
Research Article

A Multiconstrained Grid Scheduling Algorithm with
Load Balancing and Fault Tolerance

P. Keerthika1 and P. Suresh2

1Department on Computer Science and Engineering, Kongu Engineering College, Perundurai, Erode, Tamilnadu 638052, India
2Department on Information Technology, Kongu Engineering College, Perundurai, Erode, Tamilnadu 638052, India

Correspondence should be addressed to P. Keerthika; keerthikame@gmail.com

Received 6 March 2015; Revised 12 May 2015; Accepted 17 May 2015

Academic Editor: Pao-Ann Hsiung

Copyright © 2015 P. Keerthika and P. Suresh. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Grid environment consists of millions of dynamic and heterogeneous resources. A grid environment which deals with computing
resources is computational grid and is meant for applications that involve larger computations. A scheduling algorithm is said
to be e	cient if and only if it performs better resource allocation even in case of resource failure. Allocation of resources is a
tedious issue since it has to consider several requirements such as system load, processing cost and time, user’s deadline, and
resource failure. �is work attempts to design a resource allocation algorithm which is budget constrained and also targets load
balancing, fault tolerance, and user satisfaction by considering the above requirements. �e proposed Multiconstrained Load
Balancing Fault Tolerant algorithm (MLFT) reduces the schedule makespan, schedule cost, and task failure rate and improves
resource utilization.�e proposedMLFT algorithm is evaluated using Gridsim toolkit and the results are compared with the recent
algorithms which separately concentrate on all these factors. �e comparison results ensure that the proposed algorithm works
better than its counterparts.

1. Introduction and Related Works

�e computational power of individual computers is rapidly
increasing from time to time. For problem solving in the

elds like earth system sciences, 
nancial modeling, and
high energy physics, the approaches involving computation
are widely used. But for these applications, the compu-
tational power of a single computer is not su	cient. It
has limited resources and is not suitable for computation-
intensive applications. In order to meet the computational
demand, powerful distributed and parallel systemswithmore
number of processors are developed. But few applications like
parameter search problems need more number of resources
which led to a solution of collecting and utilizing distributed
resources owned by di�erent institutions and domains. �is
distributed computing infrastructure is called grid.

Based on functionality, grid can be classi
ed as computa-
tional grid and data grid.�e resources involved in computa-
tional grids are computational resources such as processors.

It is mainly used for computation intensive applications and
data intensive applications. �e applications which requires
more time for computation are termed as computation inten-
sive applications and the applications which require more
time for data retrieval than computation are termed as data
intensive applications. In data grid, the resources are storage
resources like memory and mainly deal with data storage.

A grid system comprises a scheduler, grid portal, and a
Grid Information Service (GIS). �e scheduler or the grid
broker is responsible for mapping of tasks to their suitable
resources. It allows the users to request for resource alloca-
tion. �is process is termed as scheduling. Scheduling can
be varied as static scheduling and dynamic scheduling. �e
users communicates with the scheduler through grid portal.
�ey have several Quality of Service (QoS) requirements of
their task towards execution. �e QoS requirements can be
based on processing power, operating system, architecture,
deadline, cost of execution, and bandwidth. Apart from
scheduling, a gridmust ensuremany aspects such as balanced

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2015, Article ID 349576, 10 pages
http://dx.doi.org/10.1155/2015/349576



2 �e Scienti
c World Journal

load of resources, failure handling mechanisms, security of
data, and user satisfaction. �ese several independent issues
make grid scheduling as a NP-complete problem [1].

�e schedulers can be deployed level by level. �e local
scheduler is deployed within a cluster and is responsible for
scheduling within the cluster.�e scheduler at the top level is
the grid broker. Scheduling can be centralized, decentralized,
and hierarchical. In centralized scheduling, the scheduler has
more control over the resources. In decentralized scheduling,
there is no central entity to have control over the resources
and the scheduling decisions aremade individually. In hierar-
chical scheduling, di�erent levels of schedulers are deployed
and scheduling is done at all the levels.

�e proposed algorithm suits for computational grids
with computing resources and scheduling is done by con-
centrating on load balancing, fault tolerance, and several
QoS requirements such as budget or cost and user deadline.
�e remaining part of this paper is organized with materials
and methods which explain the works done previously with
these factors and the newly proposed algorithm’s architecture
and nature. �en the experimental results are shown with
comparisons and conclusions.

�e grid computing environment comprises heteroge-
neous resources which are distributed geographically. Hence,
identi
cation of a suitable resource for the submitted task is a
tedious process. Many researchers have proposed algorithms
for mapping of tasks to resources. Some of them concentrate
on user satisfaction, some on load balancing, and some on
fault tolerance.

An algorithm is proposed in [1] that begins with Min-
min algorithm if the number of available resources is odd
and starts withMax-min algorithm if the number of available
resources is even. �e remaining tasks are assigned to their
appropriate resources by one of the two strategies, alterna-
tively.

A minimum time to release scheduling algorithm [2] has
been discussedwhich depends on the time to release (TTR). It
includes the processing time, waiting time, and transfer time
of input and output data to and from the resources. Based on
theTTRvalue, the tasks are arranged in descending order and
scheduled to resources with minimum TTR. �is algorithm
performs better when compared to First Come First Serve
(FCFS) scheduling and Min-min algorithms.

A divided Min-min scheduling algorithm [3] classi
es
jobs according to their ETC values as average, minimum, and
maximum. �en, it divides the jobs into same size segments
and schedules the large job segment 
rst and then the small
job segment. It uses Min-min algorithm for scheduling.
Di�erent from Min-min, it sorts jobs before scheduling,
which means that the job with long execution time will be
scheduled earlier.

A fault tolerance service based on di�erent types of fail-
ures satisfying theQoS requirements is proposed in [4]. It has
a fault detector, fault manager, resource manager, resource
allocation manager, meta computing directory service, and
execution time predictor. It allocates resources based on
QoS requirements and performs job migration in case of
occurrence of failures.

AMinimumTotal Time to Release (MTTR) algorithm [5]
reduces the time to release value by allocating computational
resource based on job requirements, characteristics, and
hardware features of resources. It adopts a check pointing
based fault tolerance and the check points are based on failure
rate. It proposes a Replica Resource Selection Algorithm to
provide checkpoint replication service.

In [6], the root cause of failures is studied from the
real time data and categorizes them as human, environment,
network, so�ware, and hardware. �e failure rate is analyzed
as a function of system and node and identi
ed that the
failure rates do not grow signi
cantly faster than system size.
Failure rate is analyzed at di�erent time scales and statistical
properties of time between failures are also de
ned.

�e performance of most commonly used fault-tolerant
techniques in grid computing is analyzed in [7]. �e metrics
such as throughput, turnaround time, waiting time, and
network delay are considered for evaluation. �e average
percentage of faults and the workloads are varied to analyze
the behavior of these techniques. It analyses the task level fault
tolerance mechanisms such as retrying, alternate resource,
check pointing, and replication.

�e importance of fault tolerance for achieving reliability
is surveyed [8] by all possiblemechanisms such as replication,
check pointing, and job migration. It extends the cost opti-
mization algorithm to optimize the time without incurring
additional processing expenses. �is is accomplished by
applying the time-optimization algorithm to schedule task
farming or parameter-sweep application jobs on distributed
resources having the same processing cost.

In [9], a fault tolerant scheduling architecture that
employs job replication is proposed. �e algorithm deter-
mines adaptively the number of job replicas based on
resource failure history. �en, it schedules the replicas to
e	cient resources using the backup resource selection algo-
rithm.

A cost optimization scheduling algorithm is described in
[10] to optimize the cost to execute the jobs. It optimizes time,
keeping the cost of computation at minimum. It also reduces
the execution time of the jobs. But in this algorithm failure
rate of the resources and user deadline of the jobs are not
considered.

A static heuristic approach [11] is proposed for scheduling
independent tasks in grid environment which considers user
satisfaction. �e requirements of tasks are necessary to iden-
tify suitable resources. �e proposed scheduling algorithm
considers both system and application aspects, that is, the
factors to improve the system performance and utilization
of the resources and throughput. It makes use of the user
deadline of tasks, data transfer time, and the computation
time for each ⟨job, resource⟩ pair for making scheduling
decisions.

A grouping based scheduling algorithm [12] is proposed
which considers user deadline and reduces communication
time by adopting the grouping technique. �e grouping
strategy followed in this algorithm groups the 
ne grained
tasks to coarse grained tasks based on the user deadline and
computation time.



�e Scienti
c World Journal 3

An e	cient load balancing and grouping based job
scheduling approach for grouping of 
ne-grained jobs is
proposed in [13]. Its main goal is to maximize resource uti-
lization and minimize processing time of tasks. It schedules
tasks based on number of tasks available at a particular time
and resource capability. Independent 
ne-grained jobs are
grouped together based on the dynamically speci
ed group
size and resource characteristics.

A neighbour level load balancingmechanism is proposed
in [14]. Amore accurate loadmeasurementmethod is applied
to determine the load of each resource. A load balancing
algorithm is executed based on the information exchanged
between neighbour nodes. If any node is overloaded then the
load on every neighbour’s node is evaluated and 
nds under-
loaded nodes. �en the task is shi�ed to underloaded nodes.

A hybrid load balancing policy which integrates static
and dynamic load balancing technologies is proposed in [15].
Essentially, a static load balancing policy is applied to select
e�ective and suitable node sets. It reduces the unbalanced
load probability caused by assigning tasks to ine�ective
nodes.When a node reveals the possible inability to continue
providing resources, the dynamic load balancing policy will
determine whether the node in question is ine�ective to
provide load assignment. �e system will then obtain a new
replacement node within a short time, to maintain system
execution performance.

A system level load balancing [16] is proposed where a
distributed load balancing model transforms grid topology
into a forest structure. A two-level strategy is proposed to
balance the load among resources of computational grid. In
level 0, each cluster manager is associated with a physical
cluster of the grid. �e cluster manager is responsible for
maintaining the workload information related to each one
of its worker nodes, estimating the workload of associated
cluster and di�using this information to other cluster man-
agers, deciding to start intracluster load balancing, sending
the load balancing decisions to the worker nodes which
they manage for execution and initiating the intercluster
load balancing. In level 1, the worker nodes of a grid that
are linked to their respective clusters are determined. Each
node at this level is responsible for maintaining its workload
information, sending this information to its cluster manager
and performing the load balancing decided by its cluster
manager. Load balancing schemes for grid environment [17]
are proposed that do not follow the changes in the system
status or set 
xed threshold for controlling the load.

A dynamic and distributed protocol is designed in [18].
�e grid is partitioned into a number of clusters. Each cluster
has a coordinator to perform local load balancing decisions
and also to communicate with other cluster coordinators
across the grid to provide intercluster load transfers. �e
distributed protocol uses the clusters of the grid to perform
local load balancing decision within the clusters and if this is
not possible, load balancing is performed among the clusters
under the control of cluster coordinators.

A fault tolerant hybrid load balancing algorithm [19] is
proposed which is carried out in two phases: static load
balancing and dynamic load balancing. In the 
rst phase, a
static load balancing policy selects the desired e�ective sites

to carry out the submitted job. If any of the sites is unable
to complete the assigned job, then a new site will be located
using the dynamic load balancing policy. �e assignment of
jobs must be adjusted dynamically in accordance with the
variation of site status. �e variation in site status can be
identi
ed at any of the cases when the grid scheduler receives
themessage that a certain site can no longer provide resources
or when job execution on a certain site exceeds the expected
execution time or when the site is overloaded.

A load balancing mechanism, which works in 2 phases,
is proposed in [20]. In the 
rst phase, job allocation is done
based on a de
ned criterion; that is, the heuristic begins with
the set of all unmapped tasks. �en the set of minimum
completion times is found, like Min-min heuristic. In second
phase, heuristic algorithm works based on machines work-
load, which consists of two steps.

In the 
rst step, for each task the 
rst and second
minimumcompletion time and theminimumexecution time
are found. �en the di�erence between these two minimum
completion time values is multiplied by the amount of
minimum completion time and then divided by minimum
execution time. In the second step, if the number of the
remaining tasks is not less than threshold, then the heuristic
algorithm is executed to balance the load. Finally, the task
which has the criteria value as maximumwill be selected and
removed from the set of unmapped tasks.

A dynamic, distributed load balancing scheme for a
grid environment is proposed [21] which provides deadline
control for tasks. Periodically the resources check their state
andmake a request to the grid broker according to the change
of state in load. �en, the grid broker assigns gridlets based
on deadline request and load. In [22], a hybrid algorithm
is proposed for optimal load sharing with two components
such as hash table and distributed hash table. It 
nds the
nearest node and shares the load of a highly loaded node
to lightly loaded node. It proves to provide the best tradeo�
between space usage and lookup time. All these algorithms
mentioned in literature concentrate on load balancing, fault
tolerance, and user satisfaction to an extent. But none of them
considers all these factors combined. �is research proposes
a Multiconstrained Load Balancing Fault Tolerant Algorithm
(MLFT) which considers all these factors during scheduling.
�e architecture and the algorithm of MLFT are explained
below. In our previous work [23], we have proposed a new
Bicriteria Scheduling Algorithm that considers both user
satisfaction and fault tolerance. �e proactive fault tolerant
technique is adopted and the scheduling is carried out by con-
sidering the deadline of gridlets submitted. �e main contri-
bution of this paper includes achieving user satisfaction along
with fault tolerance and minimizing the makespan of jobs.
In our previous work [24], we have proposed a multicriteria
scheduling algorithm that considers load balancing, fault
tolerance, and user satisfaction as a centralized approach.

In our previous work [25], we have proposed an e	cient
fault tolerant scheduling algorithm (FTMM) which is based
on data transfer time and failure rate. System performance is
also achieved by reducing the idle time of the resources and
distributing the unmapped tasks equally among the available
resources.



4 �e Scienti
c World Journal

Grid
broker

Resource 1 R1 R2 Rn

PE1· · · PEn PE1· · · PEn

PE1· · · PEn

PE1· · · PEn

Scheduling strategy

M1 · · ·MnM1 · · ·Mn M1 · · ·MnM1 · · ·Mn

Figure 1: Centralized scheduling architecture.

A prioritized user demand algorithm is proposed [26]
that considers user deadline for allocating jobs to di�er-
ent heterogeneous resources from di�erent administrative
domains. It produces better makespan and more user sat-
isfaction but data requirement is not considered. While
scheduling the jobs, failure rate is not considered. So the
scheduled jobs may fail during execution.

A work based on user satisfaction and hierarchical load
balancing is proposed [27] that considers user demands and
load balancing. Itminimizes the response time of the jobs and
improves the utilization of the resources in grid environment.
By considering the user demand of the jobs, the scheduling
algorithm also improves the user satisfaction.

With this study, an algorithm is proposed which is
centralized and considers cost as a scheduling parameter in
addition to the previously proposed scheduling parameters.

2. Materials and Methods

2.1. Problem Formulation. �e proposed algorithm follows
a centralized scheduling architecture depicted in Figure 1
where the scheduling is done only at the grid broker. Also
it follows a static batch mode scheduling in which the tasks
are scheduled in batches and when a task is allocated with
a resource, it will not be changed. Hence the proposed
algorithm is static, batch mode, and centralized scheduling
algorithm.

2.2. Proposed MLFT Scheduling Architecture. �e scheduling
architecture MLFT algorithm is depicted in Figure 2. �e
users submit the tasks to the grid broker through grid portal.
�e tasks are submitted along with the QoS requirements
such as task completion deadline and execution cost.�e grid

portal submits the tasks to the grid scheduler/broker. �e
architecture has a Grid Information Service (GIS) which col-
lects the information of all the resources involved in grid such
as initial failure rate, number of tasks submitted, number of
tasks successfully completed, availability time, and processing
capability in MIPS. �e scheduler has four components.

�e 
rst is the fault handler module which calculates the
failure rate of each resource and checks whether the selected
resource has less failure rate. �e second component is the
deadline control module which takes care of user satisfaction
in terms of satis
ed deadline for task completion. �e third
is the load balancing module which updates the load of
each resource and keeps control of balanced load.�e fourth
scheduler component is the budget control module which
ensures minimized execution cost. �is algorithm is imple-
mented using the GridSim which follows the architecture
depicted in Figure 3.

2.3. Proposed MLFT Algorithm. �e proposed MLFT algo-
rithm follows a static batch mode scheduling strategy in a
centralized fashion.�e algorithm is implemented at the grid
broker level. It is given in Algorithm 1 and it works as follows.

At the time of task submission to grid portal, the user
submits the deadline UD(��) and budget �(��) for task
completion. �e GIS receives the information of all the
resources involved in grid such as computation cost CS(��).
�e algorithm makes use of these resource information and
the user requirements and performs scheduling.

�e load balancing module performs calculation of load
and threshold value at all levels as follows.

�e load of each processing element is calculated by using
the weighted sum of squares which is given by

Load (PE�) = √ �∑
�=1
(����2), (1)

where �� is the load attribute considered in our algorithm
[24]. �e load attribute considered in our algorithm is the
CPU utilization in seconds. �e value of �� which is the
weight of each attribute is considered as 1 and hence the load
of PE is given by

Load (PE�) = ∑��=0 MI�

MIPS�
, (2)

where � is the number of tasks allocated to PE�. �e average
load of each machine is calculated with the loads of PE’s such
as

AL (��) = ∑��=1 Load (PE�)PE num
, (3)

where PE num is the number of PE’s under Machine �. �e
average load of each resource is calculated by

AL (��) = ∑��=1 AL (��)� num
, (4)

where� num is the number of machines under resource �.



�e Scienti
c World Journal 5

Scheduler
R1

R2

Rn

Grid
resources

Returns
results

Assigns tasks
to resources

Resource
information

Grid information
Service

Users submit tasks
with Qos

Returns
results

Grid
portal

Tasks sent to
scheduler

...

Fault
handler
module

Load
balancing
module

Deadline
control
module

Budget
checking
module

Information of
available
resources

Resource
information

request

Figure 2: MLFT architecture.

�e average load of the system/grid broker is calculated
as

AL = ∑��=1 AL (��)� num , (5)

where � num is the number of resources in the system. A�er
calculating the load of the resources, threshold value at the
grid broker level is calculated as

Ω = AL+�, (6)

where

� = √∑��=1 (AL (��) − AL)2� , (7)

where � is the number of resources in the system. In terms
of gridsim the tasks are represented as gridlets.

�e information of the gridlet such as gridlet size in
million instructions (MI) is used to calculate the Expected
Time to Compute matrix for all gridlets in all resources by
using the formula

ETC (��, ��) = Length�
Capacity�

. (8)

�e completion time matrix is calculated for each gridlet
in each resource as

CT (��, ��) = ETC (��, ��) +RT (��) (9)

and the total completion time is calculated as

TCT (��, ��) = CT (��, ��) +CMT (��, ��) . (10)

�e budget control module calculates the cost matrix
CST(��, ��) for executing each gridlet in each resource as

CST (��, ��) = ETC (��, ��) ×CS (��) . (11)

�e cost of execution and the expected budget from the
user are compared and a suitable resource is selected.

�e fault handler module calculates the failure rate of
each resourcewith the information such as number of gridlets
submitted and successfully completed. It is calculated using
the formula

FR (��) = ���sub , (12)

where �� is the number of tasks failed to be executed
previously in resource � and �sub is the number of tasks
submitted to resource � for execution.�e ready time of each
resource is calculated by

RT (��) = �∑
�=1
ETC (��, ��) , (13)

where � is the number of tasks submitted to ��.
3. Results and Discussion

3.1. Experimental Setup. �e proposed algorithm aims at
reducing the makespan and scheduling e	ciently with fault
tolerance and balanced load. Also, the user satisfaction is
considered with deadline control and budget parameters.�e
fault tolerance is ensured with improved hit rate and the
user satisfaction is ensured with increased deadline hit count
and reduced processing/execution cost. �e balanced load is



6 �e Scienti
c World Journal

Step 1. Get the list of tasks � from the user with their user deadline UD(��) and Budget �(��)
Step 2. Get the list of resources � from GIS with the computation cost per second CS(��) and initialize the deadline hit count

and hit count values for all resources.
Step 3. Construct ETC(��, ��)matrix of size� × � when� is the number of tasks and � is the number of resources.

Step 4. For all resources �� in �, where 1 ≤ � ≤ �, and � denotes number of resources,

do
4.1: Calculate Failure rate
4.2: Calculate Ready Time
4.3: Calculate Load of each Processing Element using (1).
4.4: Calculate Average Load of each machine
4.5: Calculate Average Load of each resource

done
Step 5. Calculate Average Load of the system
Step 6. Calculate Balance �reshold
Step 7. Create a list of underloaded resources UR which has AL(��) < Ω.
Step 8. For each task in �� in queue and for each resource ��,

do
8.1: Construct completion time CT(��, ��)matrix of size� × �
8.2: Construct communication time CMT(��, ��)matrix of size� × �
8.3: Construct total completion time TCT(��, ��)matrix of size� × �
8.4: Construct cost matrix

done
Step 9. For all task �� in Task list �,

do
9.1: Create lists ���1and ���2 with resources that has TCT(��, ��) ≤ UD(��) and TCT(��, ��) > UD(��)
respectively.

9.2: Select the resources in ���1 with CST(��, ��) ≤ �(��) and create lists ����1 and ����2 . Include the list
of resources in ���2 in ����2 .

9.3: Sort the lists ����1and ����2 based on FR(��) of resources in ascending order

9.4: Create lists �����1 and �����2 with the set of underloaded resources from ����1 and ����2
respectively in order.

9.5: If entries in �����1 ,
Select the 
rst resource in the list for task �� and dispatch �� to resource �� and Increment

Deadline Hit Count and Hit Count.
else if entries in �����2 ,

Select the 
rst resource in the list for task �� and dispatch �� to resource �� and Increment

Hit Count.
9.6: Remove task �� from Task list �.
9.7: Update RT(��) and FR(��) where � is the resource to which the task �� is dispatched.

done
Step 10. If there are tasks in Task list �,

Repeat steps from 4.3.
else

Compute Makespan = max{RT(��)} and
Compute Hit Rate = �succ/�sub ∀� ∈ �
where �succ is the number of tasks successfully completed by a resource �� without any failure and�sub is the number of tasks failed to be executed by a resource ��.
Compute Resource Utilization

RU(��) = RT(��)
Makespan

× 100
Compute Average Resource Utilization

ARU = 1�
�∑
�=1

RU(��)
endif

Algorithm 1: MLFT scheduling algorithm.



�e Scienti
c World Journal 7

Grid scheduler

Resource 1 Resource 2 Resource 3

Machine 1 Machine 2 Machine 3

PE PEPE

Figure 3: Gridsim architecture.

Table 1: Grid resource characteristics.

Number of machines 1–4

Number of PE’s per machine 1-2

PE ratings 5 to 50MIPS

Table 2: Scheduling parameters and their values.

Number of gridlets 512

Gridlet length (MI) 50,000 to 1,00,000

I/P 
le size 50 to 500MB

O/P 
le size 100 to 700MB

ensured with highest average resource utilization. Gridsim
5.0 toolkit is used for evaluating the proposed algorithm
based on these factors:

Number of resources: 16.

Number of tasks: 512.

�e gridlets assumed are independent and computationally
intensive and arrive randomly and follow Poisson process.
It is assumed that each resource can execute a single gridlet
at a time. �e resource characteristics and the parameters
considered for scheduling are given in Tables 1 and 2, respec-
tively. �e task and machine heterogeneity is considered for
comparison. Four categories of data such as High Task Low
Machine, Low Task HighMachine, High Task HighMachine,
and Low Task Low Machine are considered.

3.2. Performance Metrics. �e proposed algorithm is de-
signed to satisfy the user with respect to deadline and
budget, balanced load, and fault tolerance. �e performance
metrics used to evaluate the proposed MLFT algorithm are
makespan, hit count, deadline hit count, average resource

utilization, and execution cost. �ese performance metrics
are de
ned below.

Makespan. �is metric is for evaluating the overall perfor-
mance of the scheduling algorithm. It is de
ned as the overall
completion time of a batch of tasks and is given by

Makespan = max {RT (��)} , ∀� ∈ �. (14)

It is used to measure the ability of grid to accommodate
gridlets in less time.

Hit Count. Hit count is a new metric introduced that repre-
sents the number of tasks successfully completed in a batch of
tasks. Here, each batch is assumed to have 512 tasks and the
hit count gives the number of tasks successfully completed
out of 512.

Deadline Hit Count. �is is a new metric introduced which
represents the number of tasks successfully completed within
the given user deadline.

Average Resource Utilization. �is metric is newly introduced
in order to measure the load balancing which can be calcu-
lated as follows. �e utilization of each resource RU(��) can
be calculated by

RU (��) = ∑��=0 MI�
MIPS� × AT� × 100. (15)

�e average resource utilization ARU of the system can
be calculated using

ARU = 1�
�∑
�=1

RU (��) , (16)

where� is the number of resources.

Processing Cost. �is metric is newly introduced in order to
measure the algorithm’s performance based on user satisfac-
tion based on budget.

3.3. Experimental Results. �e proposed MLFT algorithm
is compared with the Min-min algorithm which stands as
a benchmark static heuristic algorithm for grid scheduling
and the Fault Tolerant Algorithm (FTMM) proposed in [25],
Bicriteria Scheduling Algorithm (BSA) [23], and LBFT algo-
rithm [24] which is a load balancing algorithm for proving
its performance based on makespan, hit count, deadline hit
count, average resource utilization, and cost.

�e performance comparison of the proposed MLFT
algorithm based on makespan is shown in Figure 4. �e
results show that the MLFT has minimized makespan than
the other algorithms.

�e performance of MLFT based on hit count which is
themeasure of fault tolerance is shown in Figure 5.�e results
show that the MLFT algorithm has more number of gridlets
successfully completed without failure.

�e results of MLFT based on deadline hit count are
shown in Figure 6. It is inferred that when compared with



8 �e Scienti
c World Journal

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

M
ak

es
p

an
 (

s)

Case 1 Case 2 Case 3 Case 4

Cases

Min-min

FTMM

BSA

LBFT

MLFT

Figure 4: Performance based on makespan (sec).

200

220

240

260

280

300

320

340

360

380

400

H
it

 c
o

u
n

t

Case 1 Case 2 Case 3 Case 4

Cases

Min-min

FTMM

BSA

LBFT

MLFT

Figure 5: Performance based on hit count.

100

150

200

250

300

350

400

D
ea

d
li

n
e 

h
it

 c
o

u
n

t

Case 1 Case 2 Case 3 Case 4

Cases

Min-min

FTMM

BSA

LBFT

MLFT

Figure 6: Performance based on deadline hit count.

60

65

70

75

80

85

90

95

100

Case 1 Case 2 Case 3 Case 4

R
es

o
u

rc
e 

u
ti

li
za

ti
o

n
 (

%
)

Cases

Min-min

FTMM

BSA

LBFT

MLFT

Figure 7: Performance based on resource utilization (%).

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

P
ro

ce
ss

in
g 

co
st

 (
$)

Case 1 Case 2 Case 3 Case 4

Cases

Min-min

FTMM

BSA

LBFT

MLFT

Figure 8: Performance based on processing cost.

other algorithms such as Min-min, FTMM, BSA, and LBFT,
the proposed MLFT has increased number of gridlets com-
pleted within user deadline.

�e results based on resource utilization is shown in
Figure 7 and it is inferred that the proposedMLFT algorithm
has better resource utilization than the other algorithms such
as Min-min, FTMM, BSA, and LBFT which concentrates
separately on each factor.

�e performance of MLFT based on processing cost is
shown in Figure 8. �e cost required to execute a batch of
tasks is comparatively less for MLFT than Min-min, FTMM,
BSA, and LBFT algorithms which do not concentrate on pro-
cessing cost.

4. Conclusions and Future Work

In this work, a budget constrained scheduling algorithm
whichmainly concentrates on processing cost is proposed. By
reducing the processing cost, it makes an attempt to satisfy
the user. Along with this cost factor, it also considers user
deadline of task completion to satisfy the user.With these two



�e Scienti
c World Journal 9

factors considered for user satisfaction, it also takes care of
proper resource utilization and fault tolerance with reduced
makespan.

�e e	ciency of this algorithm is proved by comparing
it with already existing algorithms which separately con-
centrates on these factors based on makespan, hit count,
deadline hit count, resource utilization, and processing cost.
�e applications considered in this work are computation
intensive. In the future, this can be extended for data intensive
applications. �is algorithm follows a centralized approach
and in the future, this can be extended in a hierarchical
environment.

Conflict of Interests

�e authors declare that there is no con�ict of interests
regarding the publication of this paper.

References

[1] S. Parsa and R. E. Maleki, “RASA: a new grid task scheduling
algorithm,” World Applied Sciences Journal, vol. 7, pp. 152–160,
2009.

[2] N.Malarvizhi and V. R. Uthariaraj, “Aminimum time to release
job scheduling algorithm in computational grid environment,”
in Proceedings of the 5th International Joint Conference on INC,
IMS and IDC (NCM ’09), pp. 13–18, Seoul, Republic of Korea,
August 2009.

[3] Q. Zhang and Z. Li, “Design of grid resource management
systembased on information service,” Journal of Computers, vol.
5, no. 5, pp. 687–694, 2010.

[4] H. Lee, D. Park, M. Hong, S.-S. Yeo, and S. Kim, “A resource
management system for fault tolerance in grid computing,” in
Proceedings of the 7th IEEE/IFIP International Conference on
Embedded and Ubiquitous Computing (EUC ’09), pp. 609–614,
IEEE, Vancouver, Canada, August 2009.

[5] M. Nandagopal and V. R. Uthariaraj, “Fault tolerant scheduling
strategy for computational grid environment,” International
Journal of Engineering Science and Technology, vol. 2, no. 9, pp.
4361–4372, 2010.

[6] B. Schroeder and G. A. Gibson, “A large-scale study of failures
in high-performance computing systems,” IEEETransactions on
Dependable and Secure Computing, vol. 7, no. 4, pp. 337–350,
2010.

[7] F. G. Khan, K. Qureshi, and B. Nazir, “Performance evaluation
of fault tolerance techniques in grid computing system,” Com-
puters and Electrical Engineering, vol. 36, no. 6, pp. 1110–1122,
2010.

[8] R. Garg and A. K. Singh, “Fault Tolerance in grid computing:
state of the art and open issues,” International Journal of Com-
puter Science & Engineering Survey, vol. 2, no. 1, pp. 88–97, 2011.

[9] M. Amoon, “A development of fault-tolerant and scheduling
system for grid computing,” GESJ: Computer Sciences and
Telecommunications, vol. 3, no. 32, pp. 44–52, 2011.

[10] R. Buyya, M. Murshed, and D. Abramson, “A deadline and
budget constrained cost-time optimization algorithm for Sche-
duling task farming applications on global grids,” in Proceed-
ings of the International Conference on Parallel and Distri-
buted Processing Techniques and Applications (PDPTA ’01), pp.
24–27, Nevada, Tex, USA, 2001, http://arxiv.org/�p/cs/papers/
0203/0203020.pdf.

[11] P. Suresh and P. Balasubramanie, “User demand aware schedul-
ing algorithm for data intensive tasks in grid environment,”
European Journal of Scienti�c Research, vol. 74, no. 4, pp. 609–
616, 2012.

[12] P. Suresh and P. Balasubramanie, “Grouping based user demand
aware job scheduling approach for computational grid,” Inter-
national Journal of Engineering Science and Technology, vol.
4, no. 12, pp. 4922–4928, 2012, http://www.ijest.info/docs/
IJEST12-04-12-093.pdf.

[13] S. Kaur and S. Kaur, “E	cient load balancing grouping based
job scheduling algorithm in grid computing,” International
Journal of Emerging Trends & Technology in Computer Science,
vol. 2, no. 4, pp. 138–144, 2013.

[14] M. A. Salehi, H. Deldari, and B. M. Dorri, “Balancing load in
a computational grid applying adaptive, intelligent colonies of
ants,” Informatica, vol. 33, no. 2, pp. 159–168, 2009.

[15] K.-Q. Yan, S.-S.Wang, S.-C.Wang, andC.-P. Chang, “Towards a
hybrid load balancing policy in grid computing system,” Expert
Systems with Applications, vol. 36, no. 10, pp. 12054–12064, 2009.

[16] B. Yagoubi and M. Meddeber, “Distributed load balancing
model for grid computing,” ARIMA Journal, vol. 12, pp. 43–60,
2010.

[17] K. S. Chatrapati, J. U. Rekha, and A. V. Babu, “Competitive
equilibrium approach for load balancing a computational grid
with communication delays,” Journal of eoretical and Applied
Information Technology, vol. 19, no. 2, pp. 126–133, 2010.

[18] R. U. Payli, K. Erciyes, and O. Dagdeviren, “Cluster-based
load balancing algorithms for grids,” International Journal of
Computer Networks and Communications, vol. 3, no. 5, pp. 253–
269, 2011.

[19] J. Balasangameshwara and N. Raju, “A hybrid policy for fault
tolerant load balancing in grid computing environments,”
Journal of Network and Computer Applications, vol. 35, no. 1, pp.
412–422, 2012.

[20] A. K. Bardsiri and M. K. Rafsanjani, “A new heuristic approach
based on load balancing for grid scheduling problem,” Journal
of Convergence Information Technology, vol. 7, no. 1, pp. 329–336,
2012.

[21] Y. Hao, G. Liu, and N. Wen, “An enhanced load balancing
mechanism based on deadline control on GridSim,” Future
Generation Computer Systems, vol. 28, no. 4, pp. 657–665, 2012.

[22] D. Ramesh and A. Krishnan, “Hybrid algorithm for optimal
load sharing in grid computing,” Journal of Computer Science,
vol. 8, no. 1, pp. 175–180, 2012.

[23] P. Keerthika andN. Kasthuri, “An e	cient grid scheduling algo-
rithm with fault tolerance and user satisfaction,” Mathematical
Problems in Engineering, vol. 2013, Article ID 340294, 9 pages,
2013.

[24] P. Keerthika and N. Kasthuri, “A hybrid scheduling algorithm
with load balancing for computational grid,” International
Journal of Advanced Science and Technology, vol. 58, pp. 13–28,
2013.

[25] P. Keerthika and N. Kasthuri, “An e	cient fault tolerant
scheduling approach for computational grid,”American Journal
of Applied Sciences, vol. 9, no. 12, pp. 2046–2051, 2012.

[26] P. Suresh, P. Balasubramani, and P. Keerthika, “Prioritized user
demand approach for scheduling meta tasks on heterogeneous
grid environment,” International Journal of Computer Applica-
tions, vol. 23, no. 1, pp. 6–12, 2011.



10 �e Scienti
c World Journal

[27] P. Suresh and P. Balasubramanie, “User demand aware grid
schedulingmodel with hierarchical load balancing,”Mathemat-
ical Problems in Engineering, vol. 2013, Article ID 439362, 8
pages, 2013.



Submit your manuscripts at

http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


