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Abstract: Facial expression recognition (FER) techniques can be widely used in human-computer
interaction, intelligent robots, intelligent monitoring, and other domains. Currently, FER methods
based on deep learning have become the mainstream schemes. However, these methods have some
problems, such as a large number of parameters, difficulty in being applied to embedded processors,
and the fact that recognition accuracy is affected by facial deflection. To solve the problem of a
large number of parameters, we propose a DSC-DenseNet model, which improves the standard
convolution in DenseNet to depthwise separable convolution (DSC). To solve the problem wherein
face deflection affects the recognition effect, we propose a posture normalization model based on
GAN: a GAN with two local discriminators (LD-GAN) that strengthen the discriminatory abilities of
the expression-related local parts, such as the parts related to the eyes, eyebrows, mouth, and nose.
These discriminators improve the model’s ability to retain facial expressions and evidently benefits
FER. Quantitative and qualitative experimental results on the Fer2013 and KDEF datasets have
consistently shown the superiority of our FER method when working with multi-pose face images.

Keywords: facial expression recognition (FER); DenseNet; depthwise separable convolution (DSC);
posture normalization; generative adversarial network (GAN)

1. Introduction

With the rapid development of computer technology and artificial intelligence tech-
nology, the demand for human–computer interaction is increasingly strong. The realization
of the understanding and recognizing of human facial expressions by computers is valu-
able in the domains of intelligent robotics, intelligent monitoring, virtual reality, medical
assisted diagnosis, and so on. Benefiting from the improvement of computer performance,
algorithms based on deep learning have become the mainstream scheme of FER.

In the Large Scale Visual Recognition Challenge (ILSVRC) 2012, the AlxNet model [1]
based on a convolution neural network (CNN) greatly improved the accuracy of FER.
Since then, deeper CNNs have been proposed, such as VGGNet [2], GoogleNet [3], and
ResNet [4]. Girshick et al. used Region CNN (R-CNN) to learn facial expression features
and achieved good results [5]. Ren et al. used Faster R-CNN to generate high-quality
features for FER [6]. Yao et al. used the CReLU activation function in ResNet, increased the
network depth while ensuring the recognition rate, and designed a residual block, so that
the FER system could capture expression changes by learning features of different scales [7].
However, these deep learning network models were complex and had a large number of
parameters, making them unsuitable for embedded computers and mobile devices.

Researchers began to study lightweight CNN networks. In 2017, the densely connected
convolution network (DenseNet) was proposed by Huang et al. [8]. DenseNets have several
compelling advantages: they alleviate the vanishing gradient problem, strengthen feature
propagation, encourage feature reuse, and substantially reduce the number of parameters.
SqueezeNet, a lightweight model proposed by Han, uses a lot of 1 × 1 convolution kernels
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and achieves accuracy similar to that of AlexNet with fewer parameters [9]. Aiming at
running on mobile terminals, ShuffleNet, a lightweight model proposed in [10], adds group
convolution to the networks, and this makes the model smaller and faster. In the past two
years, researchers have proposed many lightweight models that continuously improve FER
accuracy [11–15].

The FER algorithms mentioned above focus on the front face image, but since the
facial deflection at various angles cannot be avoided in natural environments, the accuracy
of FER is more or less lowered [16]. Therefore, pose normalization is performed before FER;
i.e., the face is corrected to the front view in the case of deflection.

In order to correct face deflection, early researchers have proposed some 3D modeling
methods. However, when the facial deflection angle is too large, the face normalization
results of this type of methods are unsatisfactory. In 2014, Goodfellow et al. proposed the
generative adversarial network (GAN) [17], which provides a new solution to the problem
of missing features caused by face deflection. Up to now, a series of GAN variants have
been developed to correct facial deflection. These GAN models for face normalization
focus on preserving contour features in the process of synthesizing face images in order to
facilitate identification. If the downstream task is FER, the synthesized frontal face does
not meet the requirements very well because it does not focus on the preservation of local
features related to facial expressions.

In this paper, we present an expression recognition method which combines the
DenseNet FER model with the GAN-based posture normalization model. This method
solves the problems of the large number of parameters in the FER model and low accuracy in
multi-view face normalization. The contributions of this paper are summarized as follows:

1. A lightweight FER model, DSC-DenseNet, which reduces network parameters and
computations by improving the standard convolution in DenseNet to DSC, is pro-
posed. When the parameter is 0.16M, the FER rate of this model is 96.7% for frontal
face input and 77.3% for profiles without posture normalization.

2. A posture normalization model, GAN, with two local discriminators (LD-GAN) based
on the TP-GAN model, is proposed. The encoder–decoder structure implements a
two-pathway generator, global pathway, and local pathway. In order to preserve more
local features related to facial expressions in generated frontal faces, the discriminator
was improved by adding two local discriminators besides the global discriminator
to enhance its adversarial capability against the local pathway encoder. The loss
functions are also improved to achieve better effects in network training.

3. The effectiveness of this method was verified on three public datasets. The validity of
the lightweight FER model was verified on the CK+ and Fer2013 datasets, and the final
effect of the combination of the posture normalization model and the FER model was
verified on the KDEF dataset. Compared to the methods used in other representative
models, this method effectively reduces the number of parameters of our model and
has a higher FER rate (92.7%) under the condition of multi-angle deflection.

The remaining parts of this paper are organized as follows. Section 2 describes the
previous related work. Section 3 describes the lightweight FER model and the posture
normalization model that we propose in detail. Section 4 describes the experimental
datasets, results, and related analysis. Section 5 gives conclusions and suggestions for
future work.

2. Related Work
2.1. DenseNet

Although various CNN-based FER models have improved recognition rates, the
consequent increase in the number of parameters has also resulted in more computa-
tional requirements. DenseNet is a model with a narrow network structure, as shown in
Figure 1 [8].
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Figure 1. A deep DenseNet with three dense blocks.

DenseNet consists of dense blocks and transition layers, which lie between two adja-
cent blocks and change feature map sizes via convolution and pooling. The basic idea is
that in a dense block, like in ResNet, direct connections from the preceding to the following
layers are created. The difference in the dense block is that it establishes a dense connection
between all the preceding layers to the followed layer; i.e., each layer takes all preceding
feature-maps as input. The feature reuse of DenseNet improves the transmission ability
of information throughout the entire network and reduces the number of parameters.
To achieve the same accuracy as ResNet, DenseNet only needs about half of ResNet’s
parameters and half of its FLOPs (floating-point operations).

2.2. Depthwise Separable Convolution (DSC)

Compared to standard convolution, DSC has much lower parameters and compu-
tational complexity. Thus, it has been successfully applied to two well-known models,
Xception [18] and MobileNet [19], by the Google team. DSC splits the computation of
standard convolution into two steps: depthwise convolution, which applies a single convo-
lutional filter per each input channel, and, pointwise convolution, which creates a linear
combination of the output of the depthwise convolution. For example, the depthwise conv
applies N convolution kernels of size M × M × 1 to N input channels of size W × H,
achieves N feature maps of size W × H × 1, concatenates N feature maps, and achieves one
feature map of size W × H × N. In other words, the depthwise conv has the same number
of channels for input and output feature maps. However, there has been no connection
between the different channels in the process so far. Then, the pointwise conv, by applying
K standard convolutions of size 1 × 1 × N, solves this problem. It weights the feature
map depthwise to generate a feature map of size W × H × K; i.e., it has the ability to fuse
channels. The ratio of DSC to standard convolution is 1/K + 1/M2.

2.3. GAN and Its Variants

The GAN is a deep learning model, and its framework is shown in Figure 2a [20]. This
framework corresponds to a minimax two-player game. The GAN consists of two models:
a generative model G that captures the data distribution and a discriminative model D that
estimates the probability that a sample came from the training data rather than from G. The
aim of the training procedure for G is to maximize the probability of D making a mistake.
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Huang et al. proposed a two-pathway GAN (TP-GAN) [21] for photorealistic frontal
view synthesis by simultaneously perceiving global structures and local details. As shown
in Figure 2b, TP-GAN uses two pathways in G to perceive global structures and local details
simultaneously. Four landmark-located patch networks, in addition to the commonly used
global encoder–decoder network, are used to attend to local textures. Then, the positive
synthesized image is used for the downstream task: identity recognition.

The training strategy and the loss function are challenging problems facing GANs.
Combining a 3D-morphable model with a traditional GAN, FF-GAN [22] solves the problem
of GANs being difficult to train by providing shape and appearance priors to guide the
training on insufficient samples. Additionally, a new symmetry loss is introduced into
the loss function. Similarly providing additional information to assist in training, the
disentangled representation learning GAN (DR-GAN) [23] introduces a pose code to G
and a pose estimation to D. Hu et al. proposed a couple-agent pose-guided GAN (CAPG-
GAN) [24]. In the learning process for this network, the pose-guided G uses posture
information provided by landmark heatmaps of input profile images and ground truth
images. The couple-agent D essentially consists of two independent discriminators: one
for rotation angle discriminating and the other for texture discriminating. Differing from
the approaches above, Hardy et al. proposed a learning procedure for distributed GANs,
MD-GAN [25], which can be trained over datasets that are spread across multiple servers.

3. Proposed Approach
3.1. Lightweight FER Model: DSC-DenseNet
3.1.1. The Framework of Dense Block

The lightweight FER model in this paper is based on DenseNet’s feature reuse strategy,
which is shown in Figure 3. In a dense block, the original feature x0 is inputted into the
layer, h1, and x1 is the output. The input of the layer h2 includes not only x1, the output
from the layer h1, but also the original feature x0. The input of the layer h3 includes not
only x2, the output of layer h2, but also x1 and x0.
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To further lighten the FER model, we improve the feature map extracting in the dense
block by using DSC instead of standard convolution to simplify the calculation.

The non-linear transformation function H(·) in dense block is defined as batch nor-
malization(BN) + rectified linear unit (ReLU) +3 × 3 convolution. As the number of layers
increases, the number of input channels increases dramatically with the number of overlap-
ping feature maps. For this reason, a 1 × 1 conv is used before the 3 × 3 conv to limit the
number of input channels. Then H(·) is defined as BN + ReLU + 1 × 1 Conv + BN + ReLU
+ 3 × 3 Conv. Assume that the input size of layer i in a dense block is 48 × 48, the feature
maps of all the preceding layers are concatenated with N channels, the bottleneck layer re-
duces the number of channels to 128, and the growth rate k (the number of output channels
per layer; i.e., the increase number of input channels in the next layer after concatenation)
is 32. Then, the operation of layer i is as shown in Figure 4.
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After replacing standard convolution with DSC, H(·) is defined as BN + ReLU + 3 × 3 DSC.
Then, the operation of layer i is as shown in Figure 5. The number of pointwise conv, i.e.,
the number of channels of the feature map output by DSC, is the growth rate k of DenseNet.
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3.1.2. The Architecture of DSC-DenseNet

Because of its use of DSC, we refer to this network, which is shown in Figure 6, as
DSC-DenseNet. The parameters of its components are given in Table 1.
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Table 1. The architecture of DSC-DenseNet. The growth rate is k = 32.

Layers Operator Output Size Output Channels

Convolution 3 × 3 conv, stride 1 48 × 48 32

Dense Block1 3 × 3 DSC × 3 layers 48 × 48 32 + 32 × 3 = 128

Transition Layer1 2 × 2 average pool, stride 2 24 × 24 128

Dense Block2 3 × 3 DSC × 6 layers 24 × 24 128 + 32 × 6 = 320

Transition Layer2
1 × 1 × 128 conv 24 × 24 128

2 × 2 average pool, stride 2 12 × 12 128

Dense Block3 3 × 3 DSC × 12 layers 12 × 12 128 + 32 × 12 = 512

Transition Layer3
1 × 1 × 256 conv 12 × 12 256

2 × 2 average pool, stride 2 6 × 6 256

Dense Block4 3 × 3 DSC × 8 layers 6 × 6 256 + 32 × 8 = 512

Classification Layer
6 × 6 global average pool 1 × 1 -

7D fully-connected, softmax - -

DSC-DenseNet consists of four dense blocks, three transition layers, and a classification
layer. The four dense blocks contain three, six, twelve, and eight DSC layers, respectively.
ReLU is used as the activation function. The transition layer uses 2 × 2 average pooling. If
too many channels are output by the previous dense block, a 1 × 1 conv is added to reduce
the number of channels and thus simplify operations. Examples of this addition include
the 1 × 1 × 128 conv in transition layer 2 and the 1 × 1 × 256 conv in transition layer 3.
In this situation, the transition layer is BN + 1 × 1 Conv + 2 × 2 average-pooling. Finally,
the classification layer realizes the recognition of seven major types of facial expressions
through SoftMax multiple classifiers.

Assuming that the input feature map’s size and the channel of the convolution layer
are Hi × Wi × Ci, and those of the output feature map are Ho × Wo × Co, the convolution
kernel of depthwise conv is Hk ×Wk × Ci × 1 and FLOPs is Hk ×Wk × Ci × Hi ×Wi, while
the convolution kernel of pointwise conv is 1× 1×Ci ×Co and FLOPs is Ci ×Co × Hi ×Wi.
After summing two computational quantities and dividing them by that of standard
convolution, a fraction can be obtained: 1/Co + 1/HkWk. As the number of feature maps
increases, 1/Co can be ignored. The size of the depthwise convolution kernel determines
the computational quantity. Due to the use of DSC with 3 × 3 convolution kernels, the
computational complexity in a dense block can be reduced to 1/32 + 1/32 ≈ 14.2%. Due to
the other layers in DSC-DenseNet, the computational complexity can actually be reduced
to about 30%.

3.2. Frontal Face Normalization Model: GAN with Two Local Discriminators (LD-GAN)

Facial pose variations still remain a great challenge for FER models, especially for
lightweight ones that sacrifice some accuracy. Therefore, facial pose normalization is a
commonly adopted step. Synthesizing a frontal face from a profile image is a highly
non-linear transformation.

3.2.1. The Framework of LD-GAN

Based on the idea of a two-pathway generator for TP-GAN, we propose LD-GAN,
whose framework is shown in Figure 7. A global pathway is used to process facial contour
features and a local pathway is used to process facial expression features in G. Two local
feature discriminators are added in D to enhance the adversarial operation between G
and D.
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The profile xp is input into the global pathway and the global encoder Gi
enc extracts

the global contour features fi = Gi
enc(xp). After landmarked allocating and cropping,

four local patches of eyes, noses, and mouths xp
k are input into the local pathway, and the

local encoder Ge
enc extracts the facial expression features fek = Ge

enc(xk
p). The purpose of

cropping out expression-related parts is to reduce image noise by eliminating pixels that
are less associated with expressions and to force Ge

enc to focus on extracting expression
features. This way, the generated image can preserve the original expression better. To fuse
the information from all pathways, feature maps need to be concatenated together, but
only if they have the same spatial resolution. Thus, we first fuse two feature maps from eye
patches together, specifically according to their landmarks, and then fuse those of the nose
and mouth. At last, we obtain fs simply by concatenating the global pathway feature map
fi with the two fused feature maps, fe and fm. fs is decoded by Gdec and a frontal face I f

s is
generated. In the local pathway, fe and fm are decoded by Gdec and two frontal patches,
eye patch I f

e and mouth-nose patch I f
e , are achieved in order to feed D. The reason we use

only two patches instead of four is to simplify the framework of D.
Inspired by multi-discriminator strategy [26,27], we propose a Dgroup including a

global discriminator D1 and two local discriminators, eye discriminator D2 and mouth-
nose discriminator D3. The input of Dgroup includes four images: the real frontal face Ir

s ,
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,
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)
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, then input them into D1–D3 respectively.

3.2.2. The Architecture of LD-GAN

As a key component for extracting features from facial images, the core of the encoder
is a CNN. We use Light-CNNs as encoders in both global and local pathways because of
their advantages, i.e., having fewer parameters and better robustness [28]. As shown in
Table 2, Gi

enc and Ge
enc have the same architecture of Conv0, Conv1–Conv4, fc1, and fc2.

The activation function of Conv1–Conv4 is Maxout. The size of the input RGB image is
128 × 128 and the size of the final feature map obtained is 1 × 1 × 256. The decoder Gdec is
a deconvolution neural network. The deconvolution process has no learning ability and
can only visualize global contour or local expression features. The network architecture of
Gdec is shown in Table 3.
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Table 2. The architecture of the encoder.

Layer Kernel/Stride Output

Conv0 7 × 7/1 128 × 128 × 64
Conv1 5 × 5/2 64 × 64 × 64
Conv2 3 × 3/2 32 × 32 × 128
Conv3 3 × 3/2 16 × 16 × 256
Conv4 3 × 3/2 8 × 8 × 512

fc1 - 512
fc2 - 256

Table 3. The architecture of the decoder.

Layers Kernel Output

fc reshape - 8 × 8 × 64
Deconv0 3 × 3 16 × 16 × 64
Deconv1 3 × 3 32 × 32 × 32
Deconv2 3 × 3 64 × 64 × 16
Deconv3 3 × 3 128 × 128 × 16
Deconv4 3 × 3 128 × 128 × 3

The architecture of D1 is shown in Table 4. The size of the generated frontal face input
into D1 is 128 × 128 × 3, and it is changed to 64 × 64 × 64 after the Conv0 layer and to
1 × 1 × 1024 after the Conv1–Conv5 layers. The architectures of D2 and D3 are totally same
to that of D1 except for the sizes of input images. The size of the eye patch is 95 × 20, and
that of the mouth-nose patch is 50 × 75.

Table 4. The architecture of the D1.

Layer Kernel/Stride Output

Conv0 4 × 4/2 64 × 64 × 64
Conv1 4 × 4/2 32 × 32 × 128
Conv2 4 × 4/2 16 × 16 × 256
Conv3 4 × 4/2 8 × 8 × 512
Conv4 4 × 4/2 4 × 4 × 1024
Conv5 4 × 4/1 1 × 1 × 1024

3.2.3. The Loss Function Improved

We have improved the loss function of LD-GAN. Content loss Lcon is added on the
basis of adversarial loss Lck. Lcon consists of pixel loss LP and symmetric loss LS. Then, the
loss function of G is:

LG = Lck + Lcon = Lck + LP + LS (1)

LP is the difference in pixels between a generated frontal face and an input profile image:

Lp =
1

W × H

W

∑
i=1

H

∑
j=1

∣∣∣(I f
s )i,j,k − xp

i,j,k

∣∣∣ (2)

The smaller LP is, the closer the quality of the generated image will be to that of the
input image, and so, LP should be minimized. LS is the Manhattan distance between the
left and right sides of the generated frontal face:

Ls =
1

W/2 × H

W/2

∑
i=1

H

∑
j=1

∣∣∣(I f
s )i,j,k − (I f

s )W−i,j,k

∣∣∣ (3)
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Calculating LS accelerates the convergence of G. The adversarial loss is:

Lck = lnDk[(Ir
s )k] + ln[1 − Dk(I f

s )k] (4)

As D’s ability to discriminate between true and false improves via training, G needs to
compete against it to minimize its probability of discrimination. Thus, D needs to minimize
Lck for G. To sum up, the loss function of LD-GAN generator is:

LG = β1Lp + β2Ls + β3Lck (5)

where β1, β2, and β3 are the weights that affect the loss, and can be adjusted during training
to achieve the best training results.

The D of LD-GAN does not involve content loss, and its training process only includes
adversarial loss, which requires a weighted sum of three adversarial losses. The loss
function of Dgroup is:

LDgroup = ω1Lc1 + ω2Lc2 + ω3Lc3 (6)

where ω1, ω2 , and ω3 are weighing hyper parameters. D identifies the true or false images
generated by G and obtains a probability that the images will be judged as false; thus, D
needs to maximize the adversarial loss.

4. Experimental Results and Discussions

The experiments were carried out on the Windows 10 operating system and the
recognition methods were implemented using the Python language and PyTorch library.
The experimental environment included an Intel(R) Core (TM) i7-10750H CPU @ 2.60 GHz
processor, 16 GB memory, and GeForce GTX 1650Ti graphics card.

The effectivenesses of the proposed DSC-DenseNet and LD-GAN were verified on
three public datasets. The final results of the combination of DSC-DenseNet and LD-GAN
are demonstrated below.

4.1. Datasets

In experiments, we used the following public datasets:
Extended Cohn-Kanade Dataset (CK+) [29]: It is one of the most widely used expres-

sion datasets, and was released in 2010. There are 593 sequences in it, and each sequence
begins with a neutral expression and proceeds to a peak expression. FER based on a static
image often takes the last frames as samples. The eight included expressions are disgust,
happiness, surprise, fear, anger, contempt, sadness, and neutral, as shown in Figure 8.
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Kaggle FER challenge dataset (Fer2013) [30]: All 35,887 examples are 48 × 48 gray
images. The training set consists of 28,709 examples, and the validation and test set consists
of 3589 examples. When compared to CK+, there are seven of the same expressions in
Fer2013, except for contempt, as shown in Figure 9. Moreover, the examples in Fer2013
have deflection at different angles.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 18 
 

 

Fer2013, except for contempt, as shown in Figure 9. Moreover, the examples in Fer2013 
have deflection at different angles. 

0 anger 1 disgust 2 fear 3 happy 4 sad 5 surprised 6 normal  
Figure 9. Seven expressions in the Fer2013 dataset. 

Karolinska directed emotional faces (KDEF) [31]: It includes 4900 GRB images of size 
562 × 762 in seven expressions. When compared to Fer2013, every expression in this da-
taset is represented with five different views, −90°, −45°, 0°, +45°, and +90°, as shown in 
Figure 10. 

 
Figure 10. Samples at five views in the KDEF dataset. 

4.2. Preprocessing 
To ensure the effect of FER, we preprocessed the original images before experiments, 

including the data on face detection and alignment. We used the multitask cascaded 
convolutional networks (MTCNN) to hasten face detection and alignment [32,33]. 

We processed the last three frames in the labeled CK+ dataset expression sequences 
to 48 × 48 grayscale images. Since there were too few samples of contempt, and also in 
order to match the seven basic expressions across the datasets, contempt samples from 
CK+ were excluded from the experiments. Then, we expanded the number of samples to 
ten times their original number by using common methods for data augmentation such 
as scale augmentation, changing contrast and changing brightness, and flipping from left 
to right. To preserve an expression, the central area of the image in question should be 
maintained. Thus, random cropping or severe rescaling was not adopted by us. We found 
10,500 samples from seven expression categories in total. In Fer2013, the numbers of most 
samples are much larger than those in CK+, but the former has insufficient disgust sam-
ples. Thus, we expanded the disgust class, and samples that did not contain faces or had 
severe facial occlusion were excluded. In KDEF, the sample size of each expression in 
every view is the same (140). We expanded this to 1400, and so the total number of uti-
lized samples was 49,000. 

4.3. Experimental Results of DSC-DenseNet 
4.3.1. Experiments for Effectiveness of DSC-DenseNet 

The network parameters during training were as follows: the epoch was 150 on CK+ 
and 250 on Fer2013, batch size was 32, initial learning rate was 0. 01, and learning rate 
decreased to 50% after each 8 epochs. We used 250 images from each expression category 
for testing on CK+ and 4000 images from all expression categories for testing on Fer2013. 
The confusion matrixes of FER percents are shown in Figures 11 and 12. 

Figure 9. Seven expressions in the Fer2013 dataset.



Electronics 2023, 12, 2527 10 of 17

Karolinska directed emotional faces (KDEF) [31]: It includes 4900 GRB images of
size 562 × 762 in seven expressions. When compared to Fer2013, every expression in this
dataset is represented with five different views, −90◦, −45◦, 0◦, +45◦, and +90◦, as shown
in Figure 10.
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4.2. Preprocessing

To ensure the effect of FER, we preprocessed the original images before experiments,
including the data on face detection and alignment. We used the multitask cascaded
convolutional networks (MTCNN) to hasten face detection and alignment [32,33].

We processed the last three frames in the labeled CK+ dataset expression sequences
to 48 × 48 grayscale images. Since there were too few samples of contempt, and also in
order to match the seven basic expressions across the datasets, contempt samples from
CK+ were excluded from the experiments. Then, we expanded the number of samples to
ten times their original number by using common methods for data augmentation such
as scale augmentation, changing contrast and changing brightness, and flipping from left
to right. To preserve an expression, the central area of the image in question should be
maintained. Thus, random cropping or severe rescaling was not adopted by us. We found
10,500 samples from seven expression categories in total. In Fer2013, the numbers of most
samples are much larger than those in CK+, but the former has insufficient disgust samples.
Thus, we expanded the disgust class, and samples that did not contain faces or had severe
facial occlusion were excluded. In KDEF, the sample size of each expression in every view
is the same (140). We expanded this to 1400, and so the total number of utilized samples
was 49,000.

4.3. Experimental Results of DSC-DenseNet
4.3.1. Experiments for Effectiveness of DSC-DenseNet

The network parameters during training were as follows: the epoch was 150 on CK+
and 250 on Fer2013, batch size was 32, initial learning rate was 0. 01, and learning rate
decreased to 50% after each 8 epochs. We used 250 images from each expression category
for testing on CK+ and 4000 images from all expression categories for testing on Fer2013.
The confusion matrixes of FER percents are shown in Figures 11 and 12.
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Figure 11. The confusion matrix of FER on the CK+ dataset.
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Figure 12. The confusion matrix of FER on the Fer2013 dataset.

The mean of the recognition rates on seven expressions, Rexpression, was used as the
final evaluation metric, and it was sometimes abbreviated as ‘recognition rate’ without
causing confusion. It was defined thus:

Recognition rate =
1
7
(

RAnger + RDisgust + . . . + RNeutral
)

(7)

The experimental results showed that:

1. On the CK+ dataset, the recognition rate of our model was 96.7%. The percentages of
recognition for the happiness, surprise, and disgust classes were the highest: 100%,
99%, and 98%, respectively. The reason for the good recognition results for the
happiness class was that the features of happiness were more obvious than other
emotions and thus it was not easily confused with other features. These results
showed the same performance as other existing FER methods. The recognition rate for
the sadness class was the lowest—92%—and 6% of sad expressions were misclassified
as angry. The reason they were easily confused was that they both more or less
involved frowning. Neutral and fear expressions were misclassified as sad in 4% and
3% of cases, respectively.

2. On the Fer2013 dataset, the recognition rate of our model was 77.3%. The percentages
of recognition for the happiness and surprise classes were 93% and 86%, respectively.
The recognition rates for the fear and anger classes were the lowest: 62% and 69%,
respectively. The main classes that were confused with the fear class were sadness
and anger, while the main classes that were confused with the anger class were fear
and sadness.

3. For CK+, the frontal faces dataset, the recognition rate of our model could meet the
practical requirements. For Fer2013, the dataset with profile faces, the recognition
rate of our model was significantly reduced. Part of the reason for this was that facial
occlusion affected recognition to some extent, although severely occluded samples
were removed. Another reason was that there were multi-view images in the dataset,
and facial deflection significantly affected the effectiveness of FER. This has also been
the consensus among researchers, and it also indicates the necessity of studying facial
pose normalization models in this paper.

4.3.2. Comparison of DSC-DenseNet with Other Lightweight Models

We performed comparison experiments on Fer2013 to compare our model to the
classical lightweight classification models (SqueezeNet, ShuffleNet, ResNet, and MobileNet)
and the state-of-art classification models (Separate-loss and RAN). The learning curves of
some models are shown in Figure 13. We also compared our model to recently proposed
FER models (Light-SE-ResNet and PGC-DenseNet). The FER recognition rate, params, and
FLOPs of these models are shown in Table 5 (sorted by recognition rate).
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Table 5. Comparison of lightweight models on the Fer2013 dataset.

Lightweight Model Params
(Million)

FLOPs
(Billion)

Recognition Rate
(95%CI)

MobileNetV3 (Large) [34] 4.2 0.02 63.9% ± 1.49%
Light-SE-ResNet [35] 5.1 0.06 67.4% ± 1.45%

ResNet18 [4] 11.2 0.09 69.3% ± 1.43%
ResNet50 23.5 0.21 70.1% ± 1.42%

ShuffleNet [10] 1.25 0.04 73.0% ± 1.38%
PGC-DenseNet [36] 0.26 0.12 73.3% ± 1.37%

SqueezeNet [9] 0.47 0.02 75.0% ± 1.34%
Separate-loss [37] 1.1 0.18 75.4% ± 1.33%

RAN [38] 1.2 0.14 76.0% ± 1.32%
DSC-DenseNet (Ours) 0.16 0.16 77.3% ± 1.30%

The experimental results showed that:

1. The FER recognition rate of our model on multi-view faces was 77.3% when the
params value was 0.16M. Compared to the models with better accuracy (the lower
half of Table 5), such as SqueezeNet and ShuffleNet, our model had higher FLOPs
because of its concatenation of feature maps. However, its recognition rate was 2.3%
and 4.3% higher than that of SqueezeNet and ShuffleNet, respectively. This could also
be seen visually in their learning curves. On the other hand (the upper half of Table 5),
it was shown that at the cost of accuracy, speed could be significantly improved. The
FLOPs of MobileNetV3 and Light-SE-ResNet were extremely small.

2. Our model had a smaller params value to achieve approximate accuracy. Compared to
Separate-loss and RAN, the two models with the closest accuracy to ours, the params
value of DSC-DenseNet was equal to only about 15% of their params values, and the
FLOPs value of DSC-DenseNet was between theirs. Therefore, our model achieved a
practical recognition rate, meaning that the lightweight FER model proposed in this
paper achieved a balance between the accuracy and performance requirements of the
hardware platform.

4.4. Experimental Results of LD-GAN
4.4.1. Training Strategy

Compared to the true or false discrimination task in G, D’s true or false discrimination
task was more difficult to train. In order to achieve a dynamic balance between the
performances of G and D, the update frequency ratio between G and D was 1:2 in training.
At the same time, a small learning rate given to D slowed down its convergence and avoided
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the ability unbalance between D and G, effectively preventing G’s loss from increasing
continuously and keeping its internal parameters from improving in the desired direction.

During the training process, we could not know when the performance of GAN would
be optimal. Too much training may have produced negative effects which could have made
the parameters unstable and damaged the effectiveness of the original model. Therefore,
it was necessary to store the parameters when the model achieved excellent performance
during training. After a certain number of epochs in the learning process, 10 random face
images in the test set were compared with the generated faces. If the difference between
two images increased abruptly during the process, the training was terminated because
this would have indicated that the previously stable parameters had been destroyed.

During the training process, G and D were optimized using Adam optimizer. the
learning rates for G and D were set to 0.001 and 0.0005. For each epoch, the learning rate
was adjusted as an exponential decay with a decay parameter of 0.999. The maximum
number of epochs was set to 500 and the batch size was set to 128. In order to generalize the
network better, label smoothing was used; i.e., the labels 0 and 1 were replaced by random
numbers in the range of 0–0.1 and 0.8–1 when the true or false judgment was made.

4.4.2. Experiments for Effectiveness of LD-GAN

We performed an experiment on the KDEF dataset, and the loss curve for this is shown
in Figure 14. From the trend of the loss curve, it is clear that the training strategy used on
LD-GAN was effective. The result of the posture normalization is shown in Figure 15.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18 
 

 

  
(a) (b) 

Figure 14. Training loss curves on the KDEF dataset. (a) Content loss Lcon; (b) adversarial loss Lck. 

-90o -45o 0o +45o +90o

Profile

Generated
frontal face

Real
frontal face

 
Figure 15. The result of the posture normalization on KDEF dataset. 

In the study, the frontal images generated by LD-GAN were recognized by 
DSC-DenseNet. The mean FER recognition rate of each expression, at all views, was 
calculated, and the confusion matrix of seven facial expressions was derived, as is shown 
in Figure 16. 

 
Figure 16. The confusion matrix of recognition rates. 

The experimental results showed that: 

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

l
o
s
s

epoch
0 100 200 300 400 500

0.4

0.6

0.8

1.0

1.2

1.4

1.6

lo
ss

epoch

Predicted class

Ac
tu

al
 c

la
ss

85.7

0.0

0.1

0.1

0.0

0.1

2.1

2.2

96.1

6.8

0.0

0.0

12.3

0.0

0.0

0.7

90.3

0.0

0.0

0.1

0.4

5.0

0.0

2.7

98.7

1.2

0.0

0.0

0.0

0.0

0.0

0.0

92.8

0.0

0.0

0.1

3.3

0.0

0.0

6.0

87.5

0.0

7.1

0.0

0.0

1.2

0.0

0.0

97.5

Fear Angry Disgust Happy Neutral Sad Surprise

Fear

Angry

Disgust

Happy

Neutral

Sad

Surprise
10

20

30

40

50

60

70

80

90

Figure 14. Training loss curves on the KDEF dataset. (a) Content loss Lcon; (b) adversarial loss Lck.
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Figure 15. The result of the posture normalization on KDEF dataset.
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In the study, the frontal images generated by LD-GAN were recognized by DSC-
DenseNet. The mean FER recognition rate of each expression, at all views, was calculated,
and the confusion matrix of seven facial expressions was derived, as is shown in Figure 16.
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Figure 16. The confusion matrix of recognition rates.

The experimental results showed that:

1. The recognition rate for happy expressions was the highest: 98.7%. The rates of
recognition for the surprise and anger classes were the second highest; these amounted
to more than 96%. The recognition rates for the fear and sadness classes were lower:
85.7% and 87.5%, respectively. The mean recognition rate for the seven expressions
was 92.7%.

2. When compared to the results without pose normalization (Figure 12), the method
proposed significantly improved the recognition rate, and could also reduce the
misclassification rate between different expressions to a lower level, thus meeting the
needs of practical application.

4.4.3. Comparison of Our Model with Others

We performed comparison experiments on the KDEF dataset. The profiles in the ±45◦

and ±90◦ views were corrected to frontal faces by three GAN variants (FF-GAN, TP-GAN,
and DR-GAN) and our model, and then FER was performed using DSC-DenseNet. We
used 5-fold cross validation, and the results of this are shown in Table 6.

Table 6. Comparison of FER recognition rates, with 95% Cis, of the four models on the KDEF dataset.

Model
View ±90◦ ±45◦

FF-GAN [22] 83.5% ± 1.16% 89.6% ± 0.96%
TP-GAN [21] 83.6% ± 1.16% 88.9% ± 0.98%
DR-GAN [23] 85.4% ± 1.11% 90.7% ± 0.91%

LD-GAN (ours) 88.8% ± 0.99% 93.2% ± 0.79%

The experimental results showed that the FER rate of our method was 5.3%, 5.2%, and
3.4% higher than that of FF-GAN, TP-GAN, and DR-GAN, respectively, at ±90◦ views. At
±45◦ views, the FER rate of our method was 3.6%, 4.3%, and 2.5% higher than that of each
of the three models, respectively.

4.4.4. Ablation Study

In order to generate facial images with more expression features, we used two path-
ways in G to generate local features that were closely related to the selected expressions.
Two Local discriminators were added to D to preserve the local details and to improve
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the accuracy of expression classification. To verify the validity of our model, an ablation
experiment was performed on the KDEF dataset.

To compare our model to LD-GAN, two Local discriminators were removed from the
model. The normalization effects of the two models are illustrated in Figure 17. Figure 17a
shows a sad-faced man’s profile at a −90◦ view and a neutral-faced woman’s profile at a
+45◦ view. Compared to the real frontal faces in Figure 17d, the man’s mouth does not show
the drop it should have, and the woman’s mouth in Figure 17b does show an excessive rise
in the images generated by GAN without the Local discriminators. These errors increase
the probability that the man’s sad expression would be misclassified as neutral and the
woman’s neutral expression would be misclassified as happy in subsequent FER steps.
In Figure 17c, which shows the faces generated by LD-GAN, the corners of the subjects’
mouths are closer to those in the real frontal faces.
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5. Conclusions

The lightweight DSC-DenseNet FER model proposed in this paper minimizes the
number of parameters and the complexity of computation and achieves a useful FER rate.
The LD-GAN face posture normalization model proposed improves the ability to reserve
local features related to expression and can generate a face that is more conducive to FER.
Experiments on multiple datasets show that the recognition rate for faces at multi-view is
higher than 92% when combining LD-GAN and DSC-DenseNet.

In future research, we will investigate the impact of different lighting environments
and local occlusion on our model and establish a lightweight FER method for natural scenes.
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