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Abstract

Using a recently proposed informed spatial filter, it is possible to effectively and robustly reduce reverberation from

speech signals captured in noisy environments using multiple microphones. Late reverberation can be modeled by a

diffuse sound field with a time-varying power spectral density (PSD). To attain reverberation reduction using this

spatial filter, an accurate estimate of the diffuse sound PSD is required. In this work, a method is proposed to estimate

the diffuse sound PSD from a set of reference signals by blocking the direct signal components. By considering

multiple plane waves in the signal model to describe the direct sound, the method is suitable in the presence of

multiple simultaneously active speakers. The proposed diffuse sound PSD estimator is analyzed and compared to

existing estimators. In addition, the performance of the spatial filter computed with the diffuse sound PSD estimate is

analyzed using simulated and measured room impulse responses in noisy environments with stationary noise and

non-stationary babble noise.
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1 Introduction
In speech communication scenarios, reverberation can

degrade the speech quality and, in severe cases, the speech

intelligibility [1]. State-of-the-art devices such as mobile

phones, laptops, tablets, or smart TVs already feature

multiple microphones to reduce reverberation and noise.

Multichannel approaches are generally superior to single-

channel approaches, since they are able to exploit the

spatial diversity of the sound scene.

In general, there exist several very different classes of

dereverberation algorithms. Algorithms of the first class

identify the acoustic system and then equalize it (cf. [1]

and the references therein). Given a perfect estimate of

the acoustic system described by a finite impulse response,

perfect dereverberation can be achieved by applying the

multiple input/output inverse theorem [2] (i.e., by apply-

ing a multichannel equalizer). However, this approach

is not robust against estimation errors of the acoustic

impulse responses. As a consequence, this approach is

also sensitive to changes in the room and to position
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changes of the microphones and sources. For a single

source, more robust equalizers were recently developed

in [3, 4]. Additive noise is usually not taken into account.

It should be noted that many multi-source dereverbera-

tion algorithms also separate the speech signals of mul-

tiple speakers [5], which might not be necessary in some

applications.

Algorithms of the second class are proposed, e. g., in

[6–9], where the acoustic system was described using

an auto-regressive model. The approach proposed in [6]

estimates the clean speech for a single source based on

multichannel linear prediction by enhancing the linear

prediction residual of the clean speech. In [7–9], the

received signal is expressed using an autoregressive model

and the regression coefficients are estimated from the

observations. The clean speech is then estimated using

the regression coefficients. While in [8, 9] multi-source

models were employed, the algorithm in [8] is evaluated

only for a single-talk scenario. Linear prediction-based

dereverberation algorithms are typically computationally

complex and sensitive to noise. It is, for example, shown

in [9] that the complexity and convergence time greatly

increases with the number of sources.
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Algorithms of the third class are used to compute

spectral and spatial filters that can also be combined.

Exclusively spectral filters are typically single-channel

approaches. While early reflections add spectral col-

oration and can even improve the speech intelligibility,

late reverberation mainly deteriorates the speech intelligi-

bility due to overlap-masking [10]. The majority of single-

channel dereverberation approaches aim at suppressing

only late reverberation using spectral enhancement tech-

niques as proposed in [11, 12] or more recently in [13, 14].

The late reverberant power spectral density (PSD) can be

estimated using a statistical model of the room impulse

response [15, 16]. The model parameters consist of the

reverberation time and in some cases also the direct-

to-reverberation ratio (DRR) and need to be known or

estimated.

In the multichannel case, spatial or spectro-spatial fil-

ters can achieve joint noise reduction and dereverber-

ation, typically in a higher quality than single-channel

filters. Recently, an informed spatial minimum mean

square error (MMSE) filter based on a multi-source

sound field model was proposed in [17]. The rever-

beration is modeled by a diffuse sound field with a

highly time-varying PSD and known spatial coherence.

The filter is expressed in terms of the model parame-

ters which include time- and frequency-dependent direc-

tion of arrivals (DOAs) and the diffuse sound PSD. As

these parameters can be estimated online almost instan-

taneously, the filter can quickly adapt to changes in

the sound field. This spatial filter provides an optimal

tradeoff between dereverberation and noise reduction

and provides a predefined spatial response for multiple

simultaneously active sources. The dereverberation per-

formance is determined by the estimation accuracy of the

diffuse sound PSD which is a challenging task because

the direct sound and reverberation cannot be observed

separately.

There exist already some techniques to estimate the late

reverberant or diffuse sound PSD or the signal-to-diffuse

ratio (SDR), such as the single-channel method based on

Polack’s model, that requires prior knowledge about the

reverberation time [11] or additionally the DRR [16]. Fur-

ther suitable methods are the coherence-based SDR esti-

mator proposed in [18] or a linearly constrainedminimum

variance (LCMV) beamformer placing nulls in the direc-

tion of direct sound sources while extracting the ambient

sound [19]. In [20], we proposed a method to estimate

the diffuse sound PSD using multiple reference signals,

while we assumed at most one active source at a known

position. In [21], a direct maximum likelihood estimate

of the diffuse sound PSD given the observed signals was

derived by assuming a noise-free signal model and using

prior knowledge of the source position and the diffuse

coherence. As the estimator presented in [21] considers

only one sound source and no additive noise, we do not

consider the estimator in the present work.

In this paper, the aim is to dereverberate multiple simul-

taneously active sources in the presence of noise with-

out prior knowledge of the position of the sources. The

processing is done in the short-time Fourier transform

(STFT) domain using the informed spatial filter presented

in [17]. In this work, we derive a diffuse sound PSD esti-

mator similar to the one presented in [20] but extended

for multiple simultaneously active sources and analyze it

in detail. In addition, the influence of the blocking matrix

used to create the reference signals is investigated. The

PSD estimator depends only on the narrowband DOAs

and the noise PSDmatrix that can be estimated in advance

using existing techniques [22–25]. While we investigate

the influence of estimation errors of the DOAs and the

noise PSD, these estimators are beyond the scope of this

paper. The proposed dereverberation and noise reduction

solution is suitable for online processing as the estimators

and filters use only current and past observations and the

introduced latency depends only on the STFT parameters.

The paper is structured as follows. In Section 2, the

signal model is introduced, the spatial filter is derived,

and the problem is formulated. Section 3 reviews some

existing estimators for the diffuse sound PSD for com-

parison and derives the proposed estimator. The diffuse

sound PSD estimators and the dereverberation system

are evaluated in Section 4, and conclusions are drawn in

Section 5.

2 Problem formulation

2.1 Signal model

We assume a general scenario with multiple sources in

a reverberant and noisy environment. The sound field is

captured using an array of M microphones with an arbi-

trary geometry. In the STFT domain, the microphone

signals Ym(k, n), m ∈ {1, . . . ,M} are written into the vec-

tor y(k, n) = [Y1(k, n), . . . ,YM(k, n)]T, where k denotes

the STFT frequency index and n the time frame index.We

describe the sound field using the model proposed in [19],

which assumes L < M plane waves propagating in a time-

varying diffuse sound field with additive stationary noise,

such as sensor noise and ambient noise. The microphone

signals are described by

y(k, n) =
L∑

l=1

al(k, n)Xl(k, n) + d(k, n) + v(k, n) (1a)

= A(k, n) x(k, n) + d(k, n) + v(k, n) (1b)

where Xl(k, n) denotes the lth plane wave as received by a

reference microphone, al(k, n) is the relative propagation

vector of the lth plane wave from the reference micro-

phone to all M microphones, d(k, n) is the diffuse sound,

and v(k, n) is the additive noise. The sum over l in (1a)



Braun and Habets EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:34 Page 3 of 14

can be expressed as matrix-vector multiplication of the

M × L matrix A(k, n) = [a1(k, n), . . . , aL(k, n)] and the

plane wave vector x(k, n) = [X1(k, n), . . . ,XL(k, n)]T. The

relative propagation vector of a plane wave for a linear

microphone array with omnidirectional sensors is given

by

al(k, n) =
[
ejλ(k)r1 sin θl(k,n), . . . , ejλ(k)rM sin θl(k,n)

]T
, (2)

where θl(k, n) is the DOA of the lth plane wave, rm =
‖rm‖2 − ‖rref‖2 is the signed distance between the micro-

phone at position rm and the reference microphone at

position rref, both given in cartesian coordinates, and

λ(k) = 2π
kfs
Nc is the spatial frequency with N, fs, and c

being the STFT length, the sampling frequency, and the

speed of sound, respectively.

Each of the L plane waves models a directional sound

component, which are mutually uncorrelated. Due to the

spectral sparsity of speech signals and the modeling of the

plane waves independently per time-frequency instant,

the number of modeled plane waves L does not have to

match the number of physical broadband sound sources

exactly. The reverberation is modeled by the diffuse sound

component d(k, n). In principle, d(k, n) can contain also

other non-stationary diffuse noise components such as

babble speech that can be observed for example in a cafe-

teria. The signal component v(k, n) models stationary or

slowly time-varying additive components such as sensor

noise and ambient noise.

Assuming that the components in (1) are mutually

uncorrelated, the PSDmatrix of the microphone signals is

given by

�y(k, n) = E
{
y(k, n) yH(k, n)

}
(3)

= A(k, n)�x(k, n)AH(k, n) + �d(k, n)

+ �v(k, n),

where �x(k, n) is the PSD matrix of the plane wave sig-

nals, �d(k, n) is the PSD matrix of the diffuse sound, and

�v(k, n) denotes the noise PSD matrix. Since the L plane

waves originate from uncorrelated plane waves,�x(k, n) is

a diagonal matrix with the PSDs φl(k, n) = E
{
|Xl(k, n)|2

}

on its main diagonal. Note that φl(k, n) is the PSD, at the

reference microphone, of the lth plane wave arriving from

θl(k, n).

Modeling reverberation as a scaled diffuse sound field

holds statistically for the late reverberation tail and a finite

time-frequency resolution [26, 27]. The diffuse sound PSD

matrix can be expressed in terms of the scaled diffuse

coherence matrix

�d(k, n) = φd(k, n) Ŵdiff(k), (4)

where φd(k, n) is the PSD of the diffuse sound. The form

given by (4) holds due to the spatial homogeneity of a

diffuse sound field. The ideal diffuse coherence matrix

Ŵdiff(k) can be calculated for various array configurations

and diffuse fields. For a spherical isotropic diffuse sound

field captured by omnidirectional microphones, the ele-

ment with index p, q ∈ {1, . . . ,M} of the matrix Ŵdiff(k) is

given by [28]

Ŵ
p,q
diff(k) = sinc

(
λ(k) |rp − rq|

)
, (5)

where sinc(x) = sin(x)
x for x �= 0 and sinc(x) = 1 for x = 0.

Since our goal is to jointly reduce reverberation and

noise, we define the interference matrix

�u(k, n) = �d(k, n) + �v(k, n). (6)

In this work, the desired signal, denoted by Z(k, n), is

given by the sum of the L plane waves, i.e.,

Z(k, n) = 1Tx(k, n), (7)

where 1 = [1, 1, . . . 1]T is a vector of ones with size L × 1.

In the following section, we derive a spatial filter that is

applied to y(k, n) to obtain an estimate of Z(k, n).

2.2 Spatial filter design

To estimate the desired signal given by (7), a spatial filter

is applied to the microphone signals such that

Ẑ(k, n) = hH(k, n) y(k, n). (8)

An estimate of the desired signal Z(k, n) can be obtained

using the multichannel Wiener filter (MWF) proposed in

[17]. The filter minimizes the interference while preserv-

ing all directional components. The MWF is obtained by

minimizing the cost function

JMWF (h) = E
{
|hH(k, n)y(k, n) − 1Tx(k, n)|2

}
. (9)

The solution is the MWF for multiple plane waves and

is given by

hMWF =
[
A�xA

H + �u

]−1
A�x 1. (10)

The frequency and time indices k and n are omitted

wherever necessary to shorten the notation. For each

time-frequency bin, the L columns of the propagation

matrix A(k, n) can be computed using (2) and L narrow-

band DOAs estimates. In the following, we assume that

a suitable narrowband DOA estimator is available (for

more information regarding the DOA estimation, we refer

the reader to [29, 30]). Given an estimate of �u(k, n), the

PSD matrix of the plane waves at the microphones can be

computed by

�̂Ax(k, n) = �y(k, n) − �u(k, n). (11)

If we define the vector containing the plane wave

PSDs at the reference microphone q = diag {�x} =
[φ1, . . . ,φL]

T , a least squares estimate of the plane wave

PSDs can be obtained using [17]

q̂ = (CHC)−1CH vec{�̂Ax}, (12)
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where vec{·} are the columns of a matrix stacked

into a column vector and the L2 × L matrix C =[
vec

{
a1a

H
1

}
, . . . , vec

{
aLa

H
L

}]
. The L × 1 vector obtained

by (12) contains the estimated plane wave PSDs that are

on the main diagonal of the matrix �x(k, n), and all off-

diagonal elements are zero since we assume uncorrelated

plane waves.

The remaining challenge is to estimate the interfer-

ence PSD matrix �u(k, n). The stationary or slowly time-

varying noise PSD matrix �v(k, n) is observable when

the speakers are inactive and can be estimated using,

e. g., [22–25]. In contrast, the diffuse sound PSD matrix

�d(k, n) that originates from reverberation cannot be

observed separately from the desired speech. Assuming

that we know the spatial coherence of the diffuse sound

field, our aim is to estimate the diffuse sound PSD φd(k, n).

Given φd(k, n) and Ŵdiff(k), we can then calculate �d(k, n)

using (4).

3 Estimation of the diffuse sound PSD
In this section, we first review some estimators that can be

used to obtain an estimate of the PSD of diffuse or rever-

berant sound and then derive a novel estimator that takes

the presence of multiple plane waves as given by the signal

model (1) into account.

3.1 Existing estimators

3.1.1 Based on a statistical reverberationmodel

The first estimator is based on a single-channel late rever-

berant PSD estimator proposed in [16]. This estimator

is derived using a statistical reverberation model that

depends on the (in general frequency dependent) room

reverberation time T60(k) and the DRR κ(k), which varies

with the source-microphone distance. Let us first define

φm
xd(k, n) as the reverberant signal PSD at the mth micro-

phone of which an estimate is given by the mth element

on the diagonal of the matrix �y(k, n) − �v(k, n). The

late reverberant PSD at the mth microphone φm
d (k, n) is

estimated by [16]

φ̂m
d (k, n) = [1 − κ(k)] e−2α(k)RNL φ̂m

d (k, n − NL)

+ κ(k) e−2α(k)RNL φm
xd(k, n − NL), (13)

where NL corresponds to the number of frames between

the direct sound and the start of the late reverberation,

α(k) = 3 ln(10)/(T60(k)fs) is the reverberation decay con-

stant, and R is the hop size. As the diffuse sound field is

assumed to be spatially homogeneous, the estimate of the

diffuse sound PSD φd(k, n) can be obtained by spatially

averaging φ̂1
d(k, n) . . . φ̂M

d (k, n) as [31]

φ̂LRSV
d (k, n) = 1

M

M∑

m=1

φ̂m
d (k, n). (14)

3.1.2 Based on the spatial coherence

The second estimator is the coherence-based signal-to-

diffuse ratio estimator (CSDRE) [32]; a similar estimator

is also presented in [33]. It calculates the SDR in mixed

sound fields by exploiting the spatial coherence of a sin-

gle directional component and the diffuse sound field. The

diffuse PSD can then be extracted from the noise-free PSD

and the SDR estimate. Let us denote 	p,q as the element

p, q of any PSDmatrix. The coherence of the mixed sound

field between the microphones p and q is calculated from

the input signal coherence and taking into account the

additive noise as

γ
p,q
s = 	

p,q
y√

	
p,p
y − 	

p,p
v

√
	

q,q
y − 	

q,q
v

. (15)

As shown in [32], the SDR estimator can be calculated

with (15), a DOA estimate, and the diffuse coherence

between the microphones p, q given in (5). The SDR esti-

mate is first calculated for each possible microphone pair,

which results in M!/((M − 2)! ·2) estimates and is then

averaged over all microphone pair combinations assum-

ing that the direct sound PSD is equal at all microphones

according to (2). Finally, the diffuse PSD can be obtained

by

φ̂CSDRE
d (k, n) =

1
M

∑M
m=1 φm

xd(k, n)

SDR(k, n) + 1
. (16)

3.1.3 Based on an ambient beamformer

A third diffuse sound PSD estimator was proposed in [19].

An ambient beamformer (ABF) is derived that is intended

to capture the ambient sound, which is assumed to cor-

relate well with the diffuse sound. This is achieved by

minimizing the noise v(k, n) while placing nulls to the

DOAs of the directional sound components and placing

a unit response to the direction that has the maximum

angular distance to all L DOAs. The ambient beamformer

hABF is derived by solving

hABF(k, n) = argmin
h

hH�v(k, n)h (17a)

subject to

hHA(k, n) = 01×L (17b)

hHa0(k, n) = 1, (17c)

where a0 is a propagation vector corresponding to the

DOA with maximum angular distance to all L DOAs. For

further details, the reader is referred to [19]. The diffuse

sound PSD estimate is then obtained by

φ̂ABF
d =

hHABF�yhABF − hHABF�vhABF

hHABFŴdiffhABF
. (18)



Braun and Habets EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:34 Page 5 of 14

3.2 Discussion of the existing estimators

The following observations can be made regarding the

existing estimators discussed in the previous section:

• The estimator presented in Section 3.1.1 requires

prior information about the frequency-dependent

reverberation time and DRR. In [34], it is shown that

existing T60 estimators are strongly biased at low

signal-to-noise ratios (SNRs). Furthermore, T60

estimators typically require a few seconds of data and

therefore cannot adapt quickly to changes in the

reverberation time.
• The single-source model as assumed in the approach

presented in Section 3.1.2 has been shown to be

inaccurate in multi-talk scenarios in [35].
• The single- and dual-channel approaches presented

in Section 3.1.1 and 3.1.2 do not directly take all

microphones into account.
• The estimator presented in Section 3.1.3 is

suboptimal as it aims not directly to estimate the

diffuse sound PSD. Furthermore, it requires a specific

look direction.

To reduce the amount of required prior knowledge and

to relax the assumptions for the diffuse PSD estimator, we

propose a new estimator in the following section that

1. is able to respond immediately to changes in the

sound field and is independent of the reverberation

time and DRR,

2. is based on the multi-wave signal model (1), and

3. directly estimates the diffuse sound PSD using all

microphones.

3.3 Maximum likelihood estimator using reference

signals

In this section, we derive an estimator for the diffuse

sound PSD φd(k, n) based on multiple reference signals.

In Section 3.3.1, the computation of the reference signals

is described. In Section 3.3.2, a maximum likelihood esti-

mator (MLE) for the diffuse sound PSD is derived based

on the computed reference signals.

3.3.1 Generating the reference signals

The reference signal vector ũ(k, n) is obtained as the

output of a blocking matrix (BM) B(k, n) ∈ CM×K

ũ(k, n) = BH(k, n) y(k, n), (19)

which creates a set ofK reference signals which contain no

direct signal components. Therefore, the blocking matrix

has to fulfill the constraint

BH(k, n)A(k, n) = 0K×L. (20)

In general, there is no unique solution for (20). Two

common approaches are reviewed here: the eigenspace-

based BM [36] and the sparse BM [37]. A blocking matrix

forMmicrophones with L directional constraints consists

of up to K = M−L linearly independent columns. The

eigenspace BM [36] is constructed as

Be =
[
IM×M − A (AHA)−1 AH

]
IM×K , (21)

where IM×K is a truncated identity matrix, that selects

the first K columns of the expression in square brackets.

Using the eigenspace BM, each output signal of the BM

is a linear combination of all microphone signals, where

all coefficients of Be are non-zero. In contrast, the sparse

BM [38] forms each output depending only on L+ 1 adja-

cent channels. Let A1:L,1:L denote a matrix containing the

first L rows and columns of A, Am,: denotes the mth row

of A, and βm =
(
A−1
1:L,1:L

)H
AH
m,:. Then, the sparse BM is

calculated as [37]

Bs =
[

−βL+ 1 . . . − βM

I(M− L)×(M− L)

]
. (22)

Using (3), (4), and (19), it follows that the PSD matrix

�̃u(k, n) of the blockingmatrix output signal (19) depends

only on the residual diffuse and residual noise PSD matri-

ces, i.e.,

�̃u = BH�yB (23)

= BHA�xA
HB︸ ︷︷ ︸

0K ×K

+ φd BHŴdiff B︸ ︷︷ ︸
Ŵ̃diff

+ BH�vB︸ ︷︷ ︸
�̃v

where the matrices Ŵ̃diff(k, n) and �̃v(k, n) denote the dif-

fuse coherence matrix and the noise PSD matrix at the

output of the blocking matrix, respectively. The direct

sound PSD is zero due to (20).

3.3.2 Derivation of themaximum likelihood estimator

As proposed in [39], we introduce the error matrix that

models the estimation errors of �̃u and �̃v as

�e = �̃u − �̃v︸ ︷︷ ︸
�̃d

− φd Ŵ̃diff. (24)

The matrix �̃d(k, n) can be estimated from the mea-

sured PSDmatrix �̃u(k, n) = E{̃u(k, n) ũH(k, n)}with (19)

and the residual noise PSD matrix �̃v(k, n). As in prior

work [20, 39], we assume the real and imaginary elements

of �e(k, n) to be independent zero-mean Gaussian distri-

butions with equal variance. This is however not the case

for the diagonal elements which are strictly real valued.

Therefore, we define an operator V that creates a vector

containing all real elements and all off-diagonal imaginary

elements of a complex matrix � of size K × K as

V {�} =
[
ℜ{	̃1,1}, ℜ{	̃p,q}, . . . ,

ℑ{	̃1,2}, ℑ{	̃i,j}, . . .
]T

,
(25)
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where p, q ∈ N{1, . . . ,K} and i, j ∈ N{1, . . . ,K} with i �= j.

The column vector V {�} is of length 2K2 − K . Using

this operator, we define the error vector V {�e(k, n)}. The
probability density function of this error vector can be

modelled as amultivariate Gaussian distribution with zero

mean and covariance σ 2I as

f (V {�e(k, n)}) = 1

(
√
2πσ)2K

2−K
(26)

× exp

(
− (m − φd n)T(m − φd n)

2σ 2

)

where m = V
{
�̃d

}
and n = V{Ŵ̃diff}. By maximizing the

log-likelihood function log(f ), we obtain the least squares

solution for nTn �= 0

φ̂d = max

{
0,

(
nTn

)−1
nTm

}
, (27)

where the max{·} operation is included to ensure that the

estimated PSD is positive also in the presence of estima-

tion errors. Although we excluded the imaginary diagonal

elements, it can be shown that the result is mathematically

equivalent to the solution obtained in [20].

3.4 Dereverberation system overview

The system can be summarized as follows. Firstly, amicro-

phone array captures the sound components. From the

observed signals, the DOAs are estimated, which are used

to construct the blocking matrix and the spatial filter.

From the K blocking matrix outputs, the diffuse PSD

is estimated and the interference matrix is constructed

together with the noise PSD matrix that can be observed

during speech pauses. Figure 1 shows the entire pro-

posed system. Note that the proposed diffuse sound PSD

estimator utilizes the DOAs and the noise PSDmatrix that

are also required to compute the spatial filter and hence

can be implemented without significantly increasing the

computational complexity of the entire dereverberation

system.

4 Performance evaluation
For all simulations, the following parameters were used: a

sampling frequency of fs = 16 kHz, a hamming window

of length of Nwin = 32 ms, a FFT length of N = 2Nwin, a

hop size of Nhop = 0.25Nwin and recursive averaging for

the online estimated PSDmatrices with a time constant of

70 ms. The stationary noise PSD matrix was calculated in

advance during periods of speech absence.

4.1 Analysis of the blocking matrices

A detailed evaluation of the eigenspace and sparse BM is

given in [38]. There it is shown that for accurately esti-

mated propagation vectors, the blocking ability of both

BMs is in theory equal, but if the estimation accuracy is

Fig. 1 Complete dereverberation system. Proposed dereverberation

system for L sources andMmicrophones using a spatial filter. The late

reverberant PSD is estimated from K reference signals using a

maximum likelihood estimator. The estimators denoted by the grey

blocks are beyond the scope of this paper

low, the blocking ability of the sparse BM is slightly lower

compared to the eigenspace BM.

Figure 2 shows the beampatterns of the two blocking

matrices for the DOAs {−73°, −51°, 10°, 21°} using a uni-

form linear array (ULA) of M = 8 microphones with

2 cm spacing, where 0° is the broadside direction. Since

the beampattern of B at each beamformer output (i.e.,

a

b

c

Fig. 2 Blocking matrix beampatterns. Beampatterns of the

eigenspace and sparse blocking matrices for L = 4 broadband

sources. a Eigenspace BM, last column. b Sparse BM, first column.

c Sparse BM, last column. The DOAs are marked as dashed lines
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number of its columns K) of the eigenspace BM is very

similar, it is only shown for the last column. In con-

trast, the beampatterns of the sparse BM vary clearly. The

low frequency performance of the sparse BM increases

for each output element, due to the increasing spacing

between the employed microphone pairs. In Fig. 2, it can

be observed that the sparse BM attenuates low frequencies

of ambient directions less or equal than the eigenspace

BM, depending on the output element.

The average output gain of the blocking matrix B to a

sound field with the coherence matrix Ŵ(k) is given by

GŴ(k) = tr
{
BH(k)Ŵ(k)B(k)

}
, (28)

where Ŵ(k) is either the ideal diffuse coherence matrix

(5) or the identity matrix for spatially white noise fields.

The power of diffuse and spatially white noise fields at

the BM output is shown in Fig. 3. We can observe in

Fig. 3 that the sparse BM attenuates diffuse sound less

than the eigenspace BM, which might be an advantage for

our application. On the other hand, spatially white noise is

highly amplified by the sparse BM whereas the eigenspace

BM slightly suppresses the noise.

4.2 Estimation considering multiple waves

We now analyze the performance of the proposed dif-

fuse PSD estimator while varying the number of estimated

simultaneous arriving plane waves L̂ that might differ in

practice from the actual number of directional sources L.

For this experiment, four directional sound components

are simulated. All source signals consist of independent

white Gaussian noise, and the sources are randomly dis-

tributed around the array on the horizontal half plane with

a random distance in the farfield of the array. The diffuse

sound signals d(k, n) are generated using independent

and identically distributed (i. i. d.) noise signals using the

method proposed in [40]. The spatial coherence between

the signals d(k, n) is chosen as the coherence of an ideal

diffuse field (5) and are added with an SDR of 10 dB. The

additive noise signals v(k, n) are simulated as well as i. i. d.

processes with an SNR of 50 dB.

Fig. 3 Blocking matrix output gain. Average blocking matrix output

gain for diffuse and spatially white noise fields

The soundfield is captured by a ULA of M = 8 micro-

phones with an inter-microphone spacing of 2 cm. In this

experiment, the DOAs of the L directional sound sources

are known and are successively taken into account plus

one extra DOA to investigate the effect of overestimation

of L, i.e., L̂ ∈ {1, . . . , L + 1}. At the position of the extra

DOA, no source is active. Note that the number of refer-

ence signals K, i.e., the length of vector ũ(k, n), decreases

with an increasing number of plane waves L̂ taken into

account.

Figure 4 shows the logarithmic estimation error

LE(φ̂d) = LEo(φ̂d)+LEu(φ̂d) of the diffuse PSD estimates,

decomposed into overestimation LEo(φ̂d) and underesti-

mation LEu(φ̂d) as computed by

LEo(φ̂d) = 1

|T |
∑

k,n

∣∣∣∣min

{
0, 10 log10

φd(k, n)

φ̂d(k, n)

}∣∣∣∣

(29a)

LEu(φ̂d) = 1

|T |
∑

k,n

∣∣∣∣max

{
0, 10 log10

φd(k, n)

φ̂d(k, n)

}∣∣∣∣ ,

(29b)

where the ideal diffuse PSD is obtained as the spatial

average of the instantaneous diffuse sound power over

all microphones, i. e., φd(k, n) = dH(k, n)d(k, n)/M, and

(n, k) ∈ T is the set of time-frequency points, where the

ideal diffuse PSD is above a certain threshold. The errors

LEo(φ̂d) and LEu(φ̂d) are plotted on top of each other, such

that the total bar height shows the total error LE(φ̂d).

The estimation accuracy increases by increasing the

number of directional constraints L̂ for the BM. When

the number of DOAs exceeds the actual number of plane

waves (L̂ > 4), we observe no significant performance

degradation. The eigenspace BM is slightly more suited

for L = 1, whereas the sparse BM performs slightly better

for L > 1. However, for unknown L, there is no significant

performance difference between both tested BMs. In the

Fig. 4 Log error for different numbers of directional constraints.

Accuracy improvement of the proposed diffuse PSD estimator for

different blocking matrices for an increasing number of directional

constraints
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remainder of this work, we use the eigenspace BM which

has been found to bemore robust against DOA estimation

errors [38].

4.3 Robustness against estimation errors

The accuracy of the proposed estimator depends basically

on two parameters. The estimated DOAs and the esti-

mated noise PSD matrix. The performance of the DOA

estimation is mainly degraded by strong reverberation and

noise. The robustness in the presence of estimation errors

is analyzed using two experiments.

In the first experiment, we investigate the influence of

DOA estimation errors. For this experiment, a scenario

with a single speaker was simulated. The direct sound of

the speaker was captured by a 4-microphone ULA with

4 cm microphone spacing. The diffuse noise is created

as a noise field with the spatial coherence Ŵdiff(k) and

the noise amplitude was modulated by the smooth tem-

poral envelope of the speech to simulate reverberation.

These diffuse signals were added with a long-term SDR

of 10 dB. Additional stationary white Gaussian noise was

added with an SNR of 80 dB. To model the DOA estima-

tion errors, a zero-mean Gaussian process with standard

deviation σDOA is added to the known DOA θ1 as

θ̂1(k, n) = θ1 + θe(k, n), (30)

where θe(k, n) is the DOA error and σ 2
DOA = E

{
θ2e (k, n)

}

is the error variance. The evaluation is carried out over

utterances by six different speakers. The logarithmic error

with over- and underestimation (29) of the proposed esti-

mator for different error variances is shown in Fig. 5. A

DOA variance below 5° shows no significant influence on

the estimation accuracy of the diffuse sound PSD. Large

DOA estimation errors lead mainly to overestimation of

the diffuse PSD due to leakage of the direct signal through

the BM.

In the second experiment, we evaluated the influence

of noise PSD estimation errors depending on the diffuse-

to-noise ratio (DNR). We assumed spatially uncorrelated

Fig. 5 Influence of DOA estimation errors on the diffuse PSD

estimation accuracy

homogenous noise, i.e., �v = φv I, and the DNR is given

by φd/φv. The noise estimation error was modeled by

an over/underestimation factor cv of the true noise PSD

matrix, i. e., the estimated noise PSD matrix is modeled

by �̂v = cv φv I. In Fig. 6, the relative diffuse PSD esti-

mation error defined as �d = φ̂d/φd is shown, where

φ̂d is estimated using �̃d = BH(φd Ŵdiff + �v)B − �̂v

with (24) and finally applying (27). A relative estimation

error �d of 0 dB indicates a perfect estimation, whereas

positive values indicate overestimation and negative value

underestimation. For high DNRs, underestimation of the

noise has only a very small effect on the relative estima-

tion error �d. When the noise is so much overestimated

that the power of �̃d in (24) is basically zero, the estimated

diffuse power is consequently zero, which results in max-

imum underestimation as can be seen as the large white

area. When the noise is underestimated at low DNRs, the

diffuse PSD is overestimated rather proportionally. For

positive DNRs, the diffuse estimation error is always very

small. However, if the DNR is low, the emphasis lies on

noise reduction and diffuse PSD estimation errors do not

have a severe negative effect on the spatial filter given by

(10).

4.4 Performance in time-varying diffuse noise fields

We now analyze the estimator’s performance in a time-

varying diffuse sound field. In this experiment, a noise

field with an ideal diffuse coherence was simulated in the

same manner as in Sections 4.2 and 4.3. Two sources were

simultaneously active at positions (−15°, 1.4 m) and (59°,

2.7 m), where the distance is measured from the center

of the array. Only the direct path of the two sources was

simulated, whereas the reverberation was simulated as a

diffuse noise field that was shaped by the temporal enve-

lope of the sum of both speech sources and added with

an SDR of 10 dB. Spatially and temporally white noise was

added with an SNR of 50 dB. Figure 7 shows the broad-

band ideal diffuse PSD and two settings for two ULAs of

4 and 8 microphones with 2 cm spacing. The narrowband

Fig. 6 Influence of noise estimation errors. Relative estimation error of

the diffuse PSD �d as a function of the noise estimation error and the

DNR
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Fig. 7 Tracking of a time-varying diffuse noise field in the presence of two direct source signals. The lines forM = 8 are omitted since they are

almost identical to the corresponding case withM = 4

DOAs are estimated online using TLS-ESPRIT [41] either

estimating L̂ = 1 or L̂ = 2 DOAs per time-frequency bin.

The true broadband diffuse PSD is drawn in black. We

observe that by simultaneously blocking two instead of

one plane waves in the reference signals ũ(k, n), the accu-

racy of the estimator can be increased, while increasing

the number of microphones has almost no effect on the

estimation accuracy. Furthermore, it can be seen that the

estimator is able to track the temporal changes.

4.5 Comparison to existing diffuse PSD estimators

In this section, we evaluate the performance of the

proposed diffuse PSD estimator and the three estima-

tors described in Sections 3.1.1–3.1.3, denoted by LRSV,

CSDRE, and ABF, respectively. A ULA of M = 8 micro-

phones with 2 cm spacing was simulated in a reverberant

room of size 6×5×4 m with a T60 = 500 ms using the

well-known image method [42]. Two speech sources are

located at 20° and −45° from the broadside direction of

the array at distances of 2.7 and 1.9 m, respectively. White

noise was added with different levels, described by the

iSNR.

The logarithmic estimation error (29), where the diffuse

signal component d(k, n) is the reverberant speech sig-

nal component 40 ms after the direct sound, is shown in

Fig. 8. The ABF and the proposed MLE were computed

by assuming either L̂ = 1 or L̂ = 2 simultaneous arriv-

ing plane waves, estimated via TLS-ESPRIT. The CSDRE

is using the TLS-ESPRIT DOA estimator with L̂ = 1. The

LRSV estimator is computed using the ideal parameters

for the simulated reverberation time and DRR. Figure 8a

shows the results obtained using a single active speech

source; Fig. 8b shows the results for two continuously

active speech sources. It can be observed that the ABF

approach is very sensitive to noise and has a decreasing

performance for decreasing iSNR. All other estimators are

quite robust against noise and show only a significantly

increasing error for very low iSNRs. The CSDRE has the

highest overestimation in all situations, which is more

critical than underestimation since it causes distortion of

the desired signal. The LRSV estimator performs best with

very low overestimation. The proposed MLE performs

slightly worse than the LRSV with ideal parameters but

better than the other estimators. The use of L̂ = 2 yields a

lower overestimation in most situations for MLE and ABF,

which is advantageous in terms of audible artifacts caused

by overestimation.

The LRSV requires in addition to the noise PSD an esti-

mate of the typically frequency-dependent reverberation

time (which is here almost frequency independent due to

the simulated impulse responses), the DRR, and the start

time of the late reverberation, which are here assumed

to be known. Especially at low iSNRs, online estimates of

these parameters are strongly biased and hard to obtain

[34], which is not reflected in the evaluation in Fig. 8. Note

that the DOA-dependent approaches in this scenario use

estimated DOAs without prior information and therefore

contain estimation errors.

Since the performance of the LRSV estimator depends

on the T60 parameter, we analyzed the performance as

a function of this parameter. In the following experi-

ment, the DRR was fixed and corresponds to the ideal

value. The scenario is identical to the above two speaker

scenario but the iSNR was set to 30 dB. Although the

true reverberation time was T60 = 500 ms, the param-

eter T̂60 influencing (13) was varied between 100 and

1200 ms, which can be the case in the presence of T60

estimation inaccuracies. The logarithmic error depending

on the T̂60 parameter is shown in Fig. 9. The proposed

method, which is independent of the T60, is shown as

dashed lines. It can be observed that the LRSV estima-

tor is only superior to the proposed method (i. e., has a

smaller total error), where the estimated T̂60 is close to the

true T60.
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a

b

Fig. 8 Log error of diffuse PSD estimators. The coloured bars show the overestimation for different estimators. The underestimation is black on top

of each bar. a Single active source. b Two active sources

4.6 Performance of the overall system

In this section, we evaluate the performance of the com-

plete dereverberation system described by (10) for differ-

ent acoustic scenarios.

In the first experiment, one, two, or three speakers

were active simultaneously. The first speech signal was

obtained by concatenating 6 speech signals of about 20 s

Fig. 9 Log error of the LRSV estimator (solid lines) depending on the

T60 parameter compared to the proposed estimator with L̂ = 2

(dashed lines) at iSNR = 30 dB

(3 male, 3 female) from the EBU SQAMdatabase [43], and

the second and third signals were obtained by permuta-

tion of the speakers. The sources were positioned at θ =
{5°,−68°, 54°} at distances of {2.7 m, 1.9 m, 2.3 m} from the

broadside direction of a ULAwithM = 8 andmicrophone

spacing 1.75 cm. The room was again simulated by the

image method with a T60 = 500 ms. Uncorrelated white

Gaussian noise was added with iSNR = 40 dB. Either

L̂ = 1 or L̂ = 2 DOAs were estimated per time-frequency

instant using TLS-ESPRIT.

The performance is evaluated using four objective mea-

sures, namely, the perceptual evaluation of speech quality

(PESQ) [44], the cepstral distance (CD) [45], the speech-

to-reverberation modulation ratio (SRMR) [46, 47], and

the segmental signal-to-interference ratio enhancement

(�segSIR) given in decibels. The desired reference signal

for the objective measures is the sum of the direct signal

components (7) plus early reflections up to 40 ms after the

direct sound; the interference is calculated as the sum of

stationary noise and the late reverberation after 40 ms.

Figure 10 shows spectrograms of an excerpt of the sig-

nals for the described scenario. Figure 10a shows the

spectrogram of the desired signal, which is the sum of
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a

b

c

d

Fig. 10 Spectrograms of desired direct signal, reverberant and noisy microphone signal and processed signals obtained with the two proposed

filters using L̂ = 2. a Direct signal. b Reverberant input signal. cMWF using LRSV. dMWF using MLE

the two direct signal components. Below is the reverber-

ant and noisy input signal as captured by the reference

microphone. Figures 10c,d show the spectrograms of the

processed signals with the MWF using the LRSV and the

proposed diffuse PSD estimator. It can be clearly observed

that the stationary noise and the reverberation is reduced

by the MWF, while the direct signals are preserved.

Tables 1, 2, and 3 show the results of the objective mea-

sures for one, two, and three simultaneous active speakers.

The first column indicates the processing method and the

method used to estimate the diffuse PSD φd. The sec-

ond column shows the number of simultaneous DOAs

that were estimated per time-frequency bin and were

used to compute the diffuse PSD MLE and the spatial fil-

ter. We can observe that the measures improve over an

unprocessed reference microphone signal for all methods.

The approach using L̂ = 1 typically achieves the highest

segmental SIR improvement but yields a higher CD for

multiple sources. Although the higher overestimation of

the diffuse PSD with L̂ = 1 increases the �segSIR, it can

be observed that the CD increases.

In terms of most performance measures, the LRSV

slightly outperforms the MLE in Tables 1, 2, and 3. It

should however be noted that the LRSV was computed

using prior knowledge of the reverberation time and DRR.

In the second experiment, the system was evalu-

ated in a realistic environment with measured impulse

responses and recorded babble noise. We measured

impulse responses of two common rooms, i.e., a meet-

ing room (M) and a large presentation room (P). The
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Table 1 Objective measures for simulated rooms, 1 active source

Method L̂ PESQ CD SRMR �segSIR [dB]

Unprocessed - 2.08 4.54 2.26 –

MWF MLE
1 2.27 4.00 2.91 2.04

2 2.22 4.06 2.96 1.88

MWF LRSV
1 2.38 3.85 2.90 2.10

2 2.35 3.85 2.95 1.99

meeting room with a size of 6.7 × 4.8 × 2.8 m and a

T60 ≈ 700 ms is not acoustically treated and has some

strong early reflections caused by a large conference table

and large windows. The presentation room with size of

10.4× 12.6× 3 m and a T60 ≈ 650 ms is acoustically

treated but was almost empty besides some chairs. We

used a similar array setup as in the simulations, i. e., a ULA

with M = 8 and inter-microphone spacing 1.75 cm. We

measured 3 positions in the meeting room and 6 posi-

tions in the presentation room, all located between ±75°

of the broadside array direction and at 1.5 . . . 5 m distance

from the array. The test signals were created by convolving

the impulse responses of two positions with different ane-

choic speech signals. Therefore, the scenario is constant

double-talk from two different positions. Uncorrelated

white Gaussian sensor noise was added with an iSNR of

50 dB, and diffuse cafeteria babble speech was added with

an SDR of 15 dB. The stationary noise PSD matrix is esti-

mated in advance by an arithmetic average over a period

of 20 s during which the speakers were inactive. Due to the

non-stationary nature of the babble speech, only the sta-

tionary part of the noise is captured in the time-invariant

noise PSD matrix �v. The non-stationary diffuse compo-

nents (babble speech and reverberation) are captured by

the diffuse PSD estimate. For the evaluation, the direct

desired signal component was generated by using win-

dowed impulse responses cdir(t), where only the direct

peak and early reflections are inside the window

cdir(t) = w(t) c(t), (31)

where c(t) is a M × 1 vector containing the measured

impulse response, w(t) is the window function and t is the

discrete time index. The window function w(t) is chosen

as a crossfade between direct sound and late reverberation

Table 2 Objective measures for simulated rooms, 2 active

sources

Method L̂ PESQ CD SRMR �segSIR [dB]

Unprocessed - 2.06 3.72 1.88 –

MWF MLE
1 2.28 3.54 2.41 2.34

2 2.25 3.39 2.46 2.20

MWF LRSV
1 2.37 3.46 2.36 2.20

2 2.34 3.22 2.43 2.16

Table 3 Objective measures for simulated rooms, 3 active

sources

Method L̂ PESQ CD SRMR �segSIR [dB]

Unprocessed - 2.05 3.47 1.73 –

MWF MLE
1 2.17 3.40 2.22 2.18

2 2.15 3.26 2.26 1.98

MWF LRSV
1 2.33 3.36 2.13 2.12

2 2.31 3.07 2.19 2.05

that ensures that the direct sound peaks are weighted with

1 and fades to zero until 40 ms after the direct sound peak.

The late reverberant impulse responses are obtained by

cd(t) = c(t) − cdir(t). (32)

Table 4 shows the objective measures for the mea-

sured test data set. We used TLS-ESPRIT to estimate

L̂ = 2 DOAs, and the filter was computed using the

proposed diffuse PSD estimator and the LRSV estima-

tor. Due to the challenging scenario, the improvements

are smaller than in the simulated scenarios. Nevertheless,

an improvement of all measures is achieved compared

to the unprocessed signals. The improvement for PESQ

in Table 4 is sometimes very small. The reason is that

PESQ is mainly a quality measure that does not quantify

the amount of reverberation. However, informal listening

tests confirmed that a significant dereverberation effect

can be perceived, which is well represented by �segSIR

and SRMR.

5 Conclusions
We proposed a system for joint dereverberation and

noise reduction for multiple simultaneously active desired

direct sound plane waves. The system consists of an

informed spatial filter that is computed using multiple

DOAs per time-frequency bin and the PSD matrices of

the diffuse sound and the noise. An estimator for the

diffuse PSD was developed that uses a set of reference

signals that are created by simultaneously blocking mul-

tiple active plane waves. The proposed estimator was

Table 4 Objective measures for measured rooms with 2 active

sources and babble noise using L̂ = 2

Room Method PESQ CD SRMR �segSIR

[dB]

M

Unprocessed 2.08 4.05 1.55 –

MWF MLE 2.09 3.69 2.27 3.24

MWF LRSV 2.27 3.51 2.27 2.98

P

Unprocessed 2.22 3.54 1.59 –

MWF MLE 2.28 3.13 2.11 4.57

MWF LRSV 2.41 3.13 2.11 3.51
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compared to three existing estimators. The proposed esti-

mator shows comparable or slightly more robust perfor-

mance compared to all estimators under test except the

well-established single-channel LRSV estimator. However,

the LRSV estimator was computed with prior knowl-

edge of the reverberation time and DRR, which might

be difficult to estimate in noisy environments and in

scenarios where the source positions and the room char-

acteristics change over time. The objective measures of

the dereverberation system show a comparable perfor-

mance by using the proposed estimator or the LRSV

estimator.
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