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Abstract

We propose a novel probabilistic framework for learning

visual models of 3D object categories by combining appear-

ance information and geometric constraints. Objects are

represented as a coherent ensemble of parts that are con-

sistent under 3D viewpoint transformations. Each part is

a collection of salient image features. A generative frame-

work is used for learning a model that captures the relative

position of parts within each of the discretized viewpoints.

Contrary to most of the existing mixture of viewpoints mod-

els, our model establishes explicit correspondences of parts

across different viewpoints of the object class. Given a new

image, detection and classification are achieved by deter-

mining the position and viewpoint of the model that maxi-

mize recognition scores of the candidate objects. Our ap-

proach is among the first to propose a generative proba-

bilistic framework for 3D object categorization. We test our

algorithm on the detection task and the viewpoint classifi-

cation task by using “car” category from both the Savarese

et al. 2007 and PASCAL VOC 2006 datasets. We show

promising results in both the detection and viewpoint clas-

sification tasks on these two challenging datasets.

1. Introduction
Imagine a busy street in downtown Rome or Beijing.

There might be cars coming from all possible directions,

pedestrians walking on the sidewalk, or scooters crossing

the street. The ability to interpret the scene, recognize the

objects within, estimate their locations and poses is crucial

if one wants to avoid obstacles, interact with other peo-

ple, and find a target location. However, what appears to

us as natural may become tremendously difficult for an

artificial vision system. How do we handle occlusions?

How do we deal with intraclass and pose variability of ob-

jects? Most of the current researches in object categoriza-

tion [7, 5, 9, 16, 1, 31] have focused on modeling object

intraclass variability in single views (within a small range

of planar rotations) or as a mixture of single view mod-

*indicates equal contributions

els [27, 33]. Very few methods have leveraged on the in-

trinsic geometric aspects of object categories.

In this paper, we introduce a generative probabilistic

framework for learning visual models of 3D object cate-

gories. Our approach is inspired by a number of recent

work for representing 3D object categories where appear-

ance information and geometric constraints are combined

(Sec. 2). We represent an object as a coherent ensemble

of parts linked across different viewpoints (Sec. 3). Each

part is represented by a distribution of characteristic ap-

pearance elements (codewords). A generative model is used

for learning the relative position of parts within each view-

point, as well as corresponding part locations across view-

points (Sec. 4). Epipolar constraints are applied to ensure

that the configuration of each part is consistent under view-

point transformations. This is one of the first generative

probabilistic 3D object models that incorporates such geo-

metric constraints in a principled way. Unlike other meth-

ods that focus on discriminative recognition of characteris-

tic patches, our model is able to generate a coherent distri-

bution of parts that are representative of the object class and

are consistent under viewpoint transformation (see Fig. 1).

We have used this model to predict whether an object class

is present in the image or not, estimate the location of the

object as well as determine its viewpoint (Sec. 5). Our ex-

periments show superior detection and viewpoint classifica-

tion results on the 3D Objects dataset [25], and comparable

results on PASCAL VOC 2006 datasets [6].

2. Previous Work

Researchers have done extensive work in single object

recognition from multiple poses. Notably, [3, 32, 8, 24]

have proposed methods for identifying and recognizing sin-

gle objects such as a cereal box or a Teddy bear, under arbi-

trary viewing conditions. These methods are successful due

to their reliance on the identification of strong geometrical

constraints and highly discriminative object features. How-

ever, such constraints are not adequate in object categoriza-

tion problems in which shape and appearance variability of

each object class must be accounted for. Similar limitations



Figure 1. Viewpoint images generated from our learned 3D object model for the car category. Each image shows a mixture of randomly sampled parts as

well as their geometric configurations from the learned model, super-imposed on an image of a car in this viewpoint. The fully trained car category model

consists of 18 parts across all 32 discretized viewpoints on the full viewing sphere of the object class. Each part is represented by a color coded bounding

box. Contrary to most of the mixture of viewpoints object models, the learned parts in our model are maintained across different viewpoints. This figure is

best viewed in color under PDF magnification.

exist for representations based on aspect graphs [12].

Recently, a number of methods have brought new ideas

into the problem of representing object categories from

multiple views. Thomas et al. [30] have explored the

idea of linking features across multiple views. Kushal et

al. [14] propose to connect groups of features across views

which retain pairwise local geometrical transformations in

an MRF framework. Other methods [11, 34] propose to

represent the object category by using a rough 3D model,

on top of which the typical distribution of appearance el-

ement is learned. These methods have the advantage of

yielding a compact view-point invariant representation of

the object category, as opposed to [30, 14] but fail to ac-

commodate intra-class 3D shape variability. Except for [4],

none of the above models have the capability of generat-

ing spatial and appearance information of the object cate-

gory under arbitrary viewing conditions. The framework

presented in [25, 26] represents an object category as a col-

lection of view-invariant regions linked by transformations

that capture the relative change of pose among parts. The

model has the ability to generate unseen views, but achieves

limited accuracy in classification due to the lack of an ex-

plicit background model.

Our method tries to overcome some of the limitations of

previous works. Unlike [30], but similar to [14, 25, 26]

our model parts are linked across views under affine trans-

formations. As opposed to [11, 34], we generalize on both

appearance and geometry. Unlike [30, 25, 26], our method

offers a principled way for learning a rigorous generative

model for 3D objects1.

3. Model Representation

Our proposed model learns a coherent part-based object

representation across instances and viewpoints of an object

class. In addition to being able to discover object parts that

1[14] is the only other reported 3D object class model that is probabilis-

tic in nature. The generative representation of our model differs from their

discriminative framework.

appear consistently across object instances, it can simul-

taneously establish part-level correspondences by exploit-

ing the underlying geometric structure across nearby view-

points (see Fig 1).

3.1. The Generative Model

A generative graphical model (Fig.2 top left panel) illus-

trates the backbone of the model structure. We first intro-

duce the main representation of this model. We then de-

scribe in details on how epipolar geometry is introduced to

regularize the coherent representation of object parts across

different viewpoints. The bottom panel of Fig.2 summarizes

the important variables in the model.

Imagine a generative process for sampling an object im-

age given a learned 3D model representation. We start with

sampling a particular viewpoint v out of K possible 3D

views of this object. Given v, we then sample an object part

type assignment l for each image patch. For a robust 3D

representation of an object class, it is important to point out

that different viewpoints would render very different part

distributions (e.g. wheel parts are more likely to be ob-

served in a sideview of a car than a frontal view of a car).

Given a part type assignment l for this patch, we sample

the image patch based on the appearance (y) distribution as

well as position (x) distribution.

We now introduce the generative process in a more math-

ematically rigorous way. In order to simplify the model de-

scription, we first assume that the different viewpoints of an

object class are affine aligned. In other words, viewpoints,

scales and orientations are first assumed to be matched. We

will relax this assumption once the generative model is de-

scribed. The overall model structure is a Dirichlet Process

(DP) Gaussian mixture. The choice of using DP is particu-

larly important to accommodate a variable number of object

part types per viewpoint. We start with an image i.

1. Generate viewpoint vi

• Draw viewpoint vi ∼ Uniform(φ). For a total of K
viewpoints, φ = 1/K.
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indexed by value distribution distribution variational parameters

appearance: y n = 1 . . . Ni y = ω|1...W y ∼ Mult(η) η ∼ Dir(α) τ

position: x n = 1 . . . Ni x ∈ R
2 x ∼ N(θ) θ ∼ NW (λ) ǫ = {β, m, W, ν}

part type assignment: l n = 1 . . . Ni l = t|1...∞
l ∼ Mult(s)

µt ∼ Beta(ϕ) γ = {γkt; k = 1 . . . K, t = 1 . . . T}
st = ut

Qt−1
j=1(1 − uj)

viewpoint: v 1 v = 1 . . . K v ∼ Mult(φ) N/A N/A

Figure 2. Top left: A graphical representation of our model. Nodes represent random variables, edges denote dependencies, and plates denote replicated

structure. Note that visual word y, feature position x, and viewpoint v are observed during learning. The constraints described in Sec. 3.2 are not captured

by the graphical model. Top right: Generation process of two particular viewpoints of a car. v is the viewpoint index of the object. Given a pair of images

from nearby viewpoints, part types assignment l (color coded boxes) are sampled from the viewpoint specific spatial configuration and enforced to satisfy

the part correspondences constraints (dashed arrows). Feature (colored crosses) positions and codewords are sampled given each part l and viewpoint v.

Bottom: Summary of variables and their related parameters.

2. For each of the n = 1, ..., Ni feature patches of the

image, generate part type assignment ln

• Draw part type assignment ln ∼ Mult(sk), where

sk = {skt|t = 1 . . .∞}, and skt is computed from

skt = ukt

Qt−1
m=1(1 − ukm), the expected part pro-

portion of part type t in viewpoint k. ukt is a global

parameter indicating the number of parts with type t
in viewpoint k, where ukt ∼ Beta(ϕ). Note that the

Dirichlet Process model allows us to consider an infi-

nite number of possible part types per viewpoint.

3. For each of the n = {1, ..., Ni} feature patches of

the image, generate the patch appearance (yn) and

patch location (xn)

• Given viewpoint vi and part type assignment ln, sam-

ple the patch location xn ∼ N(θkt), where N(·)
indicates a Gaussian distribution. θkt is the global

parameter of the Gaussian distribution for part type

t and viewpoint k. θkt is governed by a Gaussian-

Wishart distribution NW (λt), the conjugate prior of

a Gaussian distribution, where λt consists of hyper-

parameters {β0, m0, W0, ν0}.

• Given viewpoint vi and part type assignment ln, sam-

ple the patch appearance yn ∼ Mult(ηkt), where

Mult(·) indicates a Multinomial distribution. ηkt is

the global parameter of the Multinomial distribution

for part type t and viewpoint k. ηkt is governed by

a Dirichlet distribution Dir(αt), the conjugate prior

of a Multinomial distribution, where αt is the hyper-

parameter.

Putting all the observable variables (feature patches X and
Y , viewpoints V ) and latent variables (part type assign-

ments L) together with their corresponding parameters, we
can write down the joint probability of this model.

P (X, Y, L, V, u, η, θ) =
I

Y

i

{P (vi|φ)

Ni
Y

n

P (lin|svi
)

·P (yin|η{vi,lin})P (xin|θ{vi,lin})}

·
K

Y

k

∞
Y

t

{P (ukt|ϕ)P (ηkt|αt)P (θkt|λt)} (1)

where I is the total number of images, and Ni is the number

of feature patches in image i.

Affine transformation So far we have introduced the
model by assuming complete affine alignment of view-
points, scales and orientations. An important contribution
of our model is the ability to automatically find an affine
transformation across different viewpoints of object images
such that object recognition can be accomplished under ar-
bitrary view conditions. This is achieved by introducing the
affine transformation variable A for each image, as shown
in the top left panel of Fig.2. The transformation A op-
erates on the patch location x to obtain the optimal patch
alignment for the model corresponding to viewpoint v. The
modified patch location probability becomes:

P (x|θ,A) = N(x; Âµ + b, ÂΛÂT ) (2)

where A =
[
Â b

]
, θ = {µ, Λ}, µ and Λ are the means and

the covariance matrices of the Gaussian distribution of the

reference object coordinate respectively. Sudderth et al [29]

have proposed a DP mixture model for 2D object classes by

allowing a translational transformation for different patches

of objects. But their model does not capture the 3D structure
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Figure 3. Example of learned parts from different viewpoints of the car model. Note that all parts are learned automatically. The first image column shows

image regions of the rear light part of a car model sampled from different viewpoints. The corresponding patch appearance distributions of the rear light

samples are shown to the left (only the top 100 most likely codewords are displayed out of a total of 1000 codewords.). We observe nearby viewpoints give

rise to more similar appearance distributions. The second and third image columns show samples of the side window part and rear wheel part under different

viewpoints. The fourth image column shows samples of the license plate part under different viewpoints. The corresponding patch appearance distribution

of license plates are displayed to the right of this column.

of an object class, nor does it encode part correspondences

across viewpoints.

3.2. Constraining Generative Model Across View­
points

Up to this point, for each viewpoint, object class are only

governed by the hyper-parameters αt, λt, and ϕ, where αt

and λt control the appearance and position variability of

part type t, and ϕ regulates the part type proportions in dif-

ferent viewpoints. When learning and fitting 3D object class

models, the number of possible transformations allowed for

the object part locations and appearances can be orders of

magnitude larger than those observed in 2D image based

object models. This poses a potentially detrimental prob-

lem for a model regulated only by these hyper-parameters.

In order to reduce the complexity of the parameter space, we

propose to take advantage of the geometrical relationships

regulating the appearance of 3D objects observed from mul-

tiple vantage points. The challenge here is to strike a good

balance between enforcing such relationships and maintain-

ing the ability to generalize well across instances within the

same object class. We propose to enforce the following con-

straints:

• Part appearance similarity constraints. It is reason-

able to assume that parts in nearby viewpoints share

similar appearance. For example, the front wheels in

the first row of images in Fig. 1 are likely to have sim-

ilar distributions of visual words. When building the

model, we enforce corresponding parts to look simi-

lar by penalizing the sum of the square errors of the

difference of the visual word distributions in nearby

viewpoints. A similar approach is proposed by [20].

Fig. 3 illustrates the appearance similarities of corre-

sponding parts in different views.

• Part configuration constraints via epipolar geome-

try. The 2D configuration of object parts in the im-

age plane changes as the viewpoint varies. We can

use epipolar geometry [10] to constraint the 2D part

configuration in images corresponding to nearby view-

points. More specifically, given images of a particu-

lar object instance taken from nearby viewpoints, we

obtain epipolar constraints via feature matching2. We

then apply these constraints on the locations of the

corresponding parts across nearby viewpoints during

model learning (Fig 4). Each constraint is equivalent

to a linear constraint in part locations (see Sec. 4.1 for

details).

Such constraints enable our model to capture the underlying

structure of a 3D object category across viewpoints. While

simple in nature, these constraints play an important role in

model learning, allowing much more accurate estimations

of number of parts, their locations and alignment. In the

next section, we describe how to incorporate these implicit

constraints during model learning.

4. Model Learning
Given the model representation in Fig. 2, the goal of

learning3 is to infer the latent variables and estimate the hid-
den parameters by maximizing the log marginal probability

ln P (X, Y ) = ln
X

V,L

Z

P (X, Y, L, V, u, η, θ) dudη dθ. (3)

In our current setting, we make the following assumptions

during the learning process: i) object bounding boxes are

provided; and ii) viewpoint labels are given to all images.

2In our current learning process, only one object instance (and its mul-

tiple examples across different viewpoints) is used for establishing this

constraint. About 90% of the image pairs are automatically matched cor-

respondences. But about a dozen missed pairs are hand pruned.
3Due to space limitation, more detailed derivations can be found in an

accompanying technical report on the authors’ website.



4.1. Updates of the Model Parameters
Computing the exact marginal distribution is intractable.

We employ variational EM to learn the model in the
stick-breaking representation [28]. Using the variational
distribution, we maximize L(X, Y ), the lower bound of
lnP (X, Y ), and fit the variational parameters by coordi-
nate ascent. The mean-field variational distribution equa-
tions are

q(V, L, u, θ, η) = q(V, L)q(u, θ, η) (4)

q(V, L) =
I

Y

i=1

q(vi|δi)

Ni
Y

n=1

q(lin|ρinvi
) (5)

q(u, θ, η) =

K,T
Y

k=1,t=1

q(ukt|γkt)q(ηkt|τkt)q(θkt|ǫkt) (6)

where δi is the variational multinomial parameter over the

K viewpoints, ρinvi
is the variational multinomial parame-

ter over the feature part type assignment, γkt, τkt, and ǫkt

are the variational beta, the variational Dirichlet, the varia-

tional Gaussian-Wishart parameters of part type t in view-

point k, and finally T is the truncation number of part types

in our model [2].

In the following, we summarize the variational update

equations for each of the model parameters4. Particularly,

we show how the 3D structure constraints introduced in

Sec. 3.2 are applied to guide the variational distribution to-

wards convergence to the true posterior.

Spatial Parameters Updates Feature patch location x is

governed by the Gaussian distribution of parameter θkt,

whose variational parameters are consisted of βkt, mkt,

Wkt and νkt. Here, mkt encodes the expected mean of

part centers, and the other parameters model the degree of

intra-class variation of the part center locations. The ex-

pected mean of part centers mkt and mk′t across nearby

viewpoints are constrained by the epipolar geometry. In

our model, we capture the epipolar geometry between im-

age in viewpoint k and image in viewpoint k′ by using the

affine fundamental matrix Fkk′ :[mkt; 1]T Fkk′ [mk′t; 1] =
0, where Fkk′ is estimated from the epipolar geometry be-

tween viewpoint k and k′ using the reference instance5.
The variational parameters are then updated as follow:

βkt = β0 + Nkt, νkt = ν0 + Nkt (7)

W−1
kt = W−1

0 + Nkt × Skt + Nkt(xkt − m0)

+β0(mkt − m0)(mkt − m0)
T

(8)

where the sufficient statistics of the spatial terms are:

Nkt =
X

i,n

δikρinkt, xkt = 1
Nkt

P

i,n
δikρinktxin (9)

4All hyper-parameters {φ, α, λ, ϕ}, except A, are fixed.
5We use a sinlge object instance with all viewpoints captured as the

reference instance.

Skt =
1

Nkt

X

i,n

δikρinkt(xin − xkt)(xin − xkt)
T

(10)

There is no close form update rule for mkt and Ai due to

the geometric constraints. Hence, we formulate the update

problem into a convex optimization problem with spare lin-

ear equality constraints, detailed in the technical report.

Appearance Parameters Updates As described in
Sec. 3.2, our model enforces a feature patch appearance
similarity in nearby viewpoints k and k′. We define a regu-
larized marginal likelihood as:

O(X, Y, G) = (1 − ζ)L(X, Y ) − ζR(G) (11)

R(X,Y, G) =
1

2

X

t

X

(k,k′)∈E

W
X

w

(τw
kt − τw

k′t)
2

(12)

where W is the total number of visual codewords, G is the
graph structure over the viewing sphere, E is the set of the

edges defined in G6, and ζ is the parameter that determines
the significance of the regularization, whose value can range
from 0 to 1. The variational parameter updates then become

Nktw =
I

X

i

Ni
X

n∈{yin=w}

δikρinkt (13)

τ̂w
kt = αw

t + Nktw, eτw
t =

1

K

K
X

k

(τ̂kt) (14)

where τ̂kt is the updated τkt when ζ is set to 0, τ̃ is τkt when

ζ is set to 1, and Nktw is the sufficient statistics of the multi-

nomial distribution. We further define τkt = (1−π)τ̃ +πτ̂ .

Similar to [20], we update τ in a greedy approach. Starting

from π = 0, we use gradient descent algorithm to search

for π such that O(X, Y, G) decreases.

Part Type Proportion Parameters Update The update
equations for the variational parameters of the part type are
straightforward.

γkt,1 = 1 + Nkt, γkt,2 = ϕ +
PT

f=t+1 Nkf (15)

Part proportions in different viewpoints differ as the object

turns in the 3D space. It is therefore important for our model

to adopt the reordering approach [13] to adjust the propor-

tion of parts.

Latent Variables Updates Since viewpoint v is provided

in training, δ is fixed during learning. ρ has a close form

update rule. Please refer to the technical report for more

details.

6In this paper, G is a graph of eight nodes, indicating eight discretized

viewpoints. Each viewpoint, or node, has four neighboring viewpoints,

hence four Es.



4.2. Implementation Details
We have described a principled framework for learning

each parameter of the generative model through variational

inference. In principle, all training images can be applied

simultaneously to jointly update these parameters. This re-

quires a joint estimation of affine transformations in every

EM iteration. The update is equivalent to solving a semidef-

inite programing problem whose complexity is quadratic to

the number of images. We therefore adopt an incremental

learning framework to curtail the amount of computation.

Neal and Hinton [22] provide a theoretical ground for in-

crementally learning of mixture models via sufficient statis-

tics updates. At every iteration of the incremental learning,

we fix the sufficient statistics of the parameters Nkt, xkt,

Skt, and Nktw associated with the previously learned im-

ages in all later updates.

Initialization We initialize our model using one single

object instance (reference instance) across all viewpoints.

This can be done by applying an existing feature matching

algorithm in all pairs of the viewpoint images [35]. We then

apply variational EM learning to all the reference instance

training images.

Accurately learning part correspondences across view-

points is critical for the rest of the learning. To demonstrate

the importance of the additional constraints introduced in

Sec. 3.2, we compare the initialized model with two sim-

plified models – a basic DP Gaussian mixture model, and

a DP Gaussian mixture model with epipolar constraints but

no appearance constraints. Fig. 5 demonstrates that the full

model shows the best part correspondence compared to the

two simpler versions. But epipolar constraint alone can al-

ready boost the correspondences significantly. Fig. 6 shows

examples of the resulting average images of the aligned

parts using the full model.

Incremental Update Given a new training image, we es-

timate its affine transformation with respect to the reference

instance in the corresponding viewpoint. The estimation

is done by solving a semi-definite programming problem.

Meanwhile, the rest of the model will be updated by adding

the sufficient statistics of the new image. In this scheme, the

model estimates the affine transformation for one image at

a time.

Part Expansion Learned parts of an object class do not

overlap with each other. But given the learned geometric

configurations among parts, we can now further generate

additional object parts by linearly interpolating and extrap-

olating between nearby parts. Empirical experiments con-

firm such expansion is helpful in object recognition tasks

when objects are embedded in cluttered background.

Figure 4. Image pairs show the candidate part correspondences (green

boxes) and the correct one (red box) in the left figure across nearby view-

points given a part (red box) in the right figure. In the left image pair, our

full model enforces the candidate part correspondences in the left figure

to belong to the epipolar line (the yellow line). In the right image pair, a

model without the epipolar constraints yield arbitrary part correspondence

locations in the left figure. This, in turn, increases the likelihood of obtain-

ing erroneous part detections and correspondences, such as the back wheel

of the car.

Figure 6. Average images of aligned parts across 15 instances.

5. Object Classification, Detection and View-

point Recognition
Given an unknown image, we can use the learned model

to determine whether an instance of the object class is

present, and to estimate the corresponding viewpoint. In-

spired by the implicit shape model for object recognition

[16], we accomplish the task in the following steps:

• Extract features and propose candidate parts We

use Hessian-Affine feature detector [21] , Maximally

stable extremal regions (MSER) [19] detector, and

canny edge detector [23] to detect locally adapted el-

liptical regions. A feature codebook of size 1000 is ob-

tained by vector quantizing the SIFT descriptors com-

puted over these detected regions [18].

Given a test image, we first detect a number of candi-

date parts for each of the learned parts in a particular

viewpoint and scale. This is done by running a scan-

ning window search method. The appearance similar-

ities of the candidate parts are evaluated against the

learned part model by using spatial pyramid match-

ing [15] as the similarity score.

• Object localization and viewpoint classification by

mean-shift voting Our object detection algorithm is

similar to [16]. Given the spatial extent and the ap-

pearance similarity scores of the candidate parts, we

look up the relative position of the object center to the

object part in the learned spatial models. Each of the

candidate part proposes an object center in the image.

A mean-shift procedure is then applied to locate local

maxima of the possible object centers based on each

viewpoint model of the object class. Using this ap-

proach, we could handle multiple instance detection.
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Figure 7. Detection and viewpoint classification using the Savarese et al.

dataset [25]. Left: confusion matrix of the viewpoint classification. Cen-

ter: diagonal element of our average confusion matrix (red) compared

with the one from [25] (green). Right: binary object classification and

detection result (ROC) (red) compared with the one from [25] (green).

We first test our model on the car dataset of the multi-

view object dataset proposed by [25]. We assess the per-

formances of our algorithm to localize cars and classify the

viewpoints of the car. The car dataset comprises 320 im-

ages from up to 10 object instances. Each instance com-

prises 8 angles, 2 heights and 2 distances, a total of 32

viewpoints. We train our 3D object class model by using

160 images from 5 object instances with known viewpoint

labels. The remaining 5 object instances are used as testing

images. Binary classification result for car category is re-

ported in Fig 7. Our model shows a superior performance

over [25]. We also show consistently higher classification

results across 8 viewpoints7 compared to [25] (results in Fig

7, and examples in Fig.9 Top row).

We also conduct a car detection and viewpoint classifi-

cation experiment by using the more challenging PASCAL

VOC 2006 car dataset. We use the training data provided

by PASCAL and the multi-view object datasets. The object

class model is trained by assuming 8 different viewpoints

for cars. Fig. 8(a) shows the car detection results of our

model compared with the other state-of-the-art algorithms.

Our algorithm performs on par with most of these discrim-

inative methods. In addition, we show for the first time

a quantitative viewpoint classification results on the PAS-

CAL VOC 2006 car dataset. We test the performance of

the model in the PASCAL test images by collapsing the 8

7This is done on correctly detected cars.
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Figure 8. Experimental results of PASCAL VOC 2006 data. (a) Detec-

tion results measured in precision-recall curve of our model (red) com-

pared to [17] and the detection result of the PASCAL VOC 2006 chal-

lenge [6]-INRIA Douze , [6]-INRIA Laptev, [6]-TKK, [6]-Cambridge,

and [6]-ENSMP. Average precision (AP) scores are shown in the legends.

(b) Confusion table of the four viewpoint classification task. The average

performance is 62% across the diagonal of the confusion.

viewpoints into 4 views8. Fig.8(b) shows the confusion ta-

ble result of the 4-way viewpoint classification task. Note

that there is a relatively large confusion between the front

and back view points. Besides the large visual similarity

between these two views, we attribute the low discrimi-

native ability of our model to the unbalanced training set

(PASCAL VOC 2006 cars), which contains a much larger

number of back-view car instances. Parts that are reliably

detected provide strong evidence for object detection and

viewpoint classification. For example, our model can ro-

bustly detect car wheels, which significantly contributes to

the detection of left and right views. The bottom 2 rows of

Fig.9 presents some sample recognition results.

6. Conclusions
We have proposed a rigorous generative model for learn-

ing the 3D structure of object classes. The model cap-

tures the geometric configurations of different parts of an

object class linked across different viewpoints. Epipolar

constraints are employed to ensure part consistencies when

training object parts. We test the model in a car detection

and car viewpoint classification experiment. We are espe-

8PASCAL data provides viewpoint labeling of only 4 views: front,

right, left, back.
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bottom 2 rows show results from the PASCAL VOC 2006 dataset. The last column shows examples of missed or incorrect detections.

cially encouraged to see the model’s ability to perform satis-

fying viewpoint classification once the objects are detected.

In the future, we plan to explore further the robustness and

discriminability of the model.
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