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Arriving on time and total travel time are two important properties in multiagent-based route guidance.
Existing route guidance approaches always consider them independently because they may conflict with
each other. In this paper, we develop a decentralized multiagent-based vehicle routing approach to integrate
the two properties by expressing them as two objective terms of a route assignment problem. Regarding
arriving on time, it is formulated based on the probability tail model, which aims to maximize the probability
of reaching destination before deadline. Regarding total travel time, it is formulated as a quadratic term,
which aims to minimize the expected travel time from current location to the destination based on the
potential assignment. To better reduce the additional travel time caused by loose deadlines, we design a
weight for the term of total travel time, the value of which is comparatively large if the deadline is loose.
This multiagent-based approach is characterized by two types of agents, in which, vehicle agents follow
the local route guidance by infrastructure agents at each intersection, and infrastructure agents perform
the route guidance by solving the corresponding route assignment problem. Additionally, we improve the
proposed approach of route guidance in several aspects, including travel time prediction, computational
efficiency and infrastructure agent communication. Experimental results on real road networks justify its
ability to increase the average probability of arriving on time, reduce total travel time and enhance the
overall routing performance.

Additional Key Words and Phrases: Intelligent Transportation Systems; Multiagent-based Route Guidance;
Arriving on Time; Probability Tail Model; Total Travel Time.

1. INTRODUCTION
Vehicle route guidance has been a challenging problem in transportation and mobil-
ity, which is crucial for the sustainable development of any city [Zheng et al. 2014;
Zhang et al. 2015; Cao et al. 2016a]. It attracts broad and deep attention from the
government, industry and research communities due to its high relevance to people’s
daily life [Chester 2015; Guo et al. 2014; Zheng and Xie 2011; Yuan et al. 2010; Ru-
binstein et al. 2012]. Multiagent-based approaches are often applied in route guid-
ance [Gan et al. 2015; France et al. 2003; Wilt and Botea 2014; Chen et al. 2014;
Zolfpour-Arokhlo et al. 2014; Lujak et al. 2015], because the agent metaphor for mod-
eling a participant or decision-maker can capture complex constraints connecting all
problem-solving phases [Smith et al. 2006; Oh and Smith 2008], especially in coopera-
tive vehicle route guidance [Bazzan and Klügl 2014]. A transportation system can be
modeled as a large, distributed and dynamic multiagent system where vehicles rep-
resented as agents move on the road network following their own routes, which are
determined by themselves or roadside infrastructure agents [Jiang et al. 2014; Cao
et al. 2016c].

In multiagent-based route guidance, LET (least expected travel time) paths are first
proposed to provide route guidance to the vehicle agents by the policy-making agents
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A:2 Z. Cao et al.

(e.g., city manager or transportation authority) [Yamashita et al. 2005; Li et al. 2009;
Claes et al. 2011; Pan et al. 2013; Liang and Wakahara 2014; Jiang et al. 2014; Wang
et al. 2014a],. They consider LET paths as the optimal option mainly for two rea-
sons: (1) Drivers generally prefer shorter travel time; (2) LET paths are likely to result
in less total travel time for all vehicles in the whole transportation system, which is
environment-friendly in view of that fuel consumption and air pollution are directly
relevant with the total travel time [Liang and Wakahara 2014; Jiang et al. 2014]. Al-
though the LET path in multiagent-based route guidance is popular and has achieved
big success considering the environmental impact, a critical issue still remains to be
addressed: in real traffic, different drivers may have different deadlines, and even the
same driver may have different deadlines in various scenarios. For instance, if they
want to catch up important appointments, their deadlines might be tight; if they go
shopping, deadlines might be loose. Simply seeking LET paths for all drivers may
cause some drivers with tight deadlines to miss their deadlines due to the influence
from other drivers, especially those with loose deadlines. This will increase the drivers’
frustration and impatience, and, as a consequence, the accident occurrence rate.

The probability tail model is proposed as a criterion of the optimal route, which
aims to maximize the probability of reaching destination before deadline (i.e., arriving
on time) [Fan et al. 2005; Nikolova et al. 2006; Nie and Wu 2009; Lim et al. 2009; Lim
et al. 2013]. This criterion has two attractive properties: 1) it takes the specific de-
mand of deadline into account, giving drivers an extra dimension of settings; 2) it uses
a probabilistic instead of deterministic metric to evaluate stochastic traffic situations
(i.e., the variance in the probability always relates to the risk), which is more realis-
tic especially when facing real-world uncertainties. The probability tail model is much
consistent with real-world travel behavior, and has been applied in many crucial sce-
narios, e.g., flight catching, fire rescue and organ delivery. However, the probability tail
model is originally designed for a single vehicle, which independently pre-computes a
path before each vehicle’s departure. Traffic is known to be dynamic, so the optimal-
ity of a pre-computed path may not hold when all vehicles are en-route. Therefore,
a multiagent-based cooperative route guidance approach had been developed in [Cao
et al. 2016a], which extends the probability tail model to the multiple vehicle settings
by solving a route assignment problem at each intersection. This approach is promising
in that it is decentralized, and can increase the chances of arriving on time for all rel-
evant vehicles by providing local route guidance. However, a critical issue is unsolved
in this approach: it only considers arriving on time, and some vehicle agents may be
assigned to detoured routes as long as they can guarantee reaching destination before
deadline. Those routes are likely to cause additional total travel time, especially for the
vehicle agents with loose deadlines, which are deviated from the normal driver’s pref-
erence of shorter travel time. Moreover, unnecessary total travel time always causes
additional fuel consumption and air pollution, which is not environment-friendly.

Therefore, it is desirable to leverage the advantages of considering both arriving on
time and total travel time at the same time in the muitiagent-based route guidance.
Consequently, in this paper, we extend the work in [Cao et al. 2016a], by integrating
the properties of arriving on time and total travel time into the same route assign-
ment problem. More specifically, we incorporate a quadratic term, which represents
the expected travel time from current location to the destination for the potential road
link assignment, into the objective function of the original arriving on time problem.
We also design a weight for the expected travel time term, the value of which is com-
paratively large if the deadline is loose. Besides, three improvements are proposed for
our new approach: the predicted travel time on each assigned road link is refined by
iteratively linearizing a non-linear function; the computational efficiency is enhanced
by reformulating the route assignment problem as a mixed integer linear program-
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A Multiagent-based Approach for Vehicle Routing A:3

ming (MILP) problem; and the overall performance is improved by allowing communi-
cation between neighboring infrastructure agents. Experimental results on real road
networks show that our approach outperforms traditional methods, which can increase
the chances of arriving on time and reduce the total travel time.

The rest of this paper is organized as follows. In Section 2, we lay down related work
on route guidance approaches considering total travel time and arriving on time, re-
spectively. In Section 3, we illustrate the framework of our multiagent-based vehicle
route guidance. In Section 4, firstly, we elaborate the proposed approach that consid-
ers arriving on time for all vehicle agents; then we describe how to integrate the total
travel time, both of which are expressed as route assignment problems, respectively;
and finally we provide the bound analysis and algorithm summary. In Section 5, we
propose three improvements to our route guidance approach. In Section 6, we present
experimental settings and performance results regarding all the approaches and im-
provements. The paper ends with conclusions and possible future works in Section 7.

2. RELATED WORK
Most of the multiagent-based vehicle routing approaches rely on the LET paths for
route guidance, to reduce the total travel time of vehicle agents in the whole trans-
portation system. In one of the early multiagent-based approaches for route guid-
ance [Yamashita et al. 2005], a global server agent constantly collects intentions of
routes from all vehicle agents. It then computes a predicted LET path for each indi-
vidual vehicle agent by cooperatively exploring the collected intentions, and all vehicle
agents update their routes at each intersection accordingly. Based on the work in [Ya-
mashita et al. 2005], Li et al. [2009] predict the potential traffic on each road link at
different time slots according to the collected intentions, then a corresponding LET
path is constantly computed for each individual vehicle. Similarly, a modified A∗ algo-
rithm [Pan et al. 2013] incorporates a repulsion scheme into the expression of weights
on all road links. Then each vehicle agent recursively computes a LET path in a cen-
tralized manner, to avoid the situation where too many vehicle agents rush into a same
route. Liang and Wakahara [2014] propose a personalized rerouting strategy by first
ranking vehicles and then calculating a predicted LET path for a vehicle according to
the decision of those who ranked higher. In another centralized approach [Amarante
and Bazzan 2012], each vehicle agent is assumed to know real-time traffic condition
on all road links, and dynamically travels along the latest LET path. Centralized ap-
proaches often suffer from low computational efficiency. Jiang et al. [2014] propose a
decentralized pheromone-based vehicle rerouting approach, in which whenever con-
gestion is predicted by a local infrastructure agent, the concerned vehicle agents will
update their routes by choosing one of the best k LET paths. In another decentral-
ized approach, Weerdt et al. [2013] aim to minimize the delays at charging stations for
electric vehicles, which incorporates the intentions into the probabilistic arrival time
of those vehicles to each road link. To find the best location to charge, they maximize
the expected utility function for each vehicle. Nevertheless, the results are only ver-
ified by the measurement of total expected travel time rather than whether vehicles
arrive on time. Decentralized multiagent approaches have the capability of adaptively
updating routes according to dynamic traffic, and they are environment-friendly be-
cause they are likely to reduce the total travel time. However, they do not consider
specific demands of vehicle agents, i.e., preferred deadlines.

Several optimization approaches has been proposed to take drivers’ preferred dead-
lines into account. Particularly, the probability tail model is widely adopted for vehicle
route guidance [Fan et al. 2005; Lim et al. 2009; Lim et al. 2013; Cao et al. 2016b],
which aims to maximize the probability of arriving at destination before deadline and
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is formally expressed as [Lim et al. 2013; Cao et al. 2016b]:

max
~x

Prob(~w>~x ≤ T )
∣∣M~x = ~b; ~x ∈ {0, 1}|Ar|, (1)

where ~w denotes travel time for each road link; M is the node-arc incidence matrix
of the road network; T is the preferred deadline1; ~b is an O-D vector, all elements of
which are zeros except those for origin (“1”) and destination (“-1”); ~x refers to the set of
road links where an element is “1” if the referred road link is on the concerned path.
The equality constraint in Eq. (1) guarantees that ~x is a connected path from origin
to destination. This model is more consistent with real-world travel queries. To im-
prove the computational efficiency of solving the probability tail model for stochastic
vehicle routing, several quasi-convex optimization based solutions have been devel-
oped [Nikolova et al. 2006; Nie and Wu 2009; Lim et al. 2009]. But these solutions
are limited by strong assumptions, such as Gaussian distribution of travel time, inde-
pendence among travel time on different road links, and sufficiently large deadlines,
which prevent its wide application in real transportation systems. To overcome these
limitations, a data-driven solution is proposed [Cao et al. 2016b], which formulates
the original stochastic routing problem as a cardinality minimization problem by di-
rectly exploring the real trajectory on road links [Wang et al. 2014b]. Although success
is achieved from the computational perspective, most of existing approaches incorpo-
rating the probability tail model independently pre-calculate a path for each individ-
ual vehicle before it departs, without considering the intentions of others [Cao et al.
2016b]. Since traffic is always dynamic, optimality of a pre-computed path may not
hold any more once all vehicles are en-route due to the influences from each other. To
overcome this limitation, a decentralized multiagent-based route guidance approach
is proposed, which aims to cooperatively increase the chances of arriving on time for
all vehicle agents. Particularly, this approach is characterized by two types of agents,
i.e., vehicle agents and infrastructure agents. Vehicle agents follow the route guid-
ance by infrastructure agents at each intersection, and infrastructure agents locally
collect intentions of concerned vehicle agents and formulate the route guidance as a
route assignment problem, to guarantee their arrival on time. However, this approach
does not consider total travel time, and some vehicle agents (i.e., especially those with
loose deadlines) may be allocated to detoured routes to give way although they can
still guarantee arrival on time. In this case, those detoured routes are likely to cause
unnecessary additional travel time, which are not preferred by the normal drivers, or
not environment-friendly either.

It is thus desirable to leverage both the advantages of the path based on probability
tail model (that considers arriving on time regarding different levels of deadlines) and
the LET path (that aims to reduce the total travel time) in the multiagent-based route
guidance approach, which is what we propose in this paper.

3. MULTIAGENT-BASED ROUTE GUIDANCE
In this section, we briefly introduce the scheme of our decentralized multiagent-based
approach for vehicle route guidance, which involves two types of agents, i.e., vehicle
agents and infrastructure agents. Vehicle agents representing drivers, travel on a road
network by following route guidance from infrastructure agents. Infrastructure agents,
located at road intersections, collect intentions (i.e., deadlines and destinations) from
vehicle agents, and conduct route guidance to the local vehicle agents.

In real traffic, vehicle agents may influence each other due to limited road capacity
and rush hour effect. To consider such influence, intention collection is necessary [Ya-

1T is actually the remaining time to deadline, and we use “deadline” for simplification in the whole paper.
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A Multiagent-based Approach for Vehicle Routing A:5

mashita et al. 2005; Li et al. 2009; Claes et al. 2011]. In our approach, each vehicle
agent determines a destination and a preferred deadline before departure, and travels
along an initial route given by the probability tail model in Eq. (1). Each infrastructure
agent is associated with all traffic lights at a road intersection. It collects intentions
from vehicle agents, which are (1) located on road links directly connected to that in-
frastructure agent; and (2) facing red lights. The motivation for the latter is to avoid
unnecessary and frequent route change. Facing green lights may imply that the cur-
rent route is sufficiently satisfactory.
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Fig. 1: Two Types of Agents and Intention Collection

Take a one-way road network in Fig. 1 as an example, where rg is an infrastructure
agent, vi is a vehicle agent, and pk is a road link. Assume that at this moment, the
traffic light associated with r1 shows red color to p1 and p2. Then r1 collects intentions
of v1, v2 and v3. Since this red color will last for a while, r1 will also collect intentions of
other vehicle agents if they later enter p1 or p2 during the same red color period. Other
infrastructure agents also work in the same manner.

Once the intentions are collected, the infrastructure agent at each road intersection
will compute and provide route guidance, to increase the chance of arriving on time
and reduce total travel time for all concerned vehicle agents. Then the vehicle agents
update routes accordingly. On the other hand, vehicle agents generally have different
types of deadlines. Simply seeking LET paths for all vehicle agents may cause some
of them with tight deadlines to miss their deadlines due to the influences from other
vehicle agents with loose deadlines. Motivated by this concern, a desirable approach
is to distribute vehicle agents with loose deadlines to detour crowded paths, to give
ways to those with tight deadlines if necessary. At the same time, vehicle agents al-
ways face choices at an intersection: go straight, turn left, turn right or turn back to
enter the next road link. Thus, in our approach, the infrastructure agent at each road
intersection provides route guidance to vehicle agents by formulating it as a route as-
signment problem [Papageorgiou 1990], which relies on the collected intentions. In the
next section, we will detail the computation process of the route assignment problem.

4. ROUTE ASSIGNMENT FOR THE ROUTE GUIDANCE
In this section, we focus on the route assignment problem formulation. We start with
the simple case of only considering arriving on time, then proceed with integrating
both arriving on time and total travel time. Bound analysis and implementation sum-
mary are provided in the later part of this section.
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4.1. Route Assignment Formulation
4.1.1. Route Assignment Considering Arriving on Time. Take infrastructure agent r1 and

vehicle agents v1, v2 and v3 in Fig. 1 as an example, and focus on the route assignment
for v1. Assume that: (1) destination of v1 is d2, and its preferred deadline is T1; (2)
v1, v2 and v3 are currently facing red light, and will next enter p3 or p9. Assignment
for an vehicle agent always influences others. Suppose that the predicted travel time
of v1 on p3 and p9 are T p13 and T p19, which linearly depend on the number of assigned
vehicle agents to the road links and their lengths. Besides, we need to consider traffic
conditions from r2 and r4 to d1 or d2, where historical expected travel time is used
because r2 and r4 are comparatively far away from r1. Assume that the expected travel
time from r2 and r4 to d2 are T e22 and T e42. Hence, if v1 is assigned to p3 or p9, there would
be relative deadlines on p3 and p9 for v1, denoted as T r13 and T r19. Since deadlines should
always be non-negative, we have T r13 = max{0, T1 − T e22}, and T r19 = max{0, T1 − T e42}.
Thus there would be a potential delay ξ1 for v1, satisfying T p13−T r13 ≤ ξ1 and T p19−T r19 ≤
ξ1 (i.e., ξ1 is non-negative, and there is no delay only if ξi = 0). To guarantee arriving
on time for the three vehicle agents, r1 should minimize the cardinality2 of ~ξ whose
components are ξi (i = 1, 2, 3).

In view of the above example, we can generalize route assignment performed by each
infrastructure agent. First introduce several symbols: (1) lj , choices of road links to
enter next, such as p3 and p9 in Fig. 1; (2) xij ∈ {0, 1}, xij = 1 means that vi is assigned
to lj , otherwise xij = 0; (3) I = {1, ..., Q} and J = {1, ..., L}, indices of vehicle agents
and road link choices associated with the infrastructure agent. Then the problem of
maximizing the chance of arriving on time for all concerned vehicle agents can be
expressed as minimizing the cardinality of the potential delay ~ξ, as follows:

min
~x
Card(~ξ)

∣∣∣∣∣∣∣∣∣

∑
j∈J

(fj(~x)− T rij) · xij ≤ ξi,∀i ∈ I;∑
j∈J

xij = 1,∀i ∈ I; ξi ≥ 0;xij∈{0, 1},
(2)

where ~ξ = {ξ1, ...ξQ}, and delay occurs for vi if ξi > 0; ~xj = (x1j , ..., xQj), indicates
assignments to lj ; fj(~x), a linear function, denotes predicted travel time on lj ; T rij is
relative deadline for vi on lj ;

∑
j∈J xij = 1 ensures that vi can only enter one road link,

thus only one potential delay takes effect in
∑
j∈J(fj(~x) − T rij) · xij . Particularly, the

linear function fj(~x) for lj is expressed as:

fj(~x) = cj
∑
i

xij + γj (3)

where
∑
i xij is amount of vehicle agents assigned to lj , cj and γj are coefficients. The

cardinality minimization in Eq. (2) is difficult to be directly solved. We thus use `1-
norm to approximately solve it [Kim et al. 2009], which can be further expressed as:

min
~x

Q∑
i=1

ξi

∣∣∣∣∣∣∣∣∣

∑
j∈J

(fj(~x)− T rij) · xij ≤ ξi,∀i ∈ I;∑
j∈J

xij = 1,∀i ∈ I; ξi ≥ 0;xij ∈ {0, 1}.
(4)

Eq. (4) is a mixed integer quadratic programming (MIQP) problem in nature, which
can be solved by existing solvers.

2Cardinality is the number of non-zero components in a vector.
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A Multiagent-based Approach for Vehicle Routing A:7

Note that: (1) Eq. (4) only outputs a road link for a vehicle agent to enter next, but
the remaining path from assigned road link to destination is also available due to the
computation of relative deadline T rij . The vehicle agent can then follow this complete
route if it does not receive any further guidance after an route assignment, which
may happen if afterwards it always faces green light; (2) As time elapses, deadline Tj
will decrease, and we always use the latest Tj when route guidance is performed; (3)
We previously take a simple one-way road network as an example, and double-way
road links can also be easily applied, as long as infrastructure agents dynamically
recognize on which road links vehicle agents are facing red light, and which road links
are available to be assigned to those vehicle agents.

4.1.2. Route Assignment Considering both Arriving on Time and Total Travel Time. Previously,
we formulated the route guidance as an assignment problem addressed by each in-
frastructure agent. According to Eq. (4), to increase the chance of arriving on time for
all vehicle agents in some cases, the infrastructure agent has to assign vehicle agents
with loose deadlines to detour crowed routes. This kind of assignment is helpful some-
times since it gives ways to those vehicle agents with tight deadlines. However, it may
increase additional total travel time, especially for vehicle agents with loose deadlines.

Before formulating route assignment considering both arriving on time and total
travel time, we would like to introduce deadline coefficient α for each vehicle agent,
which is a positive parameter, denoting the levels of deadlines. Specifically, once the
O-D pair of a vehicle agent is determined, an expected travel time Te between origin
and destination can be derived based on historical traffic data. Thus, the deadline can
be expressed as:

T = α · Te, (5)

where T implies a tight deadline if α < 1, and a loose deadline if α > 1. Generally,
assignment to detour crowed routes may happen to vehicle agents with loose deadlines,
especially when vehicle agents with tight deadlines compete with them. Therefore, to
reduce additional total travel time while keeping satisfactory probability of arriving
on time, we incorporate travel time related measurement into the objective function of
route assignment, which is accordingly formulated as:

min
~x

Q∑
i=1

(ξi + τi ·φi(~x))

∣∣∣∣∣∣∣∣∣

∑
j∈J

(fj(~x)− T rij) · xij ≤ ξi,∀i ∈ I;∑
j∈J

xij = 1,∀i ∈ I; ξi ≥ 0;xij ∈ {0, 1},
(6)

where τi is the weight for total travel time measurement of vi; and φi(~x) is the travel
time measurement based on the assignment decision ~x. Particularly, φi(~x) consists of
predicted travel time on assigned road link and historical expected travel time from
assigned road link to destination. To be more specific, if vi is assigned to lj , φi(~x) would
be expressed as:

φi(~x) =
∑
j∈J

(fj(~x) + ψj(~x)) · xij , (7)

where fj(~x) is the predicted travel time function on lj , expressed in Eq. (3), and ψj(~x)
refers to the historical expected travel time from lj to destination of vi, which can be
obtained from a look-up table. To make the two parts in objective function of Eq. (6)
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A:8 Z. Cao et al.

comparable, τi is calculated as follows:

τi =
αi(ε1 +

∑
j∈J

max{T e
ij−Ti,0}
|J| )∑

j∈J
T e
ij

|J|

, (8)

where αi is the deadline coefficient for vi; ε1 is a small positive constant; T eij is least
expected travel time of the path from current location to destination, which has to
traverse lj ; Ti is the latest deadline; and |J | is the number of candidate road links to be
assigned. The logic behind τi in Eq. (8) is to approximate the ratio of average possible
delay over average possible travel time. Besides, in many cases, additional travel time
is usually caused by the vehicle agent with loose deadline. Therefore, αi in Eq. (8) will
help to assign a high weight for total travel time in Eq. (6) if the deadline is loose. Note
that, based on all above statements, Eq. (6) also comes down to an MIQP problem.

4.2. Bound Analysis
The `1-norm minimization in the route assignment of Eq. (4) is an approximation to
the cardinality minimization in Eq. (2), and here we analyze its bounds. We assume
that regarding Eq. (4), ~x∗1 and ~ξ∗1 are the optimal solution to the primal problem, and p∗1
is the optimal value of the objective function. We also assume that the optimal value of
objective function in Eq. (2) is p∗2. Since Eq. (2) and Eq. (4) share the same constraints,
~x∗1 and ~ξ∗1 are the feasible solution to the cardinality minimization problem in Eq. (2).
Therefore p∗1 is an upper bound to p∗2. The dual function of Eq. (2) can be expressed as
g(~λ, ~ν) = min~x,~ξ Card(~ξ)+τi··φi(~x)+

∑
i∈I(νi(

∑
j∈J xij−1))+

∑
i∈I(λi(

∑
j∈J(fj(~x)−T rij) ·

xij−ξi)). Since any feasible solution to the dual problem is a lower bound to the primal
problem [Boyd and Vandenberghe 2004], we assume that ~ν = ~0, the lower bound can be
easily calculated by solving g(~λ,~0) = min~x,~ξ Card(~ξ) + τi ··φi(~x) +

∑
i∈I(λi(

∑
j∈J(fj(~x)−

T rij) · xij − ξi)) (the second and third terms can be expressed as linear functions, see
Section 5.2), where λi is known and λi ≥ 0. In addition, the accuracy for solving the
general cardinality minimization problem can be improved by some variants of `1-
norm minimization, e.g., iterated weighted `1-norm heuristic [Candes et al. 2008]. We
do not elaborate the details here since they are beyond the interest of this paper.

4.3. Pseudo-Code Summary
We summarize the proposed multiagent-based route guidance considering both arriv-
ing on time and total travel time in Algorithm 1. Lines 1-2 initialize infrastructure
agents and vehicle agents. In Lines 3-33, each infrastructure agent recursively as-
signs paths to vehicle agents who need route guidance at intersections, until they all
reach destinations. Particularly, in Lines 4-12, each vehicle agent travels along a cur-
rent route and updates its deadline if it has not reached destination. In Lines 14-23,
during the red-color phase, each infrastructure agent recursively finds the set of vehi-
cle agents who need route guidance and collects their intentions including deadlines
and destinations. In Lines 25-29, upon the completion of the red-color phase, each in-
frastructure agent computes the optimal road links for all concerned vehicle agents to
enter next based on the route assignment in Eq. (4), and accordingly updates theirs
routes. We would like to note that Algorithm 1 will only consider arriving on time if
we set all τi in Eq. (6) as 0.

5. FURTHER IMPROVEMENTS
In this section, we further improve the previously proposed route guidance approach,
in the following aspects: (1) predicted travel time on assigned road links, through it-
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A Multiagent-based Approach for Vehicle Routing A:9

ALGORITHM 1: Multiagent-based Route Guidance
Input : V = {v1, ..., vQ}, a set of vehicle agents;
R = {r1, ..., rG}, a set of infrastructure agents;
V g=∅, vehicle agents that need guidance at rg;
TLg, traffic lights associated with rg;
Tgn, Trd, green light and red light duration;
flg = 0, indicator of route guidance computation;

1 Each rg ∈ R turns on its associated traffic lights TLg;
2 Each vi ∈ V determines destination di, deadline Ti, deadline coefficient αi (determined by Ti),

and computes an initial path Pi using Eq. (1);
3 while |V | > 0 do
4 foreach vi ∈ V do
5 if vi reaches di then
6 Deletes itself from V : V = V − vi;
7 end
8 else
9 Travels along Pi;

10 Updates deadline Ti;
11 end
12 end
13 foreach rg ∈ R do
14 foreach tlk ∈ TLg do
15 Runs according to Tgn and Trd;
16 if tlk is in red color phase then
17 rg finds vk facing tlk: V g = V g + vk;
18 rg collects dk and Tk from vk;
19 end
20 if tlk is at end of red color phase then
21 flg = 1;
22 end
23 end
24 if flg == 1 then
25 foreach vi ∈ V g do
26 Computes relative deadline for vi based on the latest Ti;
27 Computes its new path P

′
i via Eq. (6);

28 Updates its route: Pi = P
′
i ;

29 end
30 Resets parameters: V g = ∅, flg = 0;
31 end
32 end
33 end

erative linearization for more accurate prediction; (2) computational efficiency of our
approach, by introducing new variables and additional linear constraints; (3) real-time
traffic information acquirement, by allowing communications between infrastructure
agents.

5.1. Refinement of Predicted Travel Time
In view of the analysis in Section 4.1.1, it is beneficial to assume that fj(~x) in Eq. (3) is
linear, because in this case route assignment in Eq. (6) can be formulated as a canon-
ical optimization problem, i.e., MIQP, which enables tractable computation. However,
by visualizing the statistical relationship between amount of vehicle agents and ex-
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Fig. 2: Illustration of the Refinement of Travel Time Prediction Function.

pected travel time on some road links (i.e., Fig 2.(a)), it is obvious that a non-linear
function fits the relationship better than a linear function. Therefore, to guarantee
both tractable computation and accurate route assignment, we adopt the non-linear
function to predict the travel time on assigned road link, but solve the optimization
problem in Eq. (6) by iterative linearization. Before showing this refinement, we would
like to reformulate the problem in Eq. (6) as Eq. (9):

min
~x,t

t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q∑
i=1

(ξi + τi ·
∑
j∈J

(fj(~x) + ψj(~x)) · xij) ≤ t;∑
j∈J

(fj(~x)− T rij) · xij ≤ ξi,∀i ∈ I;∑
j∈J

xij = 1,∀i ∈ I; ξi ≥ 0;xij ∈ {0, 1},

(9)

To illustrate the refinement of the travel time prediction, we take the two functions
in Fig 2 (b) as an example, and denote the linear and non-linear functions as Fj(~x)
and Fj(~x) respectively. In the first iteration, we use Fj(~x) to replace fj(~x), and we
get a solution, i.e., ~x(1) to Eq. (6). In the next iteration, we use the first order Taylor
expansion of Fj(~x) at ~x(1) to replace fj(~x), which is expressed as:

f
(k)
j (~x) = Fj(~x(k−1)) +∇Fj(~x(k−1))(~x− ~x(k−1)), (10)

where ∇Fj(~x(k−1)) refers to the first order derivative of Fj(~x) at ~x(k−1), and k is the
iteration number (k is equal to 2 in this context). Consequently, we get an optimal
solution to Eq. (6), i.e., ~x(2). We continue to search for a better solution around ~x(2)

on Fj(~x), until the objective function value in Eq. (6) does not significantly decrease.
To guarantee that the algorithm locally searches for the optimum on the linearized
straight line in each iteration, we limit the searching area by adding a constraint.
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Therefore, the optimization problem in the k-th iteration is formulated as:

min
~x,t

t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q∑
i=1

(ξi + τi ·
∑
j∈J

(fkj (~x) + ψj(~x)) · xij) ≤ t;∑
j∈J

(f
(k)
j (~x)− T rij) · xij ≤ ξi,∀i ∈ I;∑

j∈J
xij = 1,∀i ∈ I; ξi ≥ 0;xij ∈ {0, 1};

− ε2 ≤
∑
i∈I

xij−
∑
i∈I

x
(k−1)
ij ≤ ε2,∀j ∈ J,

(11)

where ε2 is a positive integer, denoting local search range.

5.2. Improvement on Computational Efficiency
In this subsection, we improve the computational efficiency by reformulating the route
assignment as a mixed integer linear programming (MILP) problem. To better illus-
trate the idea, we take the route assignment considering both arriving on time and
total travel time in Eq. (9) as an example, which is completely equal to Eq. (6). Route
assignment in Eq. (9) is an MIQP problem mainly due to fj(~x) · xij in the first two
constraints. After unfolding, quadratic part comes from the term xkj · xij (k ∈ I, and
xkj is a component of ~xj). Since both xkj , xij ∈ {0, 1}, xkj · xij can be replaced by xij if
k = i. Therefore, the term xkj · xij is quadratic only if k 6= i. However, xkj · xij (k 6= i)
can also be replaced by a binary variable with two additional linear constraints.

There are four correct permutations for vector (xkj , xij , xkj · xij), i.e., (0,0,0), (0,1,0),
(1,0,0) and (1,1,1). And we introduce a new variable ykij ∈ {0, 1} to replace xkj · xij
(k 6= i), where eight permutations for vector (xkj , xij , ykij) exist. Therefore we add two
linear cuts, i.e., xkj+xij+ykij ≤ 1 and −xkj−xij+2ykij ≤ 0, to filter out the four faulty
permutations [Yang et al. 2013]. Then we reformulate the MIQP problem in Eq. (9) as
follows:

min
~x,t

t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q∑
i=1

(ξi + τi ·
∑
j∈J

(gj(~z) + (γj + ψj(~x)) · xij)) ≤ t;∑
j∈J

(gj(~z) + (γj − T rij)xij) ≤ ξi,∀i ∈ I;

− xkj − xij + 2ykij ≤ 0, ...,

xkj+xij+ykij≤1,∀i, k∈ I, k < i, ∀j∈J ;∑
j∈J

xij = 1,∀i ∈ I; ξi ≥ 0;xij ∈ {0, 1},

(12)

where gj(~z) = cj
∑
i∈I zij ; size of ~z is same with that of ~x; zkj is equal to xij if k = i, and

ykij if k 6= i; ykij is equal to yikj in this scenario; and ψj(~x) can be determined through a
look-up table based on xij . Thus, Eq. (12) is reduced to an MILP problem, which can be
solved much more efficiently than MIQP of similar scale [Fuchs et al. 2013]. We wish
to note that the MIQP-to-MILP transformation approach also directly applies to the
refinement of travel time prediction in Eq. (11).

5.3. Performance Improvement via Communication
In the proposed approach, we use historical expected travel time to evaluate the re-
maining path from the assigned road link to destination. Since the infrastructure
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agent is always located at an intersection, it can obtain real-time traffic conditions (i.e.,
travel time) on directly connected road links. It is thus reasonable for an infrastruc-
ture agent to communicate with neighboring infrastructure agents to obtain real-time
traffic conditions further away. The expectation is that real-time traffic condition can
better evaluate a route than the historical traffic condition. We use E (i.e., E ∈ Z+

0 ) to
denote the number of communication hops, and there is no communication if E = 0.
In Fig. 1, if E = 1, r1 only communicates with its neighbors, e.g., r2 and r4. Thus it
can obtain real-time traffic conditions on p4, p5, p12, p10 and p8, which can be used to
evaluate the paths from r2 and r4 to destinations when r1 performs route assignment
for v1, v2 and v3. As E increases to 2, r1 is able to communicate with infrastructure
agents one more hop away, e.g., r3, thus r1 can obtain real-time traffic conditions on p6,
p7 and r14 as well. However, as the number of communication hops becomes larger, ad-
ditional communication and storage costs also incur. The dynamics of traffic may also
cause real-time traffic information to be outdated by the time vehicle agents reach the
intersection, if the location is far away.

(a) Singapore (b) New York

Fig. 3: Two Testing Road Networks

6. EXPERIMENTATION
In this section, we conduct experiments in various settings to extensively compare our
route guidance approach with existing methods, showing its advantages of increasing
the chances of reaching destination before deadline and reducing total travel time for
all vehicles. Accordingly, we first introduce the experimental settings, then we focus
on evaluating the performance of arriving on time. After that, we test the performance
when considering both arriving on time and total travel time. Finally, we verify all the
improvements (proposed in Section 5).

6.1. Road Networks and Parameter Settings
All experiments are conducted on the popular simulation of urban mobility platform,
SUMO [Behrisch et al. 2011]. The two testing road networks are parts of two very
dense cities, Singapore and New York respectively. Each road has 2 lanes, and their
maps are given in Fig. 3, with the following properties summarized by SUMO: (1)
network areas are 65,300m2 and 218,000m2; (2) numbers of road links are 507 and
1,121; (3) numbers of intersections are 98 and 352.

The configurations of vehicles are as follows: length is 5m; minimal gap is 2.5m;
car following model is Krauss [Behrisch et al. 2011]; origins and destinations are ran-
domly generated; traffic light duration: Tg = Tr = 20s; vehicles will park and not
occupy road resources when reaching destinations. In addition, once origin and desti-
nation of a vehicle are determined, an expected travel time Te can be derived based
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(c) 1,200 vehicles, Singapore
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(d) 1,600 vehicles, Singapore

Fig. 4: Different Types of Deadlines on Singapore Map. [Note: α- deadline coefficient.]

on historical traffic data, which can be used to describe different levels of deadlines
as in Eq. (5). Moreover, the proposed approach needs historical expected travel time
to evaluate some parts of a route. Therefore, before testing our approach, we first ran-
domly run the simulation for 250 times to get an expected travel time of each road link,
where vehicles simply travel along the shortest distance routes. Additionally, we also
use SVR (i.e., support vector regression) [Chang and Lin 2011] to learn the linear and
non-linear functions of predicted travel time through those random simulations, which
are described in Section 5.1. Particularly, all experiments in this paper are conducted
on an ordinary PC with Intel Core i7-3540M processor and 8.00 GB RAM.

6.2. Comparative Performance When only Considering Arriving on Time
To only consider the arriving on time property, we set all τi in Eq. (6) as 0, which is
equal to the route assignment in Eq. (4). Then we compare our algorithm with five
different route guidance methods: (1) SD (i.e., shortest distance) based method, which
pre-computes a path of shortest distance; (2) LET-based method, which pre-computes
a path of least expected travel time based on historical traffic conditions; (3) PTM-
based method [Lim et al. 2013], which pre-computes a path by Eq. (1); (4) RIS (i.e.,
route information sharing) method, which constantly computes LET paths for vehicles
at each intersection by cooperatively exploring their latest intentions of routes [Ya-
mashita et al. 2005]; (5) τ -rerouting method, claimed to be the best-performing vehicle
rerouting strategy [Jiang et al. 2014]. Note that the first three methods pre-compute
route guidance before vehicle departure, while the last two and our approach adap-
tively provide route guidance for vehicles en-route. Although O-D pairs are randomly
generated, for each specified O-D pair of a vehicle, we respectively adopt the six meth-
ods to provide route guidance.
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(a) 400 vehicles, New York
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(b) 800 vehicles, New York
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(c) 1,200 vehicles, New York
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(d) 1,600 vehicles, New York

Fig. 5: Different Types of Deadlines on New York Map. [Note: α- deadline coefficient.]

6.2.1. Different Levels of Deadlines. This experiment varies different levels of deadlines
α: 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4, with different numbers of vehicles: 400, 800, 1,200
and 1,600 on both networks. We run the simulation for 500 times under each setting,
record the probability of arriving on time for each vehicle, and plot the average in Fig. 4
and Fig. 5 respectively. We can observe that on both networks, the average probabil-
ities always increase with α for all six methods. It is natural because a vehicle with
a very loose deadline has higher chance to arrive on time even if it does not follow
any smart route guidance. Generally, the three pre-computation methods are inferior
to the three adaptive methods, because the optimality of pre-computed paths may not
hold, especially in highly dynamic traffic, e.g., New York network with 1,600 vehicles.
However, the inferiority is not obvious in extremely sparse or saturated traffic, such
as Fig. 4 (a), (d) and Fig. 5 (a). In sparse traffic, vehicles rarely influence each other,
and shortest distance path is sufficiently satisfactory. In over-saturated traffic, vehicles
almost cannot proceed even if they receive adaptive guidance. Among the three pre-
computation methods, PTM-based method achieves the highest overall performance
because it takes deadline into account, although in an independent manner. As for the
three adaptive methods, our approach is always better than the other two in terms
of overall probabilities of arriving on time, especially in Fig. 4 (b), (c), Fig. 5 (b), (c)
and (d), where the traffic densities are moderate. In most cases, RIS method is better
than τ -rerouting method, because it is centralized, where a global server constantly
predicts the LET path for each individual vehicle, based on latest intentions of routes.
This superiority does not hold for New York network with 1,600 vehicles, because the
traffic density is comparatively high, and τ -rerouting method is especially effective
where congestion is likely to occur. However, both methods do not care about whether
vehicles would be late regarding their preferred deadlines. On the other hand, our ap-
proach cooperatively explores the deadlines of other vehicles, and recursively provides
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Fig. 6: Different Penetration Rates. [Note: α- deadline coefficent; λ- penetration rate.]

guidance by solving an optimization problem, which aims to guarantee arriving at
destination before deadline for all concerned vehicles, thus achieving the best overall
performance.

6.2.2. Different Penetration Rates. We test the three adaptive approaches3 with differ-
ent penetration rates λ defined as the percentage of vehicles sharing their intentions.
We take both networks with 1,200 vehicles as study cases, and adopt two penetration
rates, λ=0.8 and 0.4. From Fig. 6, we notice that average probabilities for the three
methods decrease as λ becomes smaller. It is natural since route guidance in them all
reply on intentions. Particularly, RIS method is centralized, and missing intentions of
routes may globally influence route guidance of others, so τ -rerouting method and our
approach achieve better performance regarding λ=0.4, especially for tight deadlines
on both networks, i.e., from α = 0.6 to 0.8. Although τ -rerouting method is decentral-
ized, missing intentions may make infrastructure agents unable to report congestion
timely, which causes more vehicles to miss their deadlines. On the other hand, in our
approach, predicted travel time on assigned road link relies on both vehicle amount
and road link length. Missing intentions only partially influences our approach. More-
over, our approach always takes deadline into account, thus it achieves best overall
performance for different penetration rates.

6.2.3. Different Compliance Rates. We further test the three adaptive approaches with
different compliance rates ρ defined as the percentage of vehicles following the route
guidance by infrastructure agent. We take both networks with 1,200 vehicles as study
cases, and adopt two compliance rates, ρ=0.8 and 0.4, the results of which are plot-
ted in Fig. 7 (a) and (b) respectively. We would like to note that the three adaptive

3The three pre-computation methods do not involve intention sharing, and it makes no sense to test pene-
tration rates for them.
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Fig. 7: Different Compliance Rates and Different Percentages of Tight Deadlines.
[Note: α- deadline coefficent; Ptight- percentage of tight deadlines; ρ- compliance rate.]

approaches in Fig. 4 (c) and Fig. 5 (c) refer to ρ=1. Combining those figures together,
we notice that average probabilities for the three methods on both networks decrease
as ρ becomes smaller. However, our approach achieves highest overall performance for
each setting because it takes arriving on time into account, although some of vehicles
may not follow the guidance. We also observe that, τ -rerouting method in Fig. 7 (a) has
lower probability, especially for α=0.8 and ρ=0.4. It happens because vehicle density
is comparatively higher on Singapore network, where congestion is likely to happen.
If most of vehicles do not follow the rerouting, they may have to stay in congestion
for a longer time. Generally, our approach will achieve higher probability of arriving
on time as ρ increases, which provides convincing incentives for vehicles to follow the
route guidance.

6.2.4. Different Percentages of Tight Deadlines. We take both networks with 1,200 vehi-
cles as study cases to further test our approach against different percentages of tight
deadlines. In this situation, α is set as 0.8 for tight deadline, and 1.2 for loose dead-
line. Their percentages are Ptight and 1-Ptight. In Fig. 7 (c) and (d), as Ptight increases,
the average probabilities for the three pre-computation methods drop more quickly on
Singapore network because its traffic density is comparatively high, where vehicles
always influence each other. There is only slight decrease for our approach on both
networks, which is better than the other two adaptive methods. Although RIS method
on Singapore network is competitive to our approach, we highlight that RIS method is
centralized, becoming prohibitively time-consuming as network size and vehicle num-
ber scale up.
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(c) 1,200 vehicles, New York
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Fig. 8: Performance Considering both Arriving on Time and Total Travel Time. [Note:
Ptight- percentage of tight deadlines; τi- weight for total travel time.]

6.3. Overall Performance When Considering both Arriving on Time and Total Travel Time
We further test our approach considering both the arriving on time and total travel
time at the same time, where τi in Eq. (6) is 0 only if αi is 0. To simplify the illustration,
we only compare all the adaptive approaches. To show the advantages brought by
considering both arriving on time and total travel time, we also compare it with the
one that only considers arriving on time (i.e., we enforce τi to be 0). Moreover, we use
the two networks with 1,200 vehicles as study cases. Note that τi 6= 0 refers to the
route assignment in Eq. (6), which considers both arriving on time and total travel
time. And corresponding average probabilities of arriving on time and average total
travel time against different percentages of tight deadlines are all plotted in Fig. 8.

From the four figures, we observe that the results for Singapore network and New
York network share the similar pattern. Therefore, we emphasize on the analysis for
Singapore network. From Fig. 8 (a), we notice that, as Ptight increases from 0 to 1.0, the
average probability of arriving on time decreases for all methods. It is natural since
the deadlines of most vehicle agents become more tight as Ptight increases. However,
the average probabilities of arriving on time for τi = 0 and τi 6= 0 are much higher
than those of the other two methods. It happens because, τ -rerouting method and RIS
method do not take arriving on time into account. On the other hand, we notice that
the average probabilities of τi = 0 are higher than that of τi 6= 0 as Ptight increases
from 0.6 to 1. It happens because, all vehicle agents will reduce the total travel time
to some extent, and those tight deadlines are likely to be missed due to influence from
each other for τi 6= 0. However, the difference of the probabilities is very slight for
the two methods. On the other hand, from Fig. 8 (b), we observe that, comparing the
method of τi 6= 0 with τi = 0, the average total travel time of the former is much lower
than that of the latter, especially as Ptight increases from 0 to 0.6. That is because,
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the route assignment in Eq. (4) does not consider the total travel time. And if the
deadlines of most vehicle agents are loose, Eq. (4) will randomly output a route as long
as it guarantees arriving at the destination before the deadline, which is likely to be a
detoured path and cause additional travel time. To the contrary, the second objective
term in Eq. (6) will help to reduce the additional travel time while increasing the
chance of arriving on time, especially for the case of loose deadlines. As Ptight continues
to increase, the two methods will achieve similar performance, because in the case of
tight deadlines, the method of τi = 0 generally will not cause the additional travel
time any more. We do not observe significant changes with Ptight for the τ -rerouting
method and RIS method, because they do not provide route guidance based on the
deadline. At the same time, we notice that, only the RIS method achieves slightly
better performance than our method of τi 6= 0 regarding the average total travel time,
because the former is centralized, which relies on the global real-time information to
directly reduce the total travel time. And it is more costly compared with our method
of τi 6= 0. Besides, the average probabilities of arriving on time for the RIS method is
also lower than that of our method.

6.4. Improved Performance When Considering both Arriving on Time and Total Travel Time
We conduct experiments to verify the improvements on travel time prediction, compu-
tation efficiency and real-time traffic condition acquirement proposed in Section 5.

6.4.1. Refinement of Travel Time Prediction. We proposed to refine the predicted travel
time on the assigned road link by iteratively linearizing a more accurate learned func-
tion. We adopt the Singapore network with 1,200 vehicles as a study case, to investi-
gate this improvement to the route assignment (i.e., the original route assignment is
formulated as Eq. (6), and the refinement is formulated as Eq. (11)). All the results
regarding the average probabilities of arriving on time and average total travel time
are plotted in Fig. 9 (a) and (b) respectively.

From Fig. 9 (a) and (b) we observe that, the refinement of travel time prediction
improves the average probability of arriving on time and reduces the average total
travel time (except for Ptight = 0.6 regarding the total travel time4. Nevertheless, the
difference is not significant, which is acceptable). This advantage comes from the fact
that the proposed method approximates a non-linear function, which is more accurate
than the previous linear prediction. We also notice that, compared with other values,
the improvement for Ptight = 0 and Ptight = 0.2 regarding the average probabilities
of arriving on time are not that obvious. It happens because most vehicles have loose
deadlines for Ptight = 0 and Ptight = 0.2, and they still have higher chances of arriving
on time although the infrastructure agents perform route assignment based on the
inaccurate linear prediction of travel time. However, as Ptight increases, this improve-
ment becomes more obvious. To the contrary, the reduction of the total travel time is
much more obvious for Ptight = 0, 0.2 and 0.4 in comparison with others. It happens
because, if most of the deadlines are loose, there would be much room to reduce the
travel time, where a more accurate travel time prediction can better result in less total
travel time compared with an inaccurate prediction function.

6.4.2. Improvement of Computation Efficiency. Original route assignment considering both
arriving on time and total travel time is formulated as an MIQP problem in Eq. (6),
and we reformulate it as an MILP problem in Eq. (12). To show the efficiency improve-
ment, we use Pyomo (www.pyomo.org) to respectively solve the two problems regarding
the same route assignment at each intersection, and record the average computation

4It might be caused by the fact that the refinement takes more effects on the arriving on time than the total
travel time
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Fig. 9: Refinement of Prediction and Improvement via Communication, Singapore.
[Note: Ptight- percentage of tight deadlines; E- communication hop.]

time for both networks in Table I. We see that as vehicle number increases, the aver-
age computation time becomes longer for both problems. This happens because more
vehicles are likely to request for route guidance at an intersection if traffic density is
larger, thus the scales of the two optimization problems both increase, and longer com-
putation time is needed. That also explains why the computation time on Singapore
network is longer than that of New York network. However, for both networks, MILP
problem can be more efficiently solved than MIQP problem of similar scale, especially
for Singapore network with 1,600 vehicles, which is around 6 times faster.

Table I: Average Computation Time (s)

Singapore New York
400 800 1,200 1,600 400 800 1,200 1,600

MIQP 3.29 3.81 7.49 13.34 2.18 1.87 3.87 7.75
MILP 0.62 0.75 0.86 2.55 0.39 0.46 0.77 0.96

6.4.3. Improvement via Communication. To evaluate the benefits brought by communica-
tion, we test our approach against different communication hops (i.e., E). We again
study the Singapore network with 1,200 vehicle agents for different percentages of
tight deadlines. From Fig. 9 (c) and (d), we find that, E = 1, 2 achieve higher over-
all probabilities and shorter total travel time than that of E = 0 in most of cases,
this is reasonable in that, if E > 0, our approach uses real-time traffic conditions to
evaluate the first E road link(s) of the path from assigned road link to destination.
If E = 0, it only uses historical traffic conditions. As E increases to 3 and 4, they do
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not achieve dominant performances over that of E = 0, because the traffic is always
dynamic, and knowing real-time traffic conditions far away may not yield desirable
route guidance [Amarante and Bazzan 2012]. Moreover, large communication hop also
incurs additional cost to dynamically obtain and store traffic information. Therefore,
E = 1 and E = 2 are sufficient to achieve satisfactory route guidance in our approach.

7. CONCLUSION AND FUTURE WORK
In this paper, we propose a decentralized multiagent-based route guidance approach
to consider both arriving on time and total travel time. It is formulated as a route
assignment problem at each road intersection by leveraging intentions of the vehicle
agents. Besides, we also improve the proposed route guidance approach in the aspects
of travel time prediction, computational efficiency and real-time traffic condition ac-
quirement respectively. Experimental results confirm its superior performance over
existing methods. As the chance of vehicles’ arriving on time is increased, drivers’ sat-
isfaction gets improved, which also reduces accident rate due to drivers’ frustration
and impatience. At the same time, as the average total travel time is decreased, fuel
consumption and air pollution can also be accordingly reduced. These are the impor-
tant missions of the intelligent transportation and sustainable urban development.

In the future, we will develop a more intelligent algorithm to calculate the weight
τi for total travel time, which can reduce the total travel time while not decreasing
the chance of arriving on time. At the same time, we will also consider a personalized
routing service, such as assigning customized weights to different vehicle agents ac-
cording to their own preferences on arriving on time or total travel time. Besides, we
will try road networks with less traffic lights or intersections, e.g., Paris and Berlin, to
investigate the influence of network topology and density of infrastructure agents.
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