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Abstract 9 

A fully compressible four-equation model for multicomponent two-phase flow coupled with a real-10 

fluid phase equilibrium-solver is suggested. It is composed of two mass, one momentum, and one 11 

energy balance equations under the mechanical and thermal equilibrium assumptions. The 12 

multicomponent characteristics in both liquid and gas phases are considered. The thermodynamic 13 

properties are computed using a composite equation of state (EoS), in which each phase follows its 14 

own Peng-Robinson (PR) EoS in its range of convexity, and the two-phase mixtures are connected 15 

with a set of algebraic equilibrium constraints. The drawback of complex speed of sound region for 16 

the two-phase mixture is avoided using this composite EoS. The phase change is computed using a 17 

phase equilibrium-solver, in which the phase stability is examined by the Tangent Plane Distance 18 

(TPD) approach; an isoenergetic-isochoric (UVn) flash including an isothermal-isobaric (TPn) flash is 19 

applied to determine the phase change. This four-equation model has been implemented into an in-20 

house IFP-C3D software. Extensive comparisons between the four-equation model predictions, 21 

experimental measurements in flash boiling cases, as well as available numerical results were carried 22 

out, and good agreements have been obtained. The results demonstrated that this four-equation model 23 

can simulate the phase change and capture most real-fluid behaviors for multicomponent two-phase 24 

flows. Finally, this validated model was applied to investigate the behaviors of n-dodecane/nitrogen 25 

mixtures in one-dimensional shock and double-expansion tubes. The complex wave patterns were 26 

unraveled, and the effects of dissolved nitrogen and the volume translation in PR EoS on the wave 27 

evolutions were revealed. A three-dimensional transcritical fuel injection is finally simulated to 28 

highlight the performance of the proposed four-equation model for multidimensional flows. 29 

 30 

Keywords: Multicomponent two-phase flow, Four-equation model, Real fluid, Phase change, Peng-31 

Robinson EoS, Flash boiling 32 

 33 

1. Introduction 34 

Accurate and robust modeling of compressible two-phase flow is crucial for many engineering 35 

applications, such as fuel injectors, nuclear reactors, rocket motors, as well as gas turbines and heat 36 
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pumps (Menter, 1994). The involved two-phase flow maybe subcritical, transcritical or supercritical 1 

depending on the pressure and temperature operating conditions. Some subsonic, sonic, or supersonic 2 

regions may appear due to shock and expansion waves (Courant and Friedrichs, 1999). Indeed, these 3 

phenomena are characterized by the violent variations of local Mach number, the large density 4 

gradient across liquid and gas phases, the intense compressibility and gas solubility effects, as well as 5 

the phase change and non-ideal thermodynamic properties (Yang et al., 2017). Especially, the phase 6 

change adds more complexity to the two-phase flow simulation, such as cavitation, strong shock or 7 

flash boiling phenomena. Several numerical models have been developed for the simulation of such 8 

two-phase flow, with the numbers of transport equations ranging from three to seven depending on the 9 

initial equilibrium assumptions. One of the difficulties in modelling is the physical transfer process 10 

taking place across the phases interfaces, such as mass, momentum and heat transfer. 11 

 12 

The most general two-phase flow model is the fully non-equilibrium seven-equation model, in which 13 

each phase has its own pressure, velocity and temperature, and is governed by its own set of fluid 14 

equations. More precisely, it is based on a fully compressible model composed of three balance 15 

equations for the gas phase and three balance equations for the liquid phase, together with a transport 16 

equation for the phase volume fraction. Such a non-equilibrium model is built using relaxation 17 

methods with finite characteristic time for velocity, pressure, temperature and chemical potential at the 18 

phase interface (Baer and Nunziato, 1986, Flåtten and Lund, 2011). Alternatively, the stiff relaxation 19 

approaches have been proven to be numerically stable. For instance, the pressure and velocity between 20 

two phases can be relaxed instantaneously (Saurel and Abgrall, 1999), and these stiff relaxation 21 

procedures have also been applied to the temperature and Gibbs free energy (Habchi, 2015, Zein et al., 22 

2010). The seven-equation model shows great capabilities in describing complex wave patterns and 23 

correctly capturing the wave propagation in liquid and gas phases, separately (Andrianov et al., 2003). 24 

However, the complexity of implementation in computational fluid dynamics software has limited its 25 

extensive use, and simpler models are often preferred.   26 

 27 

In order to simplify the seven-equation model, the reduced five-equation models, in which the 28 

mechanical and thermal equilibrium are assumed, have been proposed extensively (Allaire et al., 2002, 29 

Kapila et al., 2001, Murrone and Guillard, 2005, Saurel et al., 2009). Kapila et al. (2001) have 30 

constructed the most popular formulation with two mass conservation equations for the liquid and 31 

vapor, one mixture momentum equation, one mixture energy equation, together with a transport 32 

equation for the liquid volume fraction. It has been demonstrated that this model shows excellent 33 

resolution of interfaces between two compressible fluids (Murrone and Guillard, 2005, Petitpas et al., 34 

2007). However, serious numerical oscillations have been observed due to the non-conservative 35 

feature of liquid volume transport equation in this five-equation model. Some other simplified two-36 
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phase flow models derived from the above general seven-equation model by assuming zero relaxation 1 

time have been proposed and developed (Ransom and Hicks, 1984, Troshko and Hassan, 2001), and 2 

the details of these models are summarized in the work of (Zein et al., 2010). 3 

 4 

Nomenclature 𝑎, 𝑏 Coefficients in PR EoS 𝜓 Phase molar fraction 

A, B Coefficients in PR EoS 𝜙 Fugacity coefficient 𝐶𝑠,𝑝 Speed of sound for each phase 𝜀 Tolerance  𝐶𝑠,𝑚𝑖𝑥 Speed of sound for two-phase 𝛥𝑡 Time-step 𝐶𝑝 Isobaric heat capacity Superscript 𝑒 Internal energy ∗ Specified constant values in UVn flash 𝑓𝑘 Fugacity  " Non-equilibrium values from flow-solver 𝑓𝑎 Positive real number L Laminar 𝐹1,2,3,4 Objective functions T Turbulent  

J Flux in control volume Subscript 

k Binary interaction coefficient p Phase index 𝐾 Equilibrium factor k Species index �̇� Phase change mass rate mix Mixture  𝑀 Molecular weight N Total number of species 𝑛𝑘 Mole number of species g Gas 𝑅 Universal gas number l Liquid  𝑇 Temperature L Left 

t Time R Right 𝑃 Pressure 0 Initial values 

Pr Prandtl number Abbreviation 𝑞 Conduction heat flux CFL Courant-Friedrichs-Lewy 𝑢 Velocity 𝐶12 N-dodecane 𝑈𝐹 Front velocity of evaporation wave EoS Equation of state 𝑈𝐿 , 𝑈𝑅 Initial conditions 𝐻2𝑂 Water 𝑉 Molar volume MM Multicomponent in both liquid and gas  

x,y Compositions in liquid and gas phase NASG Noble-Abel-Stiffened Gas 

Y Mass fraction 𝑁2 Nitrogen  𝑧 Feed (𝑧𝑘 = 𝑛𝑘 ∑𝑛𝑘⁄ ) PR Peng-Robinson 

Z Compressibility factor QSOU Quasi Second Order Upwind  

Greek letters SG Stiffened Gas 𝛼 Phase volume fraction SM Single component in liquid phase,  𝜌 Density  and multicomponent in gas phase 𝜏 Stress tensor TPD Tangent Plane Distance 𝜆 Heat conductivity TPn Isothermal-isobaric flash 𝜇 Dynamic viscosity UVn Isoenergetic-Isochoric flash ω Acentric factor 1D, 3D One-, three-dimension 

 5 
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Three and four-equation models are also very prevalent and have been widely used to simulate the 1 

cavitating flows (Habchi et al., 2008, Kunz et al., 2000, Moreau et al., 2004, Venkateswaran et al., 2 

2002). Four-equation models are composed of three conservation laws for mixture quantities (mass, 3 

momentum, energy) in addition to eventual partial density transport for multicomponent problems, 4 

along with a phase change source term in the right-hand side. Four-equation models have been proven 5 

to show high numerical efficiency (Battistoni et al., 2014). However, the main difficulties of this kind 6 

of model are to estimate the mass source term of phase change and the tunable parameters for the 7 

evaporation and condensation processes (Utturkar et al., 2005). Recently, (Saurel et al., 2016) 8 

proposed a new four-equation model, in which each phase is compressible and the two phases share 9 

common pressure, velocity, temperature, and Gibbs free energy. Moreover, a specific phase 10 

equilibrium-solver by applying the Noble-Abel-Stiffened Gas equation of state (Le Métayer and 11 

Saurel, 2016). Indeed, this fitted-parameters NASG EoS is used to simplify the thermodynamic 12 

computations. Distinct advantages of this four-equation model in conjunction with the phase 13 

equilibrium-solver have been shown in computational efficiency and numerical stability. It is worth 14 

noting that, this phase equilibrium-solver with NASG EoS is currently limited to the liquid phase only 15 

with single-component (i.e., gas solubility in liquid phase is neglected). In reality, however, substantial 16 

amount of gas dissolved in liquid phase under high pressure conditions makes primary influence on 17 

the nucleation and phase change in several industrial devices. Therefore, the full multicomponent real-18 

fluids characteristics need to be considered. 19 

 20 

The cubic equation of state (EoS) is well known to be able to capture the real-fluid behaviors for two-21 

phase flow. The non-linearity of real-fluid may cause spurious pressure oscillations if it is not properly 22 

resolved (Banuti, 2015). Besides, the squared sound speed predicted by the cubic EoS (e.g., van der 23 

Waals) may become negative inside the spinodal region (see Fig. 1), which results in a loss of 24 

hyperbolicity (Menikoff and Plohr, 1989, Petitpas et al., 2009). Both Peng-Robinson (PR) (Peng and 25 

Robinson, 1976) and van der Waals EoSs belong to cubic EoSs holding the same repulsive term, and 26 

the PR EoS only improves the attractive term. Therefore, they hold similar fundamental properties. 27 

Even though (Menikoff and Plohr, 1989) only demonstrated the loss of hyperbolicity for van der 28 

Waals EoS for instance, the PR EoS holds the same drawback, which has been demonstrated by many 29 

scientific materials (Ma et al., 2017, Petitpas et al., 2009, Saurel et al., 2016, Saurel et al., 2017). All 30 

these fundamental drawbacks have limited the extensive applications of cubic EoSs.  31 

 32 

Recently, the PR EoS has been used to simulate fuel injection processes, but mostly for the simulation 33 

of dense-gas or dense-liquid without phase change (i.e., transcritical conditions). For instance, the PR 34 

EoS and Soave-Redlich-Kwong EoS (Soave, 1972) have been used for the cryogenic flows (Schmitt et 35 

al., 2009, Terashima et al., 2013). The ECN spray A has also been simulated with the assumption of 36 
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transcritical conditions and no phase change (Ma et al., 2017), as well as considering the phase change 1 

(Matheis and Hickel, 2018). Most studies, however, only focused on the two- and three-dimensional 2 

(2D or 3D) simulations, the complex wave patterns in one-dimensional (1D) tube, up to now, have not 3 

been understood clearly with the real-fluid equilibrium-solver. The recent studies in one-dimensional 4 

tubes (Chiapolino et al., 2017, Goncalvès and Charrière, 2014, Zein et al., 2010) are mainly focusing 5 

on the simulation of water-nitrogen with fitted parameter EoSs, and only consider a single-component 6 

in the liquid phase (the dissolved gas is neglected). These studies cannot capture the real-fluid 7 

behaviors for multicomponent two-phase flows. Therefore, as a prelude of further 3D applications like 8 

diesel and gasoline injection modeling, thorough validations of multicomponent real-fluid two-phase 9 

flow model are necessary. This is carried out in the present study based on the 1D shock tube, flash 10 

boiling and double-expansion tube cases using n-dodecane/nitrogen mixture which are typical 11 

surrogates for fuel injection in internal combustion engines. 12 

 13 

For the simulation of two-phase subcritical flows, a phase equilibrium-solver is needed, in which the 14 

phase numbers, compositions, as well as the temperature and pressure are determined at the maximum 15 

entropy state of system. (Qiu et al., 2014) has developed a consistent and efficient phase equilibrium-16 

solver using the PR EoS based on the Lagrange-Eulerian framework of KIVA-3 (Amsden, 1997). 17 

Besides, there are many other well developed flash approaches, including the isochoric-isothermal 18 

(TVn) flash (Espósito et al., 2000), negative flash (Whitson and Michelsen, 1989) and isoenergetic-19 

isochoric (UVn) flash (Castier, 2009). Among them, the UVn flash is an efficient tool for the phase 20 

change computations. Following this flash, the equilibrium pressure, temperature and phase 21 

compositions can be determined at the given specified mixture internal energy, volume and mole 22 

number of each component. Thereby, the UVn flash is identified as the thermodynamic method that 23 

should be applied in real-fluid solvers for the phase change computation under the thermodynamic 24 

equilibrium condition. 25 

 26 

In this study, a detailed multicomponent real-fluid fully compressible model is presented, and the real-27 

fluid wave patterns for water-nitrogen and n-dodecane/nitrogen mixtures are unraveled. The structure 28 

of this paper is as follows: Section 2 introduces the governing equations, a composite EoS, the 29 

numerical method, the hyperbolicity of two-phase Euler system, as well as the primary calculation 30 

steps. Section 3 provides the comparisons between the present model predictions and other available 31 

numerical results (Chiapolino et al., 2017), as well as the experimental measurements in flash boiling 32 

cases (Simões-Moreira and Shepherd, 1999). In Section 4, a series of shock and double-expansion 33 

tube cases for n-dodecane/nitrogen mixture are simulated, and the wave evolutions are unraveled. 34 

Section 5 presents a three-dimensional transcritical fuel injection case to highlight the performance of 35 

the proposed four-equation model. Finally, the conclusions are summarized in Section 6. 36 
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2. Numerical models 1 

This paper presents a multicomponent two-phase flow model with real-fluid equilibrium-solver, which 2 

is designed to be used for Eulerian large-eddy simulations (LES) of industrial two-phase flow 3 

configurations (e.g., liquid-fuel injection in internal combustion engines). The model descriptions are 4 

organized with the following three aspects. First, we introduce the governing equations of this model. 5 

Then, the numerical methods are described, separately identifying the equations and unknowns in the 6 

flow- and equilibrium-solvers, and highlighting the coupling between them. Finally, the hyperbolicity 7 

of Euler system closed by the composite EoS for two-phase mixture is discussed. 8 

 9 

2.1 Governing equations 10 

In the two-phase flow system, one cannot fundamentally consider the thermal equilibrium at liquid-gas 11 

interface in absence of thermal diffusion (Saurel et al., 2016), therefore, the Navier-Stokes equation is 12 

more appropriate for two-phase flow systems. The starting point of this work is a filtered fully 13 

compressible multicomponent Navier-Stokes equations, including the balance equations for distinct 14 

species in gas and liquid phases, mixture momentum, and mixture specific internal energy as follows: 15 

 
𝜕𝛼𝑔𝜌𝑘,𝑔𝜕𝑡 + 𝜕𝛼𝑔𝜌𝑘,𝑔𝑢𝑖𝜕𝑥𝑖 = �̇�𝑘     (1) 16 

 
𝜕𝛼𝑙𝜌𝑘,𝑙𝜕𝑡 + 𝜕𝛼𝑙𝜌𝑘,𝑙𝑢𝑖𝜕𝑥𝑖 = −�̇�𝑘     (2) 17 

 
𝜕𝜌𝑢𝑖𝜕𝑡 + 𝜕𝜌𝑢𝑖𝑢𝑗𝜕𝑥𝑗 = 𝜕𝑃𝜕𝑥𝑖 + 𝜕𝜏𝑖𝑗𝐿𝑇𝜕𝑥𝑗    (3) 18 

 
𝜕𝜌𝑒𝜕𝑡 + 𝜕𝜌𝑒𝑢𝑗𝜕𝑥𝑗 = −𝑃 𝜕𝑢𝑗𝜕𝑥𝑗 − 𝜕𝑞𝐿𝑇𝜕𝑥𝑗 + 𝜏𝑖𝑗𝐿𝑇 𝜕𝑢𝑖𝜕𝑥𝑗    (4) 19 

As long as the multicomponent mixture is outside the vapor dome (i.e., single phase), the above 20 

system is closed by PR EoS (Eqs. (5)). However, if the mixture is inside the vapor dome (i.e., two 21 

phase), the system is closed by the composite EoS connected with the set of algebraic equations (Eqs. 22 

(5) and (6)). This thermodynamic closing is inspired and very similar to the one used in the two-phase 23 

flow models of (Saurel et al., 2008), (Petitpas et al., 2009), (Wareing et al., 2013), and (Saurel et al., 24 

2016), except for different EoSs used for each phase. In addition, in the composite EoS, each phase 25 

always follows its own PR EoS, and the equilibrium connection constraints (Eqs. (6)) ensure that the 26 

mixture speed of sound is always defined. 27 

 { 
 𝑃 = 𝑅𝑇𝑉𝑝−𝑏𝑝 − 𝑎𝑝𝛼𝑇𝑉𝑝(𝑉𝑝+𝑏𝑝)+𝑏𝑝(𝑉𝑝−𝑏𝑝) , (𝑝 = 1: gas;  𝑝 = 2: liquid)𝐶𝑠,𝑝2 = 𝜕𝑃𝜕𝜌𝑝|𝑠 = 𝜕𝑃𝜕𝜌𝑝|𝑇 + 𝑇𝐶𝑣,𝑝𝜌𝑝2 (𝜕𝑃𝜕𝑇|𝜌𝑝)2     (5) 28 

 {  
  𝜌 = ∑𝛼𝑝𝜌𝑝𝑒 = 1𝜌∑𝛼𝑝𝜌𝑝𝑒𝑝1𝜌𝐶𝑠,𝑚𝑖𝑥,𝑊2 = ∑ 𝛼𝑝𝜌𝑝𝐶𝑠,𝑝2

    (6) 29 
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where 𝜌𝑘,𝑝 denotes the partial density of species k in phase p, 𝑝 = 1 for gas (index 𝑔) and 𝑝 = 2 for 1 

liquid (index 𝑙); 𝑘 ∈ [1, 𝑁], and N is total species number; 𝛼𝑝 (with the saturation constaint ∑αp = 1), 2 𝜌𝑝, 𝑒𝑝 and 𝐶𝑠,𝑝 are the phase volume fraction, density, specific internal energy, and speed of sound, 3 

respectively; 𝜌, 𝑒, P, T, u and 𝐶𝑠,𝑚𝑖𝑥,𝑊  are the mixture density, specific internal energy, pressure, 4 

temperature, velocity and Wood speed of sound (Wood, 1930), respectively (i.e., possible slip velocity 5 

between gas and liquid phases is neglected); 𝑅 is the universal gas constant; �̇�𝑘 is the phase change 6 

mass rate of species k, which will be determined by the isoenergetic-isochoric flash, described in 7 

Appendix A.3. In this model, the species diffusion flux is not considered, and the heat conduction flux 8 

is calculated based on the Fourier’s law as 𝑞𝑗𝐿𝑇 = −𝜆𝐿𝑇𝛻𝑇; 𝜆𝐿𝑇  is the heat conduction coefficient 9 

covering laminar and turbulent contributions, written as  𝜆𝐿𝑇 =  𝜆𝐿 + 𝐾𝑇 𝜆𝑇 , where 𝐾𝑇 =  1 for 10 

turbulent flows. The laminar contribution 𝜆𝐿 is computed by (Chung et al., 1988) correlation, and the 11 

turbulent one is estimated using a given turbulent Prandtl number, 𝑃𝑟𝑡 = 0.9. The viscous stress tensor 12 

is composed of laminar and turbulent contributions and written as 𝜏𝑖𝑗𝐿𝑇 = 𝜏𝑖𝑗𝐿 +𝐾𝑇𝜏𝑖𝑗𝑇 . As described in 13 

our previous work (Habchi, 2015), a Boussinesq approximation is used to compute 𝜏𝑖𝑗𝐿𝑇, for which a 14 

subgrid-scale turbulent viscosity given by Smogorinsky LES model is adopted, and the laminar 15 

viscosity is computed from (Chung et al., 1988) correlation.  16 

 17 

In the above system ((1) – (6)), there are three related volumes, including the mixture molar volume, 18 

phase molar volume, and partial volume (𝑉, 𝑉𝑝, 𝑉𝑘,𝑝). The mixture molar volume is determined by the 19 

phase volume as 𝑉 = ∑𝜑𝑝𝑉𝑝, where 𝜑𝑝 is the phase molar fraction. Since a multicomponent mixture 20 

is considered in each phase, 𝑉𝑝 is estimated based on the van der Waals mixing rule considering the 21 

interaction between molecular volume, energy and components. For subcritical two-phase conditions, 22 

the PR EoS is first solved based on the liquid phase compositions (𝑥𝑘) and three roots can be obtained. 23 

The smallest positive one is selected as the liquid molar volume (𝑉𝑙). Then, the PR EoS is solved 24 

based on the gas phase compositions (𝑦𝑘) and the largest one is selected as the gas molar volume (𝑉𝑔). 25 

For single-phase conditions, the PR EoS is solved based on the feed, and only the real positive molar 26 

volume is considered. When the phase molar volume is known, the phase density and mixture density 27 

are separately calculated by 𝜌𝑝 = 𝑀𝑝/𝑉𝑝 and 𝜌 = ∑𝛼𝑝𝜌𝑝. Then, the partial density (𝜌𝑘,𝑝) in Eqs. (1) – 28 

(6) is related to the phase density (𝜌𝑝) as 𝜌𝑘,𝑔 = 𝜌𝑔(𝑦𝑘𝑀𝑘/∑𝑦𝑘𝑀𝑘) and 𝜌𝑘,𝑙 = 𝜌𝑙(𝑥𝑘𝑀𝑘/∑ 𝑥𝑘𝑀𝑘), 29 

where 𝑀𝑘 is the molecular weight of species k. 30 

 31 

Since the PR EoS has been demonstrated to underestimate the liquid hydrocarbon density, a volume 32 

translation method (𝑉 = 𝑉 + 𝑉𝑐𝑜𝑟𝑟𝑒𝑐𝑡) has been used for improving the prediction of liquid density 33 

like (Baled et al., 2012, Tapriyal et al., 2012). The volume correction (𝑉𝑐𝑜𝑟𝑟𝑒𝑐𝑡) is defined as: 34 

 𝑉𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝐴 + 𝐵𝑇𝑟    (7) 35 
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where 𝑇𝑟 is the reduced temperature (𝑇𝑟 = 𝑇 𝑇𝑐⁄ ); A and B are coefficients correlating the molecular 1 

weight (𝑀) and acentric factor (𝜔), formulated as: 2 

 𝐴, 𝐵 = 𝑘0 + 𝑘1 exp ( −1𝑘2𝑀𝜔) + 𝑘3 exp ( −1𝑘4𝑀𝜔) + 𝑘5 exp ( −1𝑘6𝑀𝜔)    (8) 3 

where 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5 and 𝑘6 are the EoS based constants. 4 

 5 

It is worth noting that 𝛼𝑝𝜌𝑘,𝑝 is transported in our four-equation model, this is different from (Matheis 6 

and Hickel, 2018) model, in which partial densities of species (𝜌𝑌𝑘) in mixture are transported, where 7 𝑌𝑘 is the mass fraction of species k. Indeed, the present formulation possesses some advantages, for 8 

instance, the knowledge of phase compositions obtained from the flow-solver can be used as 9 

initializations for UVn flash, as explained below in Section 2.2. 10 

 11 

2.2 Numerical methods 12 

This four-equation model has been implemented into an in-house IFP-C3D code (Bohbot et al., 2009) 13 

already including a seven-equation model with SG EoS (Habchi, 2015). IFP-C3D is an unstructured 14 

parallel solver with a finite volume formalism on staggered grids. As known, Eqs. (1) – (4) are the 15 

fully compressible Navier-Stokes equations with a parabolic nature. Without conduction and diffusion 16 

terms, Eqs. (1) – (4) are the Euler system (hyperbolic part). In order to solve Navier-Stokes equations, 17 

a fractional step approach is used, which is similar to the one used in (Wang et al., 2014). First, 18 

assume no phase change and the right hand side of species transport equations is set as zero, and only 19 

solve the flow-solver (Eqs. (1) – (4)) without �̇�𝑘 terms. Then, an isolated system without flows into 20 

and out of the control volume is assumed, only consider the phase change and solve the phase 21 

equilibrium-solver (Eqs. (11) – (14)).  22 

 23 

In the flow-solver (Eqs. (1) – (4) without �̇�𝑘 ), The parabolic and hyperbolic parts are solved 24 

separately and consecutively based on the time-splitting method in IFP-C3D (Bohbot et al., 2009). The 25 

time-splitting begins with an implicit Lagrangian stage, then follows a sub-cycled explicit Eulerian 26 

stage. In the Lagrangian stage, a second order implicit differencing is used for parabolic terms in Eqs. 27 

(1) – (4). The coupled implicit equations (velocity, pressure and temperature) are solved by SIMPLE 28 

algorithm (Patankar, 1980). Then, the obtained solutions are updated by solving the hyperbolic part in 29 

the Eulerian stage using a quasi-second-order-upwind (QSOU) explicit numerical scheme. The  30 

Minmod slope limiter is used for scalar fluxes, and the Van Leer slope limiter is used for momentum 31 

fluxes. In order to make sure the stability of using different TVD (total variation diminishing) schemes 32 

for momentum and scalars, simple advection of isolated interface cases have been tested. The results 33 

indicate that the combined method with Minmod and Van Leer limiters can get stable results with 34 

small oscillations, which are close to the results predicted by the same scheme. Considering the length 35 

of article, the compared results are not shown here. The above algorithms used in this study are known 36 
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to be able to ensure a stable quasi-second-order upwind advection for both scalars and momentum 1 

(Bohbot et al., 2009). 2 

 3 

Since this system is closed by the thermodynamic closure as Eqs. (5) – (6), it can yield (2N+7) 4 

equations, including 2N species, one momentum, one energy balance equations, two PR EoS, three 5 

connection constraints. Indeed, there are (2N+7) unknowns that need to be solved, including 𝜌𝑘,𝑔, 𝜌𝑘,𝑙, 6 𝛼𝑔 (and 𝛼𝑙 = 1 − 𝛼𝑔), 𝑒𝑔, 𝑒𝑙, 𝑢,  𝑃, 𝜌 and 𝑒. After the flow-solver, we can get the equilibrium mixture 7 

internal energy and density (𝑒∗, 𝜌∗) denoted by (∗), as well as the temporary non-equilibrium variables 8 

(𝛼𝑔′′, 𝛼𝑙′′, 𝜌𝑘,𝑔′′ , 𝜌𝑘,𝑙′′ , 𝑒𝑔′′, 𝑒𝑙′′, 𝑃′′), denoted by ("), from which the temporary non-equilibrium phase 9 

compositions can be obtained as 𝑥𝑘′′ = 𝛼𝑙′′𝜌𝑘,𝑙′′ 𝑀𝑘 ∑𝛼𝑙′′𝜌𝑘,𝑙′′ 𝑀𝑘⁄  and 𝑦𝑘′′ = 𝛼𝑔′′𝜌𝑘,𝑔′′ 𝑀𝑘 ∑𝛼𝑔′′𝜌𝑘,𝑔′′ 𝑀𝑘⁄ .   10 

 11 

Basically, the final equilibrium temperature, pressure, and phase compositions (𝑇, 𝑃, 𝑥𝑘 , 𝑦𝑘) will be 12 

computed in the following phase equilibrium-solver. Then, the phase change mass (�̇�𝑘 ) can be 13 

obtained, and the volume fraction and partial densities will be updated as follows: 14 

 
𝜕𝛼𝑔𝜌𝑘,𝑔𝜕𝑡 = �̇�𝑘  (9) 15 

 
𝜕𝛼𝑙𝜌𝑘,𝑙𝜕𝑡 = −�̇�𝑘  (10) 16 

 17 

The phase equilibrium-solver is mainly composed of an isochoric-isoenergetic (UVn) flash, and the 18 

target variables are 𝑇, 𝑃, 𝑥𝑘 , 𝑦𝑘. However, since the phase compositions (𝑥𝑘 , 𝑦𝑘) are not independent 19 

variables, the equilibrium-factors and vapor fraction (𝐾𝑘, 𝜓𝑔) are used instead. As long as 𝐾𝑘and 𝜓𝑔 20 

are known, the phase compositions (𝑥𝑘 , 𝑦𝑘 ) can be obtained as 𝑥𝑘 = 𝑧𝑘∗ (1 + (𝐾𝑘 − 1)𝜓𝑔)⁄  and 21 𝑦𝑘 = 𝑧𝑘∗𝐾𝑘 (1 + (𝐾𝑘 − 1)𝜓𝑔)⁄ , where 𝑧𝑘∗  is the feed determined by inputs. Thus, the number of 22 

unknowns in the phase equilibrium-solver is (N+3), including T, P, 𝜓𝑔and 𝐾𝑘 (𝑘 = 1,𝑁). They are 23 

subjected to the following set of  (N+3) algebraic constraints: 24 

 𝑒∗ = [𝜓𝑔(𝑀𝑔𝑒𝑔) + (1 − 𝜓𝑔)(𝑀𝑙𝑒𝑙)] �̅�⁄   (11) 25 

 𝜌∗ = �̅� [𝜓𝑔(𝑀𝑔 𝜌𝑔⁄ ) + (1 − 𝜓𝑔)(𝑀𝑙 𝜌𝑙⁄ )]⁄   (12) 26 

 𝑓𝑘,𝑙 𝑓𝑘,𝑔⁄ = 1  (13) 27 

 ∑ (𝑧𝑘∗(1 − 𝐾𝑘) (1 + (𝐾𝑘 − 1)𝜓𝑔)⁄ )𝑁𝑘=1 = 0  (14) 28 

where 𝑓𝑘,𝑝 is the fugacity of species k in phase p; �̅� is the mixture molecular weight determined by the 29 

feed; the liquid and gas internal energy, density and molecular weight (𝑒𝑝, 𝜌𝑝, 𝑀𝑝) are related to 30 𝑇, 𝑃, 𝜓𝑔. Clearly, based on the above constraints and initializations provided by the flow-solver, the 31 

phase equilibrium-solver can be solved iteratively, using the composite EoS approach. In fact, the 32 

constraints of Eqs. (11) and (12) are the same with those of 𝑒 and 𝜌 in Eqs. (6). Eq. (13) expresses the 33 

equality of chemical potentials, as explained in Appendix A. 3, and the Eq. (14) is the well-known 34 
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Rachford-Rice equation which is an additional constraint to the equilibrium-solver as used in (Saha 1 

and Carrolls, 1997).  2 

 3 

Indeed, the equilibrium-solver is composed of three parts:  4 

(1) Phase stability test: it is performed by the Tangent Plane Distance (TPD) criterion (Michelsen, 5 

1982) to test the phase stability. The objective function is Eq. (A. 9), and the inputs include 6 

temperature, pressure, feed in the assumed phase (𝑇, 𝑃, 𝑧𝑘);  7 

(2) Isothermal-isobaric (TPn) flash: it is applied to obtain the equilibrium phase compositions (𝑥𝑘, 𝑦𝑘), 8 

and the objective functions are Eqs. (A. 13) – (A. 14). The inputs are temperature, pressure, feed, 9 

initial vapor faction and equilibrium factors (𝑇, 𝑃, 𝑧𝑘 , 𝜓𝑔′′, 𝐾𝑘′′);  10 

(3) Isoenergetic-Isochoric (UVn) flash: it is used to get the equilibrium temperature and pressure (𝑇, 𝑃) 11 

considering the phase change, and the objective functions are Eqs. (A. 17) – (A. 18). The inputs 12 

include the mixture specific internal energy, density, feed, vapor fraction, as well as the initial 13 

temperature and pressure (𝑒∗, 𝜌∗, 𝑧𝑘 , 𝜓𝑔, 𝑇′′, 𝑃′′). 14 

The detailed phase equilibrium-solver is described in Appendix A.2 – A.3 to make the whole system 15 

clear and simplified.  16 

 17 

For this compressible Navier-Strokes equations, the time-steps ∆𝑡𝐿 (lagrangian stage) and ∆𝑡𝐸 (Euler 18 

stage) are selected automatically at the beginning of each cycle. First, because the convective terms are 19 

explicitly sub-cycled, the convection time-step (∆𝑡𝐸 ) must satisfy the Courant stability condition. 20 

Second, because the parabolic terms are implicitly discretized, there are no stability restrictions, but 21 

two temporal accuracy conditions, used for the selection of ∆𝑡𝐿 in the implicit Lagrangian step. The 22 

first accuracy condition is related to the velocity gradient expressed as ∆𝑡𝐿 ≤ 𝑓𝑎Δ𝑥 (𝑢𝐵 − 𝑢)⁄ , where 23 𝑓𝑎 is the positive real number of order unity. The second accuracy condition is given in terms of the 24 

strain tensor rate and calculated as ∆𝑡𝐿 ≤ 𝑓𝑟 (2√13 (𝑝2 − 3𝑞) 3⁄ )⁄ , where p and q can be found in 25 

(Amsden et al., 1989). The convection time-step ∆𝑡𝐸 must satisfy the Courant-Friedrichs-Lewy (CFL) 26 

condition (∆𝑡𝐸 ≤ 𝐶𝐶𝐹𝐿 ∆𝑥 (𝑢 + 𝐶𝑠,𝑚𝑖𝑥)⁄ ) for the stability as the parabolic part of Navier-stokes 27 

equation is solved implicitly. Therefore, to ensure these conditions, the final time-step needs to be  28 

 ∆𝑡 = 𝑚𝑖𝑛 (𝐶𝐶𝐹𝐿∆𝑥 (𝑢 + 𝑐)⁄ , 𝑓𝑎Δ𝑥 (𝑢𝐵 − 𝑢)⁄  , 𝑓𝑟 2√13 (𝑝2 − 3𝑞) 3⁄⁄ )  (15) 29 

 30 

2.3 Hyperbolicity of Euler system with PR-EoS 31 

Without considering the conduction, diffusion, and phase change terms, the system Eqs. (1) – (4) can 32 

be written in the compact form with corresponding initial conditions when dealing with the Riemann 33 

problem as 34 
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 { 𝜕𝑈𝜕𝑡 + 𝜕𝐹(𝑈)𝜕𝑥 = 0𝑈(𝑥, 0) = {𝑈𝐿   𝑖𝑓 𝑥 ≤ 0.5𝑈𝑅  𝑖𝑓 𝑥 > 0.5   (16) 1 

where 𝑈 = [𝛼𝑔𝜌𝑘,𝑔, 𝛼𝑙𝜌𝑘,𝑙 , 𝜌𝑢, 𝜌𝑒]𝑡  are dependent variables, and 𝐹(𝑈) = [𝛼𝑔𝜌𝑘,𝑔𝑢, 𝛼𝑙𝜌𝑘,𝑙𝑢, 𝜌𝑢2 +2 𝑃, (𝜌𝑒 + 𝑃)𝑢]𝑡 presents the associated fluxes; 𝑈𝐿 and 𝑈𝑅 are the constant initial states in the left (L) 3 

and right (R) sides with the discontinuity located at 𝑥 = 0.5. As long as all eigenvalues are real with 4 

eigenvectors linearly independent, the system (16) is hyperbolic with 2N+2 (only three distinct) 5 

eigenvalues: 𝑢 − 𝐶𝑠,𝑚𝑖𝑥,  𝑢 (2N-folds) and 𝑢 + 𝐶𝑠,𝑚𝑖𝑥, where 𝐶𝑠,𝑚𝑖𝑥 is the mixture sound speed (Ma et 6 

al., 2017, Menikoff and Plohr, 1989, Petitpas et al., 2009, Saurel et al., 2016). Our Euler system (16) 7 

differs only in two aspects from the hyperbolic systems of (Saurel et al., 2016) and (Chiapolino et al., 8 

2017). The main differences appear in: (1) we consider multicomponent in both liquid and gas phases, 9 

and (2) we use a composite PR EoS instead of Stiffened Gas EoS.  10 

 11 

1) It is well known that our suggested model thermodynamically closed by a cubic equation of state 12 

(e.g., PR EoS) is hyperbolic as long as the sound speed is real outside the vapor dome (see (Ma et 13 

al., 2017), Appendix B). Here, the vapor dome denotes the region bounded by the bubble curve on 14 

left and the dew curve on right, as shown in Fig. 1.  15 

 16 

2) However, inside the vapor dome (i.e., two-phase), the issue is complex as the thermodynamic state 17 

described by the “mixture PR EoS” is either metastable or unstable/non-convex (see Fig. 1(a)). 18 

Here, the “mixture PR EoS” is defined as using the classical PR EoS for two-phase mixtures. 19 

Inside the unstable/non-convex region bounded by the spinodal curves ((𝜕𝑃 𝜕𝑣⁄ )𝑇 = 0, see Fig. 20 

1(a)), there is a complex speed of sound (SoS) region where the hyperbolicity of Euler system is 21 

lost, as depicted by Fig.27 in (Ma et al., 2017). It is therefore not appropriate to use the “mixture 22 

PR EoS” to close the Euler system (16). Instead, a “composite EoS” formulation (see Eqs. (5) – 23 

(6)) is used as the thermodynamic closure of the two-phase Euler system (16).  24 

 25 

In our approach, each phase always has its own PR EoS, and the two-phase mixture state is obtained 26 

by a “composite EoS” formulation. Each PR EoS is thermodynamically consistent (convex) with the 27 

well-defined speed of sound (see Fig. 1(c) and (d)) outside its corresponding unstable region. The 28 

connection between the two phases, being endowed by a “composite EoS”, is carried out through a set 29 

of algebraic constraints (Eqs. (6) are for the flow solver and Eqs. (11) – (14) are for the equilibrium 30 

solver). Unlike the “mixture PR EoS” following a thermodynamic path (see Fig. 1(a)), the Wood 31 

sound speed (Wood, 1930) used in the composite EoS only represents the mechanical equilibrium (see 32 

Fig. 1(b)), and each phase separately follows its corresponding thermodynamic path as shown in Fig. 33 

1(c) and (d) (Saurel et al., 2008). Due to 𝐶𝑠,𝑚𝑖𝑥,𝑃𝑅2 ≠ 𝐶𝑠,𝑚𝑖𝑥,𝑊2 , no mixture thermodynamic path is 34 
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involved when solving the Euler system inside the vapor dome, the mixture speed of sound (Cs,mix,𝑊) 1 

is always defined. This is the reason why the present Euler system can preserve the hyperbolicity 2 

inside the vapor dome (Saurel et al., 2008). 3 

 4 

 5 

Fig. 1 Thermodynamic path along an isentrope for multicomponent flow. The vapor dome is enclosed 6 

by the bubble and dew lines (a) mixture PR EoS: each phase follows its PR EoS, and the two-phase is 7 

described by “mixture PR EoS”, the speed of sound is estimated as 𝐶𝑠,𝑚𝑖𝑥,𝑃𝑅2 = (𝜕𝑃 𝜕𝜌⁄ )𝑠, 𝐶𝑠,𝑚𝑖𝑥,𝑃𝑅2  is 8 

negative in the unstable/non-convex region enclosed by spinodal curves ((𝜕𝑃 𝜕𝑉⁄ )𝑇 = 0), the phase 9 

boundary is depicted based on the feed (𝑧𝑘); (b) a composite EoS: each phase has its own PR EoS, and 10 

the two-phase mixtures are connected by a set of algebraic equations, in which the mixture sound 11 

speed is calculated by the Wood formula as 1/(𝜌𝐶𝑠,𝑚𝑖𝑥,𝑊2 ) = ∑ (𝛼𝑝 𝜌𝑝𝐶𝑝2⁄ )𝑝 , 𝐶𝑠,𝑚𝑖𝑥,𝑊2  is always 12 

positive inside the vapor dome, the phase boundary is depicted based on the feed ( 𝑧𝑘 ); (c) 13 

thermodynamic path along an isentrope for liquid inside the mixture, the phase boundary is depicted 14 

based on liquid phase composition (𝑥𝑘), 𝐶𝑠,𝑙2 = (𝜕𝑃 𝜕𝜌𝑙⁄ )𝑠; (d) thermodynamic path along an isentrope 15 

for gas inside the mixture, the phase boundary is depicted based on gas phase composition (𝑦𝑘 ), 16 𝐶𝑠,𝑔2 = (𝜕𝑃 𝜕𝜌𝑔⁄ )𝑠. 17 

 18 

Based on the studies of (Le Martelot et al., 2014, Lund, 2012, Saurel et al., 2008), it appears that the 19 

mechanical equilibrium has the most significant impact on the sound speed, while the thermal and 20 

chemical equilibrium assumptions have a much smaller effect. Therefore, there is no practical need to 21 

compute the thermal and thermodynamic mixture speed of sound that is quite complex and 22 
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computationally expensive (Saurel et al., 2016). This is the reason why the Wood sound speed is 1 

widely used although it has a little deviation from the thermodynamic equilibrium one, as shown by 2 

(Le Martelot et al., 2014, Saurel et al., 2016, Saurel et al., 2008), to cite a few. Overall, the 3 

consequence is that the composite EoS used in this study is a well compromised choice to keep the 4 

suggested Euler system being hyperbolic, while using the PR EoS for each phase under an additional 5 

numerical stability condition. 6 

 7 

Indeed, since a fractional step approach is used to solve the Euler system, as described in Section 2.2, 8 

we have met another issue in the composite EoS: the single phase inside the mixture may be 9 

compressed or expanded due to the strong shock and rarefaction strength in the Lagrangian stage and 10 

enter into the unstable region. To avoid the squared speed of sound of single phase (𝐶𝑠,𝑝2  given by Eqs. 11 

(5)) becoming negative, a numerical stability criteria is added, in which the current cycle is restarted 12 

with a smaller time-step (∆𝑡) when 𝐶𝑠,𝑝2 < 0 (𝑝 = 1: gas, 𝑝 = 2: liquid). Therefore, our model is able 13 

to deal with metastable states in the lagrangian step of the Euler system solver. In fact, the additional 14 

numerical stability criterion has been proved to intervene only in the cases involving very strong shock 15 

and rarefaction waves (e.g., cavitation). Future work should develop better numerical scheme for the 16 

Euler system, avoiding such fractional step approach. 17 

 18 

2.4 Calculation procedure 19 

The four-equation model is solved by a fractional step approach (see Fig. 2), including the following 20 

primary steps: 21 

1) Read input parameters, including the temperature, pressure, and mass fraction in gas (𝑇0, 𝑃0, 𝑌𝑔,0);  22 

2) Apply TPD function (see Appendix A.2) to test the phase stability;  23 

3) If TPD = 0 or 1, the mixture is in single-phase (gas or liquid), and the initial compositions are set 24 

as feed (𝑧𝑘). Otherwise, the flow is unstable and initial compositions of each phase (𝑥𝑘,0, 𝑦𝑘,0) are 25 

determined by TPn flash (see Appendix A.3.1); 26 

4) Determine the thermal and transport properties, including the conductivity, viscosity, and the 27 

thermodynamic partial derivatives, described in the Appendix A.1; 28 

5) In the flow-solver, assuming no phase change, only solve Eqs. (1) – (4) without �̇�𝑘 term based on 29 

the SIMPLE algorithm, QSOU scheme, using Van Leer and Minmod limiters. The composite EoS 30 

(Eqs. (5) – (6)) is used to compute the thermodynamic properties; 31 

6) After the flow-solver, we can get the mixture specific internal energy and density (𝑒∗, 𝜌∗), which 32 

are constraints for the following phase equilibrium-solver (Eqs. (11) – (14)). The non-equilibrium 33 

partial density in each phase (𝜌𝑘,𝑝′′ ) obtained from the flow-solver is used as the initialization for 34 

the phase equilibrium-solver; 35 
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7) In the phase equilibrium-solver, assuming no flow and only considering the phase change, apply 1 

the TPD function to check the phase stability; 2 

8) If the mixture is in single-phase (TPD = 0 or 1), no phase change is assumed. The temperature and 3 

pressure are iterated until the equilibrium state of 𝑒∗, 𝜌∗ based on Eqs. (11) – (14) is obtained; 4 

9) Otherwise, for the two-phase mixture (TPD = 2), Eqs. (11) – (14) are iteratively solved to 5 

determine the equilibrium temperature and pressure (𝑇, 𝑃), as well as the phase compositions (𝑥𝑘, 6 𝑦𝑘) considering the phase change, and the details are in Appendix A.3; It is important to note that 7 

the sound speed is not needed during the iterative relaxation process. 8 

10) At the end of each iteration of UVn flash, if the given tolerance is satisfied, go to the step (11) 9 

directly, otherwise, the TPD test is applied to determine the phase stability again, and go to the 10 

step (7) or (8) depending on the new TPD value; 11 

11) Finally, the thermal and transport properties are updated with the equilibrium temperature, 12 

pressure, and compositions; 13 

12) Return to step (5) and repeat the above processes for the next time-step. 14 

 15 

Fig. 2Flowchart of the four-equation model with a fractional step approach. 16 

 17 

3. Comparison and Validation  18 

This four-equation model is applied to simulate the behaviors of multicomponent two-phase flow in 19 

the 1D shock and double-expansion tubes. In Section 3.1, the four-equation model predictions are 20 
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compared to the results of (Chiapolino et al., 2017) for shock and double-expansion tubes, followed by 1 

Section 3.2, in which flash boiling cases are simulated and the model predictions are validated against 2 

experimental measurements (Simões-Moreira and Shepherd, 1999). Section 3.3 illustrates the 3 

sensitivity of mesh size, time-step, and convergence tolerance of UVn flash. All cases are simulated 4 

using a 1 m long tube and a uniform 1D mesh. 5 

 6 

3.1 Comparison with the available numerical results  7 

To evaluate the correctness of implementation, two 1D cases (Table 1) for the water-air mixture 8 

separately under shock and double-expansion tube conditions are firstly simulated, and compared with 9 

the results of (Chiapolino et al., 2017) model to carry out a qualitative validation. (Chiapolino et al., 10 

2017) model is referred as 4EQ-SM-SG and the four-equation model in this study is termed as 4EQ-11 

MM-PR. For simplicity, the air is replaced by nitrogen (𝑁2) in this study. In Chiapolino et al. (2017) 12 

model, the flow system is similar to our four-equation model, both phases are compressible and 13 

assumed in mechanical and thermodynamic equilibrium. However, there are two differences between 14 

these two models. The first arises from the multicomponent nature (MM) of our transport equations in 15 

liquid phase (Eq. (2)), while the dissolved gas in liquid phase is ignored in Chiapolino et al. (2017) 16 

model. Second, the EoSs are different. The Noble Abel Stiffened Gas (NASG) EoS is used in 17 

Chiapolino et al. (2017) model to close the governing equations and describe the thermal properties, 18 

which have been validated with experimental data in a limited temperature and pressure ranges. 19 

Therefore, their results are expected to be very close to the real fluids in these specified ranges, which 20 

are valuable as references to verify our implementation qualitatively.  21 

 22 

Table 1. Initial parameters for two-phase shock and double-expansion tube cases with water-nitrogen 23 

 𝑃𝐿  

(MPa) 

𝑃𝑅  

(MPa) 

𝑇𝐿  

(K) 

𝑇𝑅  

(K) 

𝑢𝐿  

(m/s) 

𝑢𝑅  

(m/s) 

𝛼𝑔,𝐿 

Equilib. 

𝛼𝑔,𝑅 

Equilib. 

𝑌𝐻2𝑂,𝐿 = 𝑌𝐻2𝑂,𝑅 

Input 

Case 1 0.2 0.1 354 337 0.0 0.0 0.9995744 0.99977 0.3 

Case 2 0.1 0.1 293 293 -1.0 1.0 0.9851587 0.98517 0.99998 

 24 

3.1.1 Results of Case 1 25 

First, a 1D shock tube is simulated (Case 1 in Table 1). The tube is filled with a homogeneous water-26 

nitrogen mixture, and the initial discontinuity is located at 0.5 m. The left side (0.2 MPa) is at a higher 27 

pressure than the right side (0.1 MPa). The temperatures in both sides are set the same as those in 28 

(Chiapolino et al., 2017). The compared results between the present four-equation and Chiapolino et al. 29 

(2017) models at the instant of 1.0 ms are plotted in Fig. 3. It is found that good agreements were 30 

obtained in terms of shock wave strength (velocity magnitude), as well as the evolution of pressure 31 

and temperature at the contact discontinuity. However, there is a discrepancy in the vapor mass 32 

fraction profile as shown in Fig. 3(d). This is because an isothermal-isobaric flash coupled with the PR 33 
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EoS is used in this study to estimate the equilibrium vapor mass fraction, which will cause a minor 1 

difference with that of Chiapolino et al. (2017) model even though in the same initial temperature, 2 

pressure, and feed. In addition, as the dissolved gas in liquid phase is neglected in Chiapolino et al. 3 

(2017) model, it will also lead to a negligible deviation in the vapor mass fraction prediction. Even 4 

though the vapor mass fraction predicted by these two models are different, their wave evolutions are 5 

very similar, and the phase change proportion predicted by these two models are comparable. In this 6 

section, we only want to carry out a qualitative comparison to validate our model implementation. 7 

Therefore, the reasonable difference between two numerical results can be acceptable. 8 

 9 

 10 

 11 

Fig. 3 Compared results between the four-equation (4EQ-MM-PR) and (Chiapolino et al., 2017) 12 

(4EQ-SM-SG) models (Case 1: 𝑃𝐿 = 0.2  MPa, 𝑃𝑅 = 0.1  MPa, 𝑇𝐿 = 354  K, 𝑇𝑅 = 337  K, 𝛼𝑔,𝐿 =13 0.9995744, 𝛼𝑔,𝑅 = 0.9997698, t = 1.0 ms, thin dash dot lines are initials, 100 cells, CFL = 0.2). 14 

 15 

3.1.2 Results of Case 2 16 

The double-expansion tube case also known as cavitation test is performed in a 1 m long tube filled 17 

with water combined with a small volume fraction of gaseous nitrogen at atmospheric pressure. The 18 

initial discontinuity is set at 0.5 m, and the left and right velocities are -1.0 m/s and 1.0 m/s, 19 

respectively.  20 

 21 
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The expansion wave is generated towards to the left side combined with the evaporation front 1 

progressing. The compared results between the present four-equation and (Chiapolino et al., 2017) 2 

models are presented in Fig. 4. Significant discrepancies are observed in the pressure, temperature and 3 

vapor mass fraction predictions between these two models. This is because the dissolved gas in liquid 4 

phase is neglected in Chiapolino et al. (2017) model, the equilibrium pressure caused by the expansion 5 

wave is equal to the vapor pressure of water. However, in the present four-equation model, the 6 

dissolved nitrogen in liquid phase increases the mixture saturation pressure, which qualifies that the 7 

final equilibrium pressure with current model is slightly higher than that in Chiapolino et al. (2017) 8 

model. On the other hand, since the composite PR EoS is known to underestimate the water density, 9 

the temperature is overestimated at the equilibrium state. A more detailed discussion on the influence 10 

of liquid density on expansion behaviors is given in Section 4.2. 11 

 12 

 13 

 14 
Fig. 4 Compared results between the four-equation (4EQ-MM-PR) and (Chiapolino et al., 2017)  15 

(4EQ-SM-SG) models (Case 2: 𝑃𝐿 = 𝑃𝑅 = 0.1 MPa, 𝑇𝐿 = 𝑇𝑅 = 293  K, 𝛼𝑔,𝐿 = 𝛼𝑔,𝑅 = 0.9851587, 16 𝑢𝐿 = −1 m/s, 𝑢𝑅 = 1 m/s, t = 3.5 ms, thin dash dot lines are initials, 100 cells, CFL = 0.2). 17 

 18 

3.2 Flash boiling test cases 19 

In order to validate the accuracy of present four-equation model, several flash boiling test cases are 20 

simulated and the results are compared with the experimental results (Simões-Moreira and Shepherd, 21 

1999). In this flash boiling experiment, a high pressure tube filled with liquid n-dodecane at 22 
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thermodynamic equilibrium state is connected to a low pressure chamber with gaseous nitrogen, and 1 

the detailed parameters of Case 3 are listed in Table 2. The flash boiling has been observed at the 2 

liquid-gas interface in the experiment. It has been demonstrated that this kind of flash boiling have 3 

similar behaviors with deflagration phenomena in combustion (Kurschat et al., 1992, Thompson et al., 4 

1987). An evaporation front propagates into the liquid side with a steady mean velocity, 𝑈𝐹, which has 5 

been measured under various superheated conditions (Simões-Moreira and Shepherd, 1999). In this 6 

study, the front velocity, 𝑈𝐹 , is estimated based on a simple control volume model and Rankine-7 

Hugoniot equation (Simões-Moreira and Shepherd, 1999), as follows 8 

 𝐽 = (𝑈𝐹 + 𝑢𝐿)𝜌𝐿 = (𝑈𝐹 + 𝑢𝑅)𝜌𝑅  (17) 9 

where 𝑢𝐿 and 𝑢𝑅 are the fluid velocity of left and right sides, respectively; and 𝐽 is the superficial mass 10 

flux. Since the liquid in left side is stationary (𝑢𝐿 = 0), the front velocity can be calculated as 11 

 𝑈𝐹 = 𝐽 𝜌𝐿⁄   (18) 12 

 𝐽2 = (𝑃𝐿 − 𝑃𝑅)/(1/𝜌𝑅 − 1/𝜌𝐿)  (19) 13 

where 𝑃𝐿  and 𝜌𝐿 , as well as 𝑃𝑅  and 𝜌𝑅  refer to the pressure and density before and after the 14 

evaporation front, respectively.  15 

 16 

Table 2. Initial conditions for flash boiling cases with n-dodecane/nitrogen mixture 17 

 𝑃𝐿  

(MPa) 

𝑃𝑅  

(MPa) 

𝑇𝐿  

(K) 

𝑇𝑅  

(K) 

𝑢𝐿 = 𝑢𝑅  

(m/s) 

𝛼𝑔,𝐿 

(Equilib.) 

𝛼𝑔,𝑅 

(Equilib.) 

Case 3 

0.15, 0.22, 0.30, 

0.39, 0.50, 0.75, 

1.10, 1.30 

0.0001 

453, 473, 489, 

503, 523, 543, 

563, 573 

543 0.0 0.0001 0.9999 

 18 

The evaporation front velocities are obtained at several times in the range of 0.2 – 0.4 ms, and the 19 

averaged values are compared with the experimental measurements as shown in Fig. 5. It is found that 20 

the present model can obtain good agreements with experimental results under low superheated 21 

conditions (i.e., less than 503 K). As the superheat degree rises, the discrepancy between experimental 22 

results and model predictions increases. Here, the superheat degree is usually defined as the 23 

temperature difference between the local temperature and the saturation temperature at a given 24 

subcritical pressure. This may be caused by several reasons, including complexities and uncertainties 25 

in experiment and assumptions used in the four-equation model. Indeed, unstable interfaces can be 26 

observed in experimental images (Fig. 5 in (Simões-Moreira and Shepherd, 1999)) due to the high 27 

nucleation rate near phase interface and also at walls. Some small droplets are busted from the 28 

interface and flung into the flows, which enhances the gas velocity (𝑢𝑅). Following (17), the front 29 

velocity can be described as 𝑈𝐹 = 𝑢𝑅𝜌𝑅 (𝜌𝐿⁄ − 𝜌𝑅). Due to the increased 𝑢𝑅  caused by bursting 30 

droplets observed in the experiment, the measured front velocity 𝑈𝐹 is enhanced, and the increased 31 

extent is growing as the superheat degree rises. Since, however, these effects are neglected in the 32 
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simulations, the present model underestimates the front velocity at the conditions with high superheat 1 

degree. For instance, as the temperature of left side is 573 K, the front velocity is underestimated 2 

around 25% as shown in Fig. 5. Therefore, the future work shall include the modelling of the amount 3 

of droplets bursting at the interface. Indeed, this phenomenon is important for modeling of gasoline 4 

direct injection (GDI) with flash boiling conditions. 5 

 6 

 7 

Fig. 5 Compared evaporation front velocity between experimental results (Simões-Moreira and 8 

Shepherd, 1999) and the four-equation model predictions for flash boiling case (Case 3: 𝑃𝐿 = 0.15 −9 1.30 MPa, 𝑃𝑅 = 0.0001 MPa, 𝑇𝐿 = 453 − 573 K, 𝑇𝑅 = 543 K, 𝛼𝑔,𝐿 = 0.0001, 𝛼𝑔,𝑅 = 0.9999, t = 10 

0.2 – 0.4 ms, left side is filled with liquid n-dodecane, right side is filled with gaseous nitrogen). 11 

 12 

The evolution profiles of the flash boiling case with the liquid temperature of 543 K are presented in 13 

Fig. 6. Since the evaporation in flash boiling cases takes place within a very thin region, its thickness 14 

is quite small in comparison with the fluid length scales. Therefore, there is a sharp discontinuity at the 15 

evaporation front (X = 0.5 m) in each profile. In the left side, the pressure drops drastically across the 16 

expansion wave, and the superheated liquid is transported along with the evaporation front to the left 17 

side at a low speed. The vapor mass fraction increases suddenly to one at the liquid-gas interface. 18 

Meanwhile, at the right side, a strong shock wave is produced and propagates towards the low-19 

pressure side. Between the evaporation and shock wave fronts, a simple contact discontinuity (in the 20 

range of 0.68 – 0.74 m) is formed to connect the vapor front and shocked gas (Saurel et al., 2008).  21 

 22 

The evolution of fluid velocity and mixture sound speed in different superheated cases are presented in 23 

Fig. 7(a) and (b). In this figure, the labels A, B, and C are identified as the evaporated vapor mixture, 24 

the contact discontinuity zone behind shock front, as well as the initial nitrogen gas zone, respectively. 25 

It is found that the sonic velocity is reached very fast at the evaporation front (𝑢 = 𝐶𝑠,𝑚𝑖𝑥), and then 26 

the flow evolves to a supersonic regime. In this regime, the vapor velocity increases up to a constant 27 

value (at zone B), which increases with raising the superheat degree (see Fig. 7(a)).  It is noted that the 28 

sound speed at zone A is very low (~ 174.0 m/s), which is consistent with NIST data for gaseous n-29 
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dodecane (Linstrom and Mallard, 2001) at the prevailing temperature (~600 K) and pressure (~1 kPa), 1 

as can be seen in Fig. 6(a) and (b). Since the fluid temperature at the contact discontinuity is very high 2 

(see X ≈ 0.68 – 0.74 in Fig. 6(b)), the corresponding sound speed is very large (see zone B in Fig. 3 

7(b)). However, both of them decrease suddenly at the shock front. The detailed wave behaviors are 4 

further discussed in the following Section 4.1.2. Based on the above validated results and analysis, the 5 

present four-equation model is demonstrated to be able to simulate the complex wave behaviors at the 6 

interface with large discontinuities. 7 

 8 

  9 

  10 

Fig. 6 Wave behaviors of flash boiling case predicted by the four-equation model (𝑃𝐿 = 0.75 MPa, 11 𝑃𝑅 = 0.0001 MPa, 𝑇𝐿 = 543 K, 𝑇𝑅 = 543 K, 𝛼𝑔,𝐿 = 0.0001, 𝛼𝑔,𝑅 = 0.9999, t = 0.2 ms, left side is 12 

filled with liquid n-dodecane, right side is filled with gaseous nitrogen, thin dash dot lines are initials). 13 

 14 
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 1 

Fig. 7 Fluid velocity and sound speed profiles of flash boiling case predicted by the four-equation 2 

model (𝑃𝐿 = 0.15 MPa, 𝑇𝐿 = 453 K; 𝑃𝐿 = 0.39 MPa, 𝑇𝐿 = 503 K; 𝑃𝐿 = 1.30 MPa, 𝑇𝐿 = 573 K, 𝛼𝑔,𝐿 =3 0.0001, 𝛼𝑔,𝑅 = 0.9999, t = 0.3 ms) 4 

 5 

3.3 Numerical sensitivity analysis  6 

The analysis of mesh size, time-step, and convergence sensitivity is a pre-requisite for the evaluation 7 

of the suggested four-equation model accuracy. Several cases have been simulated, and similar 8 

behaviors have been obtained. The results of three cases are presented in this section.  9 

 10 

3.3.1 Mesh size sensitivity analysis   11 

In order to check the current model in dealing with numerical oscillations, a simple 1D advection of 12 

isolated interface case is simulated with Euler equations (Eqs. (1) – (4) without conduction, diffusion 13 

and phase change terms) inspired by the work of (Beig and Johnsen, 2015). The tube length is 1 m, the 14 

initial temperature and pressure of the whole domain (X ∈ [0, 1]) filled with n-dodecane and nitrogen 15 

are 300 K and 1 bar, respectively. The isolated liquid zone (𝑌𝐶12𝐻26,𝑙 = 0.99) ranging from 0.25 to 16 

0.75 m moves at a constant speed of 100 m/s to the right side. The gas zone is full of the mixture with 17 𝑌𝐶12𝐻26,𝑔 = 0.01. The numerical results depicted in Fig. 8 clearly indicate that our model produces 18 

some oscillations in pressure, temperature, and velocity, and these oscillations accumulate with wave 19 

propagating. As the mesh is refined, the oscillations are reduced, less than 0.01% with 2000 cells. This 20 

corroborates similar results with (Terashima and Koshi, 2012), for instance. 21 

 22 

Thereby, we can conclude that the present four-equation model can be used with confidence when the 23 

flow gradients are refined appropriately. In the future work, automatic mesh refinement (AMR) will be 24 

used with criteria based on density, mass fraction and heat capacity in order to minimize spurious 25 

oscillations. More sophisticated approaches like the one of (Pantano et al., 2017) coupled with the PR 26 

EoS may be another good option for our future studies. 27 

 28 
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 1 

 2 

Fig. 8 Results of an isolated interface advection tube filled with n-dodecane/nitrogen mixture at 10 ms, 3 

errors in (a) pressure, (b) temperature, (c) velocity, and (d) density profile (thin blue dash dot is initial 4 

and exact solution, blue solid is 1000 cells, red dashed is 2000 cells, 𝑃 =  1 bar, 𝑇 =  300 K, 5 𝑌𝐶12𝐻26,𝑙 = 0.99, 𝑌𝐶12𝐻26,𝑔 = 0.01, 𝑢 = 100 m/s, CFL = 0.2). 6 

 7 

3.3.2 Time-step sensitivity analysis   8 

Another primary numerical parameter is the time-step. The sensitivities of four-equation model to the 9 

CFL (Courant–Friedrichs–Lewy) number were investigated, and the results with CFL number in the 10 

range of 0.01 – 1.0 for a double-expansion tube (Case 2 in Section 3.1.3) and a shock tube (Case 4 in 11 

Section 4.1.1) are plotted in Fig. 9. Numerical instability on the solutions can be observed in the 12 

expanding cavitation interface in the case of smallest CFL number, and the instability amplitude is 13 

decreased as the CFL number increases. This is because in the present numerical solver, the parabolic 14 

terms are solved using the implicit central-differenced method, and hyperbolic is solved explicitly with 15 

a second-order upwind approach. Using small CFL number reduces the dissipation of dispersive 16 

waves. Therefore, the spurious oscillations increase in time since the dispersion and dissipation errors 17 

accumulate as the wave propagates. However, as a large CFL number is used, the numerical diffusion 18 

increases across the expansion and shock waves. As expected, the computational time decreases 19 

rapidly with raising the CFL number from 0.015 to 0.15. However, as the CFL number subsequently 20 

increases, the computational time show insignificant improvement in the computational efficiency. 21 

Consequently, based on these numerical results, the best CFL number for four-equation model is in the 22 
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range of 0.15 – 0.3 considering the computational efficiency and stability. In addition, it is noted that 1 

the time-step is controlled by the CFL condition when 𝐶𝐶𝐹𝐿 is small enough. On the contrary, as 𝐶𝐶𝐹𝐿 2 

is larger than 0.6, the time-step becomes rather controlled by the accuracy conditions.  3 

 4 

 5 

 6 

 7 

Fig. 9 Time-step analysis (CFL number) for Case 2 (a, b, e, t = 3.5 ms) and Case 4 (c, d, f, t = 2.0 ms), 8 𝜀𝑈𝑉𝑛 = 1.0e-13, computational time scale = 100 × (𝑡𝐶𝐹𝐿 − 𝑡𝐶𝐹𝐿=0.15) 𝑡𝐶𝐹𝐿=0.15⁄   9 

 10 

3.3.3 Convergence sensitivity analysis 11 

To examine the behaviors of UVn flash solver, a convergence analysis was performed. The 12 

convergence tolerance is termed as 𝜀𝑈𝑉𝑛. All the objective functions involved in the UVn flash follow 13 

the same tolerance. The convergence tolerance is defined as following:  14 
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 |𝜓𝑔−𝜓𝑔,𝑐𝑎𝑙𝜓𝑔 | ≤ 𝜀𝑈𝑉𝑛  (20) 1 

 (ln (𝑓𝑘,𝑙𝑓𝑘,𝑔))2 ≤ 𝜀𝑈𝑉𝑛  (21) 2 

 (𝑒∗−𝑒𝑐𝑎𝑙𝑒∗ )2 + (𝜌∗−𝜌𝑐𝑎𝑙𝜌∗ )2 ≤ 𝜀𝑈𝑉𝑛  (22) 3 

where the subscript cal indicates the calculated values during each iteration. The details of each 4 

parameter and objective functions in the UVn flash are introduced in Appendix A.3. 5 

 6 

 7 

 8 

Fig. 10 Convergence analysis of the UVn flash solver (Case 2, t = 3.5 ms), computational time scale = 9 100 × (𝑡𝜀 − 𝑡𝜀=13) 𝑡𝜀=13⁄ , thin dash dot lines are initials, CFL = 0.15. 10 

 11 

The double-expansion tube (Case 2 in Section 3.1.3) is simulated using the convergence tolerance 12 

(𝜀𝑈𝑉𝑛) in the range of 1.0e-6 – 1.0e-15, and the results are presented in Fig. 10. It is found that there is 13 

no phase change during the expansion process with a large convergence tolerance of 1.0e-6. Both the 14 

expansion width and phase change quantity rise as the convergence tolerance decreases to the value of 15 

1.0e-13. Moreover, substantial oscillations can be observed in the velocity profile with large 16 

convergence tolerance. Notably, the wave of pressure, velocity, as well as the phase change quantity 17 

are identical with the strict convergence tolerance of 1.0e-13 – 1.0e-15. Besides, the stricter 18 

convergence tolerance leads to longer computational time as expected and shown in Fig. 10(d). 19 
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Considering the compromise between the computational accuracy and efficiency, a convergence 1 

tolerance of 1.0e-13 is chosen to get acceptable predictions in the cavitation tube. 2 

 3 

4. Discussion 4 

In order to gain better understanding of the complex wave behaviors of n-dodecane/nitrogen mixture, 5 

especially for the phase change between multicomponent liquid and gas phases, additional five cases 6 

are computed, and the details are listed in Table 3 and Table 4.  7 

 8 

4.1 Behaviors of n-dodecane/nitrogen mixture in shock tubes  9 

In this sub-section, the non-ideal behaviors of n-dodecane/nitrogen mixture in shock tubes are 10 

discussed based on the numerical results. The tube is filled with high-pressure liquid in the left side 11 

and low-pressure gas in the right side. The initial temperature throughout the tube is 293 K on both 12 

sides. Two shock tube cases are simulated, one considers tiny discontinuities at the interface between 13 

two sides (Case 4), and another case involves large discontinuities in feed (Case 5), as listed in Table 3. 14 

 15 

Table 3. Initial conditions for shock tube cases with n-dodecane/nitrogen mixture 16 

 𝑃𝐿  

(MPa) 

𝑃𝑅  

(MPa) 

𝑇𝐿 = 𝑇𝑅  

(K) 

𝑢𝐿 = 𝑢𝑅  

(m/s) 

𝛼𝑔,𝐿 

Equilib. 

𝛼𝑔,𝑅 

Equilib. 

𝑌𝐶12,𝐿 

Input 

𝑌𝐶12,𝑅 

Input 

Case 4 0.2  0.1  293 0 0.0117 0.1354 0.9995 0.9995 

Case 5 10  0.1  293 0 0.0001 0.9999 0.9788013 0.0211987 

 17 

4.1.1 Results of Case 4 18 

In Case 4, a mixture with a large amount of n-dodecane (𝑌𝐶12𝐻26 = 0.9995) is selected as the feed. 19 

Since the pressures in left and right sides are different, the initial gas volume fraction at equilibrium 20 

state predicted by the TPn flash in left and right sides equals 0.0117 and 0.1354, respectively, which is 21 

far from the phase boundaries. Fig. 11 shows the wave evolution behaviors of n-dodecane/nitrogen 22 

mixture in the shock tube at t = 2.0 ms. The conventional expansion and compression waves are 23 

shown in Fig. 11(a), and the velocity magnitude depicted in Fig. 11(c) is low due to the high mixture 24 

density and tiny gradients in thermodynamic properties. In addition, the large amount of liquid in Case 25 

4 shows higher specific heat capacity, thereby the fluid is close to quasi-isothermal even though there 26 

is a slight evaporation and condensation. This shock tube case highlights the accuracy of this four-27 

equation model when dealing with tiny gradients in thermodynamic properties. 28 

 29 
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 1 

 2 

Fig. 11 Wave behaviors of n-dodecane/nitrogen mixture in the shock tube predicted by the four-3 

equation model (Case 4: 𝑃𝐿 = 0.2  MPa, 𝑃𝑅 = 0.1  MPa, 𝑇𝐿 = 𝑇𝑅 = 293  K, 𝛼𝑔,𝐿 = 0.0117 , 𝛼𝑔,𝑅 =4 0.1354, t = 2.0 ms, thin dash dot lines are initials). 5 

 6 

4.1.2 Results of Case 5 7 

 8 

 9 

Fig. 12 Phase trajectories and wave patterns for fluids (a) phase trajectories; (b) wave patterns (z: 10 

mixture composition; 𝑦𝑘_left: gas composition at left; 𝑦𝑘_right: gas composition at right; 𝑥𝑘_left: 11 

liquid composition at left; 𝑥𝑘_right: liquid composition at right). 12 

 13 
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In this case, the input mass fraction of n-dodecane in left and right sides of the shock tube diaphragm 1 

is 0.9788013 and 0.0211987, respectively. Through the TPn flash, the initial equilibrium 𝛼𝑔 in left and 2 

right sides is determined as 0.0001 and 0.9999, respectively. The wave evolution profiles of this 3 

mixture at the instant of 1.0 ms are plotted in Fig. 13. As the discontinuities of feed at the interface are 4 

increased relatively to those in Case 4, the wave behaviors of n-dodecane/nitrogen mixture in the 5 

shock tube shown in Fig. 13 are more complex than those in Case 4 (Fig. 11). It can be seen that the 6 

current model can capture the essential features of the mixture with large gradients in thermodynamic 7 

properties. Specifically, four waves can be observed: the left expansion wave, evaporation front, 8 

contact discontinuity, and the right shock wave. The detailed wave patterns and phase trajectories are 9 

presented in Fig. 12. 10 

 11 

Following the analysis of (Saurel et al., 2008), the mixture Hugoniot curve is tagnent to their isentrope, 12 

and the multiphase shock waves behave like simple compression waves. Therefore, the phase 13 

trajectory of this case with large discontinuities of density can follow the phase schematic of Fig. 12(a). 14 

In the left high-pressure side, the initial equilibrium mixture represented by point 1 is composed of 15 

large amount of liquid (point 1𝑙) and a bit gas (point 1𝑔). As time begins, an expansion wave is 16 

generated and travels to the left side with the velocity of 𝑢 − 𝐶𝑠,𝑚𝑖𝑥, the pressure falls rapidly across 17 

the expansion wave. The mass fraction of dissolved nitrogen follows similar evolution behaviors with 18 

the pressure as shown in Fig. 13(a) and (b). As known that the dissolved nitrogen is a kind of dense-19 

phase fluid with high vapor pressure, which dramatically enhances the phase change and expansion 20 

intensity (Kuijpers et al., 2002). Therefore, it cannot be neglected in the simulation. The initial liquid 21 

indicated by point 1𝑙 is expanded to the metastable liquid (point 2) following an isentropic path. In the 22 

present modelling, this metastable liquid is relaxed to a thermodynamic equilibrium mixture (point 3′) 23 

through the UVn flash. Thus, the evaporation front appears and travels together with the expansion 24 

wave to the left high-pressure side. Both n-dodecane vapor and nitrogen gas are produced as shown in 25 

Fig. 13(e). The initial gas of point 1𝑔 is expanded following an isentropic path to the point 3", which is 26 

relaxed to the thermodynamic equilibrium mixture (points 3𝑔 and 3𝑙) infinitely. The corresponding 27 

densities of the mixtures represented by points 1 and 3 (3 = 3′ + 3") are reported in Fig. 13(f).  28 

 29 
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 1 

 2 

 3 

Fig. 13 Wave behaviors of n-dodecane/nitrogen mixture in the shock tube predicted by the four-4 

equation model (Case 5: 𝑃𝐿 = 10.0 MPa, 𝑃𝑅 = 0.1 MPa, 𝑇𝐿 = 𝑇𝑅 = 293 K, 𝛼𝑔,𝐿 = 0.0001, 𝛼𝑔,𝑅 =5 0.9999, t = 1.0 ms, thin dash dot lines are initials) 6 

 7 

Since there are large discontinuities in densities and species at the contact interface, the liquid at 8 

interface undergoes a sudden large phase change in a narrow region (Simões-Moreira, 2000), and the 9 

vapor is ejected from the interface and propagated to the right low-pressure side though the convection 10 

flux at the velocity of 𝑢 (Fig. 12(b) and Fig. 13(f)), resulting in an increase in vapor mass fraction (Fig. 11 

13(e)). In the right low-pressure side, the equilibrium mixture of point 5 is composed of large amount 12 

of gas (5𝑔) and small amount of liquid (5𝑙). At beginning, the shock wave is yielded and propagates to 13 

the right low-pressure side at the velocity of 𝜎. The gaseous mixture (5𝑔) is shocked following a 14 
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Hugoniot curve (Saurel et al., 2008) from point 5𝑔 to 4𝑔 as shown in Fig. 12(a). Thus, the pressure, 1 

temperature, velocity and the mixture density are increased. Since points 3 and 4𝑔, as well as 4𝑙 have 2 

no thermodynamic connections (Fig. 12(a)), they are only linked by the mechanical equilibrium 3 

through a simple contact discontinuity separating the evaporated vapor front and shocked mixtures. 4 

Thereby, the pressure and velocity are continuous, while, a sharp contact discontinuity is generated in 5 

the profiles of temperature, vapor mass fraction, and density between the mixtures of points 3 and 6 4𝑔 + 4𝑙 . The slopes of left expansion and right shock waves can be expressed as -𝜌𝐶𝑠,𝑚𝑖𝑥  and 7 𝜌(𝜎 − 𝑢), respectively. It is noted that the left slop is much lower than the right one (Fig. 13(c)). This 8 

is because the sound speed in two-phase mixtures (𝐶𝑠,𝑚𝑖𝑥) decreases progressively along the expansion 9 

evaporation front, following the Wood formula (Wood, 1930). Finally, since the mixture is proven to 10 

be in two-phase state during the whole process, no wave splitting has been obtained in the expansion 11 

wave. 12 

 13 

4.2 Behaviors of n-dodecane/nitrogen mixture in double-expansion tubes  14 

In this subsection, three double-expansion tube cases are simulated, and the details are listed in Table 15 

4. In Section 4.2.1, the influence of volume translation in PR-EoS on liquid density is presented. Then, 16 

its influence on the expansion behaviors of n-dodecane/nitrogen mixture is discussed in the following 17 

Sections 4.2.2 – 4.2.4, in which the expansion characteristics under various conditions are included.  18 

 19 

Table 4. Initial conditions for double-expansion tube cases with n-dodecane/nitrogen mixture 20 

 𝑝𝐿 = 𝑝𝑅  

(MPa) 

𝑇𝐿 = 𝑇𝑅  

(K) 

𝑢𝐿  

(m/s) 

𝑢𝑅  

(m/s) 

𝛼𝑔,𝐿 = 𝛼𝑔,𝑅 

Equilib. 

𝑌𝑐12,𝐿 = 𝑌𝑐12,𝑅 

Input 

Case 6 0.1  293 -1 1 1.0e-04 0.9997697 

Case 7 0.1  480 -1 1 1.0e-04 0.9999349 

Case 8 5.0  293 -1 1 1.0e-04 0.9889499 

 21 

4.2.1 Influence of volume translation in PR-EoS on density and sound speed  22 

The liquid density makes substantial influence on the prediction accuracy for expansion behaviors of 23 

the n-dodecane/nitrogen mixtures. Since the liquid density of hydrocarbons computed by the PR EoS 24 

is known to be inaccurate, the volume translation (Baled et al., 2012, Tapriyal et al., 2012) is added to 25 

the PR EoS to improve the prediction accuracy of liquid density as explained in Section 2.1. Results 26 

with and without the volume translation for liquid n-dodecane density under various temperature and 27 

pressure conditions are compared in Fig. 14(a). The test temperature and pressure are in the range of 28 

293 – 480 K and 0.1 – 5.0 MPa, respectively. It can be seen that the model without volume translation 29 

substantially underestimates the liquid density compared to NIST data (Linstrom and Mallard, 2001). 30 

Comparatively, the predictions with volume translation are improved significantly.  31 

 32 
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Since the dissolved nitrogen quantity in liquid phase is increased with pressure, the effects of 1 

dissolved nitrogen on the liquid thermal properties under different pressure conditions need to be 2 

illustrated. The compared density and sound speed between the predictions and NIST data at pure 3 

liquid sate (TPD = 1 and 𝛼𝑔 = 1.0e-06) are illustrated in Fig. 15. The mass fraction of dissolved 4 

nitrogen in liquid phase varies from 1.0e-6 to 1.0e-4. It is found that the liquid density and sound 5 

speed are insensitive to the dissolved nitrogen quantity at 0.1 MPa condition. However, at the high 6 

pressure of 5.0 MPa, both of liquid density and sound speed decrease as the dissolved nitrogen 7 

increases. Thereby, it can be concluded that the dissolved nitrogen quantity in the liquid phase is 8 

important for the simulation accuracy at high pressure conditions. 9 

 10 

 11 

Fig. 14 Liquid density of n-dodecane predicted by PR-EoS with and without volume translation (circle: 12 

data from NIST (Linstrom and Mallard, 2001), 𝛼𝑔 = 1.0e-06, 𝑌𝑁2 = 1.0e-04) 13 

 14 

 15 

Fig. 15 Effects of the dissolved nitrogen in liquid phase on density and sound speed (circle: data from 16 

NIST (Linstrom and Mallard, 2001) for pure liquid n-dodecane, 𝛼𝑔 = 1.0e-06) 17 

 18 

 19 

 20 

 21 
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4.2.2 Results of Case 6 1 

 2 

 3 

 4 

Fig. 16 Wave behaviors of n-dodecane/nitrogen mixture in the double-expansion tube predicted by the 5 

four-equation model with and without volume translation (Case 6: 𝑃𝐿 = 𝑃𝑅 = 0.1 MPa, 𝑇𝐿 = 𝑇𝑅 =6 293 K, 𝛼𝑔,𝐿 =  𝛼𝑔,𝑅 = 0.0001, 𝑢𝐿 = −1.0  m/s, 𝑢𝑅 = 1.0  m/s, t = 3.5 ms, thin dash dot lines are 7 

initials) 8 

 9 

The wave patterns of density, speed of sound, pressure, temperature, dissolved nitrogen, as well as the 10 

gas phase volume fraction in the double-expansion tube with initial pressure and temperature of 0.1 11 

MPa and 293 K are presented in Fig. 16. The initial velocity of fluid in the left and right sides are -1 12 

and +1 m/s, respectively. As expected, a large discrepancy is shown in the initial density. Ignoring the 13 

volume translation underestimates the liquid density about 13%, resulting in a higher expansion rate, 14 
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and the expanded strength is slightly larger than that predicted by the model with volume translation. 1 

A little cooling effect caused by the phase change is captured in the temperature profile. Discrepancies 2 

are observed in the evolution of temperature and gas volume fraction predicted by the models with and 3 

without the volume translation as shown in Fig. 16(d) and (f). This is due to the heat balance between 4 

two phases, the temperature drop and gas volume fraction are estimated by ∆𝑇 = (𝜌𝑔𝐿𝑒𝑣𝑎𝑝) (𝜌𝑙𝐶𝑝,𝑙)⁄  5 

and 𝛼𝑔 = 1 [(𝜌𝑔𝐿𝑒𝑣𝑎𝑝 ∆𝑇𝜌𝑙𝐶𝑝,𝑙⁄ ) + 1]⁄  (Michel and Franc, 2004). It is found that the liquid density 6 

predicted by the model with volume translation is higher than that without volume translation, 7 

resulting in a decrease in the temperature drop and an increase in the gas volume fraction. 8 

 9 

4.2.3 Results of Case 7 10 

The primary aim of Case 7 is to investigate the influence of temperature on the expansion behaviors 11 

for the n-dodecane/nitrogen mixture. Fig. 17 presents the profiles of density, pressure, temperature, 12 

velocity, dissolved nitrogen, and gas phase volume fraction at 3.5 ms, the initial pressure and 13 

temperature of the fluid in the double-expansion tube are 0.1 MPa and 480 K, which is quite close to 14 

the boiling temperature of pure n-dodecane. Compared to the results of Case 6 with low initial 15 

temperature (293 K in Fig. 16), several conclusions can be obtained. First, the liquid density decreases 16 

with the temperature increasing. Second, the expanded width is substantially reduced, whereas the 17 

cooling effect by the phase change is enhanced by the high temperature. Third, the solubility of 18 

nitrogen in liquid phase decreases with an increase in temperature as expected. The mass fraction of 19 

nitrogen dissolved in the liquid phase in Case 7 varies from 3.0e-05 to 6.5e-05 (Fig. 17(e)), which is 20 

10 times lower than that in Case 6 with low initial temperature (Fig. 16(e)). In addition, since the 21 

liquid vapor pressure increases with temperature, the gas content in the cavitation region is increased 22 

as shown in Fig. 17(f). 23 

 24 

Based on the results of Fig. 17 for Case 7, the density deviation predicted by the model without 25 

volume translation is around 7.5%, which is less than that under the conditions with low initial 26 

temperature (around 13% in Case 6). Besides, the evolution of pressure, temperature and velocity 27 

predicted by the models with and without volume translation are quite close. Thereby, it can be 28 

concluded that the volume translation method shows insignificant effects on the expansion behaviors 29 

in Case 7. In other words, it demonstrates that the expansion characteristics of n-dodecane/nitrogen 30 

mixture is non-sensitive to the liquid density at high temperature conditions.  31 

 32 
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 1 

 2 

 3 

Fig. 17 Wave behaviors of n-dodecane/nitrogen mixture in the double-expansion tube predicted by the 4 

four-equation model with and without volume translation (Case 7: 𝑃𝐿 = 𝑃𝑅 = 0.1 MPa, 𝑇𝐿 = 𝑇𝑅 =5 480  K, 𝛼𝑔,𝐿 = 𝛼𝑔,𝑅 = 0.0001 , 𝑢𝐿 = −1.0  m/s, 𝑢𝑅 = 1.0  m/s, t = 3.5 ms, thin dash dot lines are 6 

initials) 7 

 8 

4.2.4 Results of Case 8 9 

Another important variable for expansion behaviors is pressure. The wave evolution profiles of n-10 

dodecane/nitrogen mixture in the double-expansion tube are presented in Fig. 18. The initial 11 

temperature and pressure of fluid are 293 K and 5.0 MPa. Compared to the results of Case 6 with low 12 

initial pressure (0.1 MPa), the expanded speed and the dissolved nitrogen quantity are increased 13 

remarkably in Case 8 with high initial pressure (5.0 MPa). The mass fraction of dissolved nitrogen in 14 
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the liquid phase is seen to be as large as 0.01105 (see Fig. 18(e)), since the dissolved nitrogen possess 1 

a high vapor pressure, it can improve the phase change and expansion intensity a lot (Kuijpers et al., 2 

2002). Thereby, it can be concluded that the multicomponent two-phase flow model, such as this four-3 

equation model, is strongly required for accurately predicting the homogeneous nucleation during the 4 

pressure expansion processes, like in diesel and GDI engines with high injection pressures. 5 

 6 

 7 

 8 

 9 

Fig. 18 Wave behaviors of n-dodecane/nitrogen mixture in the double-expansion tube predicted by the 10 

four-equation model with and without volume translation (Case 8: 𝑃𝐿 = 𝑃𝑅 = 5.0 MPa, 𝑇𝐿 = 𝑇𝑅 =11 293  K, 𝛼𝑔,𝐿 = 𝛼𝑔,𝑅 = 0.0001 , 𝑢𝐿 = −1.0  m/s, 𝑢𝑅 = 1.0  m/s, t = 1.4 ms, thin dash dot lines are 12 

initials). 13 
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As the pressure increases, the volume translation added in PR EoS becomes very important in density 1 

predictions and subsequently influences the expansion behaviors. The compared results between the 2 

models with and without volume translation are plotted in Fig. 18. Large deviation can be observed in 3 

the expansion width predicted by the model without volume translation. Therefore, the volume 4 

translation is demonstrated to be important in the real-fluid simulation using PR EoS, especially at 5 

high pressure conditions. 6 

 7 

5. Three-dimensional n-dodecane injection modelling 8 

To study the performance of the proposed four-equation model for multidimensional flows, a 3D 9 

transcritical fuel injection is simulated. Here, the transcritical injection is defined as that both injection 10 

and chamber pressures exceed the fluid critical pressure, and the injection temperature is lower but the 11 

chamber temperature is higher than the fluid critical temperature (Ma et al., 2017). Therefore, the 12 

injected fluid follows a path crossing the pseudo-boiling line and evolves from a liquid-like state to a 13 

gas-like state at 𝑇𝑝𝑠𝑒𝑢𝑑𝑜  as reported recently by (Banuti, 2015) and (Yang et al., 2018). In this 14 

simulation, the phase change is not expected. The computational domain is illustrated in Fig. 19(a). A 15 

typical injector which consists of a single-hole (Length = 1 mm and Diameter = 100 µm) is fitted to a 16 

hexahedral chamber. The boundary conditions are set with pressure inlet and outlet in left and right 17 

sides of the geometry, respectively, as shown in Fig. 19(b). A liquid n-dodecane (index 𝐶12) jet at 363 18 

K (𝑇𝑗𝑒𝑡 < 𝑇𝑐,𝐶12 = 658.1 K) is injected into a chamber filled with vapor n-dodecane at the temperature 19 

of 900 K (𝑇𝑐ℎ𝑎𝑚𝑏𝑒𝑟 > 𝑇𝑐,𝐶12). The injector and chamber pressures are initially set to be 7 and 4 MPa, 20 

respectively, which are above the n-dodecane critical pressure (𝑃𝑐,𝐶12 =1.82 MPa). 21 

 22 

  23 

Fig. 19 Schematic and mesh distribution of a typical injector (a) Schematic; (b) Mesh (204800 cells, 24 

the minimum size is 10 μm). 25 

 26 

The density, temperature, and isobaric heat capacity behaviors at the instant of 0.09 ms are plotted in 27 

Fig. 20(a). The jet is evolving from a liquid-like supercritical state (  𝑇 < 𝑇𝑝𝑠𝑒𝑢𝑑𝑜 ) to a gas-like 28 

supercritical state (𝑇 > 𝑇𝑝𝑠𝑒𝑢𝑑𝑜). The fluid thermodynamic state is correctly predicted as shown in Fig. 29 

20(b). Indeed, the predicted density and isobaric heat capacity agree very well with the available NIST 30 

data (Linstrom and Mallard, 2001). In particular, the non-linearity of isobaric across the pseudo-31 

boiling line seems to be well captured by the PR EoS. This phenomenon appears at the jet periphery 32 

and also in the jet front (see 𝐶𝑝 in Fig. 20(a). The peak value of isobaric heat capacity is very large 33 

(around 4 kJ (kg ∙ K)⁄ ), which may have significant cooling effects on the temperature distribution 34 
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before combustion. Of course, this kind of non-linearity behavior cannot be obtained by the ideal gas 1 

EoS (Segal and Polikhov, 2008). Therefore, to better quantify the performance of transcritical 2 

injection and combustion, the real-fluid two-phase flow model should be considered. 3 

 4 

  5 

Fig. 20 Results of injection event (a) temporal sequence of density (𝜌), temperature (T), and isobaric 6 

heat capacity (𝐶𝑝); (b) comparison between predicted density and isobaric heat capacity with available 7 

NIST data (Here, the density and heat capacity varied with temperature are in the radial section at the 8 

distance of 1.85 mm from the hole exit), (𝑃𝑗𝑒𝑡 = 7.0  MPa, 𝑇𝑗𝑒𝑡 = 363  K, 𝑃𝑐ℎ𝑎𝑚𝑏𝑒𝑟 = 4.0  MPa, 9 𝑇𝑐ℎ𝑎𝑚𝑏𝑒𝑟 = 900 K, 𝑌𝑐12ℎ26 = 0.99999, t = 0.09 ms). 10 

 11 

6. Conclusions 12 

A multicomponent fully compressible four-equation model with a real-fluid equilibrium-solver was 13 

constructed and implemented into an in-house IFP-C3D software. It was validated against the 14 

experimental results, and the capability to deal with two-phase flows was highlighted in both 1D and 15 

3D test cases. According to the numerical results, the following conclusions can be obtained. 16 

 17 

(1) The suggested four-equation model can compute the real-fluid phase change for multicomponent 18 

two-phase flows, and it can also predict more accurate real-fluid behaviors, including the effects of 19 

dissolved nitrogen in liquid phase; 20 

(2) The “composite EoS” approach using respective PR EoS in their range of convexity for liquid and 21 

gas phases, and connected in the vapor dome by a set of equilibrium constraints, can solve the 22 

drawback of “mixture PR EoS” in the unstable spinodal region, and so preserve the hyperbolicity 23 

of the Euler system; 24 



37 

 

(3) Referring to the wave behaviors of water-nitrogen in the 1D shock and double-expansion tubes 1 

with tiny discontinuities at the interface, the predictions of present four-equation model are close 2 

to those of Chiapolino et al. (2017) model; 3 

(4) The flash boiling process of n-dodecane/nitrogen mixture is satisfactorily reproduced by the 4 

present four-equation model, and the predicted results show good agreements with experimental 5 

measurements. The complex wave patterns in flash boiling cases are successfully tracked; 6 

(5) Based on the sensitivity analysis, this four-equation model can illustrate reliable and efficient 7 

calculations with a convergence criterion of 1.0e-13 and a CFL number in the range of 0.15 – 0.3; 8 

(6) This four-equation model can produce the complex wave behaviors satisfactorily, including the 9 

expansion, evaporation and shock fronts, as well as the contact discontinuity regime for n-10 

dodecane/nitrogen mixtures with large discontinuities at the interface. The wave evolutions have 11 

been revealed and analyzed based on the thermodynamic phase trajectories under various 12 

conditions; 13 

(7) The dissolved nitrogen quantity in liquid phase becomes larger as the pressure increases and 14 

temperature decreases, its evolution profile is quite close to the pressure. The phase change and 15 

cavitation intensity are improved with large amount of dissolved nitrogen in the liquid phase; 16 

(8) The volume translation in PR EoS shows negligible effects on the liquid density, expansion 17 

behaviors for the n-dodecane/nitrogen mixture in the cases with high initial temperature. However, 18 

as the initial pressure increases and temperature decreases, the volume translation  model may help 19 

to obtain the correct density and expansion behaviors. 20 

(9) Finally, the suggested four-equation model has been shown to be able of predicting the main 21 

features of a typical 3D subcritical and transcritical injections. 22 
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Appendix A. Thermodynamic properties and equilibrium-solver 30 

A.1. Thermodynamic properties of single-phase 31 

Thermodynamic parameters in this study are evaluated consistently with PR EoS, including the 32 

pressure, specific internal energy, density, and the fugacity of species: 33 

 
𝜕𝑃𝜕𝑇|𝜌 = 𝑅𝑉−𝑏 − 𝑑𝑎𝑑𝑇 1𝑉2+2𝑏𝑉−𝑏2  (A. 1) 34 

 
𝜕𝑃𝜕𝜌|𝑇 = − 𝑀𝜌2 [ −𝑅𝑇(𝑉−𝑏)2 + 2𝑎(𝑉+𝑏)(𝑉2+2𝑏𝑉−𝑏2)2]  (A. 2) 35 
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 𝑒𝑑 = 𝜕𝑒𝜕𝑇|𝑃 = (𝑇 𝑑𝑎𝑑𝑇 − 𝑎) 𝑙𝑛(𝑉+(1+√2)𝑏𝑉+(1−√2)𝑏) (2√2𝑏𝑀)⁄   (A. 3) 1 

 𝑒 = 𝑒0 + 𝑒𝑑  (A. 4) 2 

 
𝜕𝜌𝜕𝑇|𝑃 = − 𝜕𝑃𝜕𝑇 (𝜕𝑃𝜕𝜌|𝑇)−1  (A. 5) 3 

 𝑓𝑘 = 𝑥𝑘𝜙𝑘  (A. 6) 4 

 𝜙𝑘 = 𝑒𝑥𝑝 ((𝑏𝑘𝐵 ) (𝑍 − 1) − 𝑙𝑛(𝑍 − 𝐵) + ( 𝐴2√2𝐵) [𝑏𝑘𝐵 − 2.0𝐴𝛼∑ 𝑥𝑘′𝑎𝑘′𝛼𝑘𝑘′𝑁𝑘′=1 ] 𝑙𝑛 (𝑍+2.414𝐵𝑍−0.414𝐵)) (A. 7) 5 

where 𝑒 is the internal energy, which is computed from the sum of the departure part of 𝑒𝑑 (Vidal, 6 

2003) and the ideal gas part 𝑒0, which is calculated based on the polynomial equation (Aly and Lee, 7 

1981). 𝜙𝑘 is fugacity coefficient; Z is compressibility factor, calculated as 8 

  𝑍3 − (1 − 𝐵)𝑍2 + (𝐴 − 3𝐵2 − 2𝐵)𝑍 − (𝐴𝐵 − 𝐵2 − 𝐵3) = 0   (A. 8) 9 

where 𝐴 = 𝑎𝑃 𝑅2𝑇2⁄  and 𝐵 = 𝑏𝑃 𝑅𝑇⁄ ; the coefficients 𝑎 and 𝑏 are estimated based on the van der 10 

Waals mixing rule as 𝑎 = ∑∑𝑥𝑘1𝑥𝑘2𝑎𝑘!𝑘2 , 𝑏 = ∑𝑥𝑘1𝑏𝑘1 , 𝑎𝑘  and 𝑏𝑘  are determined based on the 11 

critical point of each component (Kwak and Mansoori, 1986), 𝑘𝑘1𝑘2 = 0.19 for n-dodecane/nitrogen 12 

and 𝑘𝑘1𝑘2 = 0.0 for water-nitrogen in this study. 13 

 14 

A.2. Phase stability test 15 

The phase stability test is an important part of phase equilibrium computation. It is used to decide 16 

whether the system is thermodynamically stable. In this study, the Tangent Plane Distance (TPD) 17 

criterion (Michelsen, 1982) is used. In this approach, the TPD represents the vertical distance from the 18 

tangent hyperplane of Gibbs free energy surface at the feed 𝑧𝑘 to that at the phase compositions 𝑥𝑘. 19 

The system stability requires the TPD function to be non-negative:  20 

 𝑇𝑃𝐷 = ∑ 𝑥𝑘[𝜇𝑘(𝑥𝑘) − 𝜇𝑘,0(𝑧𝑘)]𝑁𝑘 ≥ 0  (A. 9) 21 

where 𝑥𝑘 denotes the mole fraction of component k in one assumed phase. If non-negative TPD value 22 

is obtained with any trial phase compositions 𝑥𝑘, the initial mixture is stable and no phase split is 23 

needed. Otherwise, the initial mixture with the feed 𝑧𝑘 is unstable, then the phase split happens. In this 24 

study, the label TPD = 𝑁𝑝ℎ𝑎𝑠𝑒 is used to identify the nature of phase with 𝑁𝑝ℎ𝑎𝑠𝑒 = 0 for pure gas, 25 𝑁𝑝ℎ𝑎𝑠𝑒 = 1 for pure liquid and 𝑁𝑝ℎ𝑎𝑠𝑒 = 2 for two-phase. 26 

 27 

A.3. Isoenergetic-Isochoric (UVn) flash 28 

Assuming the instantaneous thermodynamic equilibrium in each control volume, an isoenergetic-29 

isochoric (UVn) flash is used to relax the Gibbs free energy of each phase. The mixture specific 30 

internal energy and density (𝑒∗, 𝜌∗) are known from the flow-solver (Eqs. (1) – (4)). The temperature, 31 

pressure, equilibrium factor, and vapor fraction (𝑇, 𝑃, 𝐾𝑘, 𝜓𝑔) are iterated based on the equilibrium 32 

solver (Eqs. (11) – (14)). The UVn flash iteration is composed of two parts: (1) Inner loop (TPn flash) 33 

and (2) Outer loop. 34 

 35 

A.3.1 Inner loop – Isothermal-isobaric (TPn) flash  36 
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In the TPn flash (Saha and Carrolls, 1997), the phase compositions (𝑥𝑘, 𝑦𝑘) are the target variables, 1 

but they are not independent, the equilibrium factor (𝐾𝑘) and vapor fraction (𝜓𝑔) are. The equilibrium 2 

factor (𝐾𝑘) is defined as  3 

 𝐾𝑘 = 𝑦𝑘/𝑥𝑘  (A. 10) 4 
where the phase compositions can be described as 5 

 𝑦𝑘 = 𝑧𝑘𝐾𝑘 [1 + (𝐾𝑘 − 1)𝜓𝑔]⁄   (A. 11) 6 

 𝑥𝑘 = 𝑧𝑘 [1 + (𝐾𝑘 − 1)𝜓𝑔]⁄   (A. 12) 7 

where ∑ 𝑦𝑘𝑁𝑘=1 = ∑ 𝑥𝑘𝑁𝑘=1 = 1 . The objective functions in TPn flash are Rachford-Rice equation 8 

(Saha and Carrolls, 1997) and fugacity equality equation described as  9 

 𝐹1 = ∑ 𝑧𝑘(𝐾𝑘 − 1) [1 + 𝜓𝑔(𝐾𝑘 − 1)]⁄𝑁𝑘=1   (A. 13) 10 

 𝐹2 = 𝑓𝑘,𝑙 𝑓𝑘,𝑔⁄ − 1  (A. 14) 11 

First, the objective function of Eq. (A. 13) is iteratively solved to obtain the vapor fraction 𝜓𝑔. Then, 12 

the second objective function (A. 14) is solved to get the equilibrium constant (𝐾𝑘). The inner loop is 13 

iterated until the convergence tolerance is fulfilled as Eq. (21). Otherwise, Eqs. (A. 13) and (A. 14) are 14 

solved again with the new estimates for 𝜓𝑔 and 𝐾𝑘. After the TPn flash, we can obtain the vapor mass 15 

fraction and equilibrium constant (𝜓𝑔 and 𝐾𝑘). The phase compositions (𝑥𝑘, 𝑦𝑘) can be determined 16 

based on Eqs. (A. 11) – (A. 12). 17 

 18 

The initializations of 𝜓𝑔 and 𝐾𝑘 are given by the solutions of flow-solver at current time-step n, as 19 

 𝜓𝑔,𝑛_𝑈𝑉𝑛0 = 𝜓𝑔,𝑛" = 𝑚𝑔,𝑛" (𝑀𝑔∑𝑛𝑘,𝑔" )⁄    (A. 15) 20 

 𝐾𝑘,𝑛_𝑈𝑉𝑛0 = 𝜙𝑘,𝑙" 𝜙𝑘,𝑔"⁄   (A. 16) 21 

where the subscript (𝑛_𝑈𝑉𝑛0) represents the initial values of UVn flash, and superscript (") indicates 22 

the non-equilibrium values obtained from the flow-solver. Notably, the TPn flash is not only used in 23 

the inner loop of UVn flash to compute the phase compositions, but also applied in the initialization to 24 

calculate the initial equilibrium phase compositions (𝑥𝑘, 𝑦𝑘) (see Step (3) in Section 2.3).  25 

 26 

A.3.2 Outer loop 27 

In the outer loop, the specific internal energy and density of each phase are calculated by updating the 28 

dependent variables of temperature and pressure with the phase compositions obtained from the TPn 29 

flash. The objective functions are expressed as: 30 

 𝐹3 = 𝑒∗−∑ 𝜓𝑝𝑀𝑝𝑒𝑝2𝑝=1 �̅�⁄𝑒∗   (A. 17) 31 

 𝐹4 = 𝜌∗−�̅� ∑ 𝜓𝑝𝑀𝑝/𝜌𝑝2𝑝=1⁄ 𝜌∗   (A. 18) 32 

The outer loop is performed using the initial estimates (𝑃𝑛_𝑈𝑉𝑛0 and 𝑇𝑛_𝑈𝑉𝑛0) and a Newton iterative 33 

algorithm (Saha and Carrolls, 1997). The internal energy and density of each phase (𝑒𝑝 and 𝜌𝑝) are 34 

computed based on the temperature derivatives of internal energy and density (Eqs. (A. 3) and (A. 5)), 35 

as well as the pressure derivatives of density (Eq. (A. 2)). The first-order Taylor series approximation 36 
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with the relaxation coefficient (𝑓𝑟𝑒𝑙𝑎 = 1 − ∆𝑇 𝑇⁄ ) is used to estimate the temperature and pressure 1 

variations (∆𝑇 and ∆𝑃) as  2 

 ∆𝑇 = 𝑒∗−∑ 𝜓𝑝𝑀𝑝𝑒𝑝2𝑝=1 �̅�⁄𝜕𝑒/𝜕𝑇 , ∆𝑃 = ∆𝑇 𝜕𝑉𝜕𝑇|𝑃 𝜕𝑃𝜕𝑉|𝑇  (A. 19) 3 

Therefore, the current pressure and temperature (𝑃 and 𝑇) can be updated by 𝑃 = 𝑃 + 𝑓𝑟𝑒𝑙𝑎∆𝑃 and 4 𝑇 = 𝑇 + 𝑓𝑟𝑒𝑙𝑎∆𝑇 , respectively. The calculation of UVn flash is stopped if (𝐹32 + 𝐹42) ≤ 𝜀𝑈𝑉𝑛 . 5 

Otherwise, the TPD stability test is applied again to determine the phase stability: if TPD = 2, update 6 

the pressure and temperature (𝑃 and 𝑇) again following Eq. (A. 19), and the TPn flash is iteratively 7 

solved again with the new estimates for P and T until 𝐹1 ≤ 𝜀𝑈𝑉𝑛 and 𝐹2 ≤ 𝜀𝑈𝑉𝑛; if TPD = 0 or 1, the 8 

mixture is assumed to be stable, and only the pressure and temperature (𝑃 and 𝑇) are updated based on 9 

Eq. (A. 19) without the TPn flash. In the outer loop of UVn flash, the pressure and temperature (𝑃 and 10 𝑇) are initialized by the solutions at equilibrium state obtained from the UVn flash in the previous 11 

time-step (denoted 𝑛 − 1) as  12 

 𝑃𝑛_𝑈𝑉𝑛0 = 𝑃𝑛−1, 𝑇𝑛_𝑈𝑉𝑛0 = 𝑇𝑛−1  (A. 20) 13 

Note that for 𝑛 = 1, the input initial values 𝑃0 and 𝑇0 are used.  14 

 15 

A.4 Analytical solution of Cubic equation 16 

There are three roots when solving the cubic EoS (e.g., PR EoS). In this study, an exact analytical 17 

solution of cubic EoS is adopted based on the approach of (Perry, 1950, Wilczek‐Vera and Vera, 18 

2015). During the calculation, the non-physical meaning roots like negative or conjugate complex 19 

values will appear. However, these non-physical roots are excluded, and only real positive roots are 20 

selected. The detailed analytical solution is described as following: 21 

 𝑥3 + 𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 0  (A. 21) 22 

where, 𝐴, 𝐵 and 𝐶 are numerical coefficients.  23 

 24 

Firstly, two coefficients, 𝐷 and 𝐸, are defined as: 25 

 D = (𝐴3)3 − (𝐴𝐵6 ) + 𝐶2  (A. 22) 26 

 E = (𝐵3) − (𝐴3)2  (A. 23) 27 

 28 

Then, the discriminant is computed as ∆= 𝐷2 + 𝐸2.  29 

 30 

(1) If ∆= 0, there are three roots with at least two equal roots as: 31 

 𝑥1 = 2√−𝐷3 − (𝐴3) , 𝑥2 = 𝑥3 = −√−𝐷3 − (𝐴3)  (A. 24) 32 

(2) If ∆> 0, there are one real root and two complex conjugate roots. Two other coefficients 𝐹 , 𝐺 are 33 

defined as: 34 
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 𝐹 = √(−𝐷) + √∆3 , 𝐺 = √(−𝐷) − √∆3
  (A. 25) 1 

The roots are formulated as: 2 

 {  
  𝑥1 = 𝐹 + 𝐺 − (𝐴3)𝑥2 = −[12 (𝐹 + 𝐺) + 𝐴3] + √32 (𝐹 − 𝐺)𝑖𝑥3 = −[12 (𝐹 + 𝐺) + 𝐴3] − √32 (𝐹 − 𝐺)𝑖  (A. 26) 3 

(3) If ∆< 0, there are three real and unequal roots. A new parameter 𝜃 is defined as: 4 

 𝜃(𝑟𝑎𝑑𝑖𝑎𝑛𝑠) = arccos ( −𝐷√−𝐸3)  (A. 27) 5 

The three roots are formulated as: 6 

 {  
  𝑥1 = 2√−𝐸 cos (𝜃3) − 𝐴3𝑥2 = 2√−𝐸 cos (𝜃3 + 23𝜋) − 𝐴3𝑥3 = 2√−𝐸 cos (𝜃3 + 43𝜋) − 𝐴3

  (A. 28) 7 

  8 
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