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Abstract. The structure-from-motion problem has been extensively studied in the field of computer vision. Yet,

the bulk of the existing work assumes that the scene contains only a single moving object. The more realistic case

where an unknown number of objects move in the scene has received little attention, especially for its theoretical

treatment. In this paper we present a new method for separating and recovering the motion and shape of multiple

independently moving objects in a sequence of images. The method does not require prior knowledge of the number

of objects, nor is dependent on any grouping of features into an object at the image level. For this purpose, we

introduce a mathematical construct of object shapes, called the shape interaction matrix, which is invariant to both

the object motions and the selection of coordinate systems. This invariant structure is computable solely from the

observed trajectories of image features without grouping them into individual objects. Once the matrix is computed,

it allows for segmenting features into objects by the process of transforming it into a canonical form, as well as

recovering the shape and motion of each object. The theory works under a broad set of projection models (scaled

orthography, paraperspective and affine) but they must be linear, so it excludes projective “cameras”.

Keywords: computer vision, image understanding, 3D vision, shape from motion, motin analysis, invariants

1. Introduction

A motion image sequence allows for the recovery of

the three-dimensional structure of a scene. While a

large amount of literature exists about this structure-

from-motion problem, most previous theoretical work

is based on the assumption that only a single motion

is included in the image sequence; either the environ-

ment is static and the observer moves, or the observer

is static and only one object in the scene is moving.

More difficult and less studied is the general case of

an unknown number of objects moving independently.

∗Partially funded by project PRAXIS /3/3.1/TPR/23/94.
†Partially funded by NATO Collaborative Research Grant N. 920226.

Suppose that a set of features has been extracted and

tracked in an image sequence, but it is not known which

feature belongs to which object. Given a set of such fea-

ture trajectories, the question is whether we can seg-

ment and recover the motion and shape of multiple

objects contained in the image sequence.

The previous approaches to the structure-from-

motion problem for multiple objects can be grouped

into two classes: image motion-based (2D) and three-

dimensional (3D) modeling. The image-motion based

approach relies mostly on spatio-temporal properties of

an image sequence. For example, regions correspond-

ing to different velocity fields are extracted by using

Fourier domain analysis (Adelson, 1985) or scale-

space and space-time filters (Bergen, 1990; Irani, 1994;
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Jasinschi, 1992). These image-based methods have

limited applicability either because object motions are

restricted to a certain type, such as translation only, or

because image-level properties, such as locality, need

to be used for segmentation without assuring consistent

segmentation into 3D objects.

To overcome these limitations, models of motion

and scene can be introduced which provide more

constraints. Representative constraints include rigi-

dity of an object (Ullman, 1983) and smoothness (or

similarity) of motion (Sinclair, 1993, Boult, 1991).

Then the problem becomes segmenting image events,

such as feature trajectories, into objects so that the re-

covered motion and shape satisfy those constraints. It

is now a clustering problem with constraints derived

from a physical model. Though sound in theory, the

practical difficulty is the cyclic dilemma: to check the

constraints it is necessary to segment features and to

segment it is necessary to compute constraints. So,

developed methods tend to be of a “generate-and-test”

nature, or require prior knowledge of the number of

objects (clusters). Ullman (1983) describes a compu-

tational scheme to recursively recover shape from the

tracks of image features. A model of the object’s shape

is matched to the current position of the features, and

a new model that maximizes rigidity is computed to

update the shape. He suggests that this scheme could

be used to segment multibody scenes by local appli-

cation of the rigidity principle. Since a single rigid

body model does not fit the whole data, collections of

points that could be explained by a rigid transformation

would be searched and grouped into an object. Under

the framework of the factorization method (Tomasi,

1990), this view of the problem is followed by Boult

and Brown (1991), where the role of rigidity is re-

placed by linear dependence between feature tracks.

Since the factorization produces a matrix that is related

with shape, segmentation is obtained by recursively

clustering columns of feature trajectories into linearly

dependent groups. More recently, Gear (1994) intro-

duced a new method using the reduced row echelon

form of the track matrix which finds those linearly de-

pendent groups of tracks by choosing the best set of

features that span the subspaces of each object.

This paper presents a new method for segmenting

and recovering the motion and shape of multiple in-

dependently moving objects from a set of feature tra-

jectories tracked in a sequence of images. Developed

by using the framework of the factorization by Tomasi

and Kanade (1990), the method does not require any

grouping of features into an object at the image level

or prior knowledge of the number of objects. Further-

more, the method does not rely on any particular set

of features from which all other are generated. Insetad

it directly computes shape information and allows seg-

mentation into objects by introducing a linear-algebraic

construct of object shapes, called the shape interaction

matrix. The entries of this matrix are invariant to indi-

vidual object motions and yet is computable only from

tracked feature trajectories without knowing their ob-

ject identities (i.e., segmentation). Once the matrix

is computed, transforming it into the canonical form

results in segmenting features as well as recovering

the shape and motion of each object. We will present

our theory by using the orthographic camera model.

It is, however, easily seen that the theory, and thus

the method, works under a broader projection model

including weak perspective (scaled orthography) and

paraperspective (Poelman, 1993) up to an affine camera

(Koenderink, 1993).

2. Factorization Method: A New Formulation

Including Translation

The factorization method was originally introduced by

Tomasi and Kanade (1990) for the case of single static

object viewd by a moving camera. Here, we will refor-

mulate the method in such a way that a static camera

observes a scene with a moving object. Also, whereas

the translation component of motion is first eliminated

in the Tomasi-Kanade formulation, we will retain that

component in our formulation.

2.1. World and Observations

The object moves relative to the camera which acquires

images. In the sequence we track feature points from

frame to frame. The position of an object point pT
i =

[X i Yi Z i ]
T expressed in homogeneous coordinates in

the camera frame, is given by

sC
f i ≡

[

pC
f i

1

]

=

[

R f t f

01×3 1

][

pi

1

]

(1)

=

[

R f t f

01×3 1

]

si (2)

where R f and t f are, respectively, the rotation and tran-

slation components. Suppose that we track N feature
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points over F frames, and that we collect all these

measurements into a single matrix:

























u11 . . . u1N

...
...

uF1 . . . uF N

v11 . . . v1N

...
...

vF1 . . . vF N

























=



























iT
1 tx1

...
...

iT
F txF

jT
1 ty1

...
...

jT
f tyF



























[s1 . . . sN ] (3)

W = MS. (4)

where (u f i , v f i ) are the feature image position, vectors

iT
f = [ix f

iy f
iz f

], jT
f = [ jx f

jy f
jz]

T , ( f = 1, . . . , F)

are the first two rows of the rotation matrix at instant

f , and (tx f
, ty f

) are the X and Y coordinates of the

position of the object’s coordinate frame, in the camera

frame, at the same instant.

2.2. Solution for Shape and Motion by Factorization

Recovering the shape and motion is equivalent to start

with a given matrix W and obtain a factorization into

motion matrix M and shape matrix S. By simple in-

spection of (4) we can see that since M and S can be at

most rank 4, W will be at most rank 4. Using Singular

Value Decomposition (SVD), W is decomposed and

approximated as

W = UΣVT . (5)

Matrix Σ= diag(σ1, σ2, σ3, σ4) is a diagonal matrix

made of the four biggest singular values which reveal

the most important components in the data. Matrices

U ∈ R2F×4 and V ∈ RN×4 are the left and right singular

matrices respectively, such that UT U = VT V = I (the

4 × 4 identity matrix).

By defining,

M̂ ≡ UΣ
1
2 , Ŝ ≡ Σ

1
2 VT (6)

we have the two matrices whose product can represent

the bilinear system W. However, this factorization is

not unique, since for any invertible 4 × 4 matrix A,

M = M̂A and S = A−1Ŝ are also a possible solution

because

MS = (M̂A)(A−1Ŝ) = M̂Ŝ = W. (7)

The exact solution can be computed, using the fact that

M must have certain properties. Let us denote the 4 × 4

matrix A as the concatenation of two blocks,

A ≡ [AR | at ], (8)

The first block AR is the first 4 × 3 submatrix related

to the rotational component and the second block at is

a 4 × 1 vector related to translation. Now, since

M = M̂A = [M̂AR | M̂at ], (9)

we can impose motion constraints, one on rotation and

the other on translation, in order to solve for A.

2.2.1. Rotation Constraints. Block AR of A, which

is related to rotational motion, is constrained by the

orthonormality of axes vectors iT
f and jT

f : each of the

2F rows entries of matrix M̂AR is a unit norm vector

and the first and second set of F rows are pairwise

orthogonal. This yields a set of constraints:

m̂i ARAT
Rm̂T

i = 1 m̂ j ARAT
Rm̂T

j = 1 (10)

m̂i ARAT
Rm̂T

j = 0 (11)

where m̂i , m̂ j are rows i and j of matrix M̂ for

i = 1, . . . , F and j = F +1, . . . , 2F . This is an over-

constrained system which can be solved for the entries

of ARAT
R by using least-squares techniques, and sub-

sequently solving for AR . See (Tomasi, 1990) for a

detailed solution procedure.

2.2.2. Translation Constraints. In orthography, the

projection of the 3D centroid of an object features into

the image plane is the centroid of the feature points.

The X and Y position of the centroid of the feature

points is the average of each row of W:

w ≡









1
N

∑

u1,i

...
1
N

∑

vF,i









= Ms̄ (12)

= [M̂AR | M̂at ]

[

p̄

1

]

, (13)

where p̄ ≡ 1
N

∑

pi is the centroid of the object. The

origin of the object’s coordinate system is arbitrary, so

we can choose to place it at the centroid of the object,
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that is p̄ = 0. Then it follows immediately from (13)

that

w̄ = M̂at (14)

This expression is also an overconstrained system of

equations, which can be solved for the entries of at in

the least-square sense. The best estimate will be given

by

at = (M̂T M̂)−1M̂T w̄ (15)

= Σ
−1/2UT w̄, (16)

which completes the computation of all the elements

of matrix A.

3. The Multibody Factorization Method

Until now we have assumed that the scene contains a

single moving object. If there is more than one moving

object, the measurements matrix W will contain fea-

tures (columns) which are produced by different mo-

tions. One may think that solving the problem requires

first sorting the columns of the measurements matrix W

into submatrices, each of which contains features from

one object only, so that the factorization technique of

the previous sections can be applied individually. In

fact this is exactly the approach taken by Boult (1991)

and Gear (1994). We will show in this section that the

multibody problem can be solved without prior seg-

mentation. For the sake of simplicity we will present

the theory and the method for the two body case, but it

will be clear that the method is applicable to the general

case of an arbitrary unknown number of bodies.

3.1. The Multibody Motion Recovery Problem:

Its Difficulty

Suppose we have a scene in which two objects are mov-

ing and we take an image sequence of F frames. Sup-

pose also that the set of features that we have observed

and tracked in the image sequence actually consists of

N1 feature points from object 1 and N2 from object 2.

For the moment, imagine that somehow we knew the

classification of features and thus could permute the

columns of W in such a way that the first N1 columns

belong to object 1 and the following N2 columns to

object 2. Matrix W would have the canonical form:

W∗ = [W1 | W2]. (17)

Each measurements submatrix can be factorized as

Wl = UlΣlV
T
l (18)

= MlSl = (M̂lAl)
(

A−1
l Ŝl

)

(19)

with l = 1 and 2 for object 1 and 2, respectively. Equa-

tion (17) has now the canonical factorization:

W∗ = [M1 | M2]

[

S1 0

0 S2

]

(20)

= [M̂1 | M̂2]

[

A1 0

0 A2

][

A−1
1 0

0 A−1
2

][

Ŝ1 0

0 Ŝ2

]

(21)

By denoting

M̂∗ = [M̂1 | M̂2] (22)

Ŝ∗ =

[

Ŝ1 0

0 Ŝ2

]

(23)

A∗ =

[

A1 0

0 A2

]

(24)

U∗ = [U1 | U2] (25)

Σ
∗ =

[

Σ1 0

0 Σ2

]

(26)

V∗T =

[

VT
1 0

0 VT
2

]

, (27)

we obtain a factorization similar to a single object case,

where the canonical measurements matrix relates to

shape and motion according to:

W∗ = M∗S∗ (28)

S∗ = A∗−1
Ŝ∗ = A∗−1

Σ
∗

1
2 V∗T

(29)

M∗ = M̂∗A∗ = U∗
Σ

∗
1
2 A∗ (30)

From Eq. (20), we see that W∗ (and therefore W) will

have at most rank 8; W1 and W2 are at most rank 4.

For the remainder of this section let us consider non-

degenerate cases where the rank of W is in fact equal

to 8; that is, the object shape is actually full three di-

mensional (excluding planes and lines) and the motion

vectors span a four-dimensional space for both objects.

Degenerate cases will be discussed later on.
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In reality, we do not know which features belong

to which object, and thus the order of columns of the

given measurements matrix W is a mixture of features

from objects 1 and 2. We can still apply singular value

decomposition (SVD) to the measurements matrix, and

obtain

W = UΣVT . (31)

Then it appears that the remaining task is to find the

linear transformation A such that shape and motion will

have the block structure of Eqs. (29) and (30).

There is, however, a fundamental difficulty in doing

this. The metric (rotation and translation) constraints

(Eqs. (10), (11) and (14)–(16)) were obtained in Sec-

tion 2.2 by considering the motion matrix for one ob-

ject, that is, by assuming that the measurements ma-

trix consists of features from a single object. These

constraints are therefore only applicable when the seg-

mentation is known. This is exactly the mathematical

evidence of the cyclic dilemma mentioned earlier.

Faced with this difficulty, the usual approach would

be to group features bit-by-bit so that we segment W

into two rank-4 matrices and obtain the factorization as

in Eq. (20). For example, a simplistic procedure would

be as follows: pick the first four columns of W and

span a rank-4 subspace. If the fifth column belongs to

the subspace (i.e., is linear dependent on the first four,

or almost linear dependent in the case of noisy mea-

surements), then classify it as belonging to the same

object as the first four columns and update the sub-

space representation. Otherwise, it belongs to a new

object. Apply this procedure recursively to all the re-

maining columns. This approach is in fact essentially

that used by Boult (1991) and Gear (1994) to split

matrix W, and similar to that suggested by Ullman

(1983), where the criterion for merging was local

rigidity.

However, this cluster-and-test approach presents

several disadvantages. First, there is no guarantee that

the first four columns, which always form a rank-4 sub-

space, are generated by the same object. Second, if we

use a sequential procedure like that above or a varia-

tion on it, the final result is dependent on where we

start the procedure, and alternatively, the search for the

globally optimal segmentation will most likely be com-

putationally very expensive. Finally, prior knowledge

of the number of objects becomes very critical, since

depending on the decision criterion of subspace inclu-

sion, the final number of objects may vary arbitrarily.1

3.2. A Mathematical Construct of Shapes

Invariant to Motions

In the multibody structure-from-motion problem, the

main difficulty, revealed just above, is due to the fact

that shape and motion interact. Mathematically, as

shown in (20), the rank-8 measurement space is orig-

inally generated by the two subspaces of rank 4, each

represented by the block-diagonal shape matrix S∗.

However, the recovered shape space VT , obtained by

the singular value decomposition, is in general a linear

combination of the two subspaces and does not exhibit

a block-diagonal structure.

There is, however, a mathematical construct that pre-

serves the original subspace structure. Let us define Q

as the (N1 + N2) × (N1 + N2) square matrix

Q = VVT . (32)

We will call this matrix the shape interaction ma-

trix. Mathematically, it is the orthogonal operator that

projects N = (N1 + N2) dimensional vectors to the

subspace spanned by the columns of V. This matrix

Q has several interesting and useful properties. First,

by definition it is uniquely computable only from the

measurements W, since V is uniquely obtained by the

singular value decomposition of W.

Secondly, each element of Q provides important in-

formation about whether a pair of features belong to

the same object. Since W∗ is formed applying a set

of column permutations to W, V∗T will also result

by permuting the same set of columns of VT .2 Thus,

the canonical Q∗ will result by permuting columns and

rows of Q (the order of each operation is irrelevant)

so that both matrices have the same entry values but

in different locations. Then, let us compute Q∗ for

the canonical form of W∗. By inserting (29) into the

canonical version of (32) we can obtain the following

derivation:

Q∗ = V∗V∗T
(33)

= S∗T
A∗T

Σ
∗−

A∗ S∗ (34)

= S∗T
(A∗−1

Σ
∗A∗−T

)−1S∗ (35)

= S∗T
[(A∗−1

Σ
∗−1/2

V∗T
)(V∗

Σ
∗−1/2

A∗−T
)]−1S∗

= S∗T
(S∗S∗T

)−1S∗ (36)

=

[

ST
1 0

0 ST
2

][

Λ
−1
1 0

0 Λ
−1
2

][

S1 0

0 S2

]

(37)
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=

[

ST
1 Λ

−1
1 S1 0

0 ST
2 Λ

−1
2 S2

]

. (38)

where Λ1 and Λ2 are the 4×4 matrices of the moments

of inertia of each object. This means that the canonical

Q∗ matrix for the sorted W∗ has a well-defined block-

diagonal structure. Also, each entry has the value

Q∗
i j

=



































sT
1i
Λ

−1
1 s1 j

if feature trajectory i

and j belong to object 1

sT
2i
Λ

−1
2 s2 j

if feature trajectory i

and j belong to object 2

0 if feature trajectory i and

j belong to different objects.

(39)

Properties of Q∗

Invariant Structure to the Number of Objects. Even

though expression (38) was derived for the case of two

objects, it is now clear that its structure is the same

for any number of objects. In fact, if the scene has M

moving objects Q∗ would still have the block diagonal

form:

Q∗ =



















ST
1 Λ

−1
1 S1 0 0 0 0

. . .

0 0 ST
k Λ

−1
k Sk 0 0

. . .

0 0 0 0 ST
MΛ

−1
M SM



















.

(40)

If any features i and j belong to different objects

their entry Q∗
i j will be zero. This property also holds

in Q, that is, regardless the way features are sorted in W,

the shape interaction matrix contains all the necessary

information about the multibody scene.

Invariant to Object Motion. Most importantly, entries

Q∗
i j are invariant to motion. This is true since Eqs. (39)

include only shape variable Sk , and not M. In other

words, no matter how the objects move, they will pro-

duce the same set of entries in matrix Q∗.

Invariant to Image Scale. Image scaling consists of

multiplying the image coordinates at frame f by a

constant c f . For each object, feature coordinates are

generated by a scaled version of Eq. (4):

























u11 . . . u1N

...
...

uF1 . . . uF N

v11 . . . v1N

...
...

vF1 . . . vF N

























=



























c1iT
1 c1tx1

...
...

cF iT
F cF txF

c1jT
1 c1ty1

...
...

cF jT
f cF tyF



























[s1 . . . sN ]

W̃ = CMS,

C2F×2F = diag(c1, . . . , cF , c1, . . . , cF ),

or, in the multibody case

W̃ = [C1M1 | C2M2]

[

S1 0

0 S2

]

. (41)

From Eqs. (33–38) we can see that both V and A change

but Q will be the same. The rows of W̃ are still lin-

ear combinations of the rows of S. Then, the subspace

spanned by the rows of W̃ is the same of the nonscaled

W, consequently the orhogonal projector is the same.

This property is, in fact, a corollary from the motion

invariance property of Q. The shape interaction matrix

is invariant to any pre- or post-multiplication of the

motion matrices, since its only dependence is on the

shape matrix. However, we higlight this property be-

cause it confers invariance to perspective effects that

can be modeled by image scaling.

Invariant to Coordinate System. The shape interac-

tion matrix is invariant to the coordinate system in

which we represent the shape. Suppose we transform

the shape, S, of object k by the general transformation

T ∈ R4×4:

S′ = TS. (42)

The corresponding block-diagonal element matrix will

be

S′T (S′S′T )−1S′ = (TS)T [(TS)(TS)T ]−1 (TS)

= ST (SST )−1S (43)

which remains the same.
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Invariant to Shape Rank. Finally, the shape interac-

tion matrix is also invariant to the type of object. The

rank of the shape matrix S can be 2 for a line, 3 for a

plane and 4 for a full 3D object. However, the entries

of Q∗ will have the same general expression. For de-

generate shapes (lines and planes), the difference will

be the number of rows and columns of matrices S and

Λ. Since Q is invariant to the coordinate system, if

object k is a line, Sk can be represented as a 2 × Nk

matrix (3 × Nk for a plane); therefore, Λk will be 2 × 2

(3 × 3 for a plane). In both cases, the total rank of Q∗

changes but not its structure nor its entries.

3.3. Sorting Matrix Q into Canonical Form

In the previous section we have shown that we can

compute matrix Q without knowing the segmentation

of the features. Each element Qi j can be interpreted

as a measure of the interaction between features i and

j : if its value is nonzero, then the features belong to

the same object, otherwise they belong to different ob-

jects if the value is zero. Also, if the features are sorted

correctly into the canonical form of the measurement

matrix W∗, then the corresponding canonical shape in-

teraction matrix Q∗ must be block diagonal.

Now, the problem of segmenting and recovering mo-

tion of multiple objects has been reduced to that of sort-

ing the entries of matrix Q, by swapping pairs of rows

and columns until it becomes block diagonal. Once this

is achieved, applying the corresponding permutations

to the columns of W will transform it to the canonical

form where features from one object are grouped into

adjacent columns. This equivalence between sorting

Q and permuting W is illustrated in Fig. 1.

With noisy measurements, a pair of features from

different objects may exhibit a small nonzero entry. We

can regard Q2
i j as representing the energy of the shape

interaction between features i and j . Then, the block

diagonalization of Q can be achieved by minimizing

the total energy of all possible off-diagonal blocks over

all sets of permutations of rows and columns of Q.

This is a computationally overwhelming task since the

number of possibilities is factorial with the number of

features.

Alternatively, since matrix {Q2
i j } is symmetric and

all elements are positive, it defines the incidence matrix

of a graph of N1 + N2 nodes, where the Q2
i j indicates

the weight of the link (i, j). Several graph-theoretical

algorithms (Thomas, 1986), such as the minimum

spanning tree (MST), can be used to achieve block

Figure 1. Segmentation process.

diagonalization much more efficiently than energy

minimization.

The importance of these methods lie in the inter-

esting interpretation of the shape interaction matrix

(or the square of its elements). In noise-free environ-

ments Q is, in fact, a forest: a graph made of several

nonconnected subgraphs, and segmentation reduces to

looking for the connected components. In the presence

of noise Q is interpreted as a single fully connected

graph from which the noisy links have to be removed.

We can use the MST to achieve a minimum representa-

tion of Q where the noisy links can be easily removed.

However, a single spike of noise can be understood by

the sorting algorithm as a link, jeopardizing the entire

segmentation. Because of this, and also because of

the difficulty of coding prior knowledge in the MST

algorithm we have devised another algorithm that ex-

plores the global constraints on Q, allowing a much

more efficient and robust sorting.

4. Segmentation Algorithm

The algorithm we propose here segments a multibody

scene in two steps: In the first step rows and columns

of Q are iteratively permuted in such a way that fea-

tures of the same object are arranged adjacently into

blocks, transforming Q into the canonical shape inter-

action matrix Q∗. Though sorted, Q∗ alone does not
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Figure 2. The segmentation algorithm: Sorting matrix Q and de-

tecting the blocks.

provide information about the size and location of each

block; therefore, a second step is required to compute

the rows/columns that limit the blocks corresponding

to features of a single object.

Consider an example where three objects move in-

dependently. Figure 2 depicts the two steps of the

algorithm graphically. First, the sorting process trans-

forms the original Q into Q∗. Then the detection pro-

cess determines columns c1 and c2 which isolate the

blocks corresponding to each object. This detection

process is quite relevant mainly for two reasons: on

one hand, the off-diagonal elements are nonzero and

we have no prior knowledge about either the signal or

the noise models, hence we are unable to detect the

limiting columns based on local information alone. In

other words, we cannot compute optimal thresholds

to classify the elements of Q as either noise or signal

(VanTrees). Also, the detection process must take into

consideration shape degeneracy issues, that is, cases

where objects have less than three independent dimen-

sions (lines and planes). Fortunately, using the proper-

ties of Q, the block diagonal structure is invariant with

shape rank; therefore, we have been able to develop

a detection algorithm that robustly handles any shape

degeneracy.

4.1. Sorting

As already stated, sorting Q is equivalent to minimiz-

ing the energy of the off-diagonal blocks, over the set

of all permutations of rows and columns. A straight-

forward inspection shows that this type of optimization

leads to a combinatorial explosion. Instead, we can con-

siderably reduce the search effort by using suboptimal

strategies without jeopardizing performance.

Our algorithm uses a gready or also known as hill-

climbing search strategy. By hill-climbing we mean a

search procedure that, at each search level (or iteration),

chooses the best path without taking into account past

decisions.

At each iteration, say k, the current state is repre-

sented by a k × k submatrix Q∗k which contains the

features sorted so far. A set of operations expands the

current state, producing candidates (features) to be in-

cluded in the current sorted Q∗k .

Figure 3 shows iteration k where feature k + 1 is to

be selected from among the N − k candidates. The

candidates are features k + 1 to N whose columns and

rows are not included in the current segmentation. The

cost, Ck
j of each candidate is given by the energy of the

first k elements

Ck
j =

k
∑

i=1

Q2
i, j for ( j = k + 1, . . . , N ), (44)

which represents the total energy of interaction be-

tween each of the candidate features and the set of

already sorted features.3 By maximizing the cost func-

tion Ck
j , our search strategy selects the feature whose

global energy of interaction with the current segmen-

tation, is the largest.

Figure 3. Sorting algorithm: At iteration k, columns k +1 to N are

permuted and the column with the highest norm is selected to form

Q∗k+1.
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The updated state Q∗k+1 is obtained by augmenting

Q∗k with the column and the row of the best feature.

The column corresponding to this feature is first per-

muted with column k + 1, followed by a permutation

of rows with the same indices. Matrix (Q∗k+1) is then

formed with the first (k + 1) × (k + 1) elements of the

permuted shape interaction matrix. As a result of this

maximization strategy, submatrix Q∗k+1 has maximal

energy among all possible (k+1) × (k+1) submatrices

of Q. Unless the noise energy is similar to that of the

signal, for all features in a set, this sorting procedure

groups features by the strength of their coupling. Even

though this procedure may look like a blind search, in

the next section we will show that this maximization

relates the energy maximization to rank properties of

operators Q∗k , thus taking into account the structure of

the problem.

4.2. Block Detection

Having sorted matrix Q into canonical form, the matrix

Q∗ for an arbitrary number of objects M has the block

form:

Q∗ =























ST
1 Λ

−1
1 S1 0 0 0 0

. . .

0 0 ST
KΛ

−1
K SK 0 0

. . .

0 0 0 0 ST
MΛ

−1
M SM























(45)

=























Q1 0 0 0 0

. . .

0 0 QK 0 0

. . .

0 0 0 0 QM























. (46)

Since noise induces a small nonzero value in the off-

diagonal elements, instead of detecting zeros we must

detect the transition between blocks (signal) and the

off-diagonal elements (noise). Even assuming correct

sorting, this transition is quite hard to detect, based on

local values alone, due to the lack of knowledge about

noise characteristics. In other words, it is not possi-

ble to set up a threshold below which an entry could

be considered zero. The threshold is determined by

an optimality criterion involving the noise probability

distribution function (VanTrees).

However, there are global constraints that can be ap-

plied to Q∗. First the rank of each block is constrained

to be 2 (a line), 3 (a plane) or 4 (a full 3D object). Sec-

ond, we can relate the rank of a block to its energy:

in fact, Eq. (45) shows that the rank of each QK is the

same as the rank of the shape matrix of object K . Also,

the square of the Frobenius norm (F-norm) of matrix

QK relates to the block energy and to its singular values

σKi
according to

‖QK‖
2
F =

NK
∑

i=1

NK
∑

j=1

Q2
Ki j

= σ 2
K1

+ · · · + σ 2
K R

, (47)

where NK is the number of features of each block and

R its rank. The number of nonzero singular values is

R = 2, 3, 4 depending whether the object is a line, a

plane or a 3D object respectively. Since QK is ortho-

normal, all singular values, σKi
, are equal to 1 and

hence for each type of object, the sum (47) adds to 2

(line), 3 (plane) or 4 (3D object). Then, we can relate

the energy of each block with its rank by

‖QK‖
2
F =

NK
∑

i=1

NK
∑

j=1

Q2
i j (48)

= σ 2
K1

+ · · · + σ 2
K R

= rank(QK ) (49)

Instead of considering an individual block, let us

compute the sum (47) for the first m columns/rows of

Q∗, defined by the function ε(·):

ε(m) =
m

∑

i=1

m
∑

j=1

Q∗2
i j , (50)

for m = 1, . . . , N . Then, columns for which the integer

part of ε increases one unit are potential block limiting

columns, provided the block rank constraints are sat-

isfied. Consider Fig. 4 which illustrates one possible

shape of the function ε for the case of two objects with

rank-4 shape.

The vertical dashed lines indicate rank jumps, that is,

columns where ε is a whole number or its integer part

increases by one (under noisy conditions, except for

m = N , the function ε may never be a whole number).

Given the indices of the columns of integer crossing

by ε, segmentation consists in finding the blocks that

match these rank jumps and satisfy the constraints. The

solution is not unique, as our examples illustrate in
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Figure 4. Evolution of the norm of Q*.

Figure 5. Possible Q∗
K ’s for a rank 8 Q∗: (a) One line and two

planes, (b) four lines, (c) two 3D objects, and (d) one full 3D object

and two lines.

Fig. 5. For a rank 8 matrix Q∗, we have eight possi-

ble segmentations, obtained by considering all possible

combinations of rank 2, 3 or 4 blocks whose sum is 8.

In Fig. 5 we show only four possible solutions for

this example. The numbers in Fig. 5(a) represent the

columns and rows that limit submatrices of Q∗ for

which the rank jumps by one. In the same figure, the

shaded rectangles represent the correct feature segmen-

tation. The superimposed white blocks in Figs. 5(b),

(c) and (d) show other possible segmentations that also

match the rank jumps and satisfy the block rank con-

straint. Among the eight possible configurations, Fig. 5

considers the following scene segmentations for the

rank-8 Q∗:

5(a) Two rank-4 objects: assuming the scene is formed

by two, rank 4, objects there is only one block

configuration. The first four rank jumps form ob-

ject one and the remaining four the second object.

This is also the correct solution.

5(b) One object with rank 2 and two objects with rank

3. In other words, the scene is made of one mov-

ing line and two planes. These objects also form

a shape interaction matrix with rank 8. In the fig-

ure we show one possible configuration, where

the first block has rank 2 (a line) and the other

two blocks have rank 3 (planes).

5(c) Four lines. Each of the blocks has rank 2 and

represents one line. In a rank-8 Q we can have

four of these blocks.

5(d) One 3D object and two lines. In this configuration

the first block has rank 3, the second has rank 2

and the third rank 4. With these three blocks two

more combinations are possible.

Considering all possible combinations, the correct so-

lution is easily determined through the energy maxi-

mization of the blocks. Since the total energy of Q∗ is

equal to the constant

ε(N ) = ‖Q∗‖2
F =

N
∑

i=1

N
∑

j=1

Q∗
i j = rank(Q), (51)

we can divide it into the energy of the blocks and the

energy of the off-diagonal. The best solution is then

the one which concentrates most energy in the blocks.

In summary, the detection process is a constrained op-

timization process which maximizes the energy of the

blocks subject to the constraint that each block repre-

sents a physical object (line, plane or full 3D).

4.3. Interpretation of the Cost Function

The algorithm described in the previous sections has

an interesting interpretation. This interpretation will

support the decision reduce the search effort by using
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a hill-climbing strategy. We will show that the hill-

climbing strategy finds a solution that represents the

whole class of all possible solutions that make Q block

diagonal.

Assuming that we have a correctly sorted Q, let us

recall the definition of function ε(·) as in (47):

ε(m) =
m

∑

i=1

m
∑

j=1

Q∗2
i j . (52)

Now let us compute a family of functions εO(·) where

O represents the set of all “correct” shape interaction

matrices. By “correct” we mean all possible block di-

agonal matrices that result from permutations of rows

and columns of Q∗. For segmentation purposes these

matrices are, in fact, indistinguishable. In short, these

permutations switch columns and rows of features be-

longing to the same object.

Figure 6 illustrates how the set εO might look for the

example considered throughout this section. In a noise-

free environment, if Q∗ contains M blocks, each of the

functions εi , (i ∈ O), has the same value for columns,

say C = {c1, . . . , cK , . . . , cM}, that limits each of the

blocks (see Figs. 2 and 6). At each of these columns

the function εi (cK ) represents the total energy of the

Figure 6. Several possibilities for energy functions. Each curve

represents the energy function for a different set of permutations of

the columns of Q. Function ε∗ is an upper bound of the all set of εi .

first K blocks:

εi (cK ) =
cK
∑

i=1

cK
∑

j=1

Q∗2
i j =

K
∑

n=1

rank(Qn). (53)

Values εi (cK ) are invariant to “correct” permutations

of Q∗ due to its block diagonal structure. In fact, they

are the only important points for detecting the limits of

the blocks. Among the whole family of functions, we

denoted ε∗ as,

ε∗ = max
∀i∈O

(εi ), (54)

which bounds the whole set, and is represented by the

thick curve in Fig. 6. Then, function ε∗ maximizes the

energy of any submatrix of Q∗ formed by its first m

columns and rows. Since values εi (K ) contain all the

information needed for block detection, and are invari-

ant to permutations that block diagonalize Q, all func-

tions εi ( ) can be represented by ε∗ without any loss

of information. As we showed in Section 4.1, function

ε∗( ) can be computed by a hill-climbing search, thus

reducing the search space to polynomial complexity.

Due to noise, the energy of the block will not be a

whole number at the block’s border. As Fig. 7 shows,

at the block limiting columns, the value of the energy

Figure 7. Noisy Q∗. Funtion ε∗ deviates due to the energy spread

in the off-diagonal.
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will exhibit a small difference δ from the integer cross-

ing, which is the energy of the off-diagonal elements.

Since we do not have a statistical description of noise,

we cannot compute an estimate of δ and use it to modify

the threshold of the possible block limiting columns.

However, this limitation can be easily overcome. The

energy of noise induces an uncertainty α in the posi-

tion of the block limiting column (see Fig. 7). In other

words, we do not know whether feature cK , for which

ε∗(cK ) is integer, belongs to the previous block or the

following one. By testing the linear dependence be-

tween feature cK and the neighbouring ones, we can

determine to which of the blocks it is closer.

Finally, recall that one of the reasons we did not use

graph theoretical algorithms was because they rely on

local information. Hence, the segmentation is done

based on relationships between individual features,

making the sorting quite sensitive to noisy features.

As a consequence, due to a single strong noise spike

between two features belonging to different objects,

the MST algorithm joins two different objects through

that link.

Instead, with our algorithm, the effect of a single

noisy feature is smoothed.

Assume that there is one feature whose energy of

interaction with features of a different object is high.

Then, since we are sorting features by the strength

of their coupling, the noisy elements will be under-

stood (and sorted) as signal. This is illustrated in

Fig. 8, where the correct column and row of a fea-

ture has been swapped with the column and row of a

feature belonging to another object. If the block has

Figure 8. Noisy Q with misclassification of two features.

Nk × Nk elements, the number of elements that have

been wrongly swapped is 2Nk − 1 (one row and one

column), that is the ratio of noisy elements over the to-

tal size of the block is (2Nk − 1)/N 2
k . If Nk ≫ 1, the

influence of noise in the function ε∗(·) is of the order

of 1/Nk of the noise to signal ratio. The drawback of

gready strategies is its lack of memory, in other words,

it could be the case that a particularly bad feature could

be segmented to the wrong block in the early stages of

the algorithm when only a few features have been pro-

cessed but unless the scene is ubsurdly noisy the gready

strategy is perfectly adequate.

In summary, the fact that we use global constraints to

sort the matrix Q by maximization of the energy of all

its submatrices, produces a smoothing effect on noise,

making the process more reliable against individual

noise spikes.

5. Summary of Algorithm

Now the algorithm can be summarized as the sequence

of the following steps:

1. Run the tracking process and create matrix W

2. Compute r = rank(W)

3. Decompose the matrix W using SVD, and yielding

W = UΣVT

4. Compute the shape interaction matrix Q using the

first r rows of VT

5. Block-diagonalize Q

6. Permute matrix VT into submatrices corresponding

to a single object each

7. Compute Ai for each object, and obtain the corre-

sponding shape and motion.

It should be clear by now that the segmentation algo-

rithm presented above is independent of the number of

objects, that is, the block diagonal structure of Q∗ is

valid for an arbitrary number of moving objects. Fur-

thermore, this property holds also when the shape ma-

trix of the objects has rank less than four (planes and

lines) so that the total rank of W is the only required

prior knowledge. Finally, note that instead of permut-

ing columns of W in step 6 we permute columns of

VT , which is equivalent.

6. Experiments

We will present two sets of experiments to demonstrate

how the algorithm works. The first is an experiment
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Figure 9. Synthetic scene. Three objects move transparently with arbitrary motion.

with synthetically generated feature trajectories, and

the second with those extracted from real images

taken in the laboratory under controlled imaging condi-

tions.

6.1. Synthetic Data

Figure 9 shows the 3D synthetic scene. It contains

three transparent objects in front of each other mov-

ing independently. A static camera takes 100 images

during the motion. The closest object to the camera

is planar (rank 3) and the other two are full 3D ob-

jects (rank 4). So this is in fact a shape-degenerate

case. Each object translates slightly and rotates over

its own centroid in such a way that the features of all

objects are completely intermingled in the image plane.

This complication is intentionally introduced in order

to demonstrate the fact that our motion segmentation

and recovery method does not use any local informa-

tion in the images. One hundred and eighteen (118)

points in total on three objects are chosen: 33 features

Figure 10. (a) 3D trajectories of the points and (b) noisy image tracks.

from the first object, 49 from the second, and 36 from

the third. Figure 10(a) illustrates the actual 3D motions

of those 118 points.

The projections of 118 scene points onto the image

plane during the motion, that is, the simulated trajecto-

ries of tracked image features, are shown in Fig. 10(b)

with a different color for each object. Independently

distributed Gaussian noise with one pixel of variance

was added to the image feature positions for simulating

errors in feature tracking. Of course, the identities of

the features are assumed unknown, so the measurement

matrix created by randomly ordering the features was

given to the algorithm.

Figure 11(a) shows the shape interaction matrix Q:

the height is the square of the entry value. The result of

sorting the matrix into a bloackdiagonal form is shown

in Fig. 11(b). We can observe the three blocks corre-

sponding to objects 3, 2 and 1: all of the 118 features

are correctly classified.

Figures 12(a), (b) and (c) show one view of each of

the recovered shapes of the three objects in the same
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Figure 11. The shape interaction matrix for the synthetic scene with three transparent objects: (a) Unsorted matrix Q, and (b) sorted matrix

Q∗.

Figure 12. Recovered shape of the objects.

order as Fig. 4. Figure 12(c) showing the planar object

viewed from its edge indicates the correct recovery of

its shape.

6.2. Laboratory Data

The laboratory scene consists of two roughly cylindri-

cal shapes made by rolling cardboard and drawing dots

on the surface. The cylinder on the right tilts and ro-

tates in the plane parallel to the image plane while the

cylinder on the left-hand side rotates around its axis.

The 85 images were taken by a camera equipped with

a telephoto lens to approximate orthographic projec-

tions, and lighting was controlled to provide the best

image quality. In total, 55 features are detected and

tracked throughout the sequence: 27 coming the left
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Figure 13. The shape interaction matrix for the lab scene: (a) Unsorted Q and (b) block-diagonalized Q∗.

cylinder and 28 from the other, while the algorithm

was not given that information.

Figure 14 shows the 85th frame in the sequence with

the tracks of the selected features superimposed. The

scene is well approximated by orthography and the

tracking was very reliable due to the high quality of

the images.

Figure 13(a) show the shape interaction matrix Q

for the unsorted input features. The sorted block di-

agonal matrix Q∗ is shown in Fig. 13(b), and the

features are grouped accordingly for individual shape

recovery. The resultant three-dimensional points are

displayed in Fig. 15 with linearly interpolated sur-

face in order to convey a better perception of the their

shape.

Figure 16 shows the profile of function ε∗. The rank

detection algorithm, to be described later, computed a

Figure 14. Image of the objects and feature tracks.

total rank of 6 (possibly due to a negligible translation

component). The total energy of the off-diagonal block

(noisy block) was 0.036, two orders of magnitude be-

low the signal energy.

Figure 15. The recovered shape of the two cylinders.

Figure 16. The energy function ε∗.
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6.3. Noisy Outdoor Scene

In this section we show some tests done with images

taken in an outdoor scene. The main difficulty in the

analysis of this type of scenes is the lack of tracking

reliability. Also, the objects in this scene move in a

particular fashion highligting the shape and motion de-

generacy problems.

Figure 17(a) shows the first of the 72 images of the

sequence. The scene is formed by a moving face in

the foreground and a still background. The unreliabil-

ity of the tracking can be observed on the building in

Figure 17. (a) First image with tracks and (b) the unsorted shape interaction matrix for the outdoor scene.

Figure 18. (a) The sorted shape interaction matrix for the outdoor scene and (b) list of the sorted features.

the background. Since they are still, the tracks should

look like a dot or a small cloud. However, we observe

that some tracks have a small linear motion, consider-

ably greater than the one pixel variance which is the

maximum that can be expected in laboratory environ-

ments. Note that the face moves essencially with trans-

lational motion and also the disproportionate number

of fetaures between foreground and background. The

shape interaction matrix for this scene can be observed

unsorted in Fig. 17(b) and sorted in Fig. 18(a), with

one block made of four features and another with the

rest.
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Notice the few peaks in the upper left corner of the

matrix in contrast with the generally flat pattern. This

is due to the fact that the total energy of the matrix

is constant and the number of features is unbalanced

between the two objects. Recall from previous discus-

sions that, for features i and j belonging to the same

object, Qi j is given (again for a particular configuration

of the object’s coordinate system) by

Qi j = SiΛ
−1S j (55)

Λ = SST (56)

=











∑

X2
n 0 0 0

0
∑

Y 2
n 0 0

0 0
∑

Z2
n 0

0 0 0 N











(57)

The norm of matrix Λ increases, in general, with the

number of points. The value of Qi j , which depends

on the inverse of Λ, decreases with the same number.

This is one of the drawbacks of the methodology for

large numbers of features. In Section 9 we will see that

noise energy grows with the size of the measurements

matrix, and since the total energy of Q is constant, for

larger numbers of features the noise influence becomes

more important. A more detailed analysis on this ex-

perimental data can be found in (Costeira, 1997).

7. Tolerance to Perspective Distortion

The multibody factorization method assumes that the

scene is viewed by an orthographic camera. The gen-

eral requirement here is that the object is small com-

pared to its distance from the camera. In the cases

where the perspective effect can be accounted by a scale

effect, the method still holds. Consider the perspective

projection of feature i at frame f , described by a pin-

hole camera (see also Eq. (2)):

ui f = Fd

iT
f pi + tx f

kT
f pi + tz f

(58)

vi f = Fd

jT
f pi + ty f

kT
f pi + tz f

(59)

where k is the third row of the rotation matrix, tz f
is

the translation component along the Z axis and Fd is

the focal distance. The observation matrix W can be

written in the following form:



























u11

(

kT
1 p1 + tz1

)

· · · u1N

(

kT
1 pN + tz1

)

...
...

uF1

(

kT
F p1 + tzF

)

· · · uF N

(

kT
F pN + tzF

)

v11

(

kT
1 p1 + tz1

)

· · · v1N

(

kT
1 pN + tz1

)

...
...

vF1

(

kT
F p1 + tzF

)

· · · vF N

(

kT
F pN + tzF

)



























= Fd



























iT
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...
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iT
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jT
1 ty1
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jT
f tyF



























[s1 · · · sN ] . (60)

Dividing each row by the translation tz f
we obtain the

perspective observation model:
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
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












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





















+































u11
kT

1 p1

tz1

· · · u1N
kT

1 pN

tz1

...
...

uF1
kT

F p1

tzF

· · · uF N
kT

F pN

tzF

v11
kT

1 p1

tz1

· · · v1N
kT

1 pN

tz1

...
...

vF1
kT

F p1

tzF

· · · vF N
kT

F pN

tzF































=









Fd

tz1

· · · 0

0
. . . 0

0 · · · Fd

tzF

































iT
1 tx1

...
...

iT
F txF

jT
1 ty1

...
...

jT
f tyF

























[s1 · · · sN ]

(61)

W + W̃ = K MS. (62)

The orthographic model is adequate if W̃ is small.

One possible criteria is to consider an upper limit of
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the Frobenius norm of matrix W:

‖W̃‖2
F ≤ ‖W̃max‖

2
F =

u2
max

t2
zmin

2F
∑

f =1

N
∑

p=1

k f pppT
p kT

f

=
u2

max

t2
zmin

2F
∑

f =1

k f 3kT
f (63)

where umax = max{u f p} and tzmin
is the object’s (cen-

troid) minimum distance to the camera. Equation (63)

shows that as long as the object is far away from the

camera and/or the object’s ellipsoid of inertia has a

small projection in the camera axis, the subspace struc-

ture of W is well approximated. The scaling due to

perspective affects greatly the shape reconstruction but

not the segmentation. With the above equation we see

that it is not possible to represent W as a product of an

orthonornal matrix (motion) by a shape matrix but the

rows of W are still a linear combination of the rows of

S. Error analysis has been done in (Poelman, 1995) for

the case of paraperspective factorization reconstruction

for various types of scenes. In our experiments a 1 m

long object at 6 m distance with a 70 mm lens, the

perspective effect is negligible.

8. Shape and Motion Degeneracies

As said before, the shape interaction matrix keeps its

structure when objects have degenerate shape, in other

words, when the shape matrix S has rank less than four.

The same is valid to motion degeneracies where the

motion matrix M is rank deficient. Using a trivial ex-

ample, suppose one object is moving with translational

motion. The motion matrix will have the form

M =

























1 0 0 tx1

...

1 0 0 tx1

0 1 0 ty1

...

0 1 0 ty1

























. (64)

In this case, there is a shape ambiguity since the prod-

uct MS multiplyes the third row of S by 0 (the Z com-

ponent); therefore, we can remove the third column of

M and the third row of S and interpret the observations

as resulting from a moving plane. This interpretation is

valid for any motion degeneracy where matrix M has

some columns that are linearly dependent on others.

This poses no problem to the multibody segmentation

since the properties of Q will hold. A different case is

when the motion matrix is linearly dependent on an-

other object’s motion. Here, the block-diagonal prop-

erties of Q vanish and the algorithm wouldn’t find the

correct block transitions.

9. Computing the Rank of Matrix W

In the previous theoretical developments we assumed

that the rank of the measurements matrix, W, was

known. In order to build the shape interaction matrix,

Q, this knowledge is essential since the rank specifies

the number of singular vectors V from which Q is cre-

ated. Due to camera noise and other tracking errors,

the rank of matrix W will, in general, differ from the

correct one. Therefore, we need a rank determination

procedure which selects the significant singular values

and vectors.

Several approaches have been developed regarding

the subject of signal/noise separation (e.g., the MU-

SIC algorithm (Bienvenu, 1979; Schmidt, 1980)) but

since we use SVD to build our constructs, and given

its rank revealing properties and numerical stability, we

closely follow the approach of (Stewart, 1992), formal-

izing the rank determination problem under the SVD

framework and including uncertainty models of the fea-

ture tracking process. We present the final result but

a full derivation together with tracking uncertainty can

be seen in (Costeira, 1997).

The rank of the observations matrix, W, is deter-

mined by an approximation criterion for which the

noise model is required. We model the noisy imaging

process as the result of additive noise to the projection

equations (2) (Wilson, 1994). Then, the i th feature

position, in frame f , is given by

[

ũ f,i

ṽ f,i

]

=

[

u f,i

v f,i

]

+

[

Eu f,i

Ev f i

]

, (65)

where Eu f i
and Ev f i

are the additive noise components

in the X and Y directions of the image plane. From

Eq. (65) we foresee the need for feature tracking mod-

eling, namely the characterization of the feature posi-

tion.

The 2F × N noisy measurement matrix, W̃, in this

case, will be given by the matrix sum

W̃ = MS +

[

Eu

Ev

]

(66)
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W̃ = W + E, (67)

where Eu and Ev are two F × N matrices and W is the

noise-free measurement matrix, whose rank we want

to estimate. It is now clear from (67) that the rank of

W̃ can be at most N . Then, the singular value decom-

position will be given by

W̃ = UΣV T (68)

Σ = diag(σ1, . . . , σN ) (69)

U ∈ R2F×N (70)

V ∈ RN×N . (71)

In a noise free environment the rank of W is determined

by the number of nonzero singular values σi , whereas

in the noisy case we will have to compute a threshold

that separates the noisy singular values from the sig-

nificant ones. From the SVD decomposition of W̃ we

have to estimate the number of columns of U, V and

the singular values σi that represent an estimate Ŵ of

W.

The singular value decomposition of W̃ “spreads”

the noise components over all the elements of U, V

and Σ. In other words, it is not possible to isolate

the noise-free components of these matrices or even

directly estimate noise influence. Then, we will seek

an estimate Ŵ, with the same rank of W, that approx-

imates W̃ in the least squares sense (Stewart, 1992;

Demmel, 1987; Golub, 1987).

In other words, we must solve two problems here: we

have to determine the “real” rank of W̃ and also obtain

an approximation of the “real” observations matrix W.

Then, following the minimum error criterion, if r is

the rank of the noise-free measurement matrix W, for

all possible 2F × N matrices Y with rank(Y) ≤ r , we

seek an estimate Ŵ that minimizes the error:

‖W̃ − Ŵ‖2
F = min

rank(Y)≤r
‖W̃ − Y‖2

F . (72)

Fischer’s theorem (Stewart, 1992) states that a solution

Ŵ exists, and the error (72) is explicitly given by:

‖W̃ − Ŵ‖2
F = σ 2

r+1 + · · · + σ 2
N . (73)

Expression (73) is equivalent to saying that the approx-

imation given by

Ŵ = U2F×r







σ1

. . .

σr






VT

N×r (74)

is the minimum error approximation of W̃ by a rank

r matrix. Comparing with the “correct” equations, we

have the following correspondence:

W̃ = W + E (75)

W̃ = Ŵ + Ê (76)

W̃ = U2F,1:r







σ1

. . .

σr






VT

N ,1:r

+ U2F,r+1:N







σr+1

. . .

σN






VT

N ,r+1:N (77)

where the notation i : j denotes column or row range.

Since Ŵ is the closest matrix to W̃ with rank r , its

error is minimum; in particular, it is smaller than the

error in the real measurements W, that is:

‖W̃ − Ŵ‖2
F ≤ ‖W̃ − W‖2

F = ‖E‖2
F . (78)

Using (73) in (78) yields:

σ 2
r+1 + · · · + σ 2

N ≤ ‖E‖2
F =

2F
∑

i=1

N
∑

j=1

E
2
i j . (79)

Using this relation and knowing the magnitude (norm)

of the noise matrix, we can define the rank of W as the

smallest integer, r , such that inequality (79) holds, or

equivalently, the smallest integer r , for which the sum

of the last N − r singular values of the noisy matrix is

less than or equal to the norm of the noise matrix.

However, there is one problem with this strategy: the

entries of matrix E are stochastic variables; therefore,

we do not know their absolute values (realizations). If

the feature tracking provided a statistical description

of the feature positions we could have a decision based

on mean values of the noise component. Then, if we

compute the mean of Eq. (79) we obtain the relation:

E
[

‖W̃ − Ŵ‖2
F

]

= E
[

σ 2
k+1

]

+ · · · + E
[

σ 2
N

]

≤ E
[

‖E‖2
F

]

(80)

≤
N

∑

i=1

2F
∑

j=1

E
[

E
2
i j

]

. (81)

The terms Ei j in (81) are the statistical second moment

(variance) of the feature noise. Using the notation as
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in (65), the covariance of the noise is given by

N
∑

i=1

2F
∑

j=1

E
[

E
2
i j

]

=
N

∑

i=1

F
∑

f =1

(

E
[

E
2
u f,i

]

+ E
[

E
2
v f,i

])

.

(82)

In general, for each sampling time, the uncertainty

of each feature point is characterized by a 2 × 2 covari-

ance matrix

Π f,i = E

([

Eu f i

Ev f i

]

[

Eu f i
Ev f i

]

)

(83)

=

[

E
[

E2
u f i

]

E
[

Eu f i
Ev f i

]

E
[

Eu f i
Ev f i

]

E
[

Ev f i

]

]

(84)

=

[

π2
u f i

πuv f i

πuv f i
π2

v f i

]

. (85)

This uncertainty is provided by a statistically modeled

feture tracker (see Faugeras (1994)). The error (81) is

finally expressed as

E
[

‖W̃ − Ŵ‖2
F

]

= E
[

σ 2
k+1

]

+ · · · + E
[

σ 2
N

]

≤
N

∑

i=1

F
∑

f =1

(

π2
u f,i

+ π2
v f i

)

. (86)

From (86) we can finally describe the procedure to

detect the rank of W:

1. Decompose the real measurements matrix W̃ using

SVD.

2. Compute the sum of the last N − r singular values

(σr + · · · + σN ).

3. Find the rank as the value of r for which σr + · · · +

σN ≤ T
∑N

p=1

∑F
f =1(π

2
u f,p

+ π2
v f p

), where T is an

experimental constant used to adjust for unac-

counted deviations and for the difference between

the actual value and the expected value of σi .

10. Discussion and Conclusion

In this paper we have shown that the problem of multi-

body structure-from-motion problem can be solved

systematically by using the shape interaction matrix.

The striking fact is that the method allows for seg-

menting or grouping image features into separate ob-

jects based on their shape properties without explicitly

computing the individual shapes themselves. Also, no

prior knowledge of the number of moving objects in

the scene is assumed in the algorithm.

This is due to the interesting and useful invariant

properties of the shape-interaction matrix Q. We have

shown that Q is motion invariant. Even when the ma-

trix is computed from a different set of image-level

measurements W generated by a different set of mo-

tions of objects, its entries will remain invariant. The

motion invariance property of Q means also that the de-

gree of complexity of the solution is dependent on the

scene complexity, but not on the motion complexity.

The shape interaction matrix Q is also invariant to the

selection of individual object coordinate frames. An-

other interesting fact is that the shape interaction matrix

can handle many degenerate cases as well, where ob-

jects may be full 3D object but also linear or planar.

More research is required for the degenerate cases in-

cluding the cases where the motions are coupled.
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Notes

1. While this is beyond the scope of the assumption in this section,

this cluster-and-test approach also requires the prior knowledge

of the ranks of objects, since for example a rank-8 measurements

matrix might have been generated by two line (rank-2) objects

and one full 3D (rank 4) object instead of two full 3D objects, and

hence attempting to find two rank-4 subspaces could be wrong.

2. V and V∗ may still differ up to an orthonormal transformation,

but this is irrelevant to our derivations.

3. Note that the diagonal elements are not included in the cost since

they do not measure any interaction among features. Also note

that the matrix is symmetric so we only need to perform half the

computations.
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