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Deep learning models have been successfully applied to the analysis of various functional MRI data. Convolutional neural
networks (CNN), a class of deep neural networks, have been found to excel at extracting local meaningful features based on
their shared-weights architecture and space invariance characteristics. In this study, we propose M2D CNN, a novel
multichannel 2D CNN model, to classify 3D fMRI data. )e model uses sliced 2D fMRI data as input and integrates
multichannel information learned from 2D CNN networks. We experimentally compared the proposed M2D CNN against
several widely used models including SVM, 1D CNN, 2D CNN, 3D CNN, and 3D separable CNN with respect to their
performance in classifying task-based fMRI data. We tested M2D CNN against six models as benchmarks to classify a large
number of time-series whole-brain imaging data based on a motor task in the Human Connectome Project (HCP). )e results
of our experiments demonstrate the following: (i) convolution operations in the CNN models are advantageous for high-
dimensional whole-brain imaging data classification, as all CNN models outperform SVM; (ii) 3D CNN models achieve
higher accuracy than 2D CNN and 1D CNNmodel, but 3D CNNmodels are computationally costly as any extra dimension is
added in the input; (iii) the M2D CNN model proposed in this study achieves the highest accuracy and alleviates data
overfitting given its smaller number of parameters as compared with 3D CNN.

1. Introduction

Task-evoked functional Magnetic Resonance Imaging (fMRI) is
the most common type of fMRI data in the study of brain
functions based on the changing levels of blood oxygenation-
level dependent (BOLD) signals. In task-evoked fMRI scanning,
participants receive different task stimulation and simulta-
neously perform specific responses that lead to different BOLD
signals, producing time series of three-dimensional volume of
brain at millimetric spatial resolution within a task block.

A goal to use computational methods to classify task-
evoked fMRI data is to potentially develop predictive models
or systems that can recognize how the brain responds to
different task stimulation [1]. )e implications of these
models are profound in terms of identifying the relationships
among brain response, individual behavior, and cognitive task
(i.e., the brain-behavior-cognition relationships).

Deep learning models have been successfully applied to
the analysis of various fMRI data [2], such as convolutional
neural networks (CNN), a class of deep neural networks, for
their ability to extract local meaningful features which are
shared in the entire dataset, due to CNN’s shared-weights
architecture and space invariance characteristics [3]. Com-
pared to resting-state fMRI, task-evoked fMRI data involve
the participant’s response within a shorter time span, which
can be represented as three-dimensional data covering the
coronal, sagittal, and axial axes/planes of the brain [2].

In this paper, we focus on CNN models for classifying
3D voxel-wise fMRI data, especially task-evoked fMRI data.
Currently, 2D and 3D CNN methods have been used to
classify task-evoked voxel-wise fMRI data in the literature
within two broad clusters. (i) )e first cluster is 2D CNN
models for fMRI data classification. Nathawani et al. [4]
transformed 3D brain image into 2D mean-value image by

Hindawi
Computational Intelligence and Neuroscience
Volume 2019, Article ID 5065214, 9 pages
https://doi.org/10.1155/2019/5065214

mailto:jlhu@scut.edu.cn
https://orcid.org/0000-0003-3602-7603
https://orcid.org/0000-0002-6763-8768
https://orcid.org/0000-0003-0153-850X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5065214


computing mean values along the z-axis and trained 2D
CNN for classifying fMRI data from word reading tasks.
Hon and Khan [5] transformed each 3D brain image into 2D
slices and calculated the image entropy of each slice and then
extracted slices with the highest entropy for training the 2D
CNN network. Zafar et al. [6] changed 3D brain image into
multilayer 2D image as input to 2D CNN for feature ex-
traction and selected the features by t-test to classify visual
tasks with the SVM algorithm. (ii) )e second cluster is 3D
CNN models for fMRI data classification. Li et al. [7] used
3D CNN to learn informative features from whole brain for
brain age prediction. Li et al. [8] computed the mean 3D
image and the standard deviation 3D image for all voxels’
time series in each sliding window and generated the 2-
channel input 3D images for training their 2-channel 3D
CNNmodel.Wang et al. [9] used 3DCNN to classify 4D task
fMRI time series by regarding them as multichannel 3D
input. In addition tomodels applied to the task-evoked fMRI
data as discussed, CNN models have also been used for
resting-state fMRI data classification; for example, Sarraf
and Tofighi [10] used 2D CNN architecture LeNet-5 for
Alzheimer’s disease classification by a stack of 2D images
converted from fMRI 4D data.

However, in many cases, it is challenging to compare
different types of CNN models and design (or select) an
optimal model for 3D fMRI data classification. Compared
with 2D convolution, 3D convolution could extract the 3D
spatial information from 3D fMRI data, but the demands for
computational resources are high, and the number of model
parameters increases exponentially as an extra dimension is
added. )erefore, training of a 3D CNN model is compu-
tationally costly, and too many parameters can also cause data
overfitting in supervised learning. Meanwhile, models with
separable convolutions have been developed in computer
vision research [11] to make computation more tractable.
Specifically, the 3D separable convolutional neural networks
(3D SepConv) were used in the context of structural MRI
imaging for improving efficiency of regular 3D CNN [12], but
the learning effectiveness of 3D SepConv model might be
affected by less parameters in a convolution kernel as com-
pared with general 3D CNN model, and 3D SepConv model
also has more parameters than 2D CNN model. In contrast,
2D CNN models require less computational resource and
fewer parameters, but they lose some spatial information of
3D fMRI data while gaining higher training efficiency.

To address this challenge, we study different types of
CNN models for 3D fMRI data classification and propose
M2D CNN, a novel multichannel 2D CNN model for the
classification of the 3D fMRI data. )e proposed model
includes two stages:

(i) Transforming 3D fMRI images into multichannel 2D
images for learning with multichannel 2D CNN
network: first, we slice 3D fMRI images into a group
of 2D fMRI images along with one dimension, where
one sliced 2D fMRI image would be viewed as one
channel image. )e 2D CNN model would receive
the multichannel 2D images as input, taking into
account the images in different channels, such as

RGB image [13]. In the MRI literature, 3 anatomical
planes of brain are conventionally used by imaging
researchers to describe brain images: coronal as x-
coordinate, sagittal as y-coordinate, and axial as z-
coordinate. We use three multichannel 2D CNN
networks to learn and extract features of these
planes, respectively.

(ii) Integrating multichannel information from three 2D
CNNs: to integrate the information from three
multichannel 2D CNNs learning networks, we use a
fully connected neural network to learn the three-
dimensional information.

)e proposed M2D CNN model thus uses 2D CNNs to
handle the 3D brain images, which balances the learning
ability and parameter-efficiency (fewer parameters) of the
model. We examined model classification performance
(accuracy, precision, and F1-score), model training time,
number of parameters, training, and validation loss and
compared our model against six other models as bench-
marks in the classification of a large number of time-series
whole-brain imaging data from a motor task in the Human
Connectome Project (HCP).

2. Method

2.1. M2D CNN Model Architecture. As mentioned above,
brain images are viewed along 3 anatomical planes, coronal
as x-coordinate, sagittal as y-coordinate, and axial as z-
coordinate. We use three 2D CNNs to extract features of
these planes, respectively, and then combine three 2D CNN
architectures in parallel, that is, the multichannel 2D CNN
(M2D CNN). M2D CNNmodel consists of three parts of the
2D CNN architecture in parallel, plus a fully connected
hidden layer to integrate the multichannel information.
Each 2D CNN uses one type of multichannel 2D images as
inputs and carries out the convolution computing inde-
pendently. )e outputs of three 2D CNN parts are flattened
and concatenated into 1D features in series, which are input
to the fully connected neural network for further learning.
Finally, M2DCNN outputs the classification result. Since the
concatenated features contain the features extracted from
three orthogonal planes, M2D CNN takes into account the
3D spatial information. )e architecture of the M2D CNN
model is shown in Figure 1.

)e M2D CNN architecture in this model consists of 3
input layers, six convolutional layers, six pooling layers, one
merge layer, one fully connected layer, and one output layer.
)is use of multichannel 2D convolution can effectively
improve the calculation compared to 3D convolution. )e
model details are as follows.

2.1.1. Input Layer. Transform each fMRI 3D brain image
into three multichannel 2D images. For a 3D brain image
sample with the size of dimX × dimY × dimZ (e.g.,
3× 3× 3mm), slice along the x-axis in per unit length to get
dimX 2D images with the size of dimY × dimZ on coronal
plane. Similarly, slice along the y-axis and the z-axis to get
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dimY 2D images with the size of dimX × dimZ on sagittal
plane and dimZ 2D images with the size of dimX × dimY on
axial plane. In this way, three groups of images based on
different planes are obtained.

Based on the idea of channels in CNN, regard each image
on the coronal plane as an image in a channel and transform
this group of images into a 2D image with dimX channels.
Similarly, a 2D image with dimY channels and a 2D image
with dimZ channels can be obtained. )us, three multi-
channel 2D images are transformed from each 3D brain
image, as shown in Figure 2. )ese three channels, im-
portantly, also match the stereotaxic brain space, a reference
tradition used in MRI research [14]: x (sagittal), y (coronal),
and z (axial). )e three multichannel 2D images are then
input into three parts of 2D CNN.

2.1.2. Convolutional Layer. Each 2D CNN of M2D CNN
processes the convolution computing for the input multi-
channel 2D image and extracts features on its plane. Each
convolutional kernel is convolved across the width and height
of 2D input volumes from previous layer, computing the dot
product between the kernel and the input. )e results of all
input volumes are summed to arrive at the result of this kernel,
producing a 2-dimensional activation map for each kernel.

2.1.3. Pooling Layer. Each convolutional layer is followed by
a max pooling layer, which performs feature selection and

Pooling
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Figure 1: Architecture of the M2D CNN model.

X

Y

Z
Slice along the x-axis

Slice along the z-axis

Slice along the y-axis

3D brain image

Figure 2: )e process of transforming a 3D brain image into three
multichannel 2D images.
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filtering on the result of convolutional layer to achieve
smooth compression in a degree.

2.1.4. Merge Layer. )e outputs of three parts of the 2D
CNN architecture are concatenated into a 1D vector, which
represents the combined spatial features learned from three
orthogonal planes of the 3D brain image.

2.1.5. Fully Connected Layer. )e concatenated vector from
the merge layer is input into the fully connected layer, where
the units are fully connected to the units in previous layer.
Feature combination is performed and complex nonlinear
relationships are modeled in this layer. Due to the limited
number of samples of fMRI data, a few fully connected layers
are enough. In our experiment, we use one hidden layer.

2.1.6. Output Layer. )e model outputs several real num-
bers, representing the probability of each classification
category that the sample may belong to. )e softmax
function, as shown in equation (1), is used for probability
calculation of each category:

σ(z)j �
ezj

Kk�1e
zk
. (1)

2.2.ComparisonModels. Given the aboveM2DCNNmodel,
we use the following models as benchmarks for comparison
of classification performance when given the same input
data and output categories.

2.2.1. PCA+ SVM. With the principal component analysis-
(PCA-) based SVM model [8, 15], all voxel features of 3D
brain images are flattened into a 1D vector. After dimen-
sionality reduction by PCA, the vector is input into SVM for
training and classification.

2.2.2. mv2D CNN. We discuss here the mean-value 2D
CNN for analysis of voxel-wise fMRI brain images [4]. 3D
brain images are converted to 2D mean-value images on the
axial plane by computing the mean value of voxel features
along the z-axis (that is, compressing the third dimension by
averaging the values). )e 2D mean-value images are then
input into 2D CNN, as shown in Figure 3.

2.2.3. 1D CNN. To compare the different convolution
methods, we provide a baseline and design an 1D CNN for
analysis of voxel-wise fMRI data. In this 1D CNN model,
each 3D brain image is converted to vector sequence. In our
experiment, this is done by slicing along the z-axis to get a
number of 2D images on the axial plane and concatenating
them in order along the y-axis to obtain a vector sequence.
)e vector sequences from 3D brain images are input into
1D CNN, as shown in Figure 4.

2.2.4. 3D CNN. )is is the typical 3D CNN for the analysis
of voxel-wise fMRI data, as done in previous work [7, 8].
Input of 3D brain images is sent into the 3D CNN, as shown
in Figure 5.

2.2.5. 3D SepConv. Separable convolutions could be intui-
tively understood as a way to factorize a convolution kernel
into two smaller kernels. In this study, 3D SepConv model
uses the same structure as the above 3D CNNmodel but the
3D convolutional layer is changed to 3D separable convo-
lution layer.

2.2.6. s2D CNN. )e single-channel 2D CNN is designed in
this study for analysis of voxel-wise fMRI data. )e dif-
ference between this model and the M2D CNN is that s2D
CNN only focuses on one dimension (axial, the z-axis). In
our experiment, this means that, for a 3D brain image, slice
along the z-axis in per unit length to get a number of images
on the axial plane and transform them into a multichannel
2D image, inputting into 2D CNN, as shown in Figure 6.

2.2.7. M2D CNN. )e proposed multichannel 2D CNN is
described in Section 2.1. Transform each 3D brain image into
three multichannel 2D images by the method described in
detail in Section 2.1 and input them into M2D CNN (see
Figure 1).

3. Experiments

3.1. Experimental Dataset and Preprocessing. )e fMRI data
from the motor task of the public WU-Minn Human
Connectome Project (HCP) were used as the benchmark
data for our experimental comparison between different
models (http://protocols.humanconnectome.org/HCP/3T/
task-fMRI-protocol-details.html). During the motor task,
the MRI continuously scans the participant’s brain, during
which time the participants were presented with visual cues/
labels that ask them to perform specific actions, including
taping their left fingers (with label “Left Hand”) or right
fingers (with label “Right Hand”) or squeezing their left toes
(with label “Left Foot”) or right toes (with label “Right Foot”)
or moving their tongue (with label “Tongue”). )ese 5 types
of movement were performed twice in the whole motor task
(with a total of 10 movement blocks, each corresponding to
one movement). Furthermore, there were three 15-second
fixation blocks in the motor task, intermixed with the
movement blocks. For more details of fMRI acquisition and
preprocessing, see [16, 17]. By extracting the fMRI data from
each movement block for analysis, our deep learning
methods presented in this study aim at classifying partici-
pants’ movement types for identifying the relationship be-
tween human behavior and brain activity.

After filtering the subjects that had anomalous data or
had no motor task data, we obtained a total of 995 subjects,
with each subject containing 4D fMRI data with the size of
91× 109× 91× 284.)is means that there are 284 time-series
frames of 3D brain images with the size of 91× 109× 91
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(voxel size� 2× 2× 2mm3) scanned during the motor task.
According to the flow scheme of motor task, each subject
underwent 3 fixation blocks and 10 movement blocks, and
the fixation blocks were used as the baseline to compute the
BOLD values of each voxel. In our experiments, we used the
BOLD signals in the movement blocks to generate samples
of 3D brain images for training and classification as follows.

For 3D images in fixation blocks, we computed the
mean-value 3D images as the BOLD baseline value for each
voxel. For 3D images in movement blocks, the widely used
method of mean percent signal change (Mean PSC) is ap-
plied, which computes the average change for every voxel
relative to the baseline value, thereby transforming into a
frame of mean 3D brain image. Mean PSC for every voxel is
computed as

p �
Ni�1yi
y ·N

· 100. (2)

In equation (2), N represents the number of 3D brain
images in this movement block and yi represents the voxel
value in the ith images. y represents the baseline value of the
voxel computed from fixation block. p is the average change
of the voxel. )e average changes for all voxels are
remodeled into a mean 3D image, therefore converting the
data in a movement block to a 3D brain image. For every
subject, 10 samples of 3D brain image are obtained from the
subject’s 10 movement blocks.
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Figure 3: Architecture of mv2D CNN.
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Data normalization is achieved by subtracting the mean
and dividing the standard deviation on every voxel for all
samples. )en, the movement type of each sample is used as
its classification label. )ere are a total of 9,950 samples of
3D brain images with the size of 91× 109× 91 from the 995
subjects.

3.2. Model Parameters. )e comparison models and the
corresponding parameters are configured as follows.

3.2.1. PCA+ SVM. Each 3D image has 902,629 dimensions
after being flattened. We test on the data subset of 200
subjects from all subjects for PCA, and the variance per-
centage of the original vector (the percentage of preserved
information) reaches 85% [8] when the number of chosen
principal components is 500. Considering the limitation of
memory, the dimension of the resulting vector of PCA is set
to 500. SVM model sets the value of parameter C to 1.0 and
uses the L2-regularization and linear kernel.

3.2.2. M2D CNN. )e M2D CNN includes 3 parts of 2D
CNN architecture, each containing 2 convolution layers and
2 max pooling layers, as described in Section 2.1 in detail.

3.2.3. 1D CNN, s2D CNN, mv2D CNN, and 3D CNN.
)ese CNN models contain 2 convolution layers, 2 max
pooling layers, a fully connected layer, and an output layer.
)e 2 convolution layers of CNN above contain 16 and 32
kernels, respectively, with the kernel length of 3. Each
convolution layer is followed by a max pooling layer with the
window length of 2 and the batch normalization. Each fully
connected layer contains 128 nodes, with the dropout
function randomly dropping 50% input units to prevent
overfitting.

3.2.4. 3D SepConv. 3D SepConv model uses the same
structure and parameters as 3D CNN model except that the
second 3D convolutional layer is changed to the separable
convolution layer. )e separate convolution splits a kernel
into two smaller kernels that do the depth-wise convolution
and the pointwise convolution. Each input channel is spa-
tially convolved separately by the depth-wise convolution;
then the resulting outputs are mixed via pointwise convo-
lutions with a kernel size of 1× 1× 1. )e 3D separate
convolution module is implemented according to the code
of Spasov et al [12].

All the deep learning models above use softmax function
in the output layer and LeakyReLU function in the other
layers as activation function [18]. )e Adam Optimizer with
initial learning rate of 0.0025, reduced by half every 50
epochs, is used for model training, and categorical cross-
entropy is selected as loss function. )e training model after
each epoch is validated on validation data and the one with
best validation result is saved. )e model stops training
when the training loss has stopped decreasing for six epochs.
Fivefold cross-validation is performed for the classification

of the 5 movement types in the motor task. In each fold, 80%
of the samples are used as training data (in which 10% is
selected as validation data) and the remaining 20% are used
as testing data. Samples are split according to subjects to
make sure that every subject’s 10 samples are from the same
part of data.

We used for our experiments a specialized computer
with i7-6700K CPU, 64GB RAM, and a NVIDIA GTX 1080
Ti Graphics Processing Unit (GPU). )e models are coded
with Python. Keras (https://keras.io) and TensorFlow
(https://www.tensorflow.org) as backend are also applied to
implement the model. In the spirit of open science and to
promote reproducibility [19], we make our source codes
publicly available on our project website (https://github.
com/largeapp/M2DCNN).

3.3. Results

3.3.1. Classification Performance on Large Dataset.
Table 1 and Figure 7 show the experimental results by
comparing the accuracy, precision, and F1-score rates over
5-fold cross-validation for the 9950 samples’ data from all
995 subjects. )e accuracy of the M2D CNN, 3D CNN, 3D
SepConv, s2D CNN, and 1D CNNmodels all reached above
80%, which is much better than the accuracy of the
PCA+ SVM and mv2D CNN models. )is may be because
several CNN models have preserved all voxel features of the
3D brain images. Most notably, the M2D CNN model
proposed in this study reached an accuracy of 83.2% in
classification, with a precision rate of 83.6%. )us, M2D
CNN outperforms all other models, such that M2D
CNN> 3D CNN> s2D CNN> 1D CNN> 3D SepConv.

3.3.2. Impacts of Sample Size. To further verify the effect of
sample size, we randomly selected 200 and 500 subjects out
of the 995 subjects, respectively, to form the datasets with
2000 and 5000 samples. )e deep learning models in
comparison were all tested on the three datasets (i.e., from
200, 500, and 995 subjects).

Table 2 presents the classification accuracy over different
sample size of data. As data size grows, the accuracy of each
model increases.)e accuracy of 3D CNN, 3D SepConv, and
M2D CNN is better than the other CNN models for 200
subjects. )e accuracy of M2D CNN is better than the other
CNN models for 500 subjects.

3.3.3. Number of Parameters and Training Time. Table 3
shows the number of units connected to the fully connected
layer and the total number of parameters of each CNN
model based on the experimental configuration in Section
3.2. )e fully connected layer leads to a sharp increase in the
number of parameters.

3D CNN uses kernels convoluting in 3 dimensions and
produces 352,800 units after flattening the result from
convolution and pooling layers. 3D SepConv reduces the
parameters by using separate convolution in comparison to
general 3D CNN, but there are still many parameters since
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the large number of parameters resides at the fully connected
networks in this model. In contrast, the 2D CNN models
convoluting on one plane such as the mv2D CNN and s2D
CNN models contain only 16,800 units. M2D CNN uses 2D
convolution kernels, which reduces the number of units
from convolution to the fully connected layer, and its
concatenated vector from 3 parts of convolution on each
plane contains 47,712 units, leading to a total of 6,355,717
parameters, which are much fewer than 45,174,181 for 3D
CNN.

Table 3 also shows the total training time and total
epochs over 5-fold cross-validation for all CNNmodels with
2000 samples from 200 subjects. We have noticed that the
training time would be affected by the underlying software

(such as Keras, TensorFlow, and operating system) and
hardware systems (GPU device and CPU host), especially
when the large data need to be read from the hard disk
during the model training. To reduce the impact of overhead
of reading data from hard disk, we selected smaller data
(2000 samples) and loaded all these data to memory of the
host computer before training. So we could get the ap-
proximate training time under the specific computer in this
experiment. From Table 3, it can be seen that 3D CNN, 3D
SepConv, and M2D CNN models use more time to train
than the 1D and 2D CNN models. 3D SepConv model uses
the same input data and has fewer parameters than 3D CNN
model, but 3D SepConv model uses more training time in
our experiments; the reason may be the fact that the

Table 1: Classification results for all deep learning models on data of 995 subjects (mean± std).
Model Accuracy∗ (%) Precision (%) F1-score

PCA+ SVM 48.94± 2.36 48.17± 2.48 0.4779± 0.0232
mv2D CNN 63.36± 2.19 63.59± 2.27 0.6306± 0.0222
3D CNN 82.34± 1.27 82.68± 1.39 0.8239± 0.0130
3D SepConv 80.44± 1.16 80.88± 1.24 0.8043± 0.0116
1D CNN 80.76± 1.69 80.94± 1.73 0.8068± 0.0178
s2D CNN 81.80± 0.89 81.95± 0.97 0.8179± 0.0094
M2D CNN 83.20± 2.29 83.63± 1.87 0.8321± 0.0223
∗Note: accuracy by chance is 20% (i.e., given 5 types of movement behavior).
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Figure 7: Box plots for accuracy, precision, and F1-score for classification task on 995 subjects of different learningmodels over 5-fold cross-
validation. )e middle line in each box represents the median value. )e circle represents the outlier.
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implementation of the 3D SepConv model is not efficient.
M2D CNN model has less training time than 3D CNN and
3D SepConv models.

3.3.4. Overfitting. Figure 8 shows the standard deviation of
the mean training and validation losses across the 5-fold
training and validation for M2D CNN model and 3D CNN
model, respectively, with 2000 samples from 200 subjects
(see Figure 8(a)) and 5000 samples from 500 subjects (see
Figure 8(b)). It could be seen that the training losses of 3D
CNN model decrease quickly but the validation losses
fluctuate sharply. In contrast, both the training and vali-
dation losses decrease steadily for the M2D CNN model,

which indicates that the data overfitting problem is alleviated
in M2D CNN.

In summary, the proposed M2D CNN is more cost-ef-
fective for the classification of task-evoked fMRI than the other
comparison models tested in this experiment. M2D CNN
outperforms the other models with the best classification
performance and achieves higher parameter-efficiency than 3D
CNN with fewer parameters, thus alleviating data overfitting.

4. Conclusion

Due to the complex spatiotemporal structure of fMRI data
and the large amount of voxel features, the existing deep
learning methods need to take into account the integrity of

Table 2: Classification accuracy over different sample sizes.

Model
Accuracy (mean± std) over different sample sizes

2000 samples (200 subjects) (%) 5000 samples (500 subjects) (%) 9950 samples (995 subjects) (%)

mv2D CNN 53.70± 4.20 60.88± 2.28 63.36± 2.19
3D CNN 72.70± 2.54 77.36± 1.95 82.34± 1.27
3D SepConv 73.60± 1.77 77.24± 2.79 80.44± 1.16
1D CNN 67.40± 2.92 76.52± 1.09 80.76± 1.69
s2D CNN 66.20± 3.19 76.64± 1.96 81.80± 0.89
M2D CNN 71.70± 1.81 79.44± 1.70 83.20± 2.29

Table 3: A comparison of model units, parameters, and training time.

Model
Unit number input to fully

connected layer
Total number of parameters in

models
Training time (S)
(mean± std)

Total number of epochs
(mean± std)

mv2D
CNN

16,800 2,223,877 909± 134 54± 8
3D CNN 352,800 45,174,181 1156± 185 39± 6
3D
SepConv

352,800 45,161,301 1601± 196 41± 5
1D CNN 79,296 10,474,501 834± 157 39± 7
s2D CNN 16,800 2,236,837 565± 102 31± 6
M2D
CNN

47,712 6,355,717 1074± 348 39± 13
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Figure 8: Mean training loss (in solid lines) and mean validation loss (in dashed lines) for 3D CNN (red) and M2D CNN (blue). )e
standard deviation is indicated by the shadow area in the image. (a) 2000 samples. (b) 5000 samples.

8 Computational Intelligence and Neuroscience



the 3D or 4D information of the whole brain contained in
fMRI data, along with considerations of the feature ex-
traction capacity and training efficiency of the relevant
models. )is paper proposes a novel M2D CNN model,
using three multichannel 2D CNN networks in parallel to
preserve voxel features of 3D brain images and integrating
three-dimensional information by fully connected neural
network. )e results of our experiments show that M2D
CNN outperforms the other comparison models and ach-
ieves the best classification performance.

)ere are two limitations in the work presented here: (i)
the dataset is limited to the motor task—it would be im-
portant to see whether the proposed M2D CNNmodel excels
in classifying fMRI data based on cognitive tasks; (ii) the
dataset is limited in the total sample size—9,950 samples of
3D brain images from all 995 subjects remain to be of small
scale as compared with the computational power of deep
learning models. Future work should focus on the perfor-
mance of our proposed model for other large-scale resting-
state as well as task-evoked fMRI data based on cognitive tasks
of memory, language, and vision and perception.

Data Availability

)e data used to support the findings of this study are
available from the corresponding author upon request. )e
task-based fMRI dataset analyzed during this study is
available in the Human Connectome Project repository
(http://www.humanconnectome.org/). )e codes used for
the reported experiments are available at https://github.com/
largeapp/M2DCNN.
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