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ABSTRACT 
Aim/Purpose This article proposes a methodology for selecting the initial sets for clustering 

categorical data. The main idea is to combine all the different values of every 
single criterion or attribute, to form the first proposal of the so-called multiclus-
ters, obtaining in this way the maximum number of clusters for the whole da-
taset. The multiclusters thus obtained, are themselves clustered in a second step, 
according to the desired final number of clusters. 

Background Popular cluster methods for categorical data, such as the well-known K-Modes, 
usually select the initial sets by means of some random process. This fact intro-
duces some randomness in the final results of the algorithms. We explore a dif-
ferent application of the clustering methodology for categorical data that over-
comes the instability problems and ultimately provides a greater clustering effi-
ciency. 

Methodology For assessing the performance of the proposed algorithm and its comparison 
with K-Modes, we apply both of them to categorical databases where the re-
sponse variable is known but not used in the analysis. In our examples, that re-
sponse variable can be identified to the real clusters or classes to which the ob-
servations belong. With every data set, we perform a two-step analysis. In the 
first step we perform the clustering analysis on data where the response variable 
(the real clusters) has been omitted, and in the second step we use that omitted 
information to check the efficiency of the clustering algorithm (by comparing 
the real clusters to those given by the algorithm). 

Contribution Simplicity, efficiency and stability are the main advantages of the multicluster 
method. 
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Findings The experimental results attained with real databases show that the multicluster 
algorithm has greater precision and a better grouping effect than the classical K-
modes algorithm. 

Recommendations  
for Practitioners 

The method can be useful for those researchers working with small and me-
dium size datasets, allowing them to detect the underlying structure of the data 
in an intuitive and reasonable way. 

Recommendations  
for Researchers  

The proposed algorithm is slower than K-Modes, since it devotes a lot of time 
to the calculation of the initial combinations of attributes. The reduction of the 
computing time is therefore an important research topic. 

Future Research We are concerned with the scalability of the algorithm to large and complex 
data sets, as well as the application to mixed data sets with both quantitative and 
qualitative attributes. 

Keywords clustering, categorical data, K-Modes 

 

INTRODUCTION 
The term Cluster Analysis encompasses a wide variety of techniques and methods, all of them aimed 
to a single purpose: to classify the items belonging to a given set, and to cluster them into a finite 
number of subsets or clusters. It is therefore a multivariate statistical procedure that takes a given da-
taset – a collection of items – as the starting point and classifies them into homogeneous groups in 
such a way as to maximize the similarity of individuals within the same cluster, and making at the 
same time the differences between different groups as large as possible. 

K-Means and K-Modes are two popular algorithms for clustering numerical and categorical data, re-
spectively. Both are based in the same methodology: they select k entities as initial representative 
points, i.e. the centers or centroids of the initial clusters; then they assign every object to its closest 
representative point, and these points and clusters are recalculated, repeating the process until no 
more changes are observed. K-Means and K-Modes choose as representative points the means and 
modes of the clusters, respectively.  

K-Modes usually chooses k random entities as the initial modes, i.e. the centroids of the initial clus-
ters. Nevertheless, as recognized in Huang (1998), this random selection of the initial seeds often 
leads to very different final cluster aggregations. In other words, the algorithm is instable because 
several executions over the same dataset can give different final clusters. K-Means is also affected by 
this problem, because the initial cluster centroids are not fixed and we have randomness in the fol-
lowing computation steps. Since this paper is focused on categorical data, we will only address K-
Modes, as it is the standard and most popular method for clustering this kind of data. We think, 
however, that our methodology could be generalized for working with numerical or mixed data. 

In this article, we want to explore an alternative application of the clustering methodology for cate-
gorical data that overcomes the instability problems and ultimately provides a greater clustering effi-
ciency. Our method is based on the calculation of all possible combinations of the values of the at-
tributes or criteria that characterize the different objects in the data set and always obtains the same 
initial groups as well as their centroids, assuming that the desired number of final clusters, k, is 
known in advance. Those combinations having a greater number of objects will be selected as start-
ing points of the iterative process. 

To carry out this process, an analysis of the different attributes is needed in the first place. In this 
first step, the algorithm calculates the number of clusters for every single criterion automatically, ac-
cording to the different values of these criteria. In a second step, the algorithm calculates the first 
proposal of the so-called “multiclusters”, which are built by forming all the non-empty combinations 
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of the single-criterion clusters obtained in the previous step. Finally, in the last step, the multiclusters 
obtained in the previous step (may be too many), are themselves clustered according to the desired 
final number of clusters, taking as starting point those multiclusters containing the highest number of 
objects. 

The paper is organized as follows: after the Introduction, the first section (Literature Review) pro-
vides an overview of the main clustering algorithms and the previous attempts to solve the problem 
of instability of K-Modes. The second and third sections (Conceptual Explanation and Methods) ex-
plain the main features of the proposed clustering algorithm. In the fourth section (Experimental Re-
sults), the methodology is applied to several well-known real databases, showing an increase of the 
accuracy and clustering efficiency when compared with other popular algorithms. The two last sec-
tions (Discussion and Conclusions) conclude the paper. 

LITERATURE REVIEW 
Jain and Dubes (1988), in their book “Algorithms for Clustering Data”, characterize Cluster Analysis 
as a tool for data exploration, complemented with visualization techniques. The objective of the 
Cluster Analysis is therefore to find the most natural way of grouping a set of individuals, objects, 
patterns, observations, etc., depending on the degree of similarity of their characteristics. 

OVERVIEW OF CLUSTERING 
Several types of methods have been developed, following different induction principles (as shown in 
Figure 1). Fraley and Raftery (1998) suggest classifying the cluster methodologies into two groups: 
hierarchical and partitioned methods. Han et al. (2011) suggest three groups: density-based, model-based and 
grid-based methods. 

 
Figure 1: Taxonomy of cluster methods (Prakash et al., 2016) 

Clustering methodologies can also be classified according to the different similarity measures that are 
used in the analysis: we find, among others, Aldenderfer and Blashfield (1984), Duda et al. (1973), 
Guha et al. (2000a, 2000b), Jain et al. (1999), Selosse et al. (2020), and Yuan et al. (2020). Many books 
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have also been published on this subject, such as Agresti (2018), Anderberg (1973), Bagirov et al. 
(2020), Bailey (1975), King (2015), Sibson (1976), Sneath and Sokal (1973), Upton (2017), and 
Wierzchon and Klopotek (2018). 

There is a lot of literature devoted to the different cluster methodologies, which we briefly summa-
rize in Table 1. 

Table 1: Cluster methodologies 

Methodology Typical Algorithm Authors 
Grid STING Makhabel (2015) 
Density DBSCAN Pietrzykowski (2017); Zhu et al. (2013) 
Density IDCUP Altaf et al. (2020) 
Partitioning K-MEANS MacQueen (1967) 
Partitioning K-MODES Dorman and Maitra (2020); Huang (1997a, 

1997b, 1998, 2009) 
Partitioning PAM, CLARA, CLARANS Kaufman and Rousseeuw (1990) 
Hierarchical BIRCH Chiu et al. (2001); Zhang et al. (1996, 1997) 
Hybrid CURE Guha et al. (2000b) 
Hierarchical ROCK Guha et al. (2000a) 
Hierarchical DIANA, AGNES Kaufman and Rousseeuw (1990) 
Mixed K-PROTOTYPES Huang et al. (2005); Ji et al. (2020); Kim 

(2017); Szepannek (2018) 
Mixed ClicoT Behzadi et al. (2020) 

POPULAR CLUSTER ALGORITHMS 
Actually, K-Means (Forgy, 1965; McQueen, 1967) is one of the most popular cluster algorithms. This 
algorithm represents each cluster by its center of gravity – its mean value - and assigns the objects to 
their nearest clusters (using the Euclidean distance). After every object has been assigned to a cluster, 
the algorithm recalculates all the centers of gravity. The process is repeated until no change is ob-
served in the formed clusters.  

K-Means only works with numerical data. However, in many problems, we find categorical data, with 
nominal, ordinal, interval or binary variables, and in these cases, different types of clustering algo-
rithms are needed. The well-known K-Modes algorithm, according to Huang (1997a, 1997b, 1998) can 
be considered as an adaptation of K-Means to categorical data, since both are inspired in similar 
ideas: K-Modes works in a similar way to K-Means, considering the modes of the clusters instead of 
their means, and using dissimilarities instead of numerical distances. A mode is a vector of elements 
that minimizes the dissimilarities between the vector itself and each object of the cluster.  

To calculate the distance (or dissimilarity) between two objects X and Y described by m categorical at-
tributes, the distance function in K-modes is defined as: 

d(X, Y) =  ∑ δ(xj, yj)m
j=1          (1) 

where 

δ(xj, yj) =  �
0               (xj =  yj)
1               (xj ≠  yj)

 

Here, xj and yj are the values of attribute j in X and Y, and d(X, Y) gives equal importance to each 
category of an attribute. This function is often referred to as simple matching dissimilarity measure or 
Hamming distance. The larger the number of mismatches of categorical values between X and Y is, the 
more dissimilar the two objects. 



Santos-Mangudo & Heras 

231 

Let N be a set of n categorical data observations described by m categorical attributes. When the dis-
tance function defined in Eq. (1) is used as the dissimilarity measure for categorical data observa-
tions, the cost function becomes:   

 ∑ d(Ni, C𝑖𝑖)𝑛𝑛
i=1            (2) 

where Ni is the ith element and C𝑖𝑖 is the nearest cluster centroid to N𝑖𝑖. K-Modes minimizes the cost 
function defined in (2). 

The K-modes algorithm assumes the number k of clusters as predetermined, and consists of the fol-
lowing steps (Huang, 1997a): 

1.   Select the k initial cluster centroids.  
2.   Assign every data observation to the cluster with the nearest centroid, according to Eq. (2).  
3.   Update the k clusters after the reallocation of step 2, and compute their modes, which will 

be the new centroids.  
4.   Repeat steps 2 and 3 until no more changes are observed. 

LIMITATIONS OF EXISTING ALGORITHMS FOR CLUSTERING 
A key issue for the performance of K-Modes is the selection of the seeds or initial centroids. This is 
usually done by means of some random procedure, but this random selection of the initial seeds of-
ten leads to very different final cluster aggregations. In other words, the algorithm is instable because 
several executions over the same dataset can give different final clusters, as recognized in Huang 
(1998), and Khan and Ahmad (2013), among others. 

In order to overcome this problem, some solutions have been suggested in the literature. The perfor-
mance of the K-Modes algorithm has been improved using the tabu search technique (Ng & Wong, 
2002) and genetic algorithms (Gan et al., 2005). Outlier detection techniques have been applied to the 
initialization of K-Modes (Jiang et al., 2016; Knor & Ng, 1998), based on the idea that outliers should 
not be selected as initial centers of the clusters. Also, Bradley’s and Fayyad’s (1998) iterative initial-
point refinement algorithm has improved the accuracy and repetitiveness of the clustering results. 

Density-based multi-scale data condensation has also been used together with Hamming distance to 
extract the initial cluster centers from the datasets; see Khan and Ahmad (2013, 2015), and Mitra et 
al. (2002). Cao et al. (2009) compute the density of each data cluster and propose as initial clusters 
those with maximum average densities. 

Wu et al. (2007) develop a density-based method to compute the initial cluster centers and to reduce 
the algorithmic complexity, however, there is some randomness in the final results and repeatability 
of the clustering results may not be achieved. Bai et al. (2012) propose a method to compute the ini-
tial cluster centers based on a density function and a distance function, and Dinh and Huynh (2020) 
propose a k-Pbc algorithm to improve cluster center initialization for categorical data clustering. 

Khan and Ahmad (2013) propose a seed selection methodology with three attribute selection meth-
ods, based on the significance of attributes. The first method is the vanilla approach, where all the 
attributes are considered significant. The second method is the prominent attribute method, where 
an attribute is significant if the number of unique values of the attributes is lower than or equal to the 
required number of clusters; see also Khan and Ahmad (2012). The third method is to identify the 
most significant attributes by measuring the co-occurrence of their values with the values of the 
other attributes (Ahmad & Dey, 2007a, 2007b). The initial seed selection algorithm is applied to the 
attributes obtained by means of these three attribute selection methods, and K–Modes clustering al-
gorithm is then executed (Sajidha et al., 2018). 

In general, these methods are difficult to implement and some of them do not completely wipe out 
randomness. In the next section we will propose a simple clustering algorithm for categorical data 
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that uses the same distance function as K-Modes but overcomes its instability problems and also pro-
vides a greater clustering efficiency. As we commented in the Introduction, the key idea is to form 
the so-called “multiclusters”, which are non-empty combinations of the different values of the attrib-
utes or criteria. Those multiclusters containing the highest number of objects will be taken as seeds 
of the clustering process. We will see that an algorithm based on this simple idea outperforms K-
Modes both in terms of stability and clustering efficiency. In other terms, simplicity, stability and effi-
ciency are the main advantages of the proposed algorithm.  

CONCEPTUAL EXPLANATION 
This section explains the main ideas of the proposed “K-multicluster” algorithm for categorical data. 

The algorithm works as follows:  

I. First, the clusters for each single criterion are easily calculated, since they coincide with the 
different categorical values of the criteria.  

II. Second, once the clusters have been obtained for every single criterion or attribute, their val-
ues are combined to form the first proposal of the multi-clusters, obtaining in this way the 
maximum global number of clusters for the whole dataset.  

This way, we obtain the clusters that should appear when we consider each attribute as an 
independent entity of the other attributes existing in the database. Each one of these multi-
clusters is based on the exact coincidence, for the objects belonging to the cluster, of all the 
values of their attributes. In other words, we obtain clusters in which all the objects have a 
100% coincidence in their attributes. In order to visualize these coincidences, it is useful to 
build the so-called Coincidence Matrix, showing the number of coincidences between the at-
tributes of every couple of clusters.  

III. Third and last step, it is clear that the number of multi-clusters obtained before may be too 
large in many applications. For this reason, this set of clusters shall, in turn, be clustered, in 
order to obtain the predetermined number of clusters as the final output of the algorithm. 

To achieve this goal, we will start from the biggest clusters, that is, those clusters containing 
the highest number of objects, and we will try to link to them each of the other smaller clus-
ters. In order to break the tie in those cases of equal similarities, we will use the Fleiss’ Kappa 
coefficient (Fleiss et al., 1969, 2003; Fleiss, 1971), a well-known statistical measure for as-
sessing the degree of coincidence or agreement between items with categorical features.  
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Figure 2 summarizes the structure of the “K-multicluster” algorithm: 

Library definitions 
Input: M = Categorical Dataset, N = data objects or data observations, R = Set of   
attributes in the data  
Output: S = File of MultiCluster results of Dataset and MC = Multicluster Coinci-
dence matrix 
# ------ Step 1. 
for every attribute R ∈ M do 

Group by attribute “R” summarizing all their different possibilities 
Barplot to show graphically the values of categorical attribute. 
Compute cluster distribution C[R] for attribute (∀ R ∈ M) using a partition-
ing method like CLARA (Kaufman & Rousseeuw, 1990) 

end for 
# ------ Step 2. 
Combining all clusters obtained in step 1 for each attribute, a multicluster will be ob-
tained for each observation of the dataset. 
Compute The Multicluster Matrix 

Collecting all observations of the dataset belonging to the same multiclusters, 
we obtain the Multicluster Matrix showing the frequency of observations for 
each multicluster. We get in this way the maximum global number of clusters 
for the whole dataset, which coincides with the total number of multiclusters 
obtained. 

for every row of the Multicluster Matix obtained before do 
Build a  Coincidence Matrix, showing the coincidences between the attributes 
of every couple of clusters 

end for 
# ------ Step 3. 
Select K number of final clusters ∈ ( 2  ≤  K < Maximun global ) 
while not achieve K selected do 

for every Transmitter or row of the Coincidence Matrix do 
for every Receiver or column of the Coincidence Matrix do 

Select multiclusters containing the highest number of ob-
jects and compute the proximity between Transmitter and 
every possible Receiver using Fleiss’ Kappa coefficient 
(Fleiss et al., 2003) 

end for 
Change Multicluster Transmitter to that Multicluster Receiver with 
the greather value of Fleiss’ Kappa coefficient calculated before 

end for 
end while 

Figure 2: Proposed “K-multicluster” algorithm 

METHODS 
The following example illustrates the methodology. We use Unsupervised Breast Cancer data from 
an Institute of Oncology in Ljubljana, Slovenia, obtained from the UCI Machine Learning Repository 
( http: //archive.ics .uci.edu / ml / ) (Dua & Graff, 2019), with 286 observations and 8 different at-
tributes. We show part of this information in the matrix of Table 2, taking a random sample of 20 
observations and 4 different attributes, where the rows represent the observations and the columns 
represent the attributes and their categorical values. Column OBSERVATION reports the codes of 
the patients, AGE shows their ages (at the time of diagnosis), NODE-CAPS indicates whether or 
not the cancer metastasizes to a lymph node, MENOPAUSE reports if the patients are pre- or post- 
menopausal at the time of diagnosis and BREAST indicates the breast side where the cancer appears.  

https://translate.google.com/translate?hl=es&prev=_t&sl=es&tl=en&u=http://archive.ics.uci.edu/ml/
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Table 2: Data Matrix 

 
 

As a first step in the implementation of the algorithm, we calculate the clusters for the attributes, 
based on their different values (see Figure 3). 

 
Figure 3: Natural Cluster distribution for each attribute 

In our example, there are 4 clusters for the age intervals, 2 clusters for the node-caps, 2 clusters for 
the menopause attribute and 2 clusters for the breast attribute (see Table 3). 

OBSERVATION AGE NODE-CAPS MENOPAUSE BREAST

RE219 60-69 no ge40 right
RE247 30-39 yes premeno left
NRE41 50-59 no ge40 right
NRE127 30-39 yes premeno right
NRE130 40-49 yes premeno right
NRE180 40-49 no premeno right
RE237 40-49 no premeno right
NRE21 50-59 no ge40 left
NRE86 50-59 no ge40 left
NRE122 50-59 no ge40 right
RE256 40-49 yes premeno right
RE242 40-49 yes premeno left

NRE168 40-49 yes ge40 right
NRE105 40-49 no premeno right
NRE97 60-69 no ge40 left
RE251 40-49 no premeno left
RE233 30-39 no premeno right
NRE99 40-49 no premeno left
NRE5 40-49 no premeno right

NRE162 40-49 yes premeno right
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Table 3: Cluster division per attribute 

 
Combining all the different possibilities, the maximum number of possible clusters that could be ob-
tained is ∏ Cv(i)

n
i=1  where “v(i)” denote the i-th attribute, “n” is the total number of attributes in-

cluded in our data base and “C” represent the number of clusters that has been calculated by the al-
gorithm for each attribute.  

In our case, the total number of possible clusters will be (as shown in Table 4):  

�Cv(i)

4

i=1

= 4 ∗ 2 ∗ 2 ∗ 2 = 32 

Table 4: MultiCluster attribute Matrix 

 
However, most of them are empty. In fact, we only find 12 nonempty multiclusters, which can be 
represented in a MultiCluster Data Table (Table 5).  

AGE CLUSTER NODE-CAPS CLUSTER

60-69 1 no 1

30-39 2 yes 2

50-59 3

40-49 4

MENOPAUSE CLUSTER BREAST CLUSTER

ge40 1 right 1

premeno 2 left 2

Observation Multicluster age node-caps menopause breast

RE219 1111 1 1 1 1
RE247 2222 2 2 2 2
NRE41 3111 3 1 1 1
NRE127 2221 2 2 2 1
NRE130 4221 4 2 2 1
NRE180 4121 4 1 2 1
RE237 4121 4 1 2 1
NRE21 3112 3 1 1 2
NRE86 3112 3 1 1 2
NRE122 3111 3 1 1 1
RE256 4221 4 2 2 1
RE242 4222 4 2 2 2
NRE168 4211 4 2 1 1
NRE105 4121 4 1 2 1
NRE97 1112 1 1 1 2
RE251 4122 4 1 2 2
RE233 2121 2 1 2 1
NRE99 4122 4 1 2 2
NRE5 4121 4 1 2 1
NRE162 4221 4 2 2 1
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Table 5: Multicluster Data Table 

 
According to the information in Table 5, the maximum number of multiclusters is 12, and based on 
the Coincidence Matrix (Table 6), the minimum number of multiclusters is one (corresponding to the 
biggest cluster 4121). Of course, the decision maker can choose any desired number of clusters, 
strictly between 1 and 12.  

Table 6: Matrix of the coincidences between the multiclusters 

 

OBSERVATION K-MULTICLUSTER AGE NODE-CAPS MENOPAUSE BREAST

RE219 1111 60-69 no ge40 right

NRE97 1112 60-69 no ge40 left

RE233 2121 30-39 no premeno right

NRE127 2221 30-39 yes premeno right

RE247 2222 30-39 yes premeno left

NRE41 50-59 no ge40 right
NRE122 50-59 no ge40 right

NRE21 50-59 no ge40 left
NRE86 50-59 no ge40 left

NRE180 40-49 no premeno right
RE237 40-49 no premeno right

NRE105 40-49 no premeno right
NRE5 40-49 no premeno right

RE251 40-49 no premeno left
NRE99 40-49 no premeno left

NRE168 4211 40-49 yes ge40 right

NRE130 40-49 yes premeno right
RE256 40-49 yes premeno right

NRE162 40-49 yes premeno right

RE242 4222 40-49 yes premeno left

3111

3112

4121

4122

4221

Multicluster # obs 1111 1112 2121 2221 2222 4211 4222 3111 3112 4122 4221 4121

1111 1 0 3 2 1 0 2 0 3 2 1 1 2

1112 1 1 0 1 1 1 2 3 2 0 1

2121 1 3 2 1 1 2 1 2 2 3

2221 1 3 2 2 1 0 1 3 2

2222 1 1 3 0 1 2 2 1

4211 1 2 2 1 1 3 2

4222 1 1 3 3 2

3111 2 3 1 1 2

3112 2 2 0 1

4122 2 2 3

4221 3 3

4121 4
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EXPERIMENTAL PROCESS 
Let us suppose that, based on the information of Tables 4 and 5, the decision maker chooses to cal-
culate only two final clusters. Looking at their sizes, it is clear that these clusters must be based on 
the last two rows of both Tables, clusters 4121 and 4221.  

As commented before, we follow two procedures to attach clusters. The first procedure requires to 
tie together those clusters sharing the highest number of features. We will associate similar clusters 
by taking into account the number of attributes’ values that they share: for example, the cluster 3111 
would be associated to cluster 3112 and not to cluster 4121, because in the first case the two clusters 
share 3 values, and in the second case only 2 (see Figure 4) 

 
Figure 4: Multicluster association diagram 

In order to break the tie in those cases of equal similarities, we use a second procedure: the Fleiss’ 
Kappa coefficient (Fleiss et al., 1969, 2003; Fleiss, 1971): the cluster 4222, for instance, shares three 
attributes with clusters 4122 and 4221, and a smaller number of attributes with the other clusters, 
which are therefore discarded; since cluster 4122 gets the best Kappa concordance value, we con-
clude that clusters 4222 and 4122 will be tied together.  

The diagram in Figure 5 shows the whole process of the clusters’ associations. 

 
Figure 5: Multicluster association diagram 

Table 7 shows the final clustering for each element in the database of Table 2. Also, in the last three 
columns of Table 7 we show the results of running three times the K-Modes algorithm on this data-
base. We see how in this case K-Modes leads to different final results, i.e. the same observations are 
not always in the same clusters, may be due to the random search of the initial centroids. The “top-
down” multicluster methodology presented in this paper does not face this problem, since it always 
leads to the same final clusters. 
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Table 7: Example of final clustering after three different executions of the algorithms 

 

EXPERIMENTAL RESULTS  

DATASETS USED FOR EVALUATION 
For assessing the performance of the proposed algorithm and its comparison with other clustering 
algorithms, we apply them to categorical databases (see Table 8) where the response variable is 
known but not used in the analysis. In our examples, that response variable can be identified with the 
real clusters or classes to which the observations belong. With every data set, we perform a two-step 
analysis. In the first step we perform the clustering analysis on data where the response variable (the 
real clusters) has been omitted, and in the second step we use that omitted information to check the 
efficiency of the clustering algorithm (by comparing the real clusters to those given by the algorithm). 
Actually, this is a procedure commonly used in the clustering literature: see, among others, Yu et al. 
(2018), and Zhu and Ma (2018). 

Table 8: The datasets used in the experimental analysis 

 

Observation age node-caps menopause breast
Multicluster

exe1
Multicluster

exe2
Multicluster

exe3
K-modes

exe1
K-modes

exe2
K-modes

exe3

RE219 60-69 no ge40 right 4121 4121 4121 1 1 1

RE247 30-39 yes premeno left 4121 4121 4121 2 2 2

NRE41 50-59 no ge40 right 4121 4121 4121 1 1 1

NRE127 30-39 yes premeno right 4121 4121 4121 2 1 2

NRE130 40-49 yes premeno right 4221 4221 4221 2 1 2

NRE180 40-49 no premeno right 4121 4121 4121 2 1 2

RE237 40-49 no premeno right 4121 4121 4121 2 1 2

NRE21 50-59 no ge40 left 4121 4121 4121 1 2 1

NRE86 50-59 no ge40 left 4121 4121 4121 1 2 1

NRE122 50-59 no ge40 right 4121 4121 4121 1 1 1

RE256 40-49 yes premeno right 4221 4221 4221 2 1 2

RE242 40-49 yes premeno left 4121 4121 4121 2 2 2

NRE168 40-49 yes ge40 right 4221 4221 4221 2 1 1

NRE105 40-49 no premeno right 4121 4121 4121 2 1 2

NRE97 60-69 no ge40 left 4121 4121 4121 1 2 1

RE251 40-49 no premeno left 4121 4121 4121 1 2 2

RE233 30-39 no premeno right 4121 4121 4121 2 1 2

NRE99 40-49 no premeno left 4121 4121 4121 1 2 2

NRE5 40-49 no premeno right 4121 4121 4121 2 1 2

NRE162 40-49 yes premeno right 4221 4221 4221 2 1 2

Dataset
Nbr.

Observations
Nbr.

attributes
Nbr. 

Maximum clusters
Nbr.

Final clusters

Ballons 20 4 16 2

Bank Marketing 4521 11 3144 2

German credit data 1000 17 996 2

House congressional voting 435 15 325 2

Mushroom 8416 22 8076 2

Tic Tac Toe 958 9 958 2
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UCI Machine Learning Repository 
The following databases can be found in the UCI Machine Learning Repository ( http: //archive.ics 
.uci.edu / ml / ) (Dua & Graff, 2019): 

(a) The “Ballons” dataset contains 20 observations and a total of 4 categorical attributes represent-
ing different conditions used in cognitive psychology experiments, allowing to classify them 
into 2 different clusters. 

(b) The “House Congressional Voting” dataset contains 435 observations and a total of 15 categori-
cal attributes, from the 1984 U.S. Congressional Voting Records, which are finally classified 
into 2 different clusters. 

(c) The “Mushroom” dataset contains 8416 observations and a total of 22 categorical attributes de-
scribing samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepi-
ota families, which are finally classified into 2 different clusters. 

(d) The “Tic Tac Toe” dataset contains 958 observations encoding the complete set of possible 
board configurations at the end of tic-tac-toe games, with a total of 9 categorical attributes, 
which are finally classified into 2 different clusters. 

MLD Machine Learning Data Repository 
From the Machine Learning Data Repository (https://www.mldata.io/datasets/): 

(e) The “Bank Marketing” dataset contains 4521 observations and a total of 11 categorical attrib-
utes (five numerical attributes have been removed), about the subscription of clients, aiming 
to distinguish 2 clusters. 

(f) The “German Credit” dataset contains 1000 observations and a total of 17 categorical attrib-
utes, (three numerical attributes have been removed), about customers’ credit ratings, aiming 
to distinguish 2 different clusters. 

Table 8 shows a brief summary of the databases that have been considered for our experimental anal-
ysis, where the columns are interpreted as follows: 

1.   Dataset: name of the dataset 
2.   Nbr. Observations: number of observations in the dataset. 
3.   Nbr. Attributes: number of attributes in the dataset. 
4.   Nbr. Maximum clusters: maximum number of clusters that could be obtained. 
5.   Nbr. Final clusters: desired number (k) of final clusters. 

PERFORMANCE EVALUATION METRIC 
For the comparisons between different cluster algorithms, we will use here the well-known Confusion 
Matrix, which is probably the most popular tool for assessing the precision and accuracy of the clus-
tering algorithms, see Tharwat (2018), Townsend (1971), and Visa et al. (2011). 

From the confusion matrix shown in Table 9, the measures of the Accuracy, F1-Score, Recall/TPR, 
Precision/PPV and NPV can be calculated. These measures are also commonly used to evaluate the 
accuracy of the data clustering systems (Powers, 2007; Shung, 2018; Swets, 1988; Tharwat, 2018; Tre-
vethan, 2017; Van Rijsbergen, 1979).  

https://translate.google.com/translate?hl=es&prev=_t&sl=es&tl=en&u=http://archive.ics.uci.edu/ml/
https://translate.google.com/translate?hl=es&prev=_t&sl=es&tl=en&u=http://archive.ics.uci.edu/ml/
https://www.mldata.io/datasets/
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Table 9: Confusion Matrix 

  Positive Negative 

Positive True Positive 
(TP) 

False Positive 
(FP) 

Negative False Negative 
(FN) 

True Negative 
(TN) 

Accuracy (AC) measure, one of the most commonly used measures of clustering performance, is de-
fined as the ratio between the correctly classified samples and the total number of samples (Eq. 3) 

AC = Accuracy = TP+TN
TP+FP+TN+FN

        (3) 

F1-Score (Eq. 6), which can be considered as a harmonic mean of Accuracy (Eq. 3) and Recall (Eq. 5). 
It is a good precision measure when the data are unbalanced between the clusters. In the case of bal-
anced data, it is more common to use the Accuracy (Eq. 4) 

F1 = F1-Score =  2 ∗  Precision∗Recall
Precision+Recall

       (4) 

Recall (RE) or True positive rate (TPR), is defined as the ratio between the positive correctly classified 
samples and the total number of positive samples (Eq. 5) 

RE = Recall = TPR (True Positive Rate) = TP
TP+FN

    (5) 

Precision (PR) or Positive Prediction Value (PPV), is defined as the ratio between the positive samples 
that were correctly classified and the total number of positive predicted samples (Eq. 6) 

PR = Precision = PPV (Positive Prediction Value) = TP
TP+FP

  (6) 

Negative Predictive Value (NPV) or inverse precision, is defined as the ratio between the negative 
samples that were correctly classified and the total number of negative predicted samples (Eq. 7) 

NPV (Negative Prediction Value) = TN
TN+FN

                 (7) 

According to Kohavi and Provost (1998), Visa et al. (2011), and Yevseyeva et al. (2013), in all these 
expressions, TP, TN, FP and FN stand for the True Positives, True Negatives, False Positives and 
False Negatives, respectively, given by the clustering method. 

Table 10 shows the main results of the comparison between K-Multicluster and K-Modes algo-
rithms, using the Accuracy, F1-score, Recall/TPR, Precision/PPV and NPV measures to assess the 
accuracy of the clustering effect. 
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Table 10: Comparison between K-multicluster and K-modes 

 
 

Figure 6 shows a graphical representation of the comparison, where positive and negative bars are 
associated to a better efficiency of K-multicluster and K-modes methods, respectively. 

 
Figure 6: Multicluster association diagram 

From the numerical results shown in Table 10 and the graphical representations in Figures 6, we con-
clude that the proposed K-multicluster algorithm outperforms K-Modes in all the accuracy measures.  

DISCUSSION 
The main idea behind the K-Multicluster methodology is very easy to explain in intuitive terms: since 
the data with qualitative attributes form natural clusters according to the different combinations of 
these attributes, it makes sense to classify the data starting from the biggest clusters, i.e. those having 
the biggest number of observations from the beginning, and then aggregating to them the rest of the 
clusters according to their degree of similarity. It is remarkable that such a simple algorithm outper-
forms the popular K-Modes both in terms of clustering efficiency and repeatability. 

Dataset K-Modes K-Multicluster K-Modes K-Multicluster K-Modes K-Multicluster K-Modes K-Multicluster K-Modes K-Multicluster

Ballons 0,550 0,700 0,308 0,400 0,250 0,250 0,400 1,000 0,600 0,667

Bank Marketing 0,481 0,611 0,631 0,746 0,501 0,644 0,851 0,886 0,078 0,117

German credit data 0,508 0,676 0,639 0,799 0,624 0,919 0,656 0,707 0,367 0,367

House congressional voting 0,845 0,878 0,864 0,902 0,797 0,918 0,942 0,888 0,742 0,862

Mushroom 0,306 0,534 0,038 0,696 0,025 1,000 0,072 0,533 0,360 1,000

Tic Tac Toe 0,504 0,621 0,598 0,758 0,564 0,906 0,636 0,651 0,322 0,322

Accuracy F1/Score Recall / TPR Precision / PPV NPV



A Multicluster Approach to Selecting Initial Sets for Clustering of Categorical Data 

242 

It is not surprising the repeatability of the results of the K-Multicluster method, since there is no ran-
domness at all in the selection of the initial clusters. On the contrary, these clusters are chosen ac-
cording to a natural criterion, since they are defined from the most frequent combinations of the at-
tributes. It is more striking the great clustering efficiency of the methodology. As we have seen in the 
databases examples, in many cases K-Multicluster outperforms K-Modes when we consider the well-
known Accuracy, F1-score, Recall, Precision and Negative Precision Value efficiency measures.  

It is important to remark that the Multicluster algorithm is slower than K-Modes, since it devotes a 
lot of time to the initial calculation of the clusters. Actually, the algorithm works well with small or 
medium size databases, since in these cases it is affordable to calculate clusters based on the combi-
nations of attributes. However, we have empirically checked that even in large datasets most of these 
possible clusters are empty, and this is a good thing from the perspective of computational efficiency, 
not affecting the quality of the final cluster distribution. 

Simplicity, efficiency and stability are, therefore, the main advantages of the K-Multicluster method. 

CONCLUSION AND FUTURE WORK 
In this paper, a K-Multicluster algorithm is proposed for clustering categorical datasets in subgroups 
or clusters. The algorithm follows a “top-down” methodology, forming in the first step the so-called 
“multiclusters” or combinations of all the different values of the attributes, and then reducing their 
number until obtaining the desired number of clusters.  

This methodology overcomes some of the drawbacks of the well-known K-Modes algorithm, per-
haps the most popular algorithm for cluster analysis for categorical datasets. Unlike K-modes, the K-
multicluster algorithm always leads to the same final results, since it takes as starting point the biggest 
multiclusters.  

Besides, we have empirically compared the clustering efficiency of both algorithms in six categorical 
databases, using five well-known accuracy measures (Accuracy, F1-score, Recall, Precision and Nega-
tive Precision Value), obtaining a better performing and a more stable clustering in each execution 
than K-Modes algorithm. We conclude that the multicluster algorithm can be considered as a power-
ful tool for cluster analysis. 

We think that this method can be useful for those researchers working with small and medium size 
datasets, allowing them to detect the underlying structure of the data in an intuitive and reasonable 
way. Regarding the future developments of this research, we are concerned with the reduction of the 
computing time, as well as the extension of the methodology to clustering more complex and larger 
data sets, including those with mixed – qualitative and quantitative - types of attributes. 
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