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Abstract

Motivated by the limitations of existing multi-view stereo

benchmarks, we present a novel dataset for this task. To-

wards this goal, we recorded a variety of indoor and out-

door scenes using a high-precision laser scanner and cap-

tured both high-resolution DSLR imagery as well as syn-

chronized low-resolution stereo videos with varying fields-

of-view. To align the images with the laser scans, we pro-

pose a robust technique which minimizes photometric er-

rors conditioned on the geometry. In contrast to previous

datasets, our benchmark provides novel challenges and cov-

ers a diverse set of viewpoints and scene types, ranging

from natural scenes to man-made indoor and outdoor en-

vironments. Furthermore, we provide data at significantly

higher temporal and spatial resolution. Our benchmark is

the first to cover the important use case of hand-held mobile

devices while also providing high-resolution DSLR camera

images. We make our datasets and an online evaluation

server available at http://www.eth3d.net.

1. Introduction

The problem of reconstructing 3D geometry from two

or more views has received tremendous attention in com-

puter vision for several decades. Applications range from

3D reconstruction of objects [4] and larger scenes [3, 5, 35]

over dense sensing for autonomous vehicles [6–8, 11, 30]

or obstacle detection [10] to 3D reconstruction from mobile

devices [14, 20, 28, 36, 41]. Despite its long history, many

problems in 3D reconstruction remain unsolved to date. To

identify these problems and analyze the strengths and weak-

nesses of the state-of-the-art, access to a large-scale dataset

with 3D ground truth is indispensable.

Indeed, the advent of excellent datasets and benchmarks,

such as [6,12,17,29,32–34,38,40], has greatly advanced the

state of the art of stereo and multi-view stereo (MVS) tech-

niques. However, constructing good benchmark datasets is

a tedious and challenging task. It requires the acquisition

of images and a 3D scene model, e.g., through a laser scan-

ner or structured light sensor, as well as careful registration

between the different modalities. Often, manual work is re-

quired [6] to mask occluded regions, sensor inaccuracies or

image areas with invalid depth estimates, e.g., due to mov-

ing objects. Therefore, existing benchmarks are limited in

their variability and are often also domain specific.

This paper presents a novel benchmark for two- and

multi-view stereo algorithms designed to complement ex-

isting benchmarks across several dimensions (c.f . Fig. 1):

(i) Compared to previous MVS benchmarks, our dataset of-

fers images acquired at a very high resolution. Using a pro-

fessional DSLR camera, we capture images at 24 Megapixel

resolution compared to 6 Megapixels in Strecha et al. [40],

0.5 Megapixels in KITTI [6], and 0.3 Megapixels in Mid-

dlebury [38]. This enables the evaluation of algorithms de-

signed for detailed 3D reconstruction. At the same time, it

encourages the development of memory and computation-

ally efficient methods which can handle very large datasets.

(ii) By now, mobile devices have become powerful enough

for real-time stereo [20,28,30,36,41], creating the need for

benchmark datasets that model the acquisition process typ-

ical for such hand-held devices. In addition to the DSLR

images, we also capture a set of image sequences with four

synchronized cameras forming two stereo pairs that move

freely through the scene. These videos enable algorithms

to exploit the redundancy provided by high frame rates to

improve the reconstruction quality. Again, this scenario re-

wards efficient algorithms which can handle large amounts

of data. To study the effect of field-of-view (FOV) and dis-

tortion, we recorded stereo imagery using different lenses.

(iii) In contrast to the Middlebury benchmarks [33, 38],

our scenes are not carefully staged in a controlled labo-

ratory environment. Instead, they provide the full range

of challenges of real-word photogrammetric measurements.

Rather than moving along a constrained trajectory, e.g., in a
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(a) Scene type (b) View point (c) Camera type (d) Field of view

Figure 1. Examples demonstrating the variety of our dataset in terms of appearance and depth. (a) Colored 3D point cloud renderings of

different natural and man-made scenes. (b) DSLR images taken from different view points. (c) DSLR image (top) and image from our

multi-camera rig (bottom) of the same scene. (d) Camera rig images with different fields-of-view.

circle around an object, our cameras undergo unconstrained

6-DoF motion. As a result, MVS algorithms need to be

able to account for stronger variations in viewpoint. In

contrast to Strecha’s dataset [40], our benchmark covers a

wider spectrum of scenes, ranging from office scenes over

man-made outdoor environments to natural scenes depict-

ing mostly vegetation. The latter type is especially interest-

ing as there exist fewer priors which are applicable to this

scenario. In addition, our scenes comprise fine details (e.g.,

trees, wires) which are challenging for existing techniques.

The contributions of this paper include (i) a benchmark,

which is made publicly available together with a website

for evaluating novel algorithms on a hold out test set, (ii) a

highly accurate alignment strategy that we use to register

images and video sequences against 3D laser scan point

clouds, and (iii) an analysis of existing state-of-the-art algo-

rithms on this benchmark. Our benchmark provides novel

challenges and we believe that it will become an invaluable

resource for future research in dense 3D reconstruction with

a focus on big data and mobile devices.

2. Related Work

In this section, we review existing two- and multi-view

stereo datasets. An overview which compares key aspects

of our dataset to existing benchmarks is provided in Tab. 1.

Two-View Stereo Datasets. One of the first datasets for

two-view stereo evaluation was the Tsukuba image pair [27]

for which 16 levels of disparity have been manually anno-

tated. Unfortunately, manual annotation does not scale to

large realistic datasets due to their complexity [21].

Towards more realism, Scharstein et al. [33] proposed

the Middlebury stereo evaluation, comprising 38 indoor

scenes at VGA resolution with ground truth correspon-

dences obtained via a structured light scanner. A new ver-

sion of the Middlebury dataset [32] has recently been re-

leased, featuring ground truth disparities for 33 novel scenes

at a resolution of 6 Megapixels. Unfortunately, the amount

of human labor involved in staging the scenes and record-

ing the ground truth is considerable. Thus, these datasets

are relatively small in size. Besides, their variability is lim-

ited as the setup requires controlled structured lighting con-

ditions. In contrast, we are interested in general scenes and

introduce a dataset that features both indoor and outdoor

environments.

Geiger et al. [6, 24] recorded the KITTI datasets using

a mobile platform with a laser scanner mounted on a car.

This automated the recording process. However, the bench-

mark images are of low resolution (0.5 Megapixels) and the

ground truth annotations are sparse (< 50% of all image

pixels). Besides, a fixed sensor setup on a car limits the

diversity of the recorded scenes to road-like scenarios.

Rendered images, as used in the MPI Sintel stereo

benchmark [1], provide an alternative to real recordings and

have been used for learning complex models [23]. Yet, cre-

ating realistic 3D models is difficult and the degree of real-

ism required is still not well understood [43].

Multi-View Stereo Datasets. The Middlebury dataset of

Seitz et al. [38] was the first common benchmark for eval-

uating multi-view stereo on equal grounds. They captured

hundreds of images per object using a robot that uniformly

sampled the hemisphere enclosing the scene. Reference
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Benchmark Setting Resolution Online Eval. 6DoF Motion MVS Stereo Video Varying FOV

Middlebury MVS [38] Laboratory 0.3 Mpx ✓ ✓

Middlebury [32, 33] Laboratory 6 Mpx ✓ ✓

DTU [17] Laboratory 2 Mpx ✓

MPI Sintel [1] Synthetic 0.4 Mpx ✓ ✓ ✓ ✓

KITTI [6, 24] Street scenes 0.5 Mpx ✓ ✓ ✓ ✓

Strecha [40] Buildings 6 Mpx ✓ ✓

ETH3D (Proposed) Varied 0.4 / 24 Mpx ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of existing state-of-the-art benchmarks with our new dataset. Among other factors, we differentiate between different

scene types (e.g., staged scenes captured in a laboratory vs. synthetic scenes), whether the camera undergoes a restricted or a full 6

degrees-of-freedom (DoF) motion, or whether cameras with different fields-of-view (FOV) are used.

data has been created by stitching several line laser scans

together. Unfortunately, this benchmark provides a limited

image resolution (VGA), and its data, captured in a con-

trolled laboratory environment, does not reflect many of

the challenges in real-world scenes. Besides, only two toy

scenes with Lambertian surface properties are provided, re-

sulting in overfitting and performance saturation.

As a consequence, Strecha et al. [40] proposed a new

MVS benchmark comprising 6 outdoor datasets which in-

clude ∼30 images at 6 Megapixel resolution, as well as

ground truth 3D models captured by a laser scanner. While

this dataset fostered the development of efficient methods, it

provides relatively easy (i.e., well-textured) scenes and the

benchmark’s online service is not available anymore.

To compensate for the lack of diversity in [38, 40] and

the well textured, diffuse surfaces of [40], Jensen et al. [17]

captured a multitude of real-world objects using a robotic

arm. Yet, their controlled environment shares several limita-

tions with the original Middlebury benchmark and reduces

the variety of scenes and viewpoints.

Simultaneously to our work, Knapitsch et al. proposed a

new benchmark for challenging indoor and outdoor scenes

[19]. Their benchmark provides high-resolution video

data and uses ground truth measurements obtained with a

laser scanner. While our benchmark focuses on evaluat-

ing both binocular stereo and MVS, theirs jointly evalu-

ates Structure-from-Motion (SfM) and MVS. Knapitsch et

al. captured their video sequences with a high-end camera

and carefully selected camera settings to maximize video

quality. In contrast, our videos were captured with cameras

commonly used for mobile robotics and always use auto-

exposure. Thus, both benchmarks complement each other.

3. Data Acquisition and Registration

We follow [6,24,25,38,40] and capture the ground truth

for our dataset using a highly accurate 3D laser scanner.

This section describes the data acquisition and our approach

to robustly and accurately register images and laser scans.

3.1. Data Acquisition

We recorded the ground truth scene geometry with a Faro

Focus X 330 laser scanner. For each scene, depending on

the occlusions within it, we recorded one or multiple 360◦

scans with up to ∼28 million points each. In addition to

the depth measurements, we recorded the color of each 3D

point provided by the laser scanner’s integrated RGB cam-

era. Recording a single scan took ∼9 minutes.

For the high-resolution image data, we used a profes-

sional Nikon D3X DSLR camera on a tripod. We kept

the focal length and the aperture fixed, such that the intrin-

sic parameters can be shared between all images with the

same settings. The camera captures photos at a resolution

of 6048×4032 Pixels with a 85◦ FOV.

For the mobile scenario, we additionally recorded videos

using the multi-camera setup described in [9]: We use four

global-shutter cameras, forming two stereo pairs, which are

hardware-synchronized via an FPGA and record images at

∼13.6Hz. The cameras of the first stereo pair have a FOV

of 54◦ each, while the other two cameras have a FOV of

83◦. All cameras capture images at a resolution of 752×480

pixels. As common and necessary for mobile devices, we

set the exposure settings to automatic, allowing the device

to adapt to illumination changes.

3.2. Registration

To use the recorded data for our benchmark, we first

remove errors from the laser scans and mask problematic

areas in the images. Next, we align the scans taken from

different positions with each other and register the cam-

era images against the laser scan point clouds. We employ

a fully automatic three-stage alignment procedure for this

task. The first stage estimates a rough initial alignment be-

tween the laser scans and the camera images. We then refine

the registration of the laser scans, followed by a refinement

of the intrinsic and extrinsic calibration of the cameras. In

the following, we describe each of these steps in detail.

Preprocessing. The raw laser scans contain artifacts

caused by beams reflected from both foreground and back-

ground objects, resulting in the interpolation of foreground

and background depths at occlusion boundaries. Further-

more, reflecting objects and glass frequently cause system-

atic outliers. Therefore, we filter the scans with the sta-

tistical outlier removal procedure from [31]. This removes

all points from the cloud whose average distance to their
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Figure 2. Left: Illustration of a cube map. One of the 6 virtual

cameras is highlighted in red, coordinate axes are shown in blue.

Right: Sparse color image and depth map (left) and the inpainted

image (right) for one virtual camera.

k nearest neighbors is larger than a threshold. The point

density of our scans differs depending on the distance from

the scanner to the surface. Thus, we compute the threshold

used for outlier removal for each point from its local neigh-

borhood rather than using one single global value. In a fi-

nal step, we manually remove undetected systematic errors.

We also inspect each image and annotate regions which

should not be used. These regions include moving objects,

e.g., moving branches in the wind, objects not represented

correctly in the laser scan such as transparent surfaces, or

regions for which occlusion reasoning (as described later)

fails due to the sparsity of the measured 3D point cloud.

Initial Laser Scan and Image Alignment. We use the

COLMAP SfM pipeline [35,37] to obtain an initial estimate

of the laser scan poses as well as the extrinsics and intrinsics

of the cameras. It is well known [15,39] that rendered views

can be robustly matched against real imagery using classical

descriptors like SIFT [22]. To register the laser scans with

the images, we thus include rendered cube map images for

each scan position into the SfM reconstruction. Cube maps

use the six faces of a cube to create an omnidirectional view

of the environment. The six projection centers of the vir-

tual cube map cameras coincide with the origin of the laser

scanner. We render the colored point cloud of a laser scan

into these cameras, resulting in six sparse color and depth

images per laser scan (c.f . Fig. 2). We fill in missing pix-

els not covered by a laser scan point by using the color of

the nearest neighbor. While more complex rendering meth-

ods [39] could be used, we found that this strategy already

suffices for feature matching in SfM. To obtain an initial es-

timate of the scale of the SfM model, we compare the depth

of SfM points projected into the cube maps to the rendered

depth maps.

Refinement of Laser Scan Alignment. The projection

centers of the cube maps correspond to the origin of each

laser scan. Thus, the SfM reconstruction from the previ-

ous step provides an initial relative alignment of the scans.

We refine this alignment by jointly optimizing the rigid

body poses of all laser scans via point-to-plane ICP [2] on

the point clouds. Visual inspection verified that the result-

ing alignments are virtually perfect, which can be expected

given the high accuracy of the laser scanner and the massive

amount of information per scan. Thus, we fix the scan poses

from here on.

Refinement of Image Alignment. In the last step of the

pipeline, we refine the extrinsic and intrinsic parameters of

the cameras while keeping the laser scan point cloud fixed.

For this step, we use an extended version of the dense image

alignment approach proposed by Zhou & Koltun [47].

Zhou & Koltun first sample a set of points P from a mesh

surface and then optimize the camera parameters and the in-

tensity c(p) of each 3D point to minimize the cost function

∑

p∈P

∑

i∈I(p)

(Ii(πi(p))− c(p))
2

. (1)

Here, I(p) denotes the set of images in which point p ∈ P

is visible, Ii(πi(p)) is the intensity of image i at pixel coor-

dinate πi(p) corresponding to p’s projection. c(p) denotes

the intensity of p, which belongs to the variables that are

optimized. In our case, we use the joint point cloud from all

scans for P . To determine the visibility I(p), we compute

a screened Poisson surface reconstruction [18] for P . Since

thin objects such as wires are often not captured by the

reconstruction, we augment the mesh-based representation

with splats, i.e., oriented discs, generated for all scan points

far away from the Poisson surface. I(p) is then determined

from depth map renderings of the mesh and the splats. All

points whose depth is smaller than that of the depth map

rendering at their projected positions, plus a small tolerance

of 1cm, are assumed to be visible in the image.

Eq. 1 directly compares pixel intensities and thus as-

sumes brightness constancy. However, this assumption is

strongly violated in our setting, since we (1) use multiple

cameras, some of which employ an auto-exposure setting,

and (2) record outdoor scenes where strong lighting changes

require manipulation of shutter time. Rather than directly

comparing pixel intensities, we thus compare intensity gra-

dients g, making our objective robust to brightness changes.

Similar to computing finite difference gradients in an image,

we compute the intensity gradients in the point cloud using

local neighborhoods.

However, due to the different image resolutions and high

laser scan point density in our dataset, the nearest neigh-

bors of a point p might project to the same pixel in one

image and to relatively far away pixels in another image. In

the former case, the points’ intensity differences are nearly

constant and do not provide enough information for the op-

timization. In the latter case, under-sampling of the image

leads to a meaningless intensity gradient. Consequently, we

sample the neighborhoods at appropriate point cloud reso-

lutions. We only add the projection of a point p to an image

as a constraint if all neighbors of p project roughly one pixel

away from it. This avoids the discussed case of over- and

under-sampling. To create enough constraints between all
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images and for all points, we efficiently sample the neigh-

borhoods from a pre-calculated multi-resolution point cloud

and we use a multi-resolution scheme over image pyramids.

For each point projection to an image, the image pyramid

level with the most suitable resolution is considered. This

increases the chance that a gradient g is compared against

at least two images and influences the respective camera pa-

rameters. Further, the multi-resolution scheme over images

enlarges the convergence basin of the optimization. We pro-

cess the image pyramid coarse-to-fine while coarser resolu-

tions are kept in the objective function.

More concretely, we associate each point cloud level l
with a point radius rl in 3D. Since the changes made by

the refinement of the image alignment will be small, we use

the initial image alignment to determine the relevant point

cloud levels. For each laser scan point p and each pyramid

level h of each image i ∈ I(p), we determine the radius

r(i, h,p) of a 3D sphere around the 3D point p such that the

projection of the sphere into image i at this pyramid level

has a diameter of ∼1 pixel. To define the radius r0 at the

highest point cloud resolution, we use the minimum radius

among all points and images. The radius of level l + 1 is

defined as 2rl. The minimum and maximum radii r(i, h,p)
of a point p define an interval, and a point is associated

with level l if rl falls into this range. At each level l, we

greedily merge points within 2rl using the mean position as

the position of the resulting 3D point. For each resulting

point, we find its 25 nearest neighbors and randomly select

5 of them to define the point’s neighborhood. If the average

intensity difference between a point and its neighbors is less

than 5, we drop the point as it lies in a homogeneous region

and thus would not contribute to the optimization.

Let pj denote the j-th neighbor of point p. The variables

g(p,pj) are now associated to pairs of points and represent

their gradient. We modify the cost function in Eq. 1 to take

the following form

∑

p∈P

∑

i∈I(p)

ρ





√

√

√

√

5
∑

j=1

(Ii(πi(pj))− Ii(πi(p))− g(p,pj))
2





(2)

where P contains all points of the multi-resolution point

cloud and ρ[·] is the robust Huber loss function. Note that,

in contrast to Eq. 1, we now represent and optimize for the

gradients g of each 3D point rather than the point intensity

c. Details on implementing this cost function can be found

in the supplementary material, which also provides an illus-

tration of the multi-resolution scheme.

For the sequences recorded with the multi-camera rig,

we ensure that the relative poses between the cameras in the

rig remain consistent for all images during optimization by a

rigid parametrization of the relative camera poses. To speed

up the optimization, we optimize g(p,pj) and the camera

parameters alternatingly, as proposed in [47].

L

S

t

Figure 3. Sketch of the accuracy evaluation given a single scan

point, S, measured from the laser scanner position L, with evalua-

tion threshold t. Reconstruction points within the green region are

accurate, points in the red region are inaccurate, and points in the

blue region are unobserved.

In practice, we found this to result in a good relative

alignment between images, but not necessarily in a good

absolute alignment to the laser scans. We thus add an ad-

ditional cost term in analogy to Eq. 2 which minimizes the

intensity differences in the images wrt. the intensity differ-

ences measured by the laser scanner. This term lowers drift

by using the laser scan colors as a global reference. As a

limitation, it creates a dependency on the laser scan col-

ors, which themselves may not be perfectly aligned to the

scan geometry. However, we empirically found the result-

ing alignments to be of satisfying quality for our needs.

4. Tasks and Evaluation Protocols

Our benchmark consists of three scenarios correspond-

ing to different tasks for (multi-view) stereo algorithms:

• High-resolution multi-view stereo with relatively few

images recorded by a DSLR camera.

• Low-resolution multi-view stereo on video data

(“many-view”) recorded with a multi-camera rig.

• Low-resolution two-view stereo on camera pairs of a

multi-camera rig.

Each frame of the two-view stereo evaluation consists of all

4 images taken at the same time by the multi-camera rig.

These 4 cameras form 2 stereo pairs such that both cameras

in each pair have the same FOV. Both multi-view stereo sce-

narios are evaluated in 3D with the same evaluation proto-

col, while the two-view stereo scenario is evaluated in 2D

with a separate protocol, as detailed in the following.

Multi-View Stereo Evaluation Protocol. We compare

the MVS reconstruction, given as a point cloud, against the

laser scan ground truth of the scene. Only laser scan points

visible in at least two images are used for evaluation.

We evaluate the reconstruction in terms of accuracy and

completeness. Both measures are evaluated over a range

of distance thresholds from 1cm to 50cm. To determine

completeness, we measure the distance of each ground truth

3D point to its closest reconstructed point. Completeness is

defined as the amount of ground truth points for which this

distance is below the evaluation threshold.

Accuracy is defined as the fraction of reconstruction

points which are within a distance threshold of the ground
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Figure 4. Two examples of laser scan renderings colored by differently aligned images. Top row, from left to right: Original laser scan

colors, initial alignment, 7-DoF ICP alignment, our alignment. Bottom row: Difference of each image to the laser scan image. Note that

the different lighting causes a significant color difference.

truth points. Since our ground truth is incomplete, care

has to be taken to prevent potentially missing ground truth

points from distorting the results. Consequently, we seg-

ment the reconstruction into occupied, free, and unobserved

space using an approximation of the laser scanner beams

(c.f . Fig. 3). We model the shape of the laser beam of each

ground truth point as a truncated cone. We make the as-

sumption that the beam volume from the laser scanner ori-

gin to a scan point contains only free space.

We extend the beam volume beyond each ground truth

point by the intersection of the extended beam cone with a

sphere centered at the observed point. The sphere’s radius

is equal to the evaluation tolerance t. Reconstructed points

outside all extended beam volumes are in unobserved space

and are therefore discarded in the evaluation. Among the re-

maining reconstruction points, points are classified as accu-

rate if they are within the extended beam volume and within

radius t of a ground truth point. Accuracy is then defined as

the ratio of accurate points out of all points while ignoring

unobserved points.

The definitions of accuracy and completeness provided

above are susceptible to the densities of both the recon-

structed and the ground truth point clouds. For instance,

an adversary could uniformly fill the 3D space with points

to achieve high completeness while creating comparatively

many more copies of a single reconstructed point known

to be accurate to also achieve high accuracy. We thus dis-

cretized the space into voxels with small side length. Both

measures are first evaluated for each voxel individually. We

then report the averages over all voxels. To measure a

voxel’s completeness, we use the ground truth points in it

and all reconstructed points, even those outside the voxel.

These roles are reversed to measure accuracy.

Since both accuracy and completeness are important for

measuring the quality of a reconstruction, we use the F1

score as a single measure to rank the results. Given accuracy

(precision) p and completeness (recall) r, the F1 score is

defined as the harmonic mean 2 · (p · r)/(p+ r).

Two-View Stereo Evaluation Protocol. The two-view

stereo evaluation is performed on rectified stereo pairs gen-

erated from the images of the multi-camera rig. The ground

Figure 5. Top row: Overlays of ground truth depth (colored) onto

images recorded by the multi-camera rig, showing the accuracy of

our alignments. Middle & bottom row: Detailed views for rig and

DLSR images, respectively. The ground truth depth is sparse at

full DSLR resolution and not all objects are scanned completely.

truth is given by the laser scan points projected into the rec-

tified image. Occluded points are dropped using the same

occlusion reasoning as in our image alignment procedure.

The left disparity image is used for evaluation.

For this scenario, we evaluate the same metrics used in

the Middlebury benchmark [32]: We measure the percent-

age of pixels having a disparity error larger than a threshold,

for thresholds of 0.5, 1, 2, and 4 disparities (bad 0.5 - bad 4),

the average absolute error in pixels (avgerr), the root-mean-

square disparity error in pixels (rms), and the error quantiles

in pixels for 50%, 90%, 95%, and 99% (A50 - A99).

5. Results

First, we evaluate the accuracy of our image registration

pipeline. Due to lack of more precise measurements, this

evaluation is performed qualitatively. In Sec. 5.2, we then

evaluate state-of-the-art algorithms on our benchmark and

discuss the gained insights.

5.1. Image Registration

We compare our alignment strategy to the initial align-

ment obtained after the laser scan refinement step and to a

baseline method. The latter refines the initial camera poses
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through a 7-DoF ICP alignment (optimizing for position,

rotation and scale) between the reconstructed SfM points

and the laser scans. For each alignment result, we project all

images onto the laser scans and compute the average color

for each scan point to create the qualitative evaluations in

Fig. 4. As can be seen, the baseline significantly improves

the initial alignment. In turn, our alignment strategy clearly

improves upon the baseline.

Fig. 5 shows overlays of images with their ground truth

depth map computed from the laser scans. Depth edges are

not used in our alignment procedure, thus they serve as a

good indicator for the quality of the alignment. We observe

that for both the DSLR images as well as the camera rig

images, the alignment is generally pixel accurate.

5.2. Evaluation of Stereo Methods

High-Resolution Multi-View Scenario. For this scenario,

we evaluate the popular patch-based PMVS [4], Gipuma

[5], which is a well-performing PatchMatch-based vari-

ant [26], the multi-view stereo method based on pixel-

wise view selection in COLMAP [35], and CMPMVS [16],

which aims at reconstructing weakly supported surfaces.

The results are shown in Fig. 6. We observe that for

most scenes, COLMAP and PMVS outperform Gipuma and

CMPMVS in terms of accuracy. In terms of completeness,

Gipuma achieves a low score for, e.g., courtyard, electro,

and delivery area, since its view selection scheme is tai-

lored to object-centric scenes. For most datasets, CMP-

MVS and COLMAP clearly achieve the best completeness.

COLMAP still struggles for weakly textured surfaces and

thin structures, such as electro (c.f . Fig. 8c), kicker, office,

and pipes. As shown in Fig. 8d, CMPMVS is able to cor-

rectly interpolate some of the weakly textured surfaces, but

also hallucinates structures in other parts.

Fig. 8b shows the cumulative completeness score over

all methods for the office scene, illustrating that all existing

techniques struggle to achieve high completeness for poorly

textured surfaces. We believe that solving this hard but im-

portant problem requires higher-level scene understanding.

Our benchmark provides a variety of scenes that can be used

to evaluate such approaches. In general, we observe that

there is significant room for improvement on our datasets.

Tab. 2a compares the relative performance of the dif-

ferent methods on Strecha [40] and our new benchmark,

ranked based on [35] and using the F1 score, respectively,

with a 2cm evaluation threshold used in both cases. Evi-

dently, good performance on the two datasets is not nec-

essarily correlated. We thus conclude that our benchmark

contains challenges different from the Strecha dataset.

Low-Resolution Multi-View Scenario. For this scenario,

we evaluate the same methods as for the previous one. For

Gipuma, we downsampled the videos to one fifth the frame

Method Strecha Ours

PMVS 3 (68.9) 3 (41.2)

Gipuma 4 (48.8) 4 (33.2)

COLMAP 2 (75.9) 1 (64.7)

CMPMVS 1 (78.2) 2 (48.9)

(a) MVS

Method Middle. KITTI Ours

SPS-Stereo [44] 5 (29.3) 2 (5.3) 1 (3.4)

MeshStereo [46] 2 (14.9) 4 (8.4) 3 (7.1)

SGM+D. [13, 42] 4 (29.2) 3 (6.3) 2 (5.5)

MC-CNN [45] 1 (10.1) 1 (3.9) 4 (8.9)

ELAS [7] 3 (25.7) 5 (9.7) 5 (10.5)

(b) Stereo (% Bad Pixels)

Table 2. Relative rankings on different benchmarks, demonstrating

the difference between ours and existing datasets.

Method Indoor Outdoor Mobile DSLR

CMPMVS 67.2 / 47.3 / 55.5 44.2 / 40.0 / 42.0 14.4 / 7.4 / 9.8 71.6 / 57.6 / 63.8

COLMAP 90.2 / 51.1 / 65.2 80.9 / 53.1 / 64.1 69.5 / 41.2 / 51.8 91.7 / 56.2 / 69.7

Gipuma 74.9 / 24.0 / 36.3 52.8 / 20.8 / 29.9 31.1 / 13.4 / 18.7 76.5 / 25.9 / 38.7

PMVS 85.1 / 28.0 / 42.1 72.2 / 27.8 / 40.1 48.7 / 18.8 / 27.2 90.1 / 31.3 / 46.5

Table 3. Category-based MVS evaluation showing accuracy / com-

pleteness / F1 score (in %) at a 2cm evaluation threshold.

Method bad 0.5 bad 1 bad 2 bad 4 avgerr rms A50 A90 A95 A99

SPS-Stereo [44] 57.42 22.25 4.28 2.00 0.95 2.11 1.08 2.40 3.60 8.77

SGM+D. [13, 42] 58.56 24.02 7.48 4.51 1.34 3.23 2.47 3.61 8.54 12.95

MeshStereo [46] 29.91 13.98 7.57 4.67 0.90 2.21 1.37 2.44 3.65 9.73

MC-CNN [45] 33.79 14.74 9.26 8.46 8.52 17.14 49.81 30.01 30.49 52.19

ELAS [7] 42.26 22.77 11.54 5.05 1.12 3.11 4.87 5.26 4.49 11.31

SPS-Stereo [44] 56.91 21.29 3.43 1.43 0.83 1.61 2.22 1.36 2.11 6.52

SGM+D. [13, 42] 57.79 22.43 5.48 2.65 1.03 2.43 1.14 7.05 6.46 10.69

MeshStereo [46] 28.99 13.23 7.09 4.38 0.87 2.18 1.61 2.55 4.46 10.65

MC-CNN [45] 32.51 13.85 8.92 8.59 8.48 17.03 49.01 27.63 28.79 45.79

ELAS [7] 41.20 21.56 10.50 4.56 1.06 3.03 4.54 3.98 5.24 9.68

Table 4. Results of two-view stereo methods on our dataset. We

show the metric averages over all stereo pairs for all regions (up-

per part) and non-occluded regions (lower part). The tables are

ordered by the bad 2 criterion.

rate since it ran out of memory while using all images. The

results are shown in Fig. 7. As can be seen, these datasets

challenge all algorithms, resulting in lower accuracy scores

compared to the high-quality datasets. PMVS and Gipuma

produce very incomplete and noisy results while CMPMVS

fails completely. This demonstrates the fact that they do not

properly exploit the high view redundancy in the videos.

COLMAP achieves relatively better results, but there is still

significant room for improvement in terms of absolute num-

bers. Furthermore, all methods take in the order of several

minutes to an hour to compute the sequences, underlining

the need for more efficient algorithms that can operate in

real-time on a mobile device.

Dataset Diversity. Tab. 3 provides an analysis of the differ-

ent MVS algorithms for different scenario categorizations.

COLMAP performs best on average as well as best for most

individual categories. We also observe that the performance

of the algorithms can vary significantly between the differ-

ent scenarios, indicating the need for benchmarks such as

ours that cover a wide variety of scenes.

Two-View Scenario. For this scenario, we evaluated five

methods, [7, 44–46] and a version of SGM stereo [13] on

Daisy descriptors [42]. These include methods belonging

to the state-of-the-art on KITTI and Middlebury Stereo. We

did not tune their parameters except for setting the maxi-
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Figure 6. Evaluation of the high-resolution multi-view scenario (indoor and outdoor datasets). Results for CMPMVS, COLMAP, Gipuma,

and PMVS are shown as a solid line for accuracy and as a dashed line for completeness.
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Figure 7. Multi-view evaluation results in the low-resolution scenario. The interpretation of the plots is the same as in Fig. 6.

(a) Electro: Laserscan (b) Office: Completeness

(c) Electro: COLMAP (d) Electro: CMPMVS

Figure 8. Qualitative results. See the text for details.

mum number of disparities. The evaluation results are pre-

sented in Table 4. Table 2b compares the relative rankings

of the different approaches on KITTI, Middlebury, and the

bad 2 non-occluded results of our benchmark. As can be

seen, the rankings differ significantly between ours and pre-

vious datasets, indicating that our benchmark complements

existing ones. In particular, our data requires algorithms to

perform well over a wide variety of scenes. It thus encour-

ages general solutions and prevents overfitting. The latter is

especially important given the popularity of learning-based

methods: As evident from Tabs. 4 and 2b, [45] performs

below average on our benchmark while outperforming all

other methods significantly on both Middlebury and KITTI.

6. Conclusion

In this paper, we proposed an accurate and robust reg-

istration procedure to align images and laser scans. Using

this algorithm, we created a new and diverse dataset for the

evaluation of two-view and multi-view stereo methods. Our

benchmark differs from existing datasets in several key as-

pects: We cover a wide variety of scene types and thus re-

quire general solutions which prevent overfitting. In addi-

tion, we provide the first benchmark for hand-held (multi-

view) stereo with consumer-grade cameras. Experimental

results for state-of-the-art algorithms show that our dataset

poses various challenges not yet covered by existing bench-

marks. One of these challenges is efficient processing of

large amounts of data, in the form of both high spatial and

high temporal sampling. These challenges are far from be-

ing solved and there is significant room for improvement.

As a service to the community, we provide the website

http://www.eth3d.net for online evaluation and comparison

of algorithms.
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