector into the

CCA space and retrieve the most similar database images.

This is a cross-modal task, in that the CCA-embedded tag

query is used to directly search CCA-embedded visual fea-

tures. Note that with our method, we can use tags to search

database images that do not initially come with any tags. In

scenarios where ground-truth labels or keywords are avail-

able for the database images, we also consider a variant of

this task where we use the keywords as queries, which we

refer to as keyword-to-image search (K2I).

Image-to-tag search: Given an image, retrieve a set of tags

that accurately describe it. This task is more challenging

than the other two because going from a feature vector in

CCA space to a coherent set of tags requires a sophisticated

reconstruction or decoding algorithm (see, e.g., Hsu et al.

(2009); Zhang and Schneider (2011)). The design of such

an algorithm is beyond the scope of our present work, but

to get a preliminary idea of the promise of our latent space

representation for this task, we evaluate a simple data-driven

scheme similar to that of Makadia et al. (2008). Namely,

given a query image, we first find the fifty nearest neigh-

bor tag vectors in CCA space, and then return the five tags

with the highest frequencies in the corresponding database

images. Note that Makadia et al. (2008) return tags accord-

ing to their global frequencies, while for our larger and more

diverse datasets, we have found that local frequency works

better.

In the remainder of the paper, we will evaluate the above

tasks on our three datasets, Flickr-CIFAR (Section 6), NUS-

WIDE (Section 7), and INRIA-Websearch (Section 8). In

the subsequent presentation, we will denote visual features

as V, tag features as T, the keyword or ground truth annota-

tions as K, and the automatically computed topics as C. For

example, CCA (V+T) will refer to the two-view baseline

model based on visual and tag features; CCA (V+T+K) to

the three-view model based on visual features, tags, and su-

pervised semantic information (ground truth labels or search

keywords); and CCA (V+T+C) the three-view model with

the unsupervised third view (automatically computed tag clus-

ters). Details of our evaluation protocols and metrics for

each dataset will be given in the respective sections.

6 In-depth Analysis on Flickr-CIFAR

We use the Flickr-CIFAR dataset to study the various com-

ponents of the proposed method in Sections 6.2 to 6.5. For

this purpose, we perform quantitative evaluation on image-

to-image and tag-to-image search. Finally, in Section 6.6 we

perform a smaller-scale evaluation for image-to-tag search.

6.1 Experimental protocol

Remember from Section 5 that the Flickr-CIFAR dataset

consists of 230,173 Flickr images that are used to learn the

CCA embedding and 15,167 ImageNet images that are used

for quantitative evaluation. The ImageNet images are split

into 13,167 “database” images against which retrieval is per-

formed, 1,000 validation images, and 1,000 test images. One

fixed split is used for all experiments. The validation im-

ages are run as queries against the database in order to se-

lect the dimensionality d of the embedding. We search a

range from 16 to 1024, doubling the dimensionality each

time (the same procedure is followed to select d for the

other datasets as well, and the resulting values typically fall

around 128-256). For image-to-image search, we use the test

images as queries and report precision at top p retrieved im-

ages (Precision@p) – that is, the fraction of the p returned

images having the same ImageNet label as the query. For

tag-to-image retrieval, we need a different set of queries as

the ImageNet images are not tagged. For this, we take the

tag feature vectors of 1,000 randomly chosen Flickr images

(which are excluded from the set used to learn the embed-

ding). The ground truth label of each query is given by the

search keyword used to download the corresponding image.

Just as for image-to-image search, the evaluation metric for

tag-to-image search is Precision@p.

6.2 Evaluation of feature representations

Recall from Section 4.1 that we apply nonlinear kernel maps

to nine different visual features, reduce each of them to 500

PCA dimensions, and concatenate them together. As for the

tag features (Section 4.2), we use sparse SVD to compress

them to 500 dimensions. In this section, we evaluate these

transformations. Since no dimensionality reduction is involved

in the third view (K or C), for simplicity, we perform the

evaluation with the standard two-view CCA (V+T) model.

Table 1 reports the effect of PCA on image-to-image

and tag-to-image search for individual and combined visual

features. For image-to-image retrieval, applying PCA to the

original feature vectors may slightly hurt performance, but

the decrease is less than 1%. More importantly, combined

features significantly outperform each individual feature. On

the other hand, for tag-to-image retrieval, PCA consistently
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D-SIFT D-CSIFT D-RGBSIFT H-SIFT H-CSIFT H-RGBSIFT HOG GIST RGB Hist. All

Image-to-image search

No PCA 42.51 42.58 41.54 43.57 41.27 43.02 43.13 40.48 24.32 –

PCA (500D) 42.03 42.01 40.86 42.51 40.98 42.21 42.41 39.96 24.38 54.90

Tag-to-image search

No PCA 53.68 50.34 52.02 55.67 52.18 54.84 54.06 48.75 26.88 –

PCA (500D) 55.24 53.71 53.83 58.42 54.18 57.29 56.12 51.41 28.52 64.07

Table 1 Precision@50 for full-dimensional vs. PCA-reduced data for image-to-image (top) and tag-to-image (bottom) retrieval for CCA (V+T).

We did not obtain the result for combined features without PCA due to excessive computational cost (see text).

Image-to-image search Tag-to-image search

# clusters 10 20 30 40 50 100 10 20 30 40 50 100

visual k-means 49.12 48.73 48.73 48.52 48.50 47.58 57.35 56.67 56.47 56.07 56.16 56.20

k-means 51.60 56.18 57.36 57.45 57.34 57.40 63.23 65.23 67.36 66.76 68.29 70.29

NC 54.86 62.33 61.90 61.21 60.65 56.65 63.75 76.05 74.90 72.58 72.45 67.71

NMF 54.01 55.45 57.51 56.63 55.98 53.07 64.44 66.58 67.03 67.41 66.33 62.54

pLSA 55.40 56.43 57.33 57.62 56.89 54.88 62.45 64.71 64.92 65.76 67.32 66.83

Table 2 Precision@50 for different clustering methods for image-to-image and tag-to-image retrieval with the CCA (V+T+C) model. The second

row shows results for visual clusters and the remaining rows for semantic (tag-based) clusters. The results are averaged over five different random

initializations of the clustering methods. The performance of the CCA (V+T) baseline is 54.90% for image-to-image search, and 64.02% for

tag-to-image search.

helps to improve performance. This is possibly because Flickr

tags are noisy, and reducing the dimensionality smooths the

data.

To motivate our use of dimensionality reduction, it is in-

structive to give some running times on our platform, a 4-

core Xeon 3.33GHz workstation with 48GB RAM. For a

single feature, it takes 2.5 seconds to obtain the CCA solu-

tion for approximated data (500 V + 500 T dimensions), ver-

sus 20 minutes for the full-dimensional kernel-mapped data

(5,000 V + 2,494 T). For all nine combined visual features,

it took around five minutes to get the approximated solution

(4,500 V + 500 T); because the computation scales cubi-

cally with the number of dimensions, we have not tried to

obtain the full-dimensional solution for all features (38,512

V + 2,494 T). Likewise, while one would ideally want to

compare our results to an exact KCCA solution using ker-

nel matrices, for hundreds of thousands of training points

this is completely infeasible on our platform (for n training

points, exact two-view KCCA involves solving a 2n × 2n
eigenvalue problem).

We conclude that combining multiple visual cues is in-

deed necessary to get the highest absolute levels of accuracy,

and that dimensionality reduction of kernel-mapped features

can satisfactorily address memory and computational issues

with negligible loss of accuracy.

6.3 Comparison of tag clustering methods

In Section 4.3, we have presented a number of tag cluster-

ing methods that can be used to obtain the semantic topic

matrix C for the third view when the training images do

not come with ground-truth semantic information. Table 2

compares the performance of these methods. We use our

proposed CCA (V+T+C) model, where V and T are low-

dimensional approximations to the visual and tag features as

discussed in Sections 4.1 and 4.2, and C is generated by the

different clustering methods being compared. As a baseline,

we also include results for k-means clustering based solely

on visual features. It is clear that visual clusters have worse

performance than all of the tag-based clustering methods,

thus confirming that the visual features are too ambiguous

for unsupervised extraction of high-level structure (this will

also be demonstrated qualitatively in Figure 5). In fact, the

performance of the three-view CCA (V+T+C) model with

visual clusters is even worse than that of the CCA (V+T)

baseline.

Among the tag-based clustering methods, normalized cut

(NC) method achieves the best performance across a wide

range of cluster sizes, followed by NMF, k-means and pLSA

in decreasing order of accuracy. Thus, NC will be our method

of choice for computing the CCA (V+T+C) embedding. As

a function of the number of clusters, accuracy tends to in-

crease up to a certain point, after which overfitting sets in.

The best number of clusters to use depends on the breadth of

coverage and the semantic structure of the dataset; we select

it using validation data.

Figure 4 visualizes a few NC tag clusters for the NUS-

WIDE dataset. For each example cluster, it shows the most

frequent tags associated with the images in that cluster, as

well as the sixteen images closest to the center of the clus-

ter projected into the CCA (V+T+C) space. We can see that

the clusters have a good degree of both visual and semantic
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cute rabbit bunny animal
baby adorable pet

funny   animals

cheerleader football girls
basketball girls dance

university sports college

bird birds nature wildlife
animal booby eagle

hawk  flight

nature macro flower
closeup green insect

bravo red yellow

music concert rock live
festival band scientists

dance drum

city urban manhattan new
building downtown night

architecture buildings

home design office house
interior kitchen fashion

work room

portrait face self girl
woman eyes smile

child portraits

abandoned decay old
urban rust industrial

factory jail rusty

underwater fish diving
scuba  coral  sea
ocean  reef   dive

autumn  trees  tree
park  fall  leaves
forest  fog  mist

snow winter ice cold
nature trees mountains

white mountain

Fig. 4 Example semantic clusters on the NUS-WIDE dataset. For each cluster, we show the most frequent tags and the images closest to the cluster

center in the CCA (V+T+C) space.

coherence. For comparison, Figure 5 shows a few clusters

computed with k-means on the visual features. Because our

visual features are relatively powerful, these clusters are still

perceptually coherent; however, they are no longer seman-

tically coherent. In particular, images in the leftmost cluster

are grouped based on their strong diagonal composition, but

while perceptually salient, this characteristic does not have

a strong relationship to the image content. We can also con-

firm this lack of semantic coherence by noting the poor cor-

respondence between the most frequent tags for the entire

cluster and the most central images of that cluster. Thus,

for the rightmost cluster in Figure 5, the top few images

mostly feature subjects (people, dogs) against light uniform-

colored backgrounds, but in the cluster as a whole, themes

like “fog, nature, water” appear to be more prevalent. Over-

all, these qualitative observations help to explain the quanti-

tative finding of Table 2 that the learned CCA (V+T+C) em-

bedding tends to decrease retrieval precision as compared to

the CCA (V+T) model when the third (C) view is given by

visual clusters, but increase it when the third view is given

by tag clusters.

6.4 Comparison of similarity functions

Section 3.2 has presented our similarity function for near-

est neighbor retrieval in the CCA space. Table 3 compares

this function (eq. 2) to plain Euclidean distance for three

different multi-view setups. We separately evaluate the ef-
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blue nature water sky
landscape clouds green

snow explore

water  green  nature
clouds  landscape  sky

carpet  sea  beach

portrait light black flower
macro white

bravo nature girl

fog nature water sunset
explore sepia
white red sky

Fig. 5 Example visual k-means clusters for the NUS-WIDE dataset. The most frequent tags in the cluster are shown above the central cluster

images.

method I2I T2I

CCA (V+T) (Eucl) 45.75 51.39

CCA (V+T) (scale+Eucl) 48.90 54.54

CCA (V+T) (scale+corr) 54.90 64.02

CCA (V+T+C) (Eucl) 53.64 69.76

CCA (V+T+C) (scale+Eucl) 57.04 72.45

CCA (V+T+C) (scale+corr) 62.44 75.96

CCA (V+T+K) (Eucl) 52.43 71.49

CCA (V+T+K) (scale+Eucl) 57.45 75.29

CCA (V+T+K) (scale+corr) 62.55 78.93

Table 3 Evaluation of different components of our proposed similar-

ity function (eq. 2) on three multi-view setups. “Eucl” denotes Eu-

clidean distance, “scale” denotes scaling of the feature dimensions by

the CCA eigenvalues, and “corr” denotes normalized correlation. CCA

(V+T+C) is computed using 20 NC clusters and CCA (V+T+K) is the

supervised three-view model with K given by search keywords of the

Flickr images.

fects of its two main components: eigenvalue scaling and

normalized correlation. From the table, we can find that both

these components give signficant improvements over the Eu-

clidean distance. We have consistently observed similar pat-

tern on other datasets, so we adopt the proposed similarity

function in all subsequent experiments.

6.5 Comparison of multi-view models

Table 4 evaluates the performance of several multi-view mod-

els on three tasks: image-to-image (I2I), tag-to-image (T2I),

and keyword-to-image (K2I) retrieval. As explained in Sec-

tion 6.1, our performance metric for all tasks is class label

(keyword) precision at top 50 images.

The most naive baselines for our approach are given by

the single-view representations consisting only of visual fea-

tures – either raw 38,512-dimensional ones (V-full) or PCA-

compressed 4,500-dimensional ones (V). Both of these rep-

resentations can only be used directly for image-to-image

method I2I T2I K2I

V-full 33.68 – –

V 41.65 – –

CCA (V+T) 54.90 64.02 95.80

CCA (V+K) 61.69 – 90.20

CCA (V+T+K) 62.55 78.93 97.40

CCA (V+C) 61.75 – –

CCA (V+T+C) 62.44 75.96 97.80

Structural learning 57.63 – –

CCA (V+AR) 55.11 63.29 95.80

CCA (V+AR+K) 62.59 79.36 97.60

CCA (V+AR+C) 62.62 75.71 97.80

Table 4 Results on Flickr-CIFAR for image-to-image (I2I), tag-to-

image (T2I), and keyword-to-image(K2I) retrieval. The protocols for

I2I and T2I are described in Section 6.1. For K2I, each of the 10

ground truth classes is used as a query once. The evaluation metric

is average precision (%) at top 50 retrieved images. V-full refers to

the concatenated 38,512-dimensional visual features. In all the other

approaches, V refers to the 4,500-dimensional PCA-reduced features,

T to the 500-dimensional sparse SVD-reduced tag features, and C is

computed based on 20 NC clusters. Structural learning refers to the

method of Ando and Zhang (2005); Quattoni et al. (2007) and AR

refers to the tag ranking feature of Hwang and Grauman (2010) (see

text for details). We have obtained standard deviations from five ran-

dom database/query splits, and they are around 0.25% - 1%.

similarity search (I2I). As can be seen from Table 4, the

PCA-compressed feature gets higher precision for this task,

but in absolute terms, both perform poorly.

A stronger baseline for our three-view models is given

by the two-view CCA (V+T) representation, which can be

used for all three retrieval tasks we are interested in (it can

be used for K2I because the ten class labels or keywords in

this dataset are a subset of the tag vocabulary). For I2I, the

CCA (V+T) embedding improves the precision over non-

embedded image features (V) from 41.65% to 54.9%. Thus,

projecting visual features into a space that maximizes cor-

relation with Flickr tags greatly improves the semantic co-

herence of similarity-based image matches (i.e., in the CCA
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ship

Precision: 26.67% Precision: 100% Precision: 100%

airplane

Precision: 66.67%

(a) Original visual feature.

Precision: 46.67%

(b) CCA (V+T).

Precision: 100%

(c) CCA (V+T+C).

Fig. 6 Image-to-image retrieval results for two sample queries. The leftmost image is the query. Red border indicates a false positive.

(a) yellow (b) red (c) sail (d) ocean

Fig. 7 Examples of tag-based image search on the Flickr-CIFAR dataset.

space, “truck” query images are much more likely to have

top matches that are also “truck” images).

Next, we consider our supervised three-view model, CCA

(V+T+K), where the third view is given by the search key-

words used to retrieve the Flickr images. Even though this

supervisory information is noisy (not all images retrieved

by Flickr search for “truck” will actually contain trucks), we

can see that incorporating it as a third view improves the

precision of all three of our target retrieval tasks. The unsu-

pervised version of our three-view model, CCA (V+T+C),

where the third view is given by 20 NC clusters, performs

almost identically to CCA (V+T+K) on I2I and K2I, and

has slightly lower precision for T2I. This is a very encour-

aging result, since it shows that semantic information that is

automatically recovered from noisy tags still provides a very

powerful form of supervision.

For completeness, Table 4 also lists the performance of

two-view models CCA (V+K) and CCA (V+C) given by re-

placing the lower-level tag-based view T by the higher-level

but lower-dimensional semantic view (K or C). The result-

ing two-view models do not perform as well as the respec-

tive three-view models on any task, and they are also not

suitable for some of the retrieval tasks we care about, such

as tag-to-image search.

It is also interesting to ask how CCA compares to alter-

native methods for obtaining intermediate embeddings for

visual features supervised by tag information. To answer this

question, we have implemented the structural or multi-task

learning method of Ando and Zhang (2005); Quattoni et al.

(2007). In their formulation, the tag matrix T is treated as

supervisory information for the visual features V and a ma-

trix of image-to-tag predictors W is obtained by ridge re-

gression: ‖T − VW‖2 + ρ‖W‖2. Next, since the tasks of

predicting multiple tags are assumed to be correlated, we

look for low-rank structure in W by computing its SVD.

If W = USV ⊤, then we use U (or more precisely, its

top d columns) as the embedding matrix for the visual fea-

tures: E = V U . As shown in Table 4, for image-to-image

retrieval, the structural learning method works better than

CCA (V+T) but worse than all our other multi-view CCA
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(a) deer (b) deer, snow×2 (c) deer, snow×6 (d) snow

(e) ship (f) ship, sunset×2 (g) ship, sunset×6 (h) sunset

Fig. 8 Examples of tag-to-image search on Flickr-CIFAR with multiple query tags and adjustable weights (see text).

models. Furthermore, this method does not produce an em-

bedding for tags, so unlike CCA (V+T) and our three-view

models, it is not suitable for tag-to-image retrieval.

As a final experiment, Table 4 compares our tag-based

feature T with the more sophisticated ranking-based tag fea-

ture of Hwang and Grauman (2010). This feature, dubbed

AR (for Absolute and Relative tag rank) is based on the idea

that tags listed earlier by users are more salient to the im-

age content. To obtain the AR representation, for each tag

present in an image, we compute three different ranking-

based values as in Hwang and Grauman (2010); the result-

ing feature is then SVD-compressed to three times the di-

mension of the SVD-compressed T . The last three lines of

Table 4 show the results of our multi-view CCA models with

AR substituted instead of T. We can see that this substitu-

tion has a negligible impact on performance. Even if ranking

cues do contribute some additional information to help im-

prove the embedding, this improvement does not go nearly

as far as adding a third semantic view, even if that view is

derived entirely from the second one through unsupervised

clustering (i.e., compare the improvement from CCA (V+T)

to CCA (V+AR) to the improvement from CCA (V+T) to

CCA (V+T+C)).

Figure 6 shows image-to-image search results for two

example queries, and Figures 7 and 8 show examples of tag-

to-image search results. As noted earlier, one advantage of

our system over traditional tag-based search approaches is

that once our multi-view embedding is learned, we can use it

to perform tag-to-image search on databases of images with-

out any accompanying text. In fact, for the Flickr-CIFAR

dataset, recall that we are using an embedding trained on

tagged Flickr images to embed and search ImageNet images

that lack tags. Figure 7 shows top retrieved images for four

tags that do not correspond to the main ten keywords that

were used to download the dataset. In particular, we are able

to learn colors, common background classes like “ocean,”

and sub-classes of the main keywords like “sail.”

Figure 8 shows images retrieved for more complex queries

consisting of multiple tags such as “deer, snow.” Note that

“deer” is one of our ten main keywords, and “snow” is a

much less common tag. To get good retrieval results in such

cases, we have found that we need to give higher weights

to the more minor concepts when forming the query tag

vector. Intuitively, the tag projection matrix found by min-

imizing the CCA objective function (eq. 1) is much more

influenced by the distortion due to the common tags rather

than the rare ones. We have empirically observed that we

can counteract this effect and obtain more accurate results

for less frequent tags by increasing their weights in the tag

vector at query time. To date, we have not designed a way to

tune the weights automatically. However, in an interactive

image search system, it would be very natural for users to

adjust the weights on the fly to modulate the importance of

different concepts in their query. For example, in Figure 8

(a)-(c), when we increase the weight for “snow,” snow be-

comes more and more prominent in the retrieved images.
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Fig. 10 Example image tagging results on Flickr-CIFAR dataset for CCA (V+T) and CCA (V+T+C). Tags in red have been marked as irrelevant

by human annotators.
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Fig. 9 Tagging results on the Flickr-CIFAR dataset: Average precision

of retrieved tags vs. tag rank based on manual evaluation (see text).

6.6 Tagging results

This section presents a quantitative evaluation of our method

for image tagging or annotation. As described in Section 5,

we use the data-driven annotation scheme of Makadia et al.

(2008), where tags are transferred from top fifty neighbors to

the query in the latent space. We randomly sample 200 query

images from our ImageNet test set and use CCA (V+T),

CCA (V+T+C), and CCA (V+T+K) spaces to transfer tags.

To evaluate the results, we ask four individuals (members

of the research group not directly involved with this project)

to verify the tags suggested by different methods, that is,

mark each tag as either relevant or irrelevant to the image.

To avoid bias, our evaluation interface does not tell the eval-

uators which set of tags was produced by which method, and

presents the sets of tags corresponding to different methods

in random order for each test image. Our reasons for using

human evaluation are twofold: first, our test images do not

have any ground truth annotations; second, it is hard to pro-

vide ground truth consisting of a complete set of all possi-

ble tags for an image. We combine the results of the human

evaluators by voting: each tag that gets marked as relevant

by three or more evaluators is considered correct.

Figure 9 reports average precision as a function of tag

rank (which is determined by frequency of the tag in the top

fifty closest images to the query in the CCA space). We can

find that our proposed three-view models, CCA (V+T+K)

and CCA (V+T+C), lead to better accuracy than the baseline

CCA (V+T) method. Figure 10 shows the tagging results

for CCA (V+T) vs. CCA (V+T+C) on a few example test

images.

7 Results on the NUS-WIDE Dataset

In this section, we compare different multi-view embeddings

on the NUS-WIDE dataset. We randomly split the dataset

into 219,648 training and 50,000 test images. As before, we

learn the joint embedding using the training images, and test

retrieval accuracy on testing dataset. In the test set, we ran-

domly sample and fix 1,000 images as the queries, 1,000

images as the validation set, and retrieve the remaining im-

ages. The validation set is used to find the number of clus-

ters for NC. For this dataset, this number ends up being 100,

vs. 20 for Flickr-CIFAR. The larger number of clusters for

NUS-WIDE is not surprising, since this dataset has a much

larger number of underlying semantic concepts than Flickr-

CIFAR (81 vs. ten). Since there are relatively fewer images

per class, we report Precision@20 instead of Precision@50.

Also, since the images in this dataset may contain multiple

ground truth keywords, we compute average per-keyword
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method I2I T2I K2I

V-full 25.25 – –

V 32.23 – –

CCA (V+T) 42.44 42.37 60.87

CCA (V+K) 48.53 – 74.39

CCA (V+T+K) 48.06 50.46 68.25

CCA (V+C) 41.72 – –

CCA (V+T+C) 44.03 43.11 64.02

Structural learning 41.21 – –

Table 5 Comparison of multi-view models and baselines on the NUS-

WIDE dataset. For K2I, since images may have multiple ground truth

keywords, we do not generate the keyword queries directly but use the

keyword vectors of the 1,000 query images used for I2I. The perfor-

mance metric is Precision@20 averaged over the number of keywords

per query, as described in the text. Structural learning refers to the

method of Ando and Zhang (2005); Quattoni et al. (2007). We have

obtained standard deviations from five random database/query splits,

and they are around 0.66% - 1.06%.

precision. That is, if q is the number of keywords for a given

query image and a is the number of relevant keywords re-

trieved in the top p images, we define Precision@p as a
pq .

Table 5 reports results for different multi-view models

on I2I, T2I, and K2I search. For the supervised K view, we

directly use the ground truth annotations (which may con-

tain multiple nonzero entries per image). On this dataset,

the best performance is achieved by the supervised CCA

(V+T+K) and CCA (V+K) models. The unsupervised three-

view model CCA (V+T+C) still improves over CCA (V+T)

for all three tasks, but not as much as CCA (V+T+K). By

contrast, on the Flickr-CIFAR dataset (Table 4), we found

that CCA (V+T+C) and CCA (V+T+K) were very close to-

gether. The weaker performance of the unsupervised three-

view model on NUS-WIDE is not entirely surprising, how-

ever, since the tag clusters for NUS-WIDE are likely much

more mixed than for Flickr-CIFAR, whose concepts were

fewer and better separated. Intuitively, for richer and more

diverse datasets, ground truth annotations are likely to be the

strongest source of semantic information. Also, unlike in Ta-

ble 4, the two-view supervised model CCA (V+K) appears

to have stronger results than the three-view CCA (V+T+K)

for I2I and especially K2I. This may be due to the T view

adding noise to the K view. Despite this, the two-view CCA

(V+K) model is not as useful or flexible as the three-view

CCA (V+T+K) one – in particular, the former is not suitable

for T2I retrieval.

Figure 11 shows example image-to-image search results

and Figure 12 shows example tag-to-image search results for

the CCA (V+T+C) model. As can be seen from the latter fig-

ure, our system can return appropriate images for compound

queries consisting of combinations of as many as three tags,

e.g., “mountain, river, waterfalls” or “beach, people, red.”

Figure 13 compares tag-to-image retrieval results for the
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Fig. 15 Tagging results on the NUS-WIDE dataset: average precision

of retrieved tags vs. tag rank.

two-view model, CCA (V+T), and the three-view one, CCA

(V+T+C). The three-view model tends to retrieve more rel-

evant images, especially for compound queries.

Figure 14 compares image annotation results for CCA

(V+T), CCA (V+T+C), and CCA (V+T+K) using the same

human evaluation protocol as in Section 6.6. Unlike the Flickr-

CIFAR results in Figure 9, where the three-view models pro-

duced higher precision than CCA (V+T), all three models

work comparably for image tagging on NUS-WIDE. The

example results shown Figure 15 confirm that the subjective

quality of the tags produced by two- and three-view models

is similar. We believe that the explanation for this result has

to do, at least in part, with the statistics of images and tags

in NUS-WIDE. Specifically, many images in this dataset are

either abstract or are natural landscape scenes with no dis-

tinctive objects. For such images, all our embeddings tend

to suggest generic tags. Also, suggesting tags such as “land-

scape,” “night,” “light,” etc., appears to be somewhat easier

than trying to suggest object-specific tags, which are much

more important for Flickr-CIFAR – indeed, in terms of abso-

lute performance, the precision curves for NUS-WIDE (Fig-

ure 15) are higher than for Flickr-CIFAR (Figure 9). Further-

more, as discussed in Section 5, our embedding does not

provide a complete solution to the image annotation prob-

lem, as it does not include a decoding step exploiting multi-

label constraints. Developing such a solution is an important

subject for our future work.

8 Results on the INRIA-Websearch Dataset

Finally, we report results on the INRIA web search dataset.

As explained in Section 5, ground-truth semantic informa-

tion for each image in this dataset is in the form of a bi-

nary label saying whether or not that image is relevant to

a particular query concept. This information directly gives

us our third view for the supervised CCA (V+T+K) model.

Since this dataset, just as NUS-WIDE, has relatively few

images per concept, we evaluate performance using Preci-

sion@20. We randomly split the dataset into 51,478 training
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buildings
sky  tower

water

Precision: 73.33%

(a) Original visual feature.

Precision: 100%

(b) CCA (V+T).

Precision: 100%

(c) CCA (V+T+C).

Fig. 11 Image-to-image retrieval results on the NUS-WIDE dataset. The query image is shown on the left, together with its ground truth concepts.

Red borders indicate false positive retrieval results. We consider an image to be a false positive if its ground truth annotation does not share any

concepts with the query. Please note, however, that the ground truth is noisy, so some false (resp. true) positives are labeled inaccurately.

and 20,000 test images. In the test set, we use 18,000 im-

ages as the database, 1,000 images as validation queries, and

1,000 as test queries. Note that the database includes images

marked as “irrelevant,” but not the validation or test queries.

For CCA (V+T+C), we tune the number of NC clusters on

the validation dataset to obtain 450 clusters.

Table 6 reports image-to-image and tag-to-image search

results. As this dataset is extremely noisy and diverse, the

absolute accuracy for all the methods is low. Precision may

be further lowered by the fact that each database image is

annotated with its relevance to just a single query concept

– thus, if a retrieved image is relevant for more than one

query, this may not show up in the quantitative evaluation.

Nevertheless, CCA (V+T+C) still consistently works bet-

ter than the CCA (V+T) baseline. As on the NUS-WIDE

dataset, the supervised CCA (V+T+K) model works better

than CCA (V+T+C). Also, as on NUS-WIDE, CCA (V+K)

works slightly better than CCA (V+T+K) for I2I. Once again,

this may be because the tag view (T) is adding noise to

the embedding. Figure 16 shows some qualitative image-to-

image search results.

Finally, since the second view of this dataset consists not

of tags, but of text mined from webpages, we do not evaluate

image-to-tag search.

method I2I T2I K2I

V-full 5.42 – –

V 7.29 – –

CCA (V+T) 12.66 25.67 –

CCA (V+K) 16.84 – 44.43

CCA (V+T+K) 15.36 32.76 41.75

CCA (V+C) 13.25 – –

CCA (V+T+C) 13.61 29.57 –

Structural learning 8.35 – –

Table 6 Precision@20 for different multi-view models on the INRIA-

Websearch dataset. For K2I, the queries correspond to the 353 ground

truth concepts. Note that these concepts are no longer necessarily part

of the tag vocabulary, so we cannot report K2I results for any embed-

ding that does not include the K view. We have obtained standard de-

viations from five random database/query splits, and they are around

0.6% - 1.1%.

9 Discussion and Future Work

This paper has presented a multi-view embedding approach

for Internet images, tags, and their semantics. We have started

with the two-view visual-textual CCA model popular in sev-

eral recent works (Gong and Lazebnik, 2011; Hardoon et al.,

2004; Hwang and Grauman, 2010, 2011; Rasiwasia et al.,
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(a) mountain river grass (b) mountain river tree (c) mountain river sky (d) mountain river waterfalls

(e) mountain river (f) river (g) reflection city river (h) reflection city

(i) city (j) night city (k) city fog (l) fog

(m) cloud (n) golden cloud (o) storm (p) storm beach

(q) beach (r) beach people (s) beach people red (t) red

Fig. 12 Examples of tag-to-image search on the NUS-WIDE dataset with CCA (V+T+C). Tags in italic are also part of the 81-member semantic

concept vocabulary. Notice that the three-view model can return appropriate images for combinations of up to three query tags.
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(c) CCA (V+T).

closeup

(d) CCA (V+T+C).

city fog

(e) CCA (V+T).

city fog

(f) CCA (V+T+C).
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(g) CCA (V+T).

mountain river grass

(h) CCA (V+T+C).

Fig. 13 A qualitative comparison of tag-to-image search for CCA (V+T) and CCA (V+T+C) on the NUS-WIDE dataset. Qualitatively, CCA

(V+T+C) works better. For “city, fog,” the three-view model successfully finds city images with fog, while CCA (V+T) only finds city images.

For “mountain, river, grass,” almost all images found by the three-view model contain some river, while the images found by CCA (V+T) do not

contain river.

2010) and shown that its performance can be significantly

improved by adding a third view based on semantic ground

truth labels, image search keywords, or even topics obtained

by unsupervised tag clustering. In terms of quantitative re-

sults, this is our most significant finding – both the super-

vised and unsupervised three-view models, CCA (V+T+K)

and CCA (V+T+C), have consistently outperformed the two-

view CCA (V+T) model on all three datasets, despite the

extremely diverse characteristics shown by these datasets.

For the unsupervised three-view model, CCA (V+T+C),

it may appear somewhat unintuitive that the third cluster-

based view, which is completely derived from the second

textual one, can add any useful information to improve the

embedding. There are several ways to understand what the

unsupervised third view is doing. Especially in simpler datasets

with a few well-separated concepts, such as our Flickr-CIFAR

dataset, tag clustering is actually capable of “recovering”

the underlying class labels. Even in more diverse and am-

biguous datasets with overlapping concepts, tag clustering

can still find sensible concepts that impose useful high-level

structure (Figure 4). In its attempt to discover this structure,

our embedding space may be likened to a non-generative

version of a model that connects visual features and noisy

tags to unobserved image-level semantics (Wang et al., 2009a).

From another point of view, we can observe that the output

of the clustering process, given by the cluster indicator ma-

trix C, is a highly nonlinear transformation of the second

view T that either regularizes the embedding or improves

its expressive power.

The quantitative and qualitative results presented in this

paper demonstrate that our proposed multi-view embedding

space, together with the similarity function specially designed

for it, successfully captures visual and semantic consistency

in diverse, large-scale datasets. This space can form a good

basis for a scalable and flexible retrieval system capable of

simultaneously accommodating multiple usage scenarios. The

visual and semantic clusters discovered by tag clustering and

subsequent CCA projection can be used to summarize and

browse the content of Internet photo collections (Berg and

Berg, 2009; Raguram and Lazebnik, 2008). Figure 4 has

shown an example of what such a summary could look like.

Furthermore, users can search with images for similar im-

ages, or retrieve images based on queries consisting of mul-

tiple tags or keywords. As illustrated in Figure 8, they can

also manually adjust weights corresponding to different key-

words according to the importance of those keywords. Fi-

nally, our embedding space can also serve as a basis for an

automatic image annotation system. However, as discussed

in Section 7, in order to achieve satisfactory results on this

task, we need to develop more sophisticated decoding meth-

ods incorporating multi-label consistency constraints.

Besides the application scenarios named above, we are

also interested in using our learned latent space as an inter-

mediate representation for recognition tasks. One of these
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Fig. 14 Example tagging results on the NUS-WIDE dataset (see text for discussion).

is nonparametric image parsing (Liu et al., 2010; Tighe and

Lazebnik, 2010) where, given a query image, a small num-

ber of similar training images is retrieved and labels are

transferred from these images to the query. With a better

embedding for images and tags, this retrieval step may be

able to return training images more consistent with the query

and lead to improved accuracy for image parsing. Another

problem of interest to us is describing images with sentences

(Farhadi et al., 2010; Kulkarni et al., 2011; Ordonez et al.,

2011). Once again, with a good intermediate embedding space

linking images and tags, the subsequent step of sentence

generation may become easier.
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