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Abstract

We present a methodological framework for multichannel Markov random fields (MRFs). We

show that conditional independence allows loopy belief propagation to solve a multichannel MRF

as a single channel MRF. We use conditional mutual information to search for features that satisfy

conditional independence assumptions. Using this framework we incorporate kinetic feature maps

derived from breast dynamic contrast enhanced magnetic resonance imaging as observation

channels in MRF for tumor segmentation. Our algorithm based on multichannel MRF achieves an

receiver operating characteristic area under curve (AUC) of 0.97 for tumor segmentation when

using a radiologist's manual delineation as ground truth. Single channel MRF based on the best

feature chosen from the same pool of features as used by the multichannel MRF achieved a lower
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AUC of 0.89. We also present a comparison against the well established normalized cuts

segmentation algorithm along with commonly used approaches for breast tumor segmentation

including fuzzy C-means (FCM) and the more recent method of running FCM on enhancement

variance features (FCM-VES). These previous methods give a lower AUC of 0.92, 0.88, and 0.60,

respectively. Finally, we also investigate the role of superior segmentation in feature extraction

and tumor characterization. Specifically, we examine the effect of improved segmentation on

predicting the probability of breast cancer recurrence as determined by a validated tumor gene

expression assay. We demonstrate that an support vector machine classifier trained on kinetic

statistics extracted from tumors as segmented by our algorithm gives a significant improvement in

distinguishing between women with high and low recurrence risk, giving an AUC of 0.88 as

compared to 0.79, 0.76, 0.75, and 0.66 when using normalized cuts, single channel MRF, FCM,

and FCM-VES, respectively, for segmentation.

Index Terms

Breast cancer recurrence prediction; breast dynamic contrast enhanced (DCE) magnetic resonance
imaging (MRI); breast tumor segmentation; tumor characterization

I. Introduction

Crucial to the performance of a feature extraction and image classification system is the

availability of a reliable and accurate segmentation approach for the object of interest (e.g.,

tumor). In most medical imaging applications, the automation of this step is particularly

important because of the large amount of images to be analyzed. This makes the manual

segmentation approach tedious and prohibitively expensive. As a result, extensive research

has been done in the medical imaging community for improving the quality of automated

segmentation. Specifically, there is an abundance of methods geared towards segmenting

well defined anatomical structures (e.g., parts of the brain). Notable among them are the

variants of active contours [1] and active shape models [2]. There are two main drawbacks

associated with this class of methods. First, they require manual initialization that should be

very close to the actual structure to be segmented. Efforts for automating the initialization

step have been restricted to structures for which precise a priori knowledge is available [3].

Second, they aim at segmenting known anatomical structures that have well defined control

points in their shape, which is often not the case for arbitrarily shaped lesions. Fuzzy C

means (FCM) clustering and its variants are also prevalent for the segmentation of well

defined structures [4]–[6]. Markov random field (MRF) based approaches have also been

used for segmentation. For instance, in [7], the authors model brain magnetic resonance

imaging (MRI) images as a MRF and use prior information for segmenting anatomical

structures. Another approach for segmentation includes spectral graph clustering methods

[8]–[10]. Notable among them is the normalized cuts algorithm [8] which is a highly robust

segmentation method and is widely used for segmentation applications [11]–[14].

Specifically, [11] uses normalized cuts for MRI image segmentation.

As compared to anatomically well defined structures, there is relatively less work in the

literature on segmenting arbitrarily shaped structures (e.g., breast tumors). Among the work

done on breast tumor segmentation the most popular approach is FCM clustering employed
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by many researchers due to its simplicity (e.g., [15], [16]). More recently Lee et al. [17]

presented a method that runs FCM on the variance map of enhancement kinetics (FCM-

VES). Although useful for segmentation, these methods do not take into account the overlap

of the feature values of the tumor and nontumor pixels. As a result they have to settle with a

manually set threshold on FCM membership probabilities, leading to poor generalization. In

order to address these issues we propose to incorporate a component of learning for breast

tumor segmentation. We present a framework for multichannel extension of MRFs to make

maximal usage of multiple feature streams derived from the imaging data, here specifically

related to kinetic analysis of dynamic contrast enhanced (DCE) breast MR images.

We have previously shown that a multichannel extension of MRFs is feasible [18]. In this

paper, we present a complete methodological framework, selection of conditionally

independent feature channels for MRF, extended comparison with other segmentation

algorithms, and assessment of the potential impact of improved segmentation on

classification and characterization of breast cancer tumors. We explore how inference

methods like loopy belief propagation [19] may be extended for a multichannel MRF. There

have been considerable work in the literature that uses MRF for segmentation. In a

representative work [7], authors address the problem of brain image segmentation using

MRFs and present an expectation maximization framework to solve the MRF. However, the

approach in [7] is limited to a single channel MRF. Often, it is desirable to integrate

information from different channels, if available, to achieve better segmentation. For

example, in our specific application, multiple channels would allow to take maximum

advantage of DCE MRI kinetic features that represent the properties of contrast agent uptake

by the tissue, which are expected to be different for tumor and background tissues [15], [20].

In this work we exploit conditional independence for solving an MRF via loopy belief

propagation [19] that reduces a multichannel MRF to a single channel MRF for inference

queries, allowing to capitalize on information coming in from different channels. We also

present a principled method to choose features satisfying conditional independence to be

included as multiple channels in the MRF observation model.

Key contributions of this paper are as follows.

• We show that conditional independence allows loopy belief propagation to solve a

multichannel MRF as a single channel MRF thereby avoiding the modeling of joint

distributions (Section II).

• Using conditional mutual information we present a principled method for choosing

conditionally independent features as different channels in the MRF observation

model (Section III).

• To elaborate on this premise, we introduce multiple feature channels derived from

the kinetic analysis of DCE magnetic resonance (MR) images in the observation

model of MRF (Section III).

• We show that our segmentation algorithm yields an area under curve (AUC) of

0.97 under the ROC curve for breast tumor segmentation compared to 0.89 for

single channel MRF using the best feature from the same pool of features as used

by our multichannel MRF. Also, the normalized cuts segmentation algorithm and
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commonly used approaches for breast tumor segmentation, [15], [17] gave lower

AUCs (0.92, 0.88, and 0.60) (Section IV).

• Finally we demonstrate that superior segmentation leads to improved feature

extraction and tumor characterization. In the specific application presented here, we

show that our segmentation method leads to improvement in image-based

prediction of breast cancer prognosis by distinguishing between patients with high

and low recurrence risks as determined by a validated gene expression assay

(Section V).

II. Multichannel MRF

To elaborate on the MRF concept, Fig. 1 shows how an image can be modeled as a MRF.

Each node (X) represents the class of a pixel, and neighboring pixels are connected via

edges. In the context of segmentation the goal is to infer the class label for each pixel (e.g.,

foreground versus background). For a detailed review on single channel MRFs see [21].

Here, we present a multichannel extension of MRFs and elaborate how to incorporate

multiple observations in the MRF model. In Fig. 1 each node emits two observations, Y and

W (similar notion could be extended to more than two observations). The joint probability of

the pixel class and the two observations over the entire image is given below

(1)

where

(2)

(3)

In (1), ϕi(ℳ ) is the multichannel node potential for the two observations, and ψ represents

the edge potential, and E models the adjacency of nodes including only those nodes that

have edges between them. The node potential captures the correlation between the features

and the class label, indicating the likelihood of xi coming from class c based on the feature

values of yi, wi and the feature distribution of class c. In (3), ℐ(xi ≠ xj) is an indicator

function that equals 1 when xi ≠ xj and 0 otherwise. As a result, ψ biases neighboring nodes

to have the same class label via the parameter β. In (2), ℳℳc is a Gaussian mixture model

learned for class c for features y, w which can be learned from labeled training data. It is

clear from (2) that with increasing number of observations the task of modeling the node

potential as a joint distribution would become difficult. However, if the features in different

channels are conditionally independent given the hidden variable (X), we can factorize the

right-hand side of (2) as follows:

(4)
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Equivalently (4) can be written as

(5)

where  and  are the individual node potentials for the features y and w respectively,

which can be learned from labeled training data (see Section III-D). The individual node

potentials,  and , can be multiplied together to give a single potential representing the

multichannel potential. In Section III-C, we present a principled method to choose features

satisfying conditional independence to invoke the factorization given in (4). Using (4) the

inference machinery for solving a single channel MRF can be reused for multichannel MRFs

as well, described below.

A. Inference in Multichannel MRFs

Inference in the above mentioned MRF involves the maximum a posteriori (MAP) estimate

of the state of each node in the MRF. For tree structured distributions, the MAP estimate for

the random fields can be computed efficiently by dynamic programming [22]. If the

graphical model is a tree it can also be computed in polynomial time using graph cuts [23].

For more general settings, the belief propagation (BP) algorithm is an efficient way for

solving inference problems in graphical models [24]. Specifically, in [24], the authors show

that the fixed points arrived at by the BP algorithm correspond to the Bethe approximation

of the free energy of a factor graph. Moreover, minimizing the free energy in turn

corresponds to minimizing the Kullback–Leibler divergence between a “trial” distribution

and the distribution that needs to be recovered [24], [25]. As such belief propagation offers

an efficient solution toward estimating inference probabilities in graphical models. It should

be noted that the BP algorithm solves inference problems exactly when the factor graph is a

tree, and only approximately when the graph has cycles [24]. There are BP algorithms that

give good approximate results even for graphical models with cycles [24]. If the graph has

cycles, the corresponding BP algorithm is often referred to as “loopy” belief propagation

[19]. Freeman et al. [24] present a seminal description as to why BP algorithm works well

which is primarily due to its equivalence with minimizing the free energy of the factor

graph, thereby arriving at better approximation of the distribution that needs to be recovered.

As such, the BP algorithm has significant advantages over other inference methods, [19],

[24], [25].

To capitalize on the advantages of the BP algorithm we investigate the loopy belief

propagation algorithm to solve our multichannel MRF. Loopy BP is a dynamic message

passing algorithm used for doing inference in MRF. δi→j ( j) is defined to be an incoming

message into node j from its neighboring node i. Intuitively, δi→j captures the degree of

belief that node i has about node j. To start the process of message passing through the

nodes, the node messages are initialized (typically to unity) and then the messages can be

updated in the next iteration as follows:
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(6)

where Zi→j is a normalization constant, and (i) is a set containing the neighbors of node i.

Equation (6) is repeatedly invoked till the messages converge (the update in each message is

less than ∊ e.g., 10−6). Once the messages have converged the final inference is done by

using

(7)

The inference engine will output for each node a vector of size C × 1 (C = 2 for two classes),

representing the belief of this node coming from each class. Optimal class label is simply the

class with the highest belief.

In the next section, we elaborate on the extraction of pixel-wise feature maps to build a

kinetic observation model for our multichannel MRF.

III. Multichannel MRF Based on DCE-MRI Kinetics

A. Candidate Feature Channels

Typically, for DCE MR images we have a precontrast image (captured prior to the injection

of a contrast agent) and a number of postcontrast images, captured at different time points

after the injection of the contrast agent [20]. The uptake of the contrast agent by different

tissues manifests itself in the form of contrast enhancement in postcontrast MR images, and

the enhancement patterns, in general, are different for tumor and background tissues [26],

[15]. As such DCE MRI derived features hold promise for differentiating between tumor

and background tissues and we propose to investigate them as candidate features for our

multichannel MRF observation model.

A common way to quantify the enhancement pattern is to compute relative enhancements as

compared to the precontrast image [17], [20]. By computing the relative enhancement on a

pixel by pixel basis we can construct pixel wise maps of the relative contrast enhancement

as follows:

(8)

where I(u, v, t) represents the intensity of pixel (u, v) captured at time t, and t0 is the

precontrast time instant. For a particular pixel, the relative enhancement plotted as a function

of time is defined as the kinetic curve [20]. In the literature (e.g., [17], [20]) a number of

basic features can be computed from this kinetic curve as illustrated in Fig. 2(a). Based on

these features we can derive a rich kinetic feature set by computing the pixel-wise map for

each feature as follows.
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• Peak enhancement ( ℰ)

(9)

which represents the peak relative enhancement for every pixel as computed over

all postcontrast time points.

• Time to peak ( )

(10)

which represents the time at which peak enhancement is achieved.

• Wash-in slope ( )

(11)

which is a measure of the initial uptake rate of the contrast agent for every pixel.

• Wash-out slope ( )

(12)

where tM is the last postcontrast time instant. The wash-out slope captures the drop

in the uptake rate of the contrast agent after the peak enhancement is achieved.

Example pixel-wise maps of above features are depicted in Fig. 2(b). For the rest of the

paper we use ℰi to represent the relative enhancement map for the ith postcontrast time

point. We investigate the utility of these feature maps when included in our multichannel

MRF observation model for the purpose of breast tumor segmentation.

B. MRF Representation-Superpixels

Many computer vision algorithms use the pixel grid as an underlying representation. MRFs

are also often defined on this regular grid. The pixel grid, however is not a natural

representation of the imaged structure, but rather an artefact of the imaging process [27]. As

a result there has been significant work in deriving efficient and perceptually meaningful

entities from a low level grouping process [27]–[29]. A popular approach is to divide the

image into segments of homogeneity called superpixels [8]. Following the approach in [8],

we first over-segmented the DCE MR images into superpixels. There are a number of

advantages to defining the MRF over the superpixels rather than individual pixels. First, it

reduces the complexity of images to a few hundred pixels. Second, they are

representationally efficient in that they allow longer range interactions between superpixels,

which in the case of a regular grid are restricted to adjacent pixels in the grid [28]. In order

to define the MRF neighborhood for superpixels we scan the rows and columns of the
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superpixelized image and look for transitions. This enables to build the adjacency matrix for

superpixels that captures the neighborhood. An example of the oversegmentation step using

superpixels is shown in Fig. 3. For this step, we used the publicly available implementation1

of superpixels based on [28], [29]. Throughout this work the input image was first

segmented into 100 superpixels that were used as nodes in the MRF. If is the number of

MRF nodes, the per-iteration complexity of loopy belief propagation message update (6)

ranges from O(N) to O(N2), depending on the connectedness of the nodes in the graph. As

such defining the MRF over superpixels greatly reduces the complexity of the message

update step.

C. Feature Choice for Multichannel MRF

The multichannel MRF described in Section II is based on features that are conditionally

independent of one another given the pixel class. It is well known that mutual information is

a good indicator of statistical dependence (or lack thereof) between random variables [30].

Small values of mutual information between two random variables indicate little statistical

dependence between the two. When certain variables are known, the conditional mutual

information captures the influence of this knowledge on the statistical interaction between

the variables in question. We thus use conditional mutual information as a criterion to assess

the conditional independence of our features. Specifically, in the multichannel MRF of Fig.

1, we are interested in assessing the independence of Y and W given X. Their conditional

mutual information is given by

(13)

The variable X represents the class of the pixel and hence is discrete, whereas the features

represented by Y and W are continuous. To compute the distributions required for evaluating

the above mutual information, one option is to discretize the continuous variables and use

histograms as approximation to the probability densities. However, the inefficiencies of

histograms for modeling probability densities, especially the inherent discontinuities, are

well recognized in the literature [31]–[33]. Therefore we employed kernel density estimation

[32], [34] for estimating the densities required for computing the mutual information. For all

computations, the Gaussian kernel was used. For bandwidth selection, a data driven

approach for computing diagonal bandwidth matrix for multivariate Gaussian kernel was

employed [34].

We computed I(Y; W∣X) by sequentially setting (Y, W) to all possible pairs of the following

six feature maps: postcontrast enhancements (ℰ1, ℰ2, ℰ3), peak enhancement ( ℰ), wash-in-

slope ( ), and wash-out-slope ( ). The features with the least conditional mutual

information were selected as channels for the multichannel MRF (see Section IV-B).

1http://www.cs.sfu.ca/∼mori/research/superpixels/
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D. Training-Learning Node Potentials

The training step involves the computation of node potentials as given in (5). We model

node potentials as a mixture of Gaussian distributions. A Gaussian mixture model ( ℳℳ)

is a weighted sum of M component Gaussian distributions [35]. For example, we can

express the node potential for feature y as follows:

(14)

where ℳℳc represents the Gaussian mixture model for class c (e.g., tumor and nontumor

pixels), wr is the weight of the rth Gaussian component specified by the respective mean and

variance parameters, μr and .  represents the Gaussian pdf with the respective

parameters as follows:

(15)

At training step we need to learn the following parameters for class c:

(16)

There are several techniques available for estimating the parameters of a ℳℳ [35]. A

popular approach for estimating these parameters is through an iterative maximum

likelihood estimation using the expectation maximization (EM) algorithm [36]. For learning

the node potentials for our multichannel MRF we employed the EM algorithm based method

(Matlab statistics toolbox2) and used M = 5 Gaussian components. To enable maximal usage

of the training data we used a leave-one-out cross validation strategy for computing node

potentials. For every test image, the rest of the data was considered as training set and node

potentials were computed using the training set.

IV. Segmentation Experiments

A. Dataset

All experiments presented in this paper were conducted on DCE breast MR images of 60

women diagnosed with breast cancer. The dataset consists of bilateral breast MRI sagittal

scans collected at our institution from 2007–2010. The ages of the women at the time of the

imaging ranged from 37 to 74 years with a mean age of 55.5 years. Of the women analyzed,

93% had their primary tumor classified as T1 i.e., the tumor was 2.0 cm or less in the

greatest dimension (GD). The rest of the primary tumors were T2 (2 cm < GD ≤ 5 cm).

Within the T1 tumors the distribution was as follows: 8%(0.1 cm < GD ≤ 0.5 cm); 37% (0.5

cm < GD ≤ 1 cm); 45% (1 cm < GD ≤ 2 cm). The imaging protocol is as follows: The

2http://www.mathworks.com/help/toolbox/stats/
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women were imaged prone in a 1.5T scanner (GE LX echo, GE Healthcare, or Siemens

Sonata, Siemens); matrix size: 512 × 512; slice thickness: 2.4–4.4 mm; flip angle: 25° or

30°. The images were collected before and after the administration of gadodiamide

(Omniscan) or gadobenate dimeglumine (MultiHance) contrast agents. Dynamic contrast

enhanced images were acquired at 90-s intervals for three postcontrast time points.

The women in the dataset had estrogen receptor positive (ER+), node negative tumors,

which were analyzed with the Oncotype DX prognostic gene expression assay [18].

Oncotype DX is a validated reverse-transcriptase-polymerase-chain-reaction (RT-PCR)

assay (developed by Genomic Health Inc.) that measures the expression of 21 genes in RNA

from formalin-fixed paraffin-embedded (FFPE) tumor tissue samples from the primary

breast cancer [37]. The final outcome of the Oncotype DX assay is a continuous recurrence

score that predicts the likelihood of breast cancer recurrence in 10 years after the treatment

(risk: low ≤ 17%, 18 % < medium > 30% high ≥ 31%). It has been shown that the benefit of

adjuvant chemotherapy regimen starts becoming significant only in patients with an

Oncotype score greater than 30 [37]. To learn feature statistics for distinguishing the breast

tumor and nontumor area of an image, a fellowship-trained board-certified breast imaging

radiologist delineated the lesion boundaries using the software ITK-SNAP [38]. The lesion

boundaries were defined on a central representative slice selected by the radiologist, as

usually assessed in standard clinical practice.

B. Segmentation Results

Using the strategy described in Section III-C we computed pairwise conditional mutual

information between all possible pairs of the following six features: ℰ1, ℰ2, ℰ3, ℰ, ,

. A visualization of the mutual information matrix that resulted from this pairwise

computation is shown in Fig. 4. The feature pair (ℰ1, ) had the least conditional mutual

information (0.02) and were selected as the feature maps for our MRF. The mutual

information was computed in a leave-one-out sense and the same features were consistently

selected for all leave-one-out folds.

The input to the inference engine is the superpixelized version of each feature map. For

every superpixel the engine outputs a probability estimate that the superpixel belongs to a

tumor region. These inference probabilities are calculated using (7). In Fig. 5 we show a

comparison between single channel and multichannel MRF segmentation. The multichannel

MRF is based on the feature pair: (ℰ1, ). For single channel MRF we tested each of the

individual features (ℰ1, ℰ2, ℰ3, ℰ, , ), and show the ROC for ℰ1 that gives the

highest AUC. The inference probabilities are computed in a leave-one-out fashion i.e., the

node potentials used in (7) are based on all images but the test image. The manual

segmentation provided by the radiologist was used as ground-truth to assess the pixelwise

agreement for ROC analysis. The ROC scores were derived from the inference probabilities.

The multichannel MRF based method gives an AUC of 0.97 outperforming the best single

channel MRF that gives an AUC of 0.89.

We compare our method against the following segmentation algorithms.
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C. Normalized Cuts

The normalized cuts algorithm [8] is a spectral graph theoretic method that is widely used

for diverse segmentation applications [11]–[14]. It is an unsupervised segmentation

technique that maximizes both the dissimilarity between different groups and the similarity

within groups of pixels. The normalized cuts algorithm [8] models an image as a graph G =

(V, E) and then aims to find a partition of the graph to minimize the cut cost normalized by

the cost of the total edge connections to all the nodes in the graph

(17)

where cut(A, B) is the sum of edge costs that are being cut by the partition i.e., cut(A, B) =

Σu∈A,v∈B w(u, v), and assoc(A, V) = Σu∈A,t∈V w(u, t) is the sum of costs for edge connections

from nodes in A to all nodes in the graph. Minimizing normalized cut exactly is NP-

complete but [8] proposed an approximate method that is able to solve the problem as a

generalized eigenvalue system (see [8] for details). Usually the resultant eigenvectors are

thresholded to obtain partitions of the image. However, in order to generate ROC curves we

used the eigenvectors as the scores. We used the publicly available implementation of

normalized cuts in our experiments [39]. We ran the normalized cuts algorithm using each

of the six features and report the best performance in Fig. 6 that gives an AUC of 0.92 by

using ℰ1 as an input.

D. Fuzzy C Means

Fuzzy C means (FCM) is a popular method for segmenting breast lesions from DCE-MRI

images e.g., [15], [16]. FCM is an unsupervised learning technique [40] that aims to find a

fuzzy partitioning of data points into clusters. If uki represents the extent of membership of

the ith data point to the kth class, the FCM problem is to find all uki such that the following

within group weighted squared Euclidean distance is minimized:

(18)

where b is a weighting exponent on each fuzzy membership, and μk is the weighted mean for

kth class given the membership probabilities uki. To ensure that uki represent probabilities

the above optimization is subject to the following constraints:

(19)

For our experiments we used Matlab's3 standard implementation of the FCM algorithm with

b = 2. As input to the FCM algorithm we tested all the individual features and pairs of

3Matlab version 7.13,R2011b
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features, and FCM performed the best when ℰ1 and  were concatenated together to

represent every pixel by a 2 × 1 feature vector. Connected component analysis was done on

the FCM output and the largest component was selected as the segmented lesion [16]. The

FCM probabilities were used as scores for generating the ROC curve which gave an AUC of

0.88 (Fig. 6).

E. FCM on Enhancement Variance

In [17], the authors first compute pixelwise variance of relative enhancement of breast MRI

images. They then run FCM on the pixelwise variance. This method gives an AUC of 0.60

as shown in Fig. 6.

F. Performance Comparison

Fig. 6 presents the comparison of all the above approaches against our method. Our

segmentation algorithm yields an AUC of 0.97 under the ROC curve for breast tumor

segmentation compared to 0.92, 0.89, 0.88, and 0.60 for the normalized cuts algorithm,

single channel MRF, FCM, and FCM on enhancement variance respectively. In Fig. 7, we

show representative segmentation results of our algorithm (row 7), FCM [15] (row 3), FCM-

VES [17], (row 4), normlaized cuts algorithm (row 5), and the best single channel MRF

(row 6).

V. Classification Experiments

In this section we investigate if better quality segmentation leads to better feature extraction

and tumor characterization. In the specific application presented here we explore the role of

segmentation in improved prediction of breast cancer prognosis as assessed by a validated

gene expression assay (Oncotype DX). Although the outcome of the Oncotype assay is a

continuous score, it has been shown that the benefit of a chemotherapy regimen starts

becoming significant only in patients with an Oncotype score greater than 30, which is the

high recurrence risk category [37]. As such, from a clinical perspective, the decision of low

versus high recurrence risk is very important to choose women who are expected to benefit

the most from adjuvant chemotherapy [41], [42]. Recent data indicate that in addition to

distinguishing between benign and malignant findings, breast MRI kinetic tumor features

and contrast enhancement patterns, are also significantly associated with histopathological

findings that are indicative of subsequent prognosis and probability of relapse [43], [44]. To

explore the effect of better segmentation we focus on the task of binary prediction of

Oncotype scores as high or low, where we consider patients with scores greater than 30 in

the high risk category.

A. Features for Classification

Here, we propose to investigate a rich set of kinetic statistics derived from DCE MRI images

for the task of detecting patients with high recurrence risk. We extract the kinetic statistics in

a two phase process: In the first phase the time to peak (TTP) for every pixel within the

segmented tumor is computed. In the second phase we cluster the pixels based on their TTP

values. In the dataset under consideration there are three post-contrast time points. TTP thus

can have three discrete values and the clustering step results in three groups of pixels. It has
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been suggested that the heterogeneities in the contrast agent uptake can be used for tumor

characterization [20], [45]. One way to interpret the kinetic heterogeneity is to divide the

pixels into clusters of homogeneity. Therefore the idea behind clustering the pixels

according to their TTP values is to group the pixels that show similar contrast uptake

behavior such that statistics within these clusters of kinetic homogeneity could be explored.

This step partitions the pixels into as many sets as the number of postcontrast time points,

i.e., set i consists of pixels that achieve their peak enhancement at the ith postcontrast time

point. Fig. 8 illustrates these partitions for an example case. In the second step, pixel-wise

maps of the following features were computed: peak enhancement (PE), wash-in-slope

(WIS), wash-out-slope (WOS), (Fig. 2). Based on these pixel groupings we compute

partition-wise kinetic statistics as follows: Let ℳ be the pixel partitioning such that ℳk

represents the membership mapping of pixel to its respective set. Given ℳ one can derive

the following set-wise statistics.

• Posterior probability of observing set i given the partition

(20)

where δ(ℳk = i) is an indicator function that equals 1 when ℳk = i, and zero

otherwise. N is the total number of pixels. These N pixels may come from an

arbitrarily shaped segmentation mask specifying the lesion.

• Mean value of feature map j for Set i

(21)

where fj(k) is the value of the jth feature map for kth pixel, and the feature map can

be either PE, WIS, or WOS.

• Variance of feature map j for Set i

(22)

Based on the above definitions, m pixel partitions and n feature maps would result into a

total of m(2n + 1) features. For this dataset we had three postcontrast time points and based

on the TTP values the pixels were partitioned into three sets (m = 3). Within these partitions

we computed statistics for three feature maps (n = 3) i.e., ℰ, , and . This resulted

in m(2n + 1) = 21 kinetic statistic features.

B. Single Feature Classifiers

To assess the classification performance of individual features we learned single feature

classifiers to distinguish between the categories of low and high recurrence risk. For each

feature we learned a leave-one-out binary decision stump classifier [46] using the individual
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feature values as scores for generating ROCs to evaluate the univariate performance of each

feature. Table I shows the AUCs for the ROCs corresponding to each feature classifier.

When features extracted from the output of the multichannel MRF algorithm were used for

classification, 15 of the 21 features give AUCs greater or equal to 0.74 with an average

AUC of 0.76. In Table I we also present comparison with single feature classification

performance when features were extracted from the outputs of other segmentation

techniques. For all the features, AUCs using the multichannel MRF based segmentation are

higher than that for other approaches.

C. Multi-Feature Classifier

Using the features described in Section V-A we followed a leave-one-out sequential forward

feature selection scheme. For each leave-one-out loop the feature selection was done as

follows: Starting with a single feature, we sequentially added features, learned a linear

support vector machine (SVM) on the training set corresponding to the current cross-

validation fold, and kept adding the features till the incremental classification improvement

dropped below a threshold (10−4) as compared to the previous feature set. This SVM

classifier was tested on the left out example and the process was repeated for all cross-

validation folds. Table II shows the frequency of selection for each of the features across all

leave-one-out loops.

The ROC for the multi-feature classifiers when the output of different segmentation

strategies were fed into the classification stage is shown in Fig. 9. The multi-feature

classifier was able to distinguish between low and high recurrence risk patients with an

AUC = 0.88 under the ROC curve when the proposed multichannel MRF segmentation

strategy was employed, which was higher than that for other segmentation algorithms [Fig.

9(a) and (b)] which give lower AUCs of 0.79, 0.76, 0,75, 0.66 for normalized cuts, single

channel MRF, FCM, and FCM-VES, respectively.

VI. Discussion

In Section IV-B, we derive features for our multichannel MRF that allow us to invoke

conditional independence conditions by computing pairwise conditional mutual information

between all possible pairs of features (ℰ1, ℰ2, ℰ3, ℰ, , ). Although data-driven,

the selection of the first postcontrast enhancement (ℰ1) and wash-out slope ( ) features

as different observation channels of the multichannel MRF deserves attention. These two

features capture different contrast agent uptake properties, each depending on different

directions of vascular permeability e.g., ℰ1 represents the initial uptake of the contrast agent

while  captures the drop in the uptake after the peak enhancement. As such they are

less correlated with one another. The rest of the kinetic features are essentially derived from

one another and are not expected to contain much uncorrelated information as is evident

from the mutual information matrix of Fig. 4. As mentioned in (13) the conditional mutual

information is conditioned on X i.e., the class of the node as to whether it belongs to tumor

or background tissue. As such the selection of ℰ1 and  as good features for

segmentation is also noteworthy as they capture properties of the contrast uptake in

postcontrast MR images, which are shown to be different for background and tumor tissues

[26], [15]. Although we use cross validation for generalization, and ℰ1,  do seem to
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represent good features for segmentation, their applicability for other cancer types requires

more extensive validation.

In this study, we have investigated pairs of features for the multichannel MRF model. In

principle, the multichannel MRF framework is applicable to any number of channels as long

as the features satisfy conditional independence criterion. For the feature set currently in

question (ℰ1, ℰ2, ℰ3, ℰ, , ), since only one pair satisfied the empirical test of

conditional independence, adding more features from the same feature set would have

essentially included features which already had significant mutual information with the

selected pair (ℰ1, ). In the future, however, if more elaborate feature sets are explored,

the possibility of experimenting with more channels remains open. We should also note that

in Fig. 4, the diagonal of the mutual information matrix varies for different features, unlike

what one would expect for a correlation matrix, where all diagonal values are same and

equal to unity. The reason for this is that the mutual information of a random variable with

itself represents the entropy of the variable and hence would vary from variable to variable

[30].

It is worth mentioning that the work presented in [47] comes closest in concept to ours in

terms of using multiple features for MRF. However, they assume a priori independence

between features, whereas in our current work we present a principled method to derive

conditionally independent features to arrive at appropriate features for the multichannel

MRF. Moreover, [47] solves the MRF using an expectation maximization scheme, whereas

we present how inference methods like loopy BP could be extended to multichannel MRFs.

As mentioned in Section II-A, the BP algorithm is equivalent to minimizing the free energy

of the graphical model, thereby arriving at better approximation of the distribution that

needs to be recovered.

We should note that while learning the node potentials for our multichannel MRF we are

modeling the features as a mixture of Gaussian PDFs. The features in and of themselves

may not necessarily be Gaussians. However, it has been shown that the Gaussian mixture

models provide good practical approximations to non-Gaussian noise processes [48]. That

said, approximating the features with other distributions is a potential direction for future

research.

We have also explored the impact of improved segmentation on the characterization and

classification of breast cancer tumors. Our multichannel MRF segmentation method gives a

much lower pixelwise false positive rate for the same true positive rate as depicted in the

ROC curves of Fig. 6. This perhaps explains the improvement in classifying the Oncotype

recurrence risk categories when tumors segmented by our algorithm are used for feature

extraction. From a clinical perspective, the minimally-invasive estimation of recurrence risk

from DCE-MRI features is an important question as it could become a useful decision tool

for routing candidate patients to appropriate treatment options [49]. Our results suggest that

improved segmentation could play a significant role in assisting this clinical decision.

Moreover, the DCE-MRI features are currently extracted from a representative 2-D slice of

the primary lesion. Kinetic partitioning of the entire 3-D volume of the lesion could

potentially lead to richer statistics that may further improve the prediction of breast cancer
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recurrence in future work. Also, our current work focuses on accurately segmenting the

tumor given a coarsely defined rectangular ROI. Adapting the existing method for a fully

automated tumor detection is a potential topic for future research.

VII. Concluding Remarks

In this paper, we have presented a methodological framework for a multichannel extension

of MRFs for breast tumor segmentation from DCE-MRI images. Using conditional

independence we have shown that loopy belief propagation can solve a multichannel MRF

as a single channel MRF. We have presented a method to search for optimal MRF features

that satisfy conditional independence conditions by employing pairwise conditional mutual

information. Using this framework we incorporate a kinetic observation model derived from

DCE breast MR images into the multichannel MRF and demonstrate superior segmentation

results (AUC = 0.97). Our multichannel MRF outperforms single channel MRF (AUC: 0.89)

employing the best individual feature from the same pool of features as used by the

multichannel MRF. Our approach also performs significantly better as compared to the well

known normalized cuts segmentation algorithm and commonly used previous methods for

breast tumor segmentation (AUCs: 0.92, 0.88, 0.60). Moreover, we also demonstrate that

our improved segmentation leads to better feature extraction and tumor characterization with

an application on predicting breast cancer prognosis as determined by a validated tumor

gene expression assay. Specifically, when tumors segmented by our algorithm were fed into

an SVM classifier, it was able to distinguish between women with high and low breast

cancer recurrence risk with an AUC of 0.88 under the ROC as compared to AUCs of 0.79,

0.76, 0.75, and 0.66 for othersegmentation methods. The decision of low versus high

recurrence risk is very important from a clinical perspective as it could enable to select

patients that are expected to benefit the most from adjuvant chemotherapy [50], [41], [42].

We believe that the proposed methodological framework could also be extended to other

imaging modalities and organs as well.
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Fig. 1.
Multichannel MRF with two observations for each node. The variables inscribed in the

triangle represent the joint distribution of the MRF model. If the observation variables (Y,

W) are conditionally independent given the hidden variable (X), the joint distribution can be

factorized into two parts, represented by ellipses, allowing loopy belief propagation to solve

a multichannel MRF as a single channel MRF (see Section II).
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Fig. 2.
Candidate features for different observation channels of our multichannel MRF. (a)

Illustration of basic kinetic features for a single pixel. (b) Pixel wise maps of enhancement

for three postcontrast time points. (c) Pixel wise maps of kinetic features: peak enhancement

( ℰ), wash-in-slope ( ), wash-out-slope ( ).
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Fig. 3.
Illustration of the oversegmentation step using superpixels. Here an image consisting of ∼

5000 pixels has been divided into 100 superpixels.
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Fig. 4.
Visualization of the mutual information matrix generated by computing conditional mutual

information between feature pairs. The encircled cell corresponds to the feature pair with the

least conditional mutual information.
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Fig. 5.
ROC comparison for breast tumor segmentation between multichannel and single channel

MRF. The multichannel MRF using the feature pair (ℰ1, ) gives an AUC of 0.97 under

the ROC curve as compared to 0.89 for single channel MRF based on the best individual

feature (ℰ1).
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Fig. 6.
ROC comparison for breast tumor segmentation. The multichannel MRF based

segmentation method gives an AUC of 0.97 under the ROC curve as compared to 0.92, 0.88,

and 0.60 for normalized cuts [8], FCM [15], [16] and FCM-VES [17], respectively.
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Fig. 7.
Qualitative comparison of segmentation results as overlayed on the first postcontrast image.

Results of multichannel MRF approach (Row 7) are qualitatively more similar to the

radiologist's provided ground truth (Row 2) as compared to traditional approaches (Row 3,

4), the normalized cuts algorithm (Row 5), and the best single channel MRF (Row 6).
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Fig. 8.
Illustration of kinetic partitioning based on the TTP pixel-wise values. (a) Segmented lesion.

(b) Set 1 pixels (yellow). (c) Set 2 pixels (blue). (d) Set three pixels (green). Set i consists of

pixels that have their peak enhancement at the ith postcontrast time point.
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Fig. 9.
ROC Curves for the multi-feature SVM for classifying high versus low breast cancer

recurrence risk. We get the highest AUC when the output of multichannel MRF

segmentation method is fed to the feature extraction stage.
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TABLE II

Selection Frequencies of the Kinetic Statistic Features Over All the Classification Leave-One-Out Loops. For

Every Leave-One-Out Loop a Sequential Forward Feature Selection Scheme Was Followed. In Column 1

Feature Names Follow the Notation of (20)(22). E.g., μ(1, PE) Represents the Mean Feature Map Value of

Peak-Enhancement for Set 1 Pixels. Column 2 Shows the Selection Frequency of Each Feature Over All Cross

Validation Folds

Feature Selection Frequency

( et = 1∣ℳ) 60/60 (100.00%)

( et = 2∣ℳ) 60/60 (100.00%)

( et = 3∣ℳ) 52/60 (86.67%)

μ(1, ℰ) 60/60 (100.00%)

μ(2, ℰ) 57/60 (95.00%)

μ(3, ℰ) 43/60 (71.67%)

σ2(1, ℰ) 54/60 (90.00%)

σ2(2, ℰ) 47/60 (78.33%)

σ2(3, ℰ) 42/60 (70.00%)

μ(1, ) 58/60 (96.67%)

μ(2, ) 60/60 (100.00%)

μ(3, ) 39/60 (65.00%)

σ2(1, ) 56/60 (93.33%)

σ2(2, ) 60/60 (100.00%)

σ2(3, ) 46/60 (76.67%)

μ(1, ) 60/60 (100.00%)

μ(2, ) 60/60 (100.00%)

μ(3, ) 52/60 (86.67%)

σ2(1, ) 60/60 (100.00%)

σ2(2, ) 55/60 (91.67%)

σ2(3, ) 53/60 (88.33%)
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