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A Multiagent Approach to Q-Learning
for Daily Stock Trading
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Abstract—The portfolio management for trading in the stock
market poses a challenging stochastic control problem of signif-
icant commercial interests to finance industry. To date, many
researchers have proposed various methods to build an intelligent
portfolio management system that can recommend financial deci-
sions for daily stock trading. Many promising results have been
reported from the supervised learning community on the possibil-
ity of building a profitable trading system. More recently, several
studies have shown that even the problem of integrating stock
price prediction results with trading strategies can be successfully
addressed by applying reinforcement learning algorithms. Moti-
vated by this, we present a new stock trading framework that
attempts to further enhance the performance of reinforcement
learning-based systems. The proposed approach incorporates mul-
tiple Q-learning agents, allowing them to effectively divide and
conquer the stock trading problem by defining necessary roles for
cooperatively carrying out stock pricing and selection decisions.
Furthermore, in an attempt to address the complexity issue when
considering a large amount of data to obtain long-term depen-
dence among the stock prices, we present a representation scheme
that can succinctly summarize the history of price changes. Exper-
imental results on a Korean stock market show that the proposed
trading framework outperforms those trained by other alternative
approaches both in terms of profit and risk management.

Index Terms—Financial prediction, intelligent multiagent sys-
tems, portfolio management, Q-learning, stock trading.

I. INTRODUCTION

B
UILDING an intelligent system that can produce timely

stock trading suggestions has always been a subject of

great interest for many investors and financial analysts. Nev-

ertheless, the problem of finding out the best time to buy or

sell has remained extremely hard since there are too many

factors that may influence stock prices [1]. The famous “ef-

ficient market hypothesis” (EMH), which was tested in the
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economics over a 40-year period without definitive findings,

states that no investment system can consistently yield average

returns exceeding the average returns of a market as a whole.

Throughout many years, finance theoreticians argue for EMH

as a basis of denouncing the techniques that attempt to find

useful information about the future behavior of stock prices by

using historical data [2].

However, the assumptions underlying this hypothesis turns

out to be unrealistic in many cases [3], and in particular,

most approaches taken to testing the hypothesis were based

on linear time series modeling [4]. Accordingly, as claimed

in [4], given enough data and time, an appropriate nonpara-

metric machine learning method may be able to discover

more complex nonlinear relationships through learning from

examples. Furthermore, if we step back from being able to

“consistently” beat the market, we may find many interesting

empirical results indicating that the market might be somehow

predictable [5].

Indeed, the last decade has witnessed the abundance of such

approaches to financial analysis both from academia and indus-

try. Application of various machine learning techniques to stock

trading and portfolio management has experienced significant

growth, and many trading systems have been proposed in the

literature based on different computational methodologies and

investment strategies [6]–[10]. In particular, there has been a

huge amount of interest in the application of neural networks

to predict the stock market behavior based on current and

historical data, and this popularity continues mainly due to the

fact that the neural networks do not require an exact parametric

system model and that they are relatively insensitive to unusual

data patterns [3], [11].

More recently, numerous studies have shown that even the

problem of integrating stock price prediction results with dy-

namic trading strategies to develop an automatic trading system

can be successfully addressed by applying reinforcement learn-

ing algorithms. Reinforcement learning provides an approach

to solving the problem of how an autonomous agent that

senses and acts in its environment can learn to choose optimal

actions to achieve its goals [12]. Compared with the supervised

learning techniques such as neural networks, which require

input and output pairs, a reinforcement learning agent learns

behavior through trial-and-error interactions with a dynamic

environment, while attempting to compute an optimal policy

under which the agent can achieve maximal average rewards

from the environment.

Hence, considering the problem characteristics of design-

ing a stock trading system that interacts with a highly dy-

namic stock market in an objective of maximizing profit, it is
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worth considering a reinforcement learning algorithm such as

Q-learning to train a trading system. There have been several

research results published in the literature along this line.

Neuneier [8] used a Q-learning approach to make asset al-

location decisions in financial market, and Neuneier and

Mihatsch [13] incorporated a notion of risk sensitivity into

the construction of Q-function. Another portfolio management

system built by use of Q-learning was presented in [14] where

absolute profit and relative risk-adjusted profit were consid-

ered as performance functions to train a system. In [15], an

adaptive algorithm, which was named recurrent reinforcement

learning, for direct reinforcement was proposed, and it was

used to learn an investment strategy online. Later, Moody and

Saffell [16] have shown how to train trading systems via direct

reinforcement. Performance of the learning algorithm proposed

in [16] was demonstrated through the intraday currency trader

and monthly asset allocation system for S&P 500 stock index

and T-Bills.

In this paper, we propose a new stock trading framework that

attempts to further enhance the performance of reinforcement

learning-based systems. The proposed framework, which is

named MQ-Trader, aims to make buy and sell suggestions

for investors in their daily stock trading. It takes a multiagent

approach in which each agent has its own specialized capability

and knowledge, and employs a Q-learning algorithm to train

the agents. The motivation behind the incorporation of multiple

Q-learning agents is to enable them to effectively divide and

conquer the complex stock trading problem by defining nec-

essary roles for cooperatively carrying out stock pricing and

selection decisions. At the same time, the proposed multiagent

architecture attempts to model a human trader’s behavior as

closely as possible.

Specifically, MQ-Trader defines an architecture that consists

of four cooperative Q-learning agents: The first two agents,

which were named buy and sell signal agents, respectively,

attempt to determine the right time to buy and sell shares

based on global trend prediction. The other two agents, which

were named buy and sell order agents, carry out intraday order

executions by deciding the best buy price (BP) and sell price

(SP), respectively. Individual behavior of the order agents is

defined in such a way that microscopic market characteristics

such as intraday price movements are considered. Cooperation

among these proposed agents facilitates efficient learning of

trading policies that can maximize profitability while managing

risks effectively in a unified framework.

One of the important issues that must be addressed when

designing a reinforcement learning algorithm is the represen-

tation of states. In particular, the problem of maintaining the

whole raw series of stock price data in the past to compute long-

term correlations becomes intractable as the size of considered

time window grows large. Motivated by this, we propose a new

state representation scheme, which is named turning point (TP)

matrix, that can succinctly summarize the historical information

of price changes. The TP matrix is essentially a binary matrix

for state representation of the signal agents. Furthermore, in

MQ-Trader, various technical analysis methods such as short-

term moving averages (MAs) and Japanese candlestick repre-

sentation [17] are utilized by the order agents.

In Section II, we present the architecture of the proposed

framework, describe how cooperation among the trading agents

in MQ-Trader is achieved, and subsequently define the state

representation schemes. Section III presents learning algo-

rithms for the participating agents after briefly introducing

basic concepts of Q-learning. Experimental setup and results

on a real Korean stock market, i.e., Korea Composite Stock

Price Index (KOSPI), are described in Section IV. Finally, Sec-

tion V concludes this paper with discussion on future research

directions.

II. PROPOSED FRAMEWORK FOR

MULTIAGENT Q-LEARNING

In this section, we first present the proposed MQ-Trader

framework that employs cooperative multiagent architecture for

Q-learning. After describing the behavior of individual agents

during the learning process, this section proceeds to define the

necessary state representations for the agents. Detailed learning

algorithms are presented in Section III.

A. Proposed Learning Framework

In an attempt to simulate a human investor’s behavior and

at the same time to divide and conquer the considered learning

problem more effectively, MQ-Trader defines four agents. First,

a stock trading problem is divided into the timing and the

pricing problem of which the objectives are, respectively, to

determine the best time and the best price for trading. This

naturally leads to the introduction of the following two types

of agents: 1) the signal agent and 2) the order agent.

Second, motivation for the separation of the buy signal agent

from the sell signal agent comes from the fact that an investor

has different criteria for decision making depending on whether

she/he buys or sells a stock. When buying a stock, the investor

usually considers the possibility of rising and falling of the

stock price. In contrast, when selling a stock, the investor

considers not only the tendency of the stock price movements

but also the profit or loss incurred by the stock. Accordingly, the

separation is necessary to allow the agents to have different state

representations. That is, while the buy signal agent maintains

the price history information as its state to estimate future trend

based on the price changes over a long-term period, the sell

signal agent needs to consider the current profit/loss obtained

in addition to the price history.

Finally, the buy order and the sell order agents, respectively,

generate orders to buy and sell a stock at some specified price.

These are called bid and offer. The objective of these order

agents is to decide the best price for trading within a single day

in an attempt to maximize profit.

Fig. 1 shows the overall learning procedure defined in

MQ-Trader. It aims to maximize the profit from investment

by considering the global trend of stock price as well as the

intraday price movements. Under this framework, each agent

has its own goal while interacting with others to share episodes

throughout the learning process.

More specifically, given a randomly selected stock item,

an episode for learning is started by randomly selecting a
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Fig. 1. Learning procedure of MQ-Trader.

certain day in the history, which is denoted by δ, from the

environment. As shown in Fig. 1, the buy signal agent first

makes price prediction by analyzing recent price movements of

the considered stock and then makes a stock purchase decision

based on whether the price is likely to rise in near future

or not. When it decides not to buy the stock, the episode is

ended, and a new episode is started at another randomly chosen

day. The steps denoted as 1a and 2a in Fig. 1 correspond to

this case.

On the other hand, if the decision is to buy the stock on

day δ, the buy order agent, which first checks the feasibility

of the purchase by consulting the maximum allowed BP, is in-

formed. Subsequently, if the purchase is feasible, the buy order

agent makes an actual purchase on δ + 1 after it determines an

appropriate BP. In some cases, BP might be set too low, result-

ing to an unsuccessful purchase. When this happens, the buy or-

der agent tries different BPs until a successful purchase is made.

The circle encompassing steps 3 and 4 in Fig. 1 represents this

looping behavior. A reward is given by the environment to the

buy order agent based on how much BP is close to the optimum,

which is the lowest possible BP for successful purchase on

day δ + 1.

After the purchase is made on day δ + 1, the sell signal agent

examines the recent price history of the purchased stock as well

as the current profit or loss accrued in order to decide either to

hold the stock or to sell on each day starting from δ + 1. When

the sell signal agent decides to hold the stock on a day δ + k,

where k ≥ 1, as indicated by step 6b in Fig. 1, the environment

provides it with a reward and an updated state so that the same

process can repeat on the next day. Otherwise, in case that the

stock is sold at the SP valuated by the sell order agent, the sell

order agent is provided with a reward in a way similar to the

case of the buy order agent on day δSELL + 1, where δSELL

indicates the day when the sell signal agent decides to sell

the stock. Finally, a single episode ends after the environment

notifies the buy signal agent of the resulting profit rate as a

reward. A sample episode is illustrated in Fig. 2. We remark

Fig. 2. Sample episode.

Fig. 3. Example of plots representing five-day MAs of closing prices.

that an infinite loop in which a stock is indefinitely held is

prevented by defining maximum possible days during which

the sell signal agent may hold a stock. Detailed definitions of

the state, action, and reward of each agent in MQ-Trader are

given in the following sections.

B. State Representations for Signal Agents

One of the most important issues in defining a Q-learning

framework is the representation of state for agent. Indeed,

the development of an effective and efficient reinforcement

learning system is an art of designing state and reward rep-

resentations. In this section, we present the proposed state

representations for the signal agents.

As discussed in the previous section, the signal agent is

responsible for determining the day when a stock is bought or

sold, and it maintains price history information of the stock in

consideration as its state for being able to predict future trend.

Furthermore, it was mentioned in the previous section that the

sell signal agent defines additional state that summarizes profit

or loss that occurred during an episode.

In order to efficiently represent the price change history of a

stock over a long-term period, we utilize the notion of resistance

and support instead of taking the whole raw price data as a

state, which is computationally extensive for training agents.

Specifically, we propose a state representation scheme, which

is called the TP matrix, which can succinctly summarize the

history of stock price changes over a long period.

A TP is a local extremal point in the plots generated by

computing five-day MAs of closing prices. When it is a local

minimum, it is called an upward TP, and similarly when it is
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a local maximum, it is called a downward TP. The sequence

of TPs shows the history of resistance to and support for

stock price changes, and it has implications on the future price

movements. For instance, the existence of a downward TP at the

price of 100 for a stock in the past may be an indication that the

future stock price is not likely to rise beyond 100. An example

of plots representing the five-day MAs is shown in Fig. 3, where

TPs are depicted as arrowheads.

A TP matrix M = [A/B] is a partitioned matrix in which

submatrices A and B are binary valued square matrices of

size n. An element of M represents an existence of TP with

specified properties that are defined for columns and rows.

The columns of M represent time windows, and they are

defined by the use of Fibonacci numbers F0, F1, . . . , Fn, where

F0 = 0, F1 = 2, and F2 = 3, in such a way that the jth column

corresponds to the time period (
∑j−1

k=0 Fk + 1,
∑j

k=0 Fk) in

the past. Given a time window (x, y) in the past, x represents

the xth day when the days are counted backward starting from

day D, which is a reference day on which the signal agent

makes a decision. That is, the first column indicates the

time window containing the yesterday and the day before

yesterday.

On the other hand, the rows of M represent the ranges of

price change ratio of a stock on day D with respect to the

price at TP, which is defined as CTP,D = (PC
TP − PC

D )/PC
D ,

where PC
TP and PC

D , respectively, indicate the closing prices

of a stock on days TP and D. Similar to the case of time

window definition, the whole range of the possible price change

ratio is subdivided into the distinct intervals according to

Fibonacci numbers. In particular, submatrix A represents the

case in which price has not fallen on day D compared to

that of TP, i.e., CTP,D ≤ 0, whereas submatrix B represents

the opposite case. Therefore, it follows that the first row

of A corresponds to the price increase within the range of

0% to 2%.

Each element aij ∈ A, i = 1, . . . , n and j = 1, . . . , n, is

formally defined as shown at the bottom of the page.

Fig. 4. Example of TP matrices.

The elements bij ∈ B, i = 1, . . . , n and j = 1, . . . , n, are

similarly defined as in the case of submatrix A except that the

condition on CTP,D is replaced with CTP,D > 0 for B.

The rationale behind the employment of Fibonacci numbers

to subdivide the time windows as defined previously is to pay

more interest in recent history. TPs in the recent past are consid-

ered by use of several time windows of small size, whereas TPs

in the distant past are aggregated by use of a few windows of

large size. Similarly, TPs with small price differences from PC
D

receives more attention than those with big price differences

since they resemble more closely the situation of day D. Fig. 4

shows an example of the upward and downward TP matrices

for the region circled in Fig. 3.

In Fig. 4, the past 230 days are considered, and accordingly,

n is set to 9 to make the last time window include the 230th day

in the past counted backward from D. From the definition of

the TP matrix, it follows that the Fibonacci number associated

with each column represents the size of a time window in terms

of days, and it also follows that the starting day for the time

(Case 1) 1 ≤ i < n

aij =






1, if there exists a TP such that CTP,D ≤ 0 and
i−1∑
k=0

Fk ≤ |CTP,D| × 100 <
i∑

k=0

Fk

during the period

(
j−1∑
k=0

Fk + 1,
j∑

k=0

Fk

)

0, otherwise

(Case 2) i = n

aij =






1, if there exists a TP such that CTP,D ≤ 0 and
i−1∑
k=0

Fk ≤ |CTP,D| × 100 < ∞

during the period

(
j−1∑
k=0

Fk + 1,
j∑

k=0

Fk

)

0, otherwise
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TABLE I
SAMPLE ENCODING SCHEME FOR PROFIT RATIO

window is equal to the sum of all preceding Fibonacci numbers

plus one. For instance, the third column of the matrix in Fig. 4

corresponds to the time window of five days that starts six

days ago and ends ten days ago. Finally, an element marked

as “N” in Fig. 4 indicates that it is not allowed to make such

a price change within the corresponding time period due to the

regulation of a stock market considered.

In addition to the TP matrix, the sell signal agent has a few

more bits as its state to represent profit rate obtained by holding

a stock during an episode. The profit rate on day D, i.e., PRD,

is defined as follows:

PRD =
PC

D −BP

BP
× 100.

Finally, in order to encode the value of PRD as bits of fixed

length, we divide the whole range of possible profit ratio into

the intervals and map a bit to each interval to indicate whether

or not a profit ratio belongs to the specific interval. Table I

shows a sample case in which 8 bits are used for representing

the profit ratio. Under the encoding scheme presented in Table I,

a profit ratio of +15%, for example, will be represented as

00000100.

C. State Representations for Order Agents

The objectives of buy order and sell order agents are, re-

spectively, to figure out optimal bid and ask prices of orders

for a specific trading day. In contrast to the signal agents that

utilize the long-term price history information to predict future

stock price movements, the order agents need to learn the

characteristics of intraday stock price changes. For this purpose,

the proposed framework bases its state representation for the

order agents on the Granville’s law [18] and Japanese can-

dlesticks, which are popular methods for short-term technical

analysis.

Granville’s law is a widely used method that considers the

correlations among the long-term and short-term MAs of clos-

ing prices in order to predict the short-term price movements.

According to Granville’s law, the short-term temporary behav-

ior of stock price changes eventually resembles the long-term

behavior, and therefore, a temporary deviation from the long-

term behavior can be identified as an indicator that the behavior

in the upcoming short period will soon follow the long-term

behavior.

We apply this principle to the problem of estimating the trend

of intraday stock price movements by introducing necessary

indicators to the state representations of order agents as follows.

Fig. 5. Japanese candlestick representation.

An MA is an indicator that shows the average value of stock

prices over a certain period of time. An arithmetic N -day MA

on a trading day D, i.e., MAN
D , is defined as

MAN
D =

D∑
i=D−N+1

PC
i

N

where D ≥ N and PC
i is the closing price of a considered

stock on the ith trading day such that i = D −N + 1, . . . , D.

We define two indicators that can capture the characteristics of

short-term price changes and incorporate them into the state

representation for the order agents. First, a gradient of the

N -day MA on day D, i.e., gN
D , is defined as

gN
D =

MAN
D − MAN

D−1

MAN
D−1

.

Second, the normalized distance between PD and MAN
D , i.e.,

dN
D , is defined as follows:

dN
D =

PC
D − MAN

D

MAN
D

.

Following the Granville’s law, gN
D and dN

D can be used to

derive some sufficient conditions to make predictions on the

price movements on day D + 1. When gN
D > 0 (i.e., a bull

market), the stock price is likely to rise on day D, and the value

of dN
D will normally be positive. However, if dN

D happens to

have a negative value for a bull market, it is quite likely that

it is an indication of price rise on day D + 1. Furthermore, if

the value of dN
D is too high, the stock price is expected to fall

on D + 1. Similar arguments can be made for the case when

gN
D < 0 (i.e., a bear market).

Fig. 5 shows a standard representation of Japanese candle-

sticks. In this representation, a black bar indicates that the

closing price of a stock is lower than the opening price on a

trading day, whereas a white bar indicates the opposite case.

Top line and bottom line of the candlestick, respectively, denote

the highest price and the lowest price on a trading day.

The shape of a candlestick conveys important information

for determining BP or SP. Accordingly, in MQ-Trader, the data

contained in the Japanese candlestick are represented as a state

for the order agents in terms of the following four indicators:

1) the body bD; 2) upper shadow uD; 3) lower shadow lD;

and 4) ratio of closing price difference qD that are formally

defined as follows. Let PO
D , PH

D , and PL
D , respectively, denote
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the opening, highest, and lowest price of a stock on a trading

day D. Detailed definitions are given as follows:

bD =
PC

D − PO
D

PO
D

uD =
PH

D − max
(
PO

D , PC
D

)

max
(
PO

D , PC
D

)

lD =
min

(
PO

D , PC
D

)
− PL

D

min
(
PO

D , PC
D

)

qD =
PC

D − PC
D−1

PC
D−1

.

III. LEARNING ALGORITHMS FOR MQ-TRADER AGENTS

Q-learning is an incremental reinforcement learning method

that does not require a model structure for its application. The

objective of the Q-learning agent is to learn an optimal policy,

i.e., a mapping from a state to an action that maximizes the

expected discounted future reward, which is represented as a

value function Q. One-step Q-learning is a simple algorithm in

which the key formula to update the Q value to learn an optimal

policy is defined as follows [12]:

Q(st, αt) ← Q(st, αt)

+ λ
[
r(st, αt) + γmax

α
Q(st+1, α) −Q(st, αt)

]

where Q(st, αt) is a value function defined for a state–action

pair (st, αt) at moment t, λ and γ are the learning rate and

discount factor, respectively, and r(st, αt) is a reward received

as a result of taking action αt in state st.

When the state space to be explored by an agent is large, it is

necessary to approximate the Q value. One of the most com-

monly used approaches to the approximation is a gradient-

descent method in which the approximated Q value at t, i.e.,

Q̂t, is computed by use of a parameterized vector with a

fixed number of real valued components, which is denoted as
−→
θt . Specifically, the function approximation in the proposed

framework is carried out by use of a neural network in which

link weights correspond to
−→
θt . In this framework,

−→
θt is updated

by the following expression, where the gradient ∇−→
θt

Q̂t(st, αt)
can be computed by use of the backpropagation algorithm [19]:

−→
θt+1 ←

−→
θt + λ∇−→

θt

Q̂t(st, αt)

×
[
r(st, αt) + γmax

α
Q̂t(st+1, α) − Q̂t(st, αt)

]
. (1)

Having discussed the employed Q-learning algorithm, we

now proceed to formally define the learning algorithms for

the agents of MQ-Trader. The algorithms are presented in

Figs. 6–9. In the algorithm descriptions, sδ denotes the state

on day δ and αsδ
denotes an action taken at state sδ . Further-

more, BPδ and SPδ, respectively, represent the BP and the SP

determined on δ. For the notational brevity, we omit the index

indicating the agent type throughout the algorithm descriptions

Fig. 6. Algorithm for the buy signal agent.

Fig. 7. Algorithm for the buy order agent.

although each agent has its own definitions of state, action,

reward, and Q function.

Fig. 6 shows the Q-learning algorithm for the buy signal

agent. The buy signal agent first examines the state of a stock

on a randomly selected day δ, which includes the TP matrix de-

scribed in the previous section. It then takes an action according

to a well-known ε-greedy policy function Γ(·) that is defined as

follows [19]:

Γ(sδ) =

{
arg max
α∈Ω(sδ)

Q̂(sδ, α), with probability 1 − ε

random α ∈ Ω(sδ), with probability ε

where ε is an exploration factor, and Ω(sδ) represents the set of

actions that can be taken at state sδ .

If the agent decides to buy the stock, it immediately invokes

the buy order agent and waits until the sell order agent invokes

it. The reward is given later in terms of the resulting profit
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Fig. 8. Algorithm for the sell signal agent.

Fig. 9. Algorithm for the sell order agent.

rate by considering the following: 1) transaction cost (TC),

which is defined in terms of a fixed rate charged for a stock

price whenever a stock is purchased, and 2) the price slippage

caused by the difference between the estimated and actual stock

prices. Otherwise, the agent receives a zero reward to nullify

the episode. For the update of
−→
θ , the term γmaxα Q̂t(st+1, α)

in (1) is set to 0, since no further Q value update for the

current episode is necessary for the buy signal agent. Finally,

an early stopping method [20] is adopted for the buy signal

agent to terminate training when a validation error rate starts to

grow up.

As described in Section II, the buy order agent has a state

representation for the N -day MA, gradient, and normalized

distance, as well as for several indicators for Japanese candle-

sticks. The action space for the buy order agent, i.e., Ω(sδ),
is defined as a finite set of allowed BP ratio with respect to

MAN
δ , {β1, β2, . . . , βK} such that β1 < β2 < · · · < βK and

β1 > 0. We refer to βK as βN
MAX in what follows to repre-

sent the fact that it is dependent on N , which is the length

of time window for the MA, and that it limits the maxi-

mum allowed BP. Given a BP ratio β ∈ Ω(sδ), the actual

BP is determined by BPδ = MAN
δ × β on day δ for a trade

on δ + 1.

The learning algorithm for the buy order agent is presented in

Fig. 7 in which β is used in place of αsδ
whenever appropriate

for clarity. It starts on day δ that is provided by the buy signal

agent. If it turns out that a purchase cannot be made on day

δ + 1 with any BP ratio allowed in MQ-Trader, an episode ends

after giving the minimum reward, which is 0. In case that a

purchase is possible, the agent attempts to obtain a feasible

BP for day δ + 1 by repetitively trying different BP ratios by

invoking the ε-greedy policy function. Since no state transition

is made by the agent, the term γmaxα Q̂t(st+1, α) in (1) is set

to 0. The reward function for the buy order agent is defined in

such a way that the computed reward is bounded by 0 and 1,

and the reward becomes maximum when the BP determined is

the same as the lowest possible BP of day δ + 1.

The sell signal agent is informed about δ + 1, which is the

day when the stock is actually purchased, by the buy order

agent. It then decides whether or not to sell the stock on

δ + 1 according to the ε-greedy function. Subsequently, if the

decision is to sell the stock, the agent is provided with a zero

reward as it will exit the market for the current episode. On

the other hand, when the agent decides to hold the stock, the

successive days are examined for selling the stock one by one

by updating the Q value. The reward defined for this update is

the ratio of closing price difference, i.e., qδ+k, which is defined

in Section II, to inform whether the closing price has increased

or not on the next day. We remark that unlike the buy order

agent whose reward is bounded between 0 and 1, the reward for

the sell signal agent may have a negative value. Furthermore,

when the agent decides to sell, the term γmaxα Q̂t(st+1, α)
in (1) is set to 0, since no further state update is necessary for

the episode. The algorithm for the sell signal agent is presented

in Fig. 8.

Finally, δSELL, which is the day when the sell signal agent

decided to sell the stock, is provided to the sell order agent

that is responsible for determining an offer price. Similar to

the case of the buy order agent, we define the action space

for the sell order agent, i.e., Ω(sδSELL
), to be a finite set of

allowed SP ratio with respect to MAN
δSELL

, {σ1, σ2, . . . , σK}
such that σ1 < σ2 < · · · < σK and σ1 > 0. We denote σ1 as

σN
MIN, since it determines the minimum allowed SP. Given an

SP ratio σ ∈ Ω(sδ), the actual SP is computed in the same way

as the case of the buy order agent.

As shown in Fig. 9, the agent first checks if it can sell the

stock on day δSELL + 1 at the minimum allowed SP. If selling
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of the stock even with the lowest possible price is not possible,

the SP is set to PC
δSELL+1, which is the closing price on day

δSELL + 1. The lowest reward, i.e., 0, is given in this case.

Otherwise, the agent tries different prices until a feasible SP

is obtained as in the case of the buy order agent. The reward

function that considers the TC and price slippage for this case

is defined similarly to that of the buy order agent and achieves

the maximum value when the SP determined is equal to the

highest possible price.

IV. EMPIRICAL STUDY

In this section, we first present the detail configuration of

the MQ-Trader that is defined for empirical study and then

discuss the predictability analysis results for the feedforward

neural network employed for value function approximation.

Finally, we present the results of an empirical study concerning

the application of our multiagent approach to KOSPI 200,

which is composed of 200 major stocks listed on the Korea

stock exchange market, by comparing it with other alternative

frameworks.

A. MQ-Trader Configuration

In addition to the major state definitions that were de-

scribed in Section II, some additional state components are

introduced for empirical study to further optimize the perfor-

mance of MQ-Trader. Specifically, the signal agent is provided

with ten additional binary technical indicators that include

the relative strength index, MA convergence and divergence,

price channel breakout, stochastics, on-balance volume, MA

crossover, momentum oscillator, and commodity channel in-

dex. Detailed description of these indicators can be found

in [21].

Furthermore, we consider the past 230 days for constructing

the TP matrix and configure the sell signal agent to have the

profit ratio representation scheme as shown in Table I where

8 bits are dedicated for the representation. Consequently, since

the total number of bits required to represent the TP matrix is

324, it follows that the state of the buy signal agent consists

of 334 bits and that the state of the sell signal agent consists

of 342 bits.

As for the order agents, Table II shows the detailed state

variables along with the number of bits configured for them

for a trading day D. The value range of each state variable is

divided into mutually exclusive intervals, and each interval is

assigned with 1 bit to represent the fact that the current value

belongs to the interval. Accordingly, both the buy order and the

sell order agents require 88 bits.

We set N = 5, which reflects the number of workdays in a

week to train the order agents. In an attempt to minimize the

required number of bits for representing the action space of the

buy order agent while accommodating possible actions as many

as possible, we analyzed the characteristics of KOSPI 200 by

plotting the distribution of PL
D+1/MA5

D, which is the ratio of

the lowest stock price on D + 1 to the five-day MA of stock

prices on a trading day D. The result is presented in the left

plot in Fig. 10, which suggests that the chance of producing

TABLE II
STATE REPRESENTATION FOR THE ORDER AGENTS

an infeasible BP by the buy order agent with β5
MAX = 1.12

is less than 2.5%. A similar conclusion can be drawn for the

sell order agent from the right plot in Fig. 10, which shows

the distribution of PH
D+1/MA5

D. Based on this observation,

the order agents are configured to have β5
MAX = 1.12 and

σ5
MIN = 0.88, and the actual action space and its encoding

used for the empirical study in this section are presented

in Table III.

Finally, we remark that the algorithms presented in Figs. 7–9

may not terminate in some very rare cases. Therefore, we set

the limit on the maximum number of iterations allowed during

execution of the algorithms to prevent an infinite loop. When

the loop is exited abruptly by this condition, the episode is

discarded.

B. Predictability Analysis

The structure of a neural network for the Q value function

approximation has a significant influence on the performance of

MQ-Trader. In order to determine an appropriate structure, we

considered several network structures by varying the number of

hidden layers and the number of units for each layer.

The data set for the experimentation is drawn from KOSPI

200. The whole data set is divided into four subsets as follows:

1) the training set with 32 019 data points, which covers the time

period from January 1999 to December 2000; 2) the validation

set with 6102 data points from January 2001 to May 2001;

3) the first test set with 33 127 data points from June 2001 to

August 2003; and finally 4) the second test set with 34 716 data

points from September 2003 to November 2005.

Training of the neural networks was carried out by applying

the Q-learning algorithms presented in Section III. Specifically,

we considered the network configurations with at most two

hidden layers, and each of them was trained ten times with

different initial weights. The same neural network structure was

used for all the agents of MQ-Trader. Prediction performance

of the agents was investigated by examining the correlation

between the estimated Q values and the actual discounted

cumulative rewards as well as the accuracy, which is defined

as the ratio of the number of successful trades to the number

of recommendations made by MQ-Trader, all under γ = 0.9,

λ = 0.3, and ε = 0.1.

We remark that the correlation was calculated for all the

stock items, whereas the accuracy was measured only for the

stock items that were recommended by MQ-Trader. That is,
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Fig. 10. Distribution of the ratio of the difference between the five-day MA and the lowest stock price to the five-day MA.

TABLE III
ACTION SPACE FOR THE ORDER AGENTS

the accuracy essentially represents how many stock trades were

actually profitable out of those recommended for purchase.

Table IV shows the prediction performance results for the con-

sidered neural network configurations. It suggests that the pre-

dictability for the recommended trades can be satisfactory even

though the predictability for individual stocks is not. Based on

these, we chose the network with 80 units in the first hidden

layer and 20 units in the second hidden layer for implementing

MQ-Trader.

The behavior of the trading agents with the selected network

structure in MQ-Trader during the training process is depicted

in Fig. 11, where the average number of trades made and the

average profit rate incurred every 20 000 episodes are shown in

the upper and lower graphs, respectively. In Fig. 11, the solid

line represents the case of the validation set, whereas the dotted

line represents the case of the training set. The vertical axes

on the left- and right-hand sides in the upper plot in Fig. 11

represent the cases of the training set and the validation set,

respectively.

It is worth mentioning that the number of trades made during

the first 3 200 000 episodes is very small mainly due to the

fact that MQ-Trader in this stage makes decisions only through

the random exploration. In fact, the trading performance in

terms of the profit rate in this stage is not satisfactory as

shown in the bottom plot in Fig. 11. However, after this

initial phase, the number of trades and the profit rate begin

to increase in both data sets, indicating that MQ-Trader starts

to trade stocks by use of the greedy policy. Finally, since it

was observed that there was degradation of profit rate after

5 000 000 episodes, the training was stopped to prevent the

overfitting.

C. Performance Evaluation Results

We implemented a simulation platform for trading systems to

evaluate our approach. The platform consists of five indepen-

dent subtraders for which initial assets are equally allocated.

Each trader is allowed to hold only one stock item at a time.

Motivation behind introducing multiple subtraders comes from

the fact that the platform with a single trader may result in

high variances of trading performance, making the performance

comparison a sophisticated task. Indeed, in practice, there are

very few investors who allocate their whole asset to a single

stock.

At runtime, MQ-Trader implemented in the simulation plat-

form constructs a set of recommended candidates out of

200 stock items based on the profit rate estimated by the

trained neural network, and distributes the stocks with highest

profitability randomly to the subtraders that do not hold a stock.

Once a stock is to be purchased by a subtrader, BP is determined

by comparing the estimated Q values for the set of possible

actions. When the selected BP of the stock is unfortunately

lower than the lowest stock price of the trading day, the stock

is abandoned, and another randomly chosen profitable stock is

provided to the subtrader. This process is repeated until there is

no profitable stock left in the candidate set.

On the other hand, the decision of selling a stock proceeds as

follows. On every trading day, two alternative actions, namely

SELL or HOLD, are compared according to the Q values

returned by the trained neural network. In case that the stock

is to be sold, the SP is determined similarly to the case of the

stock purchase. Whenever the SP determined is higher than the

highest price of the trading day, the stock is sold at the closing

price of the day.

In order to incorporate real-world trading constraints, we

further introduced TCs, price slippage, and limitation on the

stock purchase amount into the simulation model. First, three

different rates for computing TCs based on the BP or SP,

namely 0.5%, 1.0%, and 1.5%, were considered,1 and the TC

1The actual rate for the transaction cost in KOSPI market is between 0.3%
and 0.4%.
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TABLE IV
PREDICTION PERFORMANCE OF THE CONSIDERED NEURAL NETWORK CONFIGURATIONS

Fig. 11. Behavior of trading agents during the training process.

was charged whenever a stock is purchased or sold. Second, in

order to account for the price slippages that may occur due to

the difference between the estimated and actual stock prices,

we introduced random perturbation of the actual stock prices

by 0%, 0.5%, and 1%. Third, in an attempt to address the issue

of minimizing the market influence caused by a stock trader, we

limited the daily purchase amount of a single stock item by the

trader to less than 1% of the daily trading volume of the stock

in the market.

We now proceed to compare the performance of the proposed

MQ-Trader with other trading systems with different archi-

tectures. The stock trading systems considered in this experi-

mentation for performance comparisons are given as follows:

(a) the Ideal 2Q (I2Q)-Trader that replaces the order agents

of MQ-Trader with an ideal policy in which buy orders

are traded at the lowest daily prices and sell orders are

traded at the highest daily prices; (b) the MQ-Trader; (c) the

2Q-Trader in which only the signal agents are employed and the

BP and SP are set to the closing price of a trading day; (d) the

SMQ-Trader, which is the MQ-Trader without the TP matrix;

(e) the 1Q-Trader where only the buy signal agent is employed

and the selling signal is automatically generated after some

predefined holding period; and finally (f) the SNN-Trader that

has basically the same neural network structure as 1Q-Trader

but employs a supervised learning algorithm.

TABLE V
STATISTICAL BENCHMARKING RESULTS FOR THE TRADERS

It should be noted that all traders except the SMQ-Trader

implement the TP matrices for their state representations. We

also remark that the 2Q-Trader and I2Q-Trader are the traders

defined for the purpose of showing how the order agents

play roles in enhancing the performance of the MQ-Trader by

removing the order agents from the MQ-Trader and, respec-

tively, replacing them with two extreme pricing policies. From

the definitions of the 2Q-Trader and I2Q-Trader, it follows that

the performance of the MQ-Trader should fall between those of

the 2Q-Trader and I2Q-Trader.

In this experimentation, the neural network of each trad-

ing system (introduced as (a) to (f) previously) was trained

with 20 different random initializations of the weights, and

Table V summarizes the statistical benchmarking results in
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Fig. 12. Performance comparison result for the first test data set.

Fig. 13. Performance comparison result for the second test data set.

terms of the asset growth rates achieved by each trading

system throughout the entire test period, from June 2001 to

November 2005, when it was provided with 0.4 billion won

initially (the basic unit of money in Korea). For example, the

best case performance of MQ-Trader shows that its asset has

grown to 4.55 (= 0.4 × 1138.7 %) billion won by the end of

November 2005.

Only the best case results for the two aforementioned test

sets in this section are separately given in Figs. 12 and 13,

where the dotted line at the bottom indicates the KOSPI index
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TABLE VI
ASSET GROWTH RATES OF MQ-TRADER FOR DIFFERENT

TRANSACTION RATES AND PRICE SLIPPAGES

that is similarly defined as the S&P 500 index of the U.S.

stock market. KOSPI index is shown to compare the perfor-

mances of the aforementioned trading systems to the baseline

market performance during the test period, and it is equated to

0.4 billion at the beginning for visualization purposes. The

series (a) through (f) in Fig. 12 show the accumulated assets

for each trading system during the first test period (June 2001

to August 2003) when each system starts with an initial asset

of 0.4 billion won. To make the performance comparison clear,

the starting assets for the trading systems during the second test

period (September 2003 to November 2005) are also equated to

0.4 billion in Fig. 13.

As can be seen from these results, the proposed MQ-

Trader outperformed the other alternative trading frameworks

(represented by the series (c) to (f) in Figs. 12 and 13)

by achieving more than four times of asset growth for the

first test period and more than 2.5 times for the second test

period. The performance of MQ-Trader has always lied be-

tween those of the I2Q-Trader and the 2Q-Trader (respectively

represented as the series (a) and (c) in Figs. 12 and 13) as

expected. Accordingly, the performance difference between

MQ-Trader and 2Q-Trader can be attributed to the contri-

butions of the order agents. Furthermore, it can be deduced

by comparing the series (b) and (d) that the proposed TP

matrix can facilitate the performance improvement of a trading

system.

It is interesting to note that MQ-Trader performs satis-

factorily during the long period of bear market between

April 2002 and April 2003. In addition, it endured quite well

the short stock market shock during May 2004 with a relatively

small loss. Note that, however, in the period of bull market

(May 2005 to July 2005), the traders with multiple agents

including MQ-Trader were not able to exploit the opportunity,

while the other two single agent traders (indicated by the sharp

rises of the series (e) and (f) during the period) were able to

exploit the opportunity. Based on this observation, it appears

that MQ-Trader can achieve a good performance particularly

when the stock prices are sharply declining due to the mar-

ket inefficiency incurred by some psychological reasons of

investors.

The results of experimentation study to examine the effects

of TCs and price slippages on the performance of MQ-Trader

are presented in Tables VI and VII, where only the best case

performances are shown among 20 multiple trials with different

random initializations of neural networks. Three different rates

for calculating TCs as well as three different probabilities of

price slippages were considered, resulting to a total of nine

configurations. Tables VI and VII, respectively, present the

TABLE VII
TRADING FREQUENCIES OF MQ-TRADER FOR DIFFERENT

TRANSACTION RATES AND PRICE SLIPPAGES

results of the asset growth rates and the trading frequencies

achieved by MQ-Trader for different configurations during the

entire period of June 2001 through November 2005. The initial

asset given to MQ-Trader was 0.4 billion won.

From Table VI, it can be seen that the most profitable results

(1138.7% asset growth) were obtained when both of the TC

rate and the price slippage percentage were lowest, and that

the profit decreases as the TC rate increases and the chance of

price slippages becomes higher. Similar results were observed

for the experimentation on the number of trades made during

the same test period, as shown in Table VII. These together

imply that MQ-Trader has learned the risks associated with

stock trading, which were introduced through the TC and price

slippage. When the TC is expensive, MQ-Trader buys and sells

a stock carefully, leading to less frequent trades and smaller net

profits. This is a natural consequence since a trade with small

profit may end up with overall loss after paying the TCs for the

stock purchase and disposition. In addition, with high chance

of price slippage, it is advantageous for MQ-Trader to avoid

aggressive trading.

Furthermore, Figs. 14 and 15 show how the profitability of

MQ-Trader decreases as the risks increase throughout the entire

test period. The TC rate and the percentage of price slippage

used for each series in Figs. 14 and 15 are summarized in

Table VIII. As expected, the profitability becomes highest when

the risks represented by the TC and price slippage are lowest,

and it becomes lowest when the risks are highest.

Finally, we found out that consideration of the current profit

or loss by MQ-Trader did not necessarily lead to the disposition

effect in contrast to the human investors who are subject to the

disposition effect due to psychological reasons. The average

number of days of holding a stock item by MQ-Trader for

the profitable trades was 6.9, whereas it was 7.3 days for the

unsuccessful trades. Therefore, this small difference of 0.4 day

suggests that the MQ-Trader is not prone to the disposition

effect.

V. CONCLUSION

There has long been a strong interest in applying machine

learning techniques to financial problems. This paper has

explored the issues of designing a multiagent system that

aims to provide an effective decision support for daily stock

trading problem. The proposed approach, which was named

MQ-Trader, defines multiple Q-learning agents in order to

effectively divide and conquer the stock trading problem in an

integrated environment. We presented the learning framework

along with the state representations for the cooperative agents
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Fig. 14. Performance comparison result for different levels of risks during the first test period.

Fig. 15. Performance comparison result for different levels of risks during the second test period.

of MQ-Trader and described the detailed algorithms for

training the agents.

Furthermore, in an attempt to address the complexity prob-

lem that arises when considering a large amount of data to

compute long-term dependence among the stock prices, we had

proposed a new state representation scheme, which was named

TP matrix, that can succinctly represent the history of price

changes.

Through an extensive empirical study using real financial

data from a Korean stock market, we found that our approach

produces better trading performances than the systems based

on other alternative frameworks. Based on these observations,

the profits that can be obtained from the proposed framework

appear to be promising.

From the future research point of view, there are some clear

extensions to be investigated. These include addressing the

issues of distributing the asset to multiple portfolios and of

adapting to the trend of a stock market. While the reinforcement

learning is promising, introduction of these considerations will

make the problem more complex. Therefore, one of the future
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TABLE VIII
LEGEND FOR THE SERIES IN THE PLOTS OF FIGS. 14 AND 15

research problems will be to make the reinforcement learning

formulation with these considerations tractable.
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