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A Multicast Tree Router For Multichip

Neuromorphic Systems
Paul Merolla, John Arthur, Rodrigo Alvarez, Jean-Marie Bussat, Kwabena Boahen

Abstract—We present a tree router for multichip systems
that guarantees deadlock-free multicast packet routing without
dropping packets or restricting their length. Multicast routing
is required to efficiently connect massively parallel systems’
computational units when each unit is connected to thousands
of others residing on multiple chips, which is the case in
neuromorphic systems. Our tree router implements this one-to-
many routing by branching recursively—broadcasting the packet
within a specified subtree. Within this subtree, the packet is
only accepted by chips that have been programmed to do so.
This approach boosts throughput because memory look-ups are
avoided enroute, and keeps the header compact because it only
specifies the route to the subtree’s root. Deadlock is avoided
by routing in two phases—an upward phase and a downward
phase—and by restricting branching to the downward phase.
This design is the first fully implemented wormhole router
with packet-branching that can never deadlock. The design’s
effectiveness is demonstrated in Neurogrid, a million-neuron
neuromorphic system consisting of sixteen chips. Each chip has
a 256×256 silicon-neuron array integrated with a full-custom
asynchronous VLSI implementation of the router that delivers
up to 1.17G words/s across the sixteen-chip network with less
than 1µs jitter.

Index Terms—Neuromorphic, Asynchronous, VLSI, router,
multicast, deadlock, tree network.

I. NEUROMORPHIC NETWORKS

Neuromorphic chips must be interconnected by routing net-

works to match the scale of the brain, which performs powerful

and energy-efficient computation with billions of slow and

noisy neurons, each reconfigurably connected to thousands of

others. Slow and noisy neurons are emulated with subthreshold

analog circuits [1] that consume similar amounts of current as

in biology—picoamps to nanoamps—computing with devices

that are essentially off (i.e., dark silicon [2]). Recent work has

explored digital neuron implementations [3, 4]. Massive and

reconfigurable connectivity is implemented with fast, time-

multiplexed, asynchronous digital circuits that communicate

the spikes these silicon neurons emit [5, 6]. They are often

organized in two-dimensional (2D) arrays and serviced by

a transceiver that reads spikes from and writes spikes to a

row in parallel [7, 8], an embedded memory that provides

reconfigurable connectivity [9, 10], and an on-chip router that

communicates spike packets between chips [11, 12] (Fig. 1a).
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Fig. 1. Multichip Neuromorphic System. a Neuromorphic chip: Integrates a
router, a silicon neuron array, a receiver and a transmitter that communicate
spikes to and from the array, a RAM that provides flexible connectivity, and
an on-chip router. b Fifteen-node binary tree: Each node is a chip. On-chip
routers, connected by interchip links, service their own array’s spikes and
relay other arrays’ spikes up and down the tree.

Routers for neuromorphic systems are designed to satisfy

four requirements: First, because a packet can be very long—

carrying all the spikes from a neural array’s row (see [7])—

the router should not wait to receive the entire packet before

forwarding it to the next chip. The alternative requires the

router to buffer the entire packet locally, which is prohibitive in

terms of silicon area. Second, because a neural array consumes

packets sequentially—writing all of a packet’s spikes to its

target row in parallel (see [8])—the router can not interleave

packets. Third, because each silicon neuron is potentially

connected to thousands of others, the router should support

multicast routing to efficiently deliver spikes to several chips.1

Fourth, because spike times are used to encode informa-

tion [14–20], the router should have extremely low latency.

Meshes have been proposed for connecting neuromorphic

chips together in a scalable fashion to create large-scale

networks [21, 22] because they offer a large channel bisection2

(O(
√

n) for n nodes). However, meshes have long latencies,

due to their large diameter3 (O(
√

n)). They also do not guar-

antee deadlock-free multicast routing (i.e., one to many) [23],

which introduces additional packet dependencies [24] (see

Section II). When these dependencies form a closed cycle,

packets do not make progress towards their destinations; hence

the routing network is said to be deadlocked. To avoid long

1In addition to multicast routing, one-to-many connectivity can also be
implemented within the neural array via tunable analog diffusors that model
a resistive sheet [13], specialized receiver circuitry (see [10]), or local crossbar
memory (see [4]). However, these fanout techniques are not the focus of our
paper.

2Channel bisection is defined as the minimum (worst case) number of links
connecting two halves of the network across all possible bisections [23].

3Diameter is defined as the largest minimal path, in number of links
transversed, between any pair of nodes [23].
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TABLE I
MESH VERSUS TREE FOR ALL-TO-ALL TRAFFIC

Packets Mesh Tree
relayed Unicast Unicast Multicast

Average O(n3/2) O(n log(n)) O(n)

Peak O(n3/2) O(n2) O(n)

latencies and guarantee deadlock-free multicast routing, we

revisited the tree topology (Fig. 1b), which offers short latency

(O(log n) diameter) and is provably deadlock-free for point-

to-point (i.e., unicast) routing performed in two phases—an

upward phase and a downward phase [25–27].

In this paper, we implement deadlock-free multicast routing

in a tree network for the first time (to the best of our

knowledge). We use up-down, point-to-point routing to target a

particular subtree and recursive branching to broadcast within

that subtree. Deadlock is avoided by restricting branching to

the downward phase (unlike in [28]). Routing one packet

to multiple destinations—multicasting—in this fashion cuts

bandwidth requirements by a factor equal to the fanout, reliev-

ing the bottleneck at the tree’s root (O(1) channel bisection).

The peak number of packets the root relays for all-to-all traffic

(O(n2) messages) drops from O(n2) for unicast to O(n) for

multicast.4 In contrast, each node relays O(n3/2) packets in the

mesh (O(
√

n) channel bisection), which is restricted to unicast

to avoid deadlock. Meshes are provably deadlock-free in the

unicast case when dimension-order routing or virtual channels

are used [23]. Table I provides a complete comparison; the

tree’s and the mesh’s unicast scaling is derived in [27].

Section II describes the tree network’s routing algorithm,

which routes a packet from one to many chips. Section III

describes the router’s logical design, which is fully asyn-

chronous, offering the advantage of consuming energy only

when there is spike activity.5 Section IV describes the router’s

physical design, which was full-custom, and its implementa-

tion in Neurogrid. Section V presents test results, showing a

performance of over one billion words delivered per second

with jitter under one microsecond. Section VI concludes the

paper with a brief discussion.

II. ROUTING ALGORITHM

We present a routing algorithm for a binary-tree network

that supports local broadcast with branching while guaran-

teeing deadlock-free operation. A network consists of nodes

connected by links. Links carry packets that start with a

headword, followed by an arbitrary number of payload words,

and end with a tailword. A link can only carry one word at

a time, and commits to sending all the words of a particular

packet before servicing another packet. It sends each word

ahead as soon as possible—a protocol commonly known

as wormhole routing [23]. This protocol is necessary since

packets can be arbitrarily long, and therefore a node may

4In the unicast case, the root’s two daughters actually carry 25% more
traffic, on average, than the root does [27].

5An additional benefit is reduced noise coupling into sensitive analog
circuits, which model neurons and synapses more compactly and efficiently
than digital circuits [29].
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Fig. 2. Wormhole Routing Deadlocks When Branching Precedes Merging.
a Mesh: Node 1’s packet (red route) acquires the merge (copies packets from
two incoming paths to one outgoing path) on its left but fails to acquire the
merge on its right; the situation is reversed for Node 2 (blue route). Since each
packet must acquire both merges to proceed, progress stalls. b Tree: Node 0’s
packet (red route) acquires the merge in the parent of its destination nodes,
gaining unencumbered access to those nodes. Node 1’s packet (blue route)
waits at this merge until Node 0’s packet is delivered, and then proceeds
as well. Notice that deadlock is avoided by reversing the order in which
branching and merging occur.

not have the capacity to store the entire packet. So a packet

may occupy several nodes at the same time, hence the worm

analogy.

With wormhole routing, deadlock occurs in meshes be-

cause of the additional packet dependencies branching creates

(Fig. 2a).6 Deadlock has been dealt with by interleaving words

from up to n packets on the same link (for n nodes) [30],

extending the approach used in the unicast case, where two

packets are interleaved using virtual channels on the same

physical link [31]. In both cases, the destination must either

provide enough buffering to locally reconstruct entire packets

or employ non-blocking multiport memory structures to do

so (see Discussion in [30]). These options are not viable for

our application. First, packets are arbitrarily long, making

buffering infeasible. Second, packets can branch recursively,

requiring an arbitrarily large number of memory ports (up to

n). Therefore, neither of these solutions are applicable.

A. Local broadcast in a tree

Our solution for implementing branching preserves the

deadlock-free property of up-down routing in a tree (Fig. 2b).

A tree is naturally deadlock-free for unicast communication

(i.e., point-to-point), where a packet is routed up the tree to

an intermediate node (the ancestor). The ancestor merges all

packets destined for its descendants, giving the chosen packet

exclusive access when it is routed down to its destination. In

other words, while upward progress depends on downward

progress, downward progress does not depend on upward

progress, eliminating any possible cyclic dependency—a nec-

essary condition for deadlock. Branching can be supported

provided that it is restricted to the down phase. This restriction

is necessary because if an upward traveling packet branches—

is copied from a node’s daughter to its parent as well as to

its other daughter—this action will cause downward progress

to depend on upward progress (and vise versa), thereby

introducing a cycle.

6Although path-based schemes avoid branching [24], deadlock can still
occur when the packet is copied to destinations enroute, because multicast
packets may contend for the same destinations.
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Fig. 3. Multicast Routing’s Point-to-Point and Branching Phases. In this
example, A = 4, B = {3, 6}, PAB = 1, and PB = 3. In the point-to-point
phase (black), Node 4’s packet is routed up to Node 1, an ancestor shared
with its destination nodes (3 and 6). The packet is then routed down to Node
3, the destinations’ ancestor. At each node, the route field’s most-significant
bit—shifted out—encodes which of two turns to take (U or D, R or L); a stop
code (S) encodes the terminus (Node 3). In the branching phase (purple), the
packet visits Node 3 and all its descendants (i.e., floods). A mode bit (F)
determines whether the packet floods or targets the terminus. Notice that,
since a node and its router reside on the same chip, the node’s neural array
has direct access to its router. Thus, spikes may be routed among its silicon
neurons without leaving that chip (the route is simply D followed by S).

We use a version of up-down routing that consists of a

point-to-point phase and branching phase, whereby a packet

is sent from a source A to multiple destinations B. First, in

the point-to-point phase, the packet travels up the tree until

it reaches the lowest common ancestor of the source and

all the destinations PAB . At this ancestor node, the packet

reverses direction and travels down the tree until it reaches the

lowest common ancestor of all the destinations PB . Second,

in the branching phase, the packet branches recursively—each

node copies the packet from its parent to its two daughters—

visiting all nodes in that subtree (i.e., floods). Nodes that are

not destinations filter packets using information stored at that

node, achieving high-throughput by avoiding memory lookups

while branching.7

B. Packet routing specifics

The point-to-point route from A to PB is encoded in the

packet’s headword using a relative-addressing scheme that is

tailored for traversing a binary tree (Fig. 3). The succession

of ups (U) followed by a down (D) from A up to PAB and

right–left turns (R or L) from PAB down to PB are each

encoded as 1 or 0, respectively, terminated by a stop code

(S)—uniquely identified as 1 followed by 0s.8 At each node,

the route field’s most-significant bit (MSB) is shifted out to

7Memory lookups in our design, which are the slowest operation, do not
impede the packet from being sent to another node. Therefore, all these
lookups can proceed in parallel, in contrast to a network where the memory
lookup decides the packet’s route.

8Note that two bits (D followed by L or R) are used to turn around, although
one should suffice since there are only two choices: continue going up or go
out the other port. To use one bit, however, the hardware must keep track of
the port the packet entered on, which adds complexity.
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Fig. 4. Filtering and Delivering Packets to a Neural Array. a A spike packet
contains a route (R) together with an address specifying the source neuron’s
array (Z), row (Y), and column (X). At the destination, R is stripped, and
an on-chip RAM uses Z to look up a bit that indicates the packet’s fate. In
this case, it is filtered. b In this case, it is delivered. Note that the on-chip
RAM does not perform address translation, which is implemented off-chip
(see Section IV.C).

determine the turn and a 0 is shifted in at the least-significant

bit (LSB). In the up-phase, the packet keeps moving up if a

1 is shifted out (encodes U) but turns and goes down if a

0 is shifted out (encodes D). Once in the down-phase, a 0

or a 1 determines if the packet turns either left (L) or right

(R), respectively. The packet proceeds until the route field is 1

(MSB) followed by 0’s—the stop code (S)—which signifies

it has arrived at PB . In Neurogrid, this encoding makes it

possible to span a four-level tree (15 nodes) with the nine bits

available in the packet’s twelve-bit headword (three bits are

reserved for other functions); supporting more than four-levels

is possible, however, this would require a wider datapath.

The additional step required to filter (i.e., reject) packets

at nodes that are not in B is based on a scheme described

in [9]. The packet’s action at PB is determined by an additional

field in the headword: the flood bit (F). If the flood bit is

set, the packet recursively branches to all PB’s descendants

(flood mode).9 Otherwise, it is delivered to PB exclusively

(target mode). In the former case, information stored in a local

SRAM, accessed with an address provided in the packet’s

second word, is used to filter packets at nodes that are not

in B. Depending on how the SRAM is programmed, the

packet is either filtered or delivered (Fig. 4). If the packet

is delivered, our current system appends two additional bits

retrieved from the SRAM to its row address (third word); they

specify one of four programmable synapse types to activate

in the target neuron (e.g., fast or slow excitation, or fast or

slow inhibition) [9].10 Local fanout is implemented by tunable

analog diffusors, which model a resistive sheet [13].

In addition to handling spikes, the router is designed to

handle configuration and control packets, enabling the entire

system to operate with a single communication fabric. We

9More complex routing schemes are also possible whereby a branching
packet only visits a subtrees n highest levels, but the hardware becomes
significantly more complex. Furthermore, the gains are marginal as bandwidth
becomes more plentiful as you go down the tree (i.e., away from the root and
towards the leaves).

10In addition, a third bit provides four additional options that are used to
disable a particular neuron or select its analog signals to be read out and
digitized.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, MONTH YEAR 4

TABLE II
CHP LANGUAGE CONSTRUCTS

Operation Notation Explanation

Process Pi A composition of communications
Boolean Bi A boolean expression
Guarding Gi ≡ Bi → Pi. Execute Pi if Bi is true

Sequential P1; P2 P1 ends before P2 starts
Concurrent P1∥P2 ∥ takes precedence over ;

Repetition ∗[P1; P2] ≡ P1; P2; P1; P2; . . .. Repeats forever
Selection [G1[]G2] Execute Pi for which Bi is true
Arbitration [G1 |G2] Required if Bi not mutually exclusive

Input A?x Read data from port A to register x
Output A!x Write data from register x to port A
Transfer B!(A?) Write data read from port A to port B

Probe A Is communication pending on port A?

Index x.n nth bit or field n of x
Assign y := x Copy data from x to y
Concatenate y.{i, j} Concatenate y.i and y.j

describe the different packet types and their format in the

Appendix for the interested reader.

III. LOGICAL DESIGN

We implement our routing algorithm with quasi-delay in-

sensitive (QDI) asynchronous circuits, following a synthe-

sis method pioneered by Martin [32].11 First, the design is

specified in a high-level language, Communicating Hardware

Processes (CHP, see Table II). A communication synchronizes

the two processes communicating and may also transfer data

between them. It is implemented in a delay-insensitive manner

by fleshing it out into a request–acknowledge sequence, a

process known as hand-shaking expansion (HSE). Finally,

the HSE is decomposed into a set of boolean expressions

(called guards) that enforce the specified order of signal

transitions. The guards and their corresponding transitions,

which are called a production rule set (PRS), are then directly

implemented with transistors (refer to Appendix for synthesis

examples).

A. CHP specification

The router process provides four functions: (1) Accepts

packets originating from its local spike transmitter or analog-

to-digital converter (ADC)12; (2) Relays packets traveling up

the tree from either of its daughters to its parent; (3) Relays

packets traveling down the tree from its parent to either or both

of its daughters; (4) Delivers packets that have reached their

destination to one of two local memories; one stores synaptic

connectivity, the other stores neuron parameters (see Appendix

for details). To accomplish these tasks, it communicates with

the transmitter and ADC on two input ports (Tx and ADC),

with the daughters on two bi-directional ports (Li,Lo and

Ri,Ro), with the parent on a third bidirectional port (Ti,To),

11The design methodology is quasi (as opposed to fully) delay-insensitive
because some circuits require wire branches to have smaller delays than
gates—otherwise a race condition can occur. In practice, it is relatively
straightforward to ensure the physical design meets the required timing
assumptions.

12The ADC can measure the internal analog values of a subset of signals
for any neuron in the chip, and convert them into packets that are sent off
chip.

and with the local memories on two output ports (Rv and

Bias). It can be neatly decomposed into two- and three-input

merges (Merge and Merge3, respectively), that merge traffic

onto the up and the down paths, and two kinds of splits (Up

and Down), that make routing decisions on the up and down

paths (Fig. 5).

Merge feeds packets on two incoming paths (input on L
and R) into a single outgoing path (output on O) on a first-
come-first-serve basis. Its CHP reads:

Merge
≡ h := true;

∗[ [ h →
[ L → s := left; O!(L?)
| R → s := right; O!(R?)
]; h := false

[]¬h →
[ s = left → L?x; O!x
[] s = right → R?x; O!x
]; h := x.tail

] ]

On initialization, an internal variable h is set to true, indicating

that the next word to be processed is a head; subsequent ones

are processed as payload. The first clause, which is executed

when a head is expected, arbitrates between L and R, updates

s to reflect its choice, and transfers the headword from the

selected input to the output. Then, h is set to false, indicating

that subsequent words are payload. The second clause, which

executes when a payload word is expected, transfers the rest

of the packet to O, copying each word to x to capture the

tail bit (used to update h). When the last word in the packet

is reached, h is re-initialized to true, since x.tail is true,

preparing the process for a new packet. We omit Merge3’s

CHP for economy. However, the code above can easily be

extended to handle any number of inputs.

Up reads the route encoded in an incoming packet’s head
(input on A) and decides whether to keep it on the up path
(output on U ), direct it to the down path (output on D), or
consume it (no output). Its CHP reads:

Up
≡ h := true;

∗[ A?x;
[ h →

dir := x.route[msb] ∥
y.route := x.route × 2 ∥
y.{mode, mem} := x.{mode, mem};

[ y.route = 0 → s := stop
[] y.route ̸= 0 ∧ dir = u → s := up; U !y
[] y.route ̸= 0 ∧ dir = d → s := down; D!y
]

[]¬h →
[ s = stop → skip
[] s = up → U !x
[] s = down → D!x
]

]; h := x.tail
]

The first clause, which is executed only for the head, extracts

the route field’s MSB (stored in dir) and computes the new

route (y.route) by multiplying the old one by 2 (shifting the

bits toward the MSB). Based on dir and y.route, the packet
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has three route options (stop, up, or down);13 the selected

option, which is saved in s, also applies to subsequent payload

words. After dispatching the head with the updated route to

the appropriate output, or skipping this operation in the case

of a stop, h is set to false (x.tail is false for all except the last

word in the packet). The second clause, which is executed only

for the payload, selects the appropriate action (skip, U !x, or

D!x) based on s. When the last word in the packet is reached,

h is re-initialized to true, since x.tail is true, preparing the

process for a new packet.

We can further decompose Up by observing that it performs

two basic functions: A decision, where the packet’s destination

is computed and saved in s; and a conditional split, where the

packet is relayed to one of the outputs or consumed based on

s. We implement the first function using a decision block S

(Fig. 5, upper right), which computes s. We implement the

second function using an unconditional split, which copies a

packet to both outputs paths, and two filters (F), which are

configured to pass packets only for particular values of s.
Down reads the route encoded in an incoming packet’s head

(input on A) and decides whether to send it to its left daughter
(output on L), its right daughter (output on R), or one of
its two local memories (output on M1 or M2). It functions
equivalently to Up—L maps to U and R maps to D—except
in the case of a stop code. In that case, instead of consuming
the packet, it delivers it either exclusively to a local memory
(target mode) or to both daughters as well (flood mode). Its
CHP reads:

Down
≡ h := true;

∗[ A?x;
[ h →

dir := x.route[msb] ∥
y.route := x.route × 2 ∥
y.{mode, mem} := x.{mode, mem};

[ y.route = 0 ∧ y.mode = t →
s := target;
[ y.mem → M1!y []¬y.mem → M2!y ]

[] y.route = 0 ∧ y.mode = f →
s := flood; L!y ∥ R!y ∥
[ y.mem → M1!y []¬y.mem → M2!y ]

[] y.route ̸= 0 ∧ dir = l → s := left; L!y
[] y.route ̸= 0 ∧ dir = r → s := right; R!y
]

[] ¬h →
[ s = target →

[ y.mem → M1!x []¬y.mem → M2!x ]
[] s = flood → L!x, R!x,

[ y.mem → M1!x []¬y.mem → M2!x ]
[] s = left → L!x
[] s = right → R!x
]

]; h := x.tail
]

As expected, this process is similar to Up, except for how a

stop code (y.route = 0) is handled. In target mode (y.mode =
t), the packet is sent to either M1 or M2 (depending on

y.mem). In flood mode (y.mode = f), it is sent to L and R as

well. It is important to note that once a packet begins branching

it does so recursively at all daughter nodes—because the

13The stop condition should never hold true since routes are not supposed
to terminate on the up path. However, since we can not guarantee this is the
case, we explicitly check this condition.
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Fig. 5. Router Decomposition. The router (top left) communicates with
two daughters (Li, Lo, Ri, Ro), a parent (Ti, To), two local sources (grey)
and two local sinks (grey). Its decomposition (center) combines upward and
downward flowing traffic through merges (Merge, Merge3) that feed into
conditional splits (Up, Down), which route or consume packets. Conditional
splits are further decomposed (top right) into a decision (S), split, filter (F)
cascade.

route fields of these branched packets are also stop codes

(y.route = x.route × 2 = 0).

We decompose Down in a similar manner as Up, which

results in a split–decision–split–filter cascade (Fig. 5, upper

right). Alternative decompositions are possible, however our

choice simplifies the design effort because Down is two

instances of Up—albeit with slightly different control logic—

with the addition of an extra split at the input.

B. Datapath implementation

To implement the router’s four functional blocks (Decision,

Split, Filter and Merge), we used a datapath template where

control is relayed from bit to bit, flowing perpendicular

to the data (Fig. 6) [33]. Bit-level transactions allow fine-

grained pipelining in an asynchronous implementation, boost-

ing throughput by eliminating completion trees (i.e., bits are

not synchronized until their final destination). We paired bits

together for energy efficiency, however, slicing the router’s

twelve-bit datapath into six bit-pairs. Each is communicated

by a transition on one of four lines (1-in-4 code), half as

many transitions as independent bits require (1-in-2 code).

Furthermore, a single acknowledge line is used, instead of

two [34].

Decision (S) is implemented with four logic blocks:

HeadDetect, Shift, StopDetect, and Decide (Fig. 6a).

HeadDetect determines when a headword is expected by

monitoring the tail-bit (h := x.tail). Shift computes the new

route (y.route := x.route × 2) and extracts the direction

(dir := x.route[msb]). StopDetect determines if the stop con-

dition holds (y.route = 0). And Decide chooses one of three

(s := stop, up, down) or four (s := target, flood, left, right)
routing options, in the case of Up and Down, respectively.

Instead of computing s explicitly, however, it decides what
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Fig. 6. Datapath for Up—Control Flows Perpendicular to Data. a Decision:
HeadDetect monitors the tail bit and signals when a headword is received.
Shift shifts the headword’s bits (Pairs 0 through 4) and extracts the direction
bit. StopDetect propagates a true signal if its bits are both zero, thereby
determining if a stop code is present. Decide uses both pieces of information
to determine the appropriate actions (filter or relay) two downstream filters
(U and D) should perform. In Down, it interrogates the mode and memory
bits as well (grey). Split (circles with two out-going arrows) copies the data
to two paths. b Filter: CondSelect captures the desired action during the
headword communication and Gate passes or filters bit-pairs accordingly.

action (filter or relay) the downstream Filters should perform.

In Down’s case, this decision requires interrogating the mode

and memory bits.

Split is implemented with a single logic block (circles with

one input and two outputs in Fig. 6a, right). It feeds packets

to the two Filters, together with control signals from Decide

that specify the appropriate action to perform.

Filter (F) is implemented with two logic blocks: CondSelect

and Gate (Fig. 6b). CondSelect receives instructions from

Decide during the headword communication. Gate performs

the action instructed to every word in the packet, bit-pair by

bit-pair, either passing the pair to the output or consuming it.

Merge is implemented with two logic blocks: SideSelect

and Join (not shown). It is organized similarly to Filter,

with CondSelect replaced by SideSelect and Gate replaced

by Join [33]. Both blocks receive a bit-pair from each of

two incoming paths—SideSelect arbitrates between them on

a packet-by-packet basis and Join passes the chosen path’s

bit-pairs to its output.

While the twelve-bit datapath is sliced into six 1-in-4 groups

(e.g., a0 a1 a2 a3), the perpendicular control path uses

a 1-in-2 code (e.g., bt bf). These choices resulted in the

logic-level implementations shown in Fig. 7 (see Table III

in the Appendix for logic syntax definition). HeadDetect’s

bt and bf outputs are tied to StopDetect’s bt and bf

inputs, respectively. Thus, it propagates a stop signal when

a headword is received and a go signal when a payload word

is received. And HeadDetect’s bt and bf outputs are tied

to Shift’s bf and bp inputs, respectively. Thus, it shifts in

a 0 when a headword is received and does not shift when

a payload word is received (Shift’s bt input is not used).

bf = ~h & (af | at)

bt =  h & af

c0 = a0

c1 = a1

c2 = a2

c3 = a3

df = bf | a1 | a2 | a3

dt = bt & a0

cf = bt | af

ct = bf & (at | ap)

df = bt | at

dt = bf & (af | ap)

cf = q & (af | at) & (bf | bt)

ct = p & (af | at) & (bf | bt)

c0 = bf & (a0 | a2) | bp & a0

c1 = bt & (a0 | a2) | bp & a1

c2 = bf & (a1 | a3) | bp & a2

c3 = bt & (a1 | a3) | bp & a3

df = a0 | a1

dt = a2 | a3

dp = bp

Head

Detect

af

at

btbf

Stop

Detect

c0

c1

c2

c3

btbf
a0

a1

a2

a3
dtdf

Shift

c0

c1

c2

c3

a0

a1

a2

a3
dtdf dp

btbf bp

Decide

cf

ct

df

dt

btbf

af

at

ap

Gate

c0

c1

c2

c3

btbf
a0

a1

a2

a3
dtdf

Cond

Select

ctcf

bf

bt

af

at

c0 = bf & a0

c1 = bf & a1

c2 = bf & a2

c3 = bf & a3

df = c0 | c1 |

     c2 | c3
dt = bt

Fig. 7. Control and Data Logic Blocks (left and right column, respectively).
HeadDetect: Sets state variable (h) when tail-bit is high (at), signals head
(bt) for next word, resets state, and then signals payload (bf) for subsequent
words. Decide: In Up, signals up-path to pass (ct) and down-path to filter
(df) if direction bit is set (at), or up-path to filter (cf) and down-path to
pass (dt) if it is reset (af). Unless a stop-code is present (bt), in which case
signals both paths to filter. Communications (on ct and dt) triggered by
payload-words (ap) are vacuous. CondSelect: Captures instruction during
head communication (bt sets q or bf sets p), and instructs datapath to
pass or filter accordingly (cf or ct, respectively). q and p are reset during
tail communication (at). StopDetect: Passes data and, if both bits are zero
(a0), propagates stop signal (bt sets dt). Shift: Shifts a 0 (bf) or 1 (bt)
into outgoing bit-pair’s LSB, shifts incoming bit-pair’s LSB (= a1|a3) into
outgoing bit-pair’s MSB, and shifts incoming bit-pair’s MSB (= a2|a3) out
(dt or df). Or passes data unchanged (bp). Gate: Passes data (bf) or
consumes it (bt).

CondSelect’s ct and cf outputs are tied to Gate’s bt and bf

inputs, respectively. Thus, it filters or relays all the packet’s

words. Merge is controlled similarly.

We implemented these logic blocks by writing down HSE

for each one (i.e., choosing a specific signal transition se-

quence) and decomposing the HSE into a PRS (i.e., a set of

boolean expressions that enforce the specified order of signal

transitions). Each production rule corresponds to a gate’s pull-

up or pull-down (depending on the signal transition’s sign).

The HSE, logic simulation and circuits for two of these blocks

(HeadDetect and StopDetect) is provided in the Appendix for

interested readers (Fig. 15). Due to space limitations, we are
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Fig. 8. Floorplan with Sample Datapath Layout. The router’s logic elements
are placed within a thin ring around the chip’s periphery and connected as
shown by the color-coded schematic diagram (middle). Each of its three bi-
directional ports (Li Lo, Ti To and Ri Ro) uses three pad-groups. Each pad-
group has seven IO-pads (2 power, 4 signal, 1 enable). The layout for the
datapath that implements Decision and Split (Fig. 6a) and two Filter paths
(Fig. 6b) is shown (inset).

unable to provide transistor-level schematics for all the blocks

that make up the router. However, we do provide PRS for the

six blocks shown in Fig. 7 in the Appendix (Fig. 16).

IV. PHYSICAL DESIGN

The physical design followed a full-custom flow, where each

block was layed-out by hand, since automated place-and-route

tools were not readily available for our asynchronous design

style. Although hand layout was tedious, it allowed for an

efficient bit-sliced design that closely followed the datapath

description (see layout inset in Fig. 8).

A. Router floorplan

The main challenge in floor-planning the router was map-

ping its tree-like structure into the thinnest possible ring

around the chip’s perimeter (called the crust), and wiring all

the components together (Fig. 8). To minimize the router’s

area, all datapath blocks were placed within the IO-pad ring,

utilizing a region that is traditionally unused. Router blocks

were placed to minimize connection lengths between blocks.

For instance, the merge that combines Li- and ADC-traffic

sits on the lower left while the one that combines Ri- and

transmitter-traffic sits on the upper right. FIFOs were inter-

spersed between router blocks to provide queueing and to

boost throughput by breaking up long buses; their number was

determined by the area available. Placement and wiring was

particularly challenging at the top of the chip where all router

paths converge, causing the greatest congestion.

The entire router was wired using only four routing channels

(two on layer M1 and two on layer M3), each containing six

1-in-4 groups that lie on the crust’s inner periphery. Blocks

were placed and wired using custom placement and wiring

scripts. Several wiring channels between segments extend long

distances (>300µm), and we employed two techniques to min-

imize the effect of crosstalk and ensure good signal integrity.

Fig. 9. Neurocore. A 12 × 14 sq-mm die fabricated in a 180nm CMOS
process integrates: SNA, a 256×256 silicon-neuron array. RAM0, a 256×16-
bit SRAM that specifies target synapse type or no connection. RAM1, an
SRAM that specifies eighteen configuration bits and sixty-one analog biases—
common to all the Neurocore’s silicon neurons. DACs, sixty-one digital-to-
analog converters that produce the analog biases. RstMB, five reset signals
and a master bias circuit that generates the DACs’ reference current. ADCs,
four analog-to-digital converters that digitize any selected neuron’s internal
analog signals. Li Lo, Ti To and Ri Ro, input or output ports—organized in
three groups of seven pads—that support bidirectional communication with
the Neurocore’s parent and two daughters. The unlabeled pads power digital
or analog circuitry.

First, wiring channels were organized so 1-in-4 groups were

shielded from each other (as well as the acknowledge), limiting

crosstalk to within a group where only one signal transitions

at a time. Second, cross-coupled active pulldowns were placed

within each group—pulling down a group’s other three lines

when one was raised.

B. Chip I/O

An additional challenge was to accommodate the router’s

three bidirectional ports in a standard 180-ball wire-bonded

package. Without any serialization, each bidirectional port re-

quires 84 pads (48 data + 12 enables + 24 power, implementing

twelve 1-in-4 groups), which total 252 pads for all three ports.

Therefore, to fit in the desired package, we implemented two-

to-one multiplexing across 1-in-4 groups, reducing the number

of pads to 42/port and cutting the total IO-pad count to 126.

To maintain the same bandwidth with half the pads, we send

data on every transition with a two-phase 1-change-4 (1c4)

protocol (see [35] for specifics), which is twice as efficient

as the four-phase 1-in-4 protocol used within the chip. Our

custom input and output pads included circuitry to decode

and encode 1c4, respectively. We placed multiplexor and de-

multiplexor blocks adjacent to the pads. Each port’s pads were

largely placed on its corresponding side of the chip (left, top,

or right) to facilitate building a multichip PCB with straight-

shot connections between adjacent chips.

C. Fabrication

The router was part of the Neurocore chip, which was

fabricated in IBM’s 180nm mixed-signal process (Fig. 9). The
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Fig. 10. Neurogrid. A 6.5 × 7.5 sq-in circuit board assembles sixteen
packaged Neurocore dies into a binary tree with 91M spikes/s links (peak rate).
This system models spiking neural networks with up to a million neurons,
organized in up to 16 layers, each with up to 256×256 neurons. Neurocores
are rotated to allow straight shot connections as shown in Fig. 1b. The board
also has a CPLD (Lattice ipsMACH LC4512C), a USB interface chip (Cypress

Semiconductor FX2), regulated digital and analog power supplies for each
Neurocore (Power), parallel IO connectors (Connector) at the tree network’s
leaves and root, and USB and JTAG connectors (see Fig. 11 for a simplified
schematic). The back of the board holds tie-down resistors, bypass capacitors
and jumpers; it has no active components.

12 × 14 mm2 die was dominated by the 256 × 256-silicon-

neuron core (22 million transistors), with the router and its 180

pads confined to the periphery (over 1 million transistors). The

pads were wire-bonded to a custom two-layer substrate with

short traces to keep inductance below 4 nH (keeping LdI/dt
perturbations within acceptable margins).

Sixteen Neurocores were assembled on a 6.5×7.5 sq-in

printed circuit board to build Neurogrid, a neuromorphic

system designed to simulate a million cortical neurons con-

nected by billions of synapses in real-time (Fig. 10). To

connect each of its million neurons to about five thousand

others, Neurogrid uses multicast routing together with unicast

routing and analog signaling. Unicast routing realizes arbitrary

connectivity by translating each incoming packet to about

eight outgoing packets using a FPGA daughterboard with

32MB of SRAM. This daughterboard mounts to Neurogrid

via the connector that sits above the root chip (Fig. 11).

Multicast routing realizes translation-invariant connectivity

between corresponding locations on about six Neurocores

using the 256× 16-bit SRAM in each Neurocore. And analog

signaling realizes connections to about a hundred neighboring

neurons on the same Neurocore using a diffusor network

with programmable space-constant [13]. These three routing

mechanisms realize the cortex’s columnar and topographic

organization efficiently [36].

V. TEST RESULTS

We tested the fabricated chips to verify the router’s func-

tionality, and found the design to be fully functional with good

0

1 2

5 63 4

11 137 9 12 148 10

CPLD

FX2FPGA

LA

USB

Neurocore

Connector

PC

15

Fig. 11. Daughterboard mounted atop Neurogrid’s main board. Its SRAMs
(Cypress Semiconductor CY7C1071DV33) store 32 MBytes with a 50 ns
access time for 4 bytes, which specify a target neuron’s chip, row, and
column addresses. A FPGA (Xilinx Spartan-3E, 100MHz clock) calculates
a base address from which to begin reading SRAM entries from the source
neuron’s chip, row, and column address, parsing the incoming packet to obtain
this information. Four SRAM chips are visible (lower left); there are four
more on the other side, together with the FPGA. To characterize the router’s
performance, probe packets injected by the PC were relayed through the FX2
and the CPLD (insert), routed up from Neurocore 7 to Neurocore 0, then
down to Neurocore 9, and then on to the daughterboard (moved from the
root). It’s FPGA acknowledged Neurocore 9; the logic analyzer’s (LA) probe
recorded these communications.

yield. Individual Neurocores were first verified using a single-

chip testboard with a zero-insertion-force socket. Packets were

injected into the router from a PC to exercise all the internal

datapaths. Then router outputs were looped back to inputs (via

programmable logic on the PCB) to emulate multichip network

traffic and packet contentions. Of 216 packaged die tested, 167

passed these router tests, a 77.3% yield. Further tests were

performed on these 167 die to verify that their analog circuits

and analog–digital interfaces were functional; the ultimate

test configured the chip’s neurons to synchronize through

recurrent inhibition. Seventeen (17) die failed these tests (e.g.,

overheated or did not produce spikes) and 23 were only

partially functional (e.g., displayed gradients across the array

or defects in certain portions), leaving 127 fully functional die,

an overall yield of 59%. Neurocores with full functionality

(including a working ADC, DAC, etc.) were selected for

populating Neurogrid boards. In total, five Neurogrid boards

were assembled; all experiments described in this paper were

performed on one of the boards (shown in Fig. 10).

A. System bring-up and functional testing

We interact with Neurogrid through a custom graphical user

interface (GUI) that allows us to configure its Neurocores

individually, visualize their activity, and stimulate them. The

board includes a Cypress FX2, which supports USB 2.0 com-

munication with a PC, and a Lattice CPLD, which interfaces

between the Neurocores’ 1c4 ports and the FX2’s 16-bit IO

port (see Fig. 11). System bring up entails:
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1) Reset the entire system (toggle resets via CPLD, soft-

ware controlled).

2) Initialize each Neurocore’s synaptic connectivity

(SRAM), neuron and synapse parameters (DACs), and

desired routes for spike packets to their default states

(e.g., no spiking). Programming packets are sent to

each chip through the router network sequentially.

3) For jitter tests, configure a daughterboard’s FPGA as a

packet sink and attach a logic analyzer connector to sniff

packets.

Once the system is initialized, the analog parameters of each

Neurocore are configured through the GUI so neurons generate

spontaneous spiking activity, injecting spike packets into the

network with their programmed route.

We found that a Neurocore could output spikes at a maxi-

mum rate of 43.4M spikes/s—or 663 spikes/s per neuron, on

average. This rate is dictated by its neural array’s transmitter

circuitry (see [7, 37] for detailed descriptions of the trans-

mitter). The transmitter takes 86 ns to transfer a row’s spikes

in parallel to the neural array’s periphery, and encodes the

row’s address (12-bit word) at the same time. Then, it takes

23 ns to encode a column address for each spike read from

that row. While this column address encoding is occurring,

the next row’s spikes are read out of the array. Hence, the

86 ns it takes to read them is hidden if the previous row

had more than three spikes. Thus, a maximum transmission

rate of 43.4M spikes/s (the rate at which column addresses

are encoded) is achievable. These row and column cycle-

times were determined by finding the shortest interval between

short packets (< 3 column addresses) and the average interval

between latter column addresses in long packets (> 3 column

addresses), respectively.14 The transmitter’s peak output rate

was less than a link’s (see below), so we had to merge traffic

from several chips in order to measure a link’s performance.

To test the router’s multicast capability, and thereby demon-

strate our central claim of deadlock-free, multicast routing,

we configured Neurogrid to simulate a neural network with

fifteen cell-layers. The layers were arranged in a ring—the

first and last were neighbors—each layer connected to its

three nearest-neighbors on either side, as well as to itself

(Fig. 12). This connectivity pattern was implemented using

the router’s multicast function. With the spatial decay con-

stant we programmed for the analog diffusors, each neuron

received inhibition decaying exponentially with distance such

that 8000 neurons (in a cylinder seven-layers thick with a

nineteen-neuron radius) contributed 50% of its total inhibition.

Such recurrent connectivity patterns are expected to give rise

to globally synchronous spike activity, which is what we

observed, confirming that the connectivity was implemented

correctly by the router’s multicast capability.15

14The first two column addresses are output at a faster rate because they
are encoded at the same time the route, chip address and row address are
being output, thereby hiding the column’s cycle-time.

15The average spike rate was kept low (0.42 spikes/s) to allow spikes from
all the neurons to be logged over USB, which can carry up to a million
spikes/s (limited by our current CPLD firmware).

Fig. 12. Multicast Capability Demonstration. Simulation results of a neural
network with fifteen 256 × 256 cell layers—983,040 neurons in total. Spike
rasters (from a tenth of each layer’s neurons) reveal global synchrony, as
expected from the network’s recurrent inhibition. Each cell layer’s neurons
inhibit themselves as well as neurons in three neighboring layers to either
side (the central layer’s connectivity is shown). The layers are arranged in
a ring, so the first and last layers are nearest neighbors. The synchronized
activity was rhythmic, with a frequency of 3.7 Hz; the neurons fired 0.42
spikes/s on average. The tick marks are 250ms apart.

B. Router performance

The router’s performance is characterized by the mean

and standard-deviation of its latency distribution. However,

except for the heaviest loads, the mean latency was largely

independent of the load. The reason being that the propagation

delay of the 100 to 300 FIFOs traversed in each chip (each

FIFO adds approximately 1.2ns) dominates the mean latency.

For instance, the latency through a single chip—from port

Li, through its up path’s merge and split, through its down

path’s merges and splits, to port Lo—was 181ns.16 Accord-

ing to the theory (see below), the latency due to queuing

equals this FIFO latency when the load is 93%. Therefore,

we focused on measuring the latency distribution’s standard-

deviation. Specifically, we measured the standard deviation of

the intervals between packets injected into the network at equal

intervals, defined as the jitter. To measure the worst-case jitter,

we programmed the computer to send these packets—called

probe packets to distinguish them from traffic packets—over

the longest route in Neurogrid’s tree network at 135µs intervals

(see Fig. 11). The FPGA daughterboard acknowledged receipt

of these probe packets while a logic analyzer recorded their

time of arrival with 125ps resolution (Tektronix TLA7012).

To measure the jitter’s dependence on the load, the eight

Neurocores at the tree’s leaves (ignoring Neurocore 15) were

programmed to generate packets at a rate of λchip words/s

and route them up to Neurocore 0 (the root) and then down

to Neurocore 9. This traffic pattern loaded the link connecting

16These measurements and those of the interNeurocore link’s speed,
mentioned at the end of this section, were made on a board with half of
its Neurocores replaced by breakouts to build an eight-chip network. The
breakouts connected neighboring Neurocores together while providing access
to the signals running between them (at test points).
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Fig. 13. Jitter measurements and fit with theory. The jitter (tjitter) is
plotted for various loads (λtotal) and fit with the theoretical prediction (dots
and line, respectively; µlink = 75.7M word/s). For instance, for a load of
72.2M word/s, the probe-packet interval distribution (inset) has 0.9µs standard
deviation, defined as the jitter. The bins are 100ns wide. The central one had
53,480 of a total of 104,855 intervals; it was cut off at 8000 to show more
detail. Note that the last jitter datapoint deviates from the theory due to load-
shedding, which occurs because of queueing in the neural array. That is, as
a neuron spends more time waiting for its spikes to be read, its interspike
interval lengthens by that amount of time, resulting in a lower-than-expected
spike rate, or load.

level i to level j with

λi,j =

{

2iλchip j > i (upward link)
23λchip j < i (downward link)

(1)

words/s, where levels are numbered from 0 (leaves) to 3

(root). Thus, the probe packet experienced a traffic pattern

identical to that produced if the traffic packets were multicast

to all sixteen chips by flooding at the root. However, unlike

with flooding, the relatively slow FPGA that acknowledged

communications on Neurocore 9’s left port (at 20ns/word) was

not overwhelmed because traffic packets were not ejected.

The jitter can be predicted by calculating the variance each

link adds and summing these terms over all the links the

probe packets traversed. Assuming arrival and service times

are Poisson-distributed, the mean and variance of the number

of cycles spent waiting at each link is given by [38]

⟨w(i, j)⟩ =
λi,j/µlink

1 − λi,j/µlink

⟨(w(i, j) − ⟨w(i, j)⟩)2⟩ =
λi,j/µlink

(1 − λi,j/µlink)2

where µlink is the link’s capacity (i.e., its mean cycle-time is

1/µlink), which, in contrast to the varying loads, is the same

for all links. Taking the square-root of twice the total variance

yields the jitter:

tjitter =

√
2

µlink

√

4p

(1 − p)2
+

p/2

(1 − p/2)2
+

p/4

(1 − p/4)2
(2)

where p = λtotal/µlink expresses the total traffic, λtotal =
8λchip, as a fraction of the link capacity. As expected, the

jitter diverges when the total traffic exceeds the link capacity

(i.e., p > 1).

Note that while the jitter is measured for (fully transmitted)

probe packets, the traffic is measured in word/s, not packet/s.

Traffic includes a mixture of non-burst-mode packets (i.e.,

single-spike packets, which have five words) and burst-mode

packets (i.e., multiple-spike packets, which have additional

column address words). It is not possible to limit the mea-

surements to the former because burst-mode packets occur

probabilistically. The probability increases with the load each

chip generates, and thus depends on how the total load is

distributed across chips. For instance, a higher burst rate will

occur if the same total load was distributed among a smaller

number of chips. Thus, the resulting word-rate will be lower,

and the jitter (or latency) will be lower. Characterizing jitter in

terms of word-rate avoids this ambiguity, because the interchip

link’s performance is specified in word/s.

Our experimental measurements of tjitter’s dependence on

λtotal agreed well with our theoretical predictions (Fig. 13).

We obtained a good fit with µlink, the one free parameter, set

to 75.7M words/s, suggesting that a link could communicate

no more than one word every 13.2ns. This cycle-time appears

to be limited by the pads, not the datapath. The datapath’s

cycle-time is no more than 6.6ns/word while the pad-to-pad

cycle-time is 11ns/word. The former was determined by mea-

suring the latency distribution of probe packets that sometimes

collided with transmitter packets at a merge; the latter was

determined from peaks in the inter-word interval distribution

captured with a logic analyzer probe between two chips at the

tree’s lowest levels. Thus, our fit’s 13.2ns/word link capacity is

a little slower than the pads but much slower than the datapath.

The difference between the fitted 13.2ns/word link capacity

and the measured 11ns/word pad-to-pad cycle-time is probably

due to the difference in the length of PCB traces connecting

chips near the tree’s leaves (0.6cm) and near its root (3.3cm).

Given the specification that no packet should experience

more than 1µs of jitter, the tree network can deliver over

a billion words/s. We came to this conclusion by using

our theoretical fit to interpolate the load at which a packet

traveling the longest route in the network experiences 1µs

jitter. This procedure yielded λtotal = 73.0M words/s, a load

that corresponds to 96% of µlink = 75.7M words/s, the fitted

link capacity. Multiplying further by 16 to account for these

words being multicast from the root to all 16 chips yields a

delivery rate of 1.17G words/s. Note that a spike is represented

by a single word at high traffic levels—where the transmitter

appends additional column addresses to a packet for each

additional spike read from the same row (called burst-mode).

C. Router power

Neurogrid’s mainboard drew 0.876A at 3V (2.63W) with

one million neurons spiking at 0.7Hz. This activity was

measured by unicast routing every spike to the PC, each one

traversing 4 links on average.17 The current dropped by 12mA

when we reduced the spike rate to 0.06Hz, indicating that the

digital communication consumed negligible power. Dividing

17The CPLD–FX2 interface can only handle up to 1 M spikes/s in its current
implementation, which limited the average spike rate to 0.7Hz, as headroom
must be left to accommodate rate fluctuations.
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the change in power consumption (36mW) by the change

in total spike rate (0.64 MHz) as well as the number links

traversed per spike (4) yields an energy efficiency of 14nJ

per spike per link. Note that changing the on-chip tunable

diffusor networks does not impact power consumption, since

the diffusor simply redistributes the current to implement

fanout over a larger area [13].

The daughterboard consumed 0.32W on standby, and this

increased to 0.49W to perform 64 memory lookups for each

incoming spike. Each lookup provides a target’s address as

well as a weight that represents the probability that the

spike is sent to this target [39]. In our experiment, all the

weights were set to a probability of 1/16, which resulted

in 4 outgoing spikes (to the mainboard) per incoming spike

(to the daughterboard), on average. Dividing the total power

consumption (0.32W+0.49W) by the frequency of memory

look-ups (64×1MHz) yields an energy efficiency of 12.6nJ

per memory lookup.18

In addition to characterizing the efficiency of implementing

fanout through multicast communication on Neurogrid’s main-

board or address translation on Neurogrid’s daughterboard,

these energy measures enable us to quantify the energy savings

for different combinations of mainboard-level multicast fanout

(14nJ per spike per link) and daughterboard-level unicast

fanout (12.6nJ per memory lookup). For each memory look-up

avoided by using multicast fanout, 12.6nJ is saved plus 14nJ

times the path length (in links) from the root to the lowest

common ancestor.

VI. DISCUSSION

The design that we have presented represents a major

advance for building multicast and deadlock-free routers. Our

compact design is small enough to fit in the periphery of

each chip, allowing chips to connect together seamlessly to

construct multichip networks. As a concrete example, we used

our router as the communication backbone for Neurogrid, a

fully functioning sixteen-chip neuromorphic system that is

the first with one-million spiking silicon neurons operating

in real time. This system consumes 3.5W (mainboard plus

daughterboard) thanks to an asynchronous implementation. To

match the interchip link’s cycle time (6.6ns per half word),

a synchronous design would require a 150MHz clock. We

estimate that distributing this clock across 16 chips would

consume 10W in active power.

Our multicast approach is more scalable than previously

proposed mesh networks that rely on unicast routing where

fanout is implemented by sending a separate packet to each

target (O(n) scaling verses O(n3/2) for all-to-all traffic).

In particular, multicast enabled our router to deliver 1.17G

words/s across sixteen chips with 1µs jitter—12.9 times a

link’s peak bandwidth (of 91M words/s) and 4.3 times a

chip’s total input-to-output bandwidth (of 273M words/s)—

effectively overcoming the bottleneck at the tree’s root. Fur-

thermore, unlike a bus or 1D network [10, 11], our tree router

18Dividing by 64 instead of 4 is justified because the energy use is
dominated by transferring addresses between the FPGA and the SRAM chips
on the daughterboard.

can take advantage of spatial clustering by mapping clusters

onto subtrees. Such clustering is observed in the cortex where

axons branch close to their targets (c.f., multicast), as opposed

to branching near their soma (c.f., unicast).

To the best of our knowledge, our router is the first to

ensure deadlock-free multicast communication (i.e., no router

configuration can result in deadlock). Existing router designs

for large-scale multichip neuromorphic systems fall into two

categories: flat or hierarchical topologies.19 SpiNNaker [41]

(a mesh network of degree 6)20 uses a flat topology that

can lead to deadlock while multicasting.21 While deadlock-

free multicast may be achieved by implementing a virtual tree

on a mesh, this software-based approach results in a scaling

that matches multicast tree networks (see Table 1) while using

more resources (nodes of degree 4 versus degree 3). In addi-

tion, implementing the virtual tree requires memory lookups

enroute, resulting in longer latencies. FACETS [42] (a two-

level network with degrees 9 and 6) and HiAER [43] (a two-

level network with degrees 2 and 5) use a hierarchal topology

but are not guaranteed to be deadlock-free because branching

is allowed on the upward path. Hardware measurements of

throughput versus latency were not available from any of these

systems for comparison at the time of publication.

Moving beyond neuromorphic systems, we believe our

router can also be used in other domains. For example,

our router has a flexible communication protocol that allows

arbitrary length payload, which can support any data format.

Also, the sender can inject a packet into the network without

knowing its length, which is useful for streaming data in real

time. Also networks that require more arbitrary connections

than the daughterboard approach provides may be supported

by expanding the on-chip SRAMs’ capacity. These SRAM’s

translate packets in parallel, providing scalable bandwidth.

This flexibility and scalability, in addition to its low-latency

multicasts and low-power consumption, make our design an

attractive candidate for a wide range of multichip systems.

VII. APPENDIX

A. Packet Types

The packet types the router handles include Spike, Connect,

Bias, and Sample (Fig. 14). These types are processed at

their targets based on two operation bits: Memory (M) and

Write (W): M determines whether the packet is sent to the

SRAM that specifies synaptic connectivity (Spike or Connect)

or to the SRAM that specifies neuronal parameters (Bias). W

determines whether the packet’s data (third word) is written to

the specified address (second word). Sample packets contain

digitized samples of particular analog signals recorded from

19We do not compare with on-chip networks such as ConvNet [40], a system
with two FPGAs, each implementing a mesh network of degree 4.

20Degree is defined as the number of bidirectional links each node has.
21SpiNNaker detects deadlock by monitoring the amount of time packets

spend queueing; packets that wait longer than a set maximum time are
dropped. To minimize the number of packets dropped, their network is
designed for the worst-case traffic pattern and is then underutilized during
normal operation. In our view, this design choice will lead to higher power
consumption due to larger devices and higher leakage when compared with
our deadlock-free approach.
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0 RouteRouteRoute 0
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0 1
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1 RouteRouteRoute 0
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0 1
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1 ArrayArrayArray 0

FilterFilterFilter 0

0 1
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11 10 9 2 1 0

0 RouteRouteRoute 0

0 A ADCADCADC B 0

CountCountCount 0

0 1

Fig. 14. Packet Format and Various Types. Generic packet: Consists of
a route, an address, an arbitrary number of additional words, and a tail.
Operation bits: Specify whether to deliver the packet to the SRAM that stores
synaptic connections (M = 0) or the one that stores neuronal parameters
(M = 1) and whether to perform a read (W = 0) or a write (W = 1).
Spike: Used to communicate (W = 0) a spike from a source array (Array) to
a target array (Route)—exclusively (F = 0) or to all its descendants as well
(F = 1). May have multiple column addresses (burst-mode) Connect: Used
to program (W = 1) the synaptic connectivity SRAM (M = 0) of a target
array (Route) to filter or deliver (Filter) spikes from a specified source array
(Array). Sample: Used to communicate (W = 0) a digitized sample (Count)
of a preselected analog neuronal signal. Two additional bits (A and B) specify
which of four ADCs on that chip the sample came from—they share the same
base address (ADC). Bias: Programs (W = 1) target’s neuronal parameter
SRAM (M = 1) to set the specified bias (Bias) to the value given (Count).

TABLE III
HSE AND PRS PRIMITIVES

Operation Notation Explanation

Signal v Voltage on a node
Complement ˜v Inversion of v
And v & w & takes precedence
Or v | w over |

Set v+ Drive v high
Clear v- Drive v low
Wait [v] Wait till v is high

Sequential u -> v+ [u];v+ in HSE
Concurrent v+,w+ v+,w+ in HSE

Repetition *[...] Just like in CHP

a preselected neuron, such as its membrane potential or the

postsynaptic currents of one of its four synapse types.

B. Example Circuits and Production Rules

We provide schematics, together with logic simulation and

HSE for a control and a data block (Fig. 15). In addition,

we also provide production rules for the six blocks shown in

Fig. 7 (Fig. 16). Please refer to Table III for a description of

HSE and PRS primitives.
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||*[[at & ~bi]; q+; bf+; ao+; [~at & bi]; bf-; ao-]
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bf bt bi

HSE: Stop Detect
  *[[bv & ax & ~ci]; cx+; [~bv & ~av & ci]; cx-]
||*[[bt & a0 & ~di]; dt+; [~bv & ~av & di]; dt-]
||*[[bf & av & ~di]; df+; [~bv & ~av & di]; df-]
||*[[bt & (a1 | a2 | a3) & ~di]; df+; [~bv & ~av & di]; df-]
||*[[cv & dv]; abo+; [~cv & ~dv]; abo-]

Stop
Detect

ax

abo

cx

ci

df dt di

bf bt abo

di
dt
df
ci
c1
c0
bt
bf
abo
a1
a0

_bi 

q 

af 

_bi 

q 

af 

bt 

_bt 

at 

af 

_bi 

_bi 

bf 

q 

at 

af 

_q 

_bi 

_bt 

_bi 

at 

q 

_q 

bt 

bf 

ao 

bf 

bt 

_q 

_ci 

bv 

_ci 

bv 

ax 

cx 

x=0..3 

dv 

cv 

dv 

cv 

abo 

xt 

xf 
xv 

xt xf 

x={b,d} 

_di 

av 

df 

a1 

bt 

_di 

av 

bf 

a2 a3 

_di 

av 

_di 

bt 

a0 

dt 

cx

x=0..3 

bf 

x1 

x2 

x3 
xv 

x0 

x0 

x={a,c} 

x1 x2 x3 

Fig. 15. Implementation of HeadDetect and StopDetect. Logic simulation (top), HSE (middle), and circuits (bottom) illustrate the synthesis procedure.
Please refer to Fig. 7 for the functions of these blocks. The synthesis shown here is one of many reshufflings (i.e., reorderings of signal transitions); the
particular reshuffling that we used is specified by the HSE and evident in the logic simulation. Based on these reshufflings, a particular choice of signal
polarities (active low or active high) resulted in the transistor-level schematics shown. We use “_” to indicate an active-low signal (e.g., _bi). Note that weak
feedback inverters (staticizers) are used to hold state where necessary.

~bt & ~bf      -> _ao+
 _h &  bt | bf -> _ao-

~af & ~h & ~_bi  -> _bt+
 gt(a,h) &  _bi  -> _bt-

~at & ~af & ~_bi  -> _bf+
  gf(a,h) &  _bi  -> _bf-

~_bi & ~_bt  -> _h+
 _bi &   at  -> _h-

#head detect

x={t,f}
~gx(a,b)  -> _cx+
 gx(a,b)  -> _cx- 

#decide up

~af | ~at | ~ap  -> _va+
 af &  at &  ap  -> _va-

~bf | ~bt  -> _vb+
 bf &  bt  -> _vb-

~va & ~vb & ~ci & ~di  -> _abo+
 va &  vb &  ci &  di  -> _abo-

~gx(a,b)  -> _dx+
 gx(a,b)  -> _dx- 

~_di & ~va       -> _dp+
 _di &  va & bp  -> _dp- 

#shift

x = {0..3}
~_ci & ~vb      -> _cx+
 _ci & gx(a,b)  -> _cx-

x = {a,c}
~x0 & ~x1 & ~x2 & ~x3  -> _vx+
 x0 |  x1 |  x2 |  x3  -> _vx-

x = {t,f}
~_di & ~va          -> _dx+
 _di & gx(a) & vbs  -> _dx-

~vc & ~vd  -> _abo+
 vc &  vd  -> _abo-

~df & ~dt & ~dp  -> _vd+
 df |  dt |  dp  -> _vd-

~bf & ~bt  -> _vbs+
 bf |  bt  -> _vbs-

~vbs & ~bp  -> _vb+
 vbs |  bp  -> _vb-

~ci                        -> _abo+
 ci & (_q & _p & at | af)  -> _abo-

~vs     -> _cf+
 gf(q,a,b)  -> _cf-

~q & ~_af & ~_bf  -> p+
 ci & at      -> p-

#cond select

~p & ~_af & ~_bt  -> q+
 ci & at      -> q-

~vs      -> _ct+
 gt(p,a,b)  -> _ct-

x={a,b}
~xf & ~xt  -> _vx+
 xf |  xt  -> _vx-

~va & ~vb  -> _vs+
 va &  vb  -> _vs-

#gate

~bt & ~va & ~_di  -> _dt+
 bt &  va &  _di  -> _dt-

~bf | ~bt  -> _vb+
 bf &  bt  -> _vb-

x={0..3}
~_ci & ~bf & ~ax  -> _cx+ 
 _ci &  gx(a,b)   -> _cx-

~df & ~dt  -> _abo+
 df |  dt  -> _abo-

~gf(c) & ~_di  -> _df+
 gf(c) &  _di  -> _df-

~a0 & ~a1 & ~a2 & ~a3  -> _va+
 a0 |  a1 |  a2 |  a3  -> _va-

 x = {a,c}
~x0 & ~x1 & ~x2 & ~x3  -> _xv+
 x0 |  x1 |  x2 |  x3  -> _xv- 

#stop detect x = {0..3}
~_ci & ~bv       -> _cx+
 _ci &  bv & ax  -> _cx-

~_di & ~av       -> _dt+
 _di &  gt(a,b)  -> _dt-

~dv & ~cv  -> _abo+
 dv &  cv  -> _abo-

 x = {b,d}
~xt & ~xf  -> _xv+
 xt |  xf  -> _xv-

~_di & ~av      -> _df+ 
 _di & gf(a,b)  -> _df-

Fig. 16. Production Rule Sets (PRS) for the Six Router Blocks. The PRS’s shown here, which were obtained from the HSE reshufflings chosen and the
logic functions defined in Fig. 7, were translated into transistor-level schematics (shown for HeadDetect and StopDetect in Fig. 15). The logic function
gx(a,b) in the production rule ... & gx(a,b) & ... -> _cx- is specified in Fig. 7 as cx=gx(a,b), except in the case of StopDetect, where
gf(a,b) = bf & av | bt & (a1 | a2 | a3). For example, in HeadDetect’s pull-down for _bt, the logic function gt(a,h) = h & af.
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