
A Multidatabase Transaction Model for InterBase

A. K. Elmagarmid, Y. Leu, W. Litwin*and M. Rusinkiewiczt
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

Abstract

The management of multidatabase transactions
present,s new and interesting challenges, due mainly
to the requirement of the autonomy of local database
systems. In this paper, we present an extended trans-

action model which provides the following features
useful in a multidatabase environment: (1) It al-
lows the composition of flexible transactions which

can tolerate failures of individual subtransactions

by taking advantage of the fact that a given func-
tion can frequently be accomplished by more than

one da.tabsse system; (2) It supports the concept of
mtxed transactions allowing compensatable and non-
compensatable subtransactions to coexist within a

single global transaction; and (3) It incorporates the
concept, of time in both the subtransaction and global

transaction processing, thus allowing more flexibility

in transaction scheduling. We formally define the 2x-
tended transaction model and discuss its transaction
scheduling mechanism.

l INRIA and University of Park 9, currently on leave
at. Stanford Univemity and Henktt Packard Research

Laboratories.

ton leave from the Univemity of Houston

Permission to copy without t’cc all or part of this material i\

granted provided that the copies arc’ not mxic or Ji~trihutcd l01

direct commercial atl~antape. the VLIIB copright notice and

the title of the publication and its tlatc appeal-. and notice k gi\cn

that copying is hy permission of the Vu\ Larp Data Ba\c

Endowment. To copy othcrwk. or to rcpuhlish. requires :I t’cc

and/or special pcrmkaion l’rom the Endoumcnt.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

1 Introduction

The InterBase project in the department of Com-
puter Science at Purdue University investigates mul-

tidatabase management systems. The prototype cur-
rently links the database systems Ingres, GURU,

Sybase and DBASE IV, running on various hardware
platforms and operating systems. Using an InterBase
language called DOL, users write global programs ac-
cessing autonomous databases and other software sys-

tems. [ROELSO].

The problem of transaction processing involving
data in multiple autonomous and possibly hetero-
geneous database systems has received more atten-
tion recently. Several concurrency control, commit-
ment and recovery schemes for the multidatabase
environment have been proposed in the literature

[EDgO], [EH88], [LE90], [Pu88], [BST87], [AGS87],
[WV901 [EVT88]. Most of the work in this area
has been performed in the context of the traditional
transaction models, assuming two-level nested trans-

actions [MosSl], [GP86] and using serializability as

a correctness criterion. However, it has been ar-
gued in [EVT88] [LER89] that these models may not
suffice for the environment consisting of cooperat-

ing autonomous systems. The traditional require-

ments of atomicity, consistency, isolation and durabil-

ity [Gra81] [HR83] may be too difficult to enforce or

inappropriate when multiple databases are involved.
We propose a transaction model especially designed
for this new environment.

A fundamental characteristic of a multidatabase
system is the autonomy of the part,icipating database
systems pP86], [GK88], [DELO89]. The autonomy

requirements have a profound effect on t,he ability of
a multidatabase system to support at*omic transac-
tions, and its performance. Due to design autonomy,

the control of availability shifts to the local systems.
A local system may choose to delay a subtransaction

507

or even refuse its execution. This would delay the

completion of a multidatabase transaction or would

inhibit its success if the traditional criteria are used.
The response time of different local systems may also
differ by orders of magnitude simply because the sites
and local database systems have different process-
ing speeds and capabilities. A traditional transaction
would be forced to proceed at the rate of the slowest
system.

The new environment makes it difEcult or impos-
sible to complete a transaction if the traditional cri-

teria are enforced. Extensions to the known transac-
tion models are required. We propose a new model

which is used in our InterBase prototype. Failures
of subtransactions in a flexible transaction are tol-
erated by taking advantage of the fact that a given
function can frequently be accomplished by more

than one database system. Furthermore, compensat-
able and non-compensatable subtransactions can co-
exist within a single global transaction. Finally, time
used in conjunction with subtransaction and global

transaction processing can be exploited in transac-
tion scheduling.

In this paper, we formally define the new model,

and describe an implementation of the scheduling

mechanism using Predicate Petri Nets. The rest of
this paperis organized aa follows. In section 2, we dis
cuss the new requirements on transaction processing
in multidatabase systems. In section 3, we formally
describe the new transaction model. In section 4, we
present a global transaction scheduling algorithm, ut+
ing the Predicate Petii Nets. Section 5 concludes this

paper.

2 Extending the transaction

semant its

To deal with the specific requirements of the mul-
tidatabase environment, we incorporate additional

features in the new transaction model. Although
a global transaction in our model is syntactically a

(two level nested transaction, its semantics are signif-
icantly expanded. The extensions go in three basic

directions.

l We take advantage of the fact that in a mul-
tidatabase system a given objective can be fre-
quently accomplished by submitting a function-
ally equivalent (sub-)transaction to one of several

available local systems. This property (referred
to as fir&ion replicaiion) PER.891 [RELLSO] al-

lows the user additional flexibility in composing

global transactions (section 2.1).

Some subtransactions in a multidatabase system
may allow their effects to be semantically “un-
done”, after they are committed, by their corre-
sponding compensating subtransactions. In the
model, we take advantage of this fact by allow-
ing some subtransactions to be committed before
their corresponding global transaction is com-
mitted. Transactions allowing a combination

of both compensatable and non-compensatable
subtransactions are called naked transactions

(section 2.2).

We also allow the specification of the value

of completion time for the execution of (sub-
)transactions. This information can be then used
to schedule the execution of the global transac-
tions (section 2.3).

These features are explained in greater detail below.

2.1 Function Replication

In contrast to conventional distributed database sys-

tems, a multidatabaae system is composed of indepen-
dently created and administered database systems.
This kind of environment usually allows a user to
perform a given task on more than one local database

system. For example, if multiple car rental databases
are available to the users of a multidatabase system,
then a user can perform the (functionally equivalent)

rent-a-car task in any of the member databases pro-
viding this service. Another example is the banking

environment such as the S.W .I.F.T [EVT88], where a
customer can choose to withdraw money from any of

the participating banks. Since this kind of flexibility
seems to be quite common in multidatabase environ-

ments, it is highly desirable to be able to capture it in
the transaction model. In the new model, flexibility
is supported by allowing the user to specify alterna-

tive subtransactions for implementing the same task
or specifying alternative sources of data. This can be
further illustrated by the following example.

Emmple 1: Consider a travel agent information sys-

tem [GraSl]; a transaction in this system may consist

of the following subtasks:

1. Customer calls the agent to schedule a trip.

2. Agent negotiates with airlines for flight tickets.

508

3. Agent negotiates with car rental companies for
car reservations.

4. Agent negotiates with hotels to reserve rooms.

5. Agent receives tickets and reservations and then
gives them to the customer.

Let us assume that for the purpose of this trip the
only applicable airlines are Northwest and United,
the only car rental company is Hertz and three ho-
tels in the destination city are Hilton, Sheraton and
Ramada. The travel agent can then order a ticket
from either Northwest or United airlines. Similarly,
the agent can reserve a room for a customer at any
of t,he three hotels. Based on these observations, the

travel agent may construct a global transaction for
this application as follows:

Subtransaction Aclion/Condi2ion

t1 Order a ticket at Northwest Airlines;

tz Order a ticket at United Airlines,
if tl fails;

23

t4

Rent a car at Hertz;
Reserve a room at Hilton,
if t5 fails;

t5

hi

Reserve a room at Sheraton;

Reserve a room at Ramada,

if t4 and t5 fail;

In this example, tl and tz are two alternative sub-

transactions for ordering a ticket. In this case, 12 will

be executed when subtransaction tl fails to achieve

its objective. Similarly, 14, 15 and t6 are alternative

subtransactions for reserving a room. Usually, a pref-
erence order for a set of alternatives will be given by
the user, and the system should execute the alterna-
tive subtransactions according to the specified order.

An individual subtransaction may fail to achieve its

objective either due to unavailability of a local site,
communication failure, etc. (physical failure), or be-

cause of the checks embedded in the transaction code
(logical failure). However, if a functionally equivalent

alt,ernative transaction is specified, the global trans-
action can execute it to achieve its (partial) objective,
and be able to continue. In this sense, the global

transaction is fault-tolerant and, therefore, can sur-

vive a local failure and achieve its global objectives
in a multidatabase system, even if the availability of

the local database systems is quite low.

2.2 Mixed Transactions

The fundamental properties of a transaction are
atomicity, isolation and durability. These properties
are important for maintaining the data consistency

in many real world applications. However, when ap-
plied to the multidatabase environment, these prop-
erties may become too restrictive. As we have dis-
cussed in the previous section, global transactions in a
multidatabase environment are potentially long lived,
which may cause serious performance and throughput
problems. It has been argued that the presence of
long lived transactions may significantly increase the
possibility of deadlock [GraBl]. In addition, a long
lived global transaction may block the execution of
many high-priority short local transactions by hold-
ing the resources which are required by these local
transactions.

To solve this problem, the granularity of isolation

of the global transaction has to be reduced. Gray

[G&l] proposed to associate with each subtransac-

tion a compensating subtransaciion which can seman-
tically “undo” the effects of a committed subtransac-
tion, if required. This concept allows the glo.bal trans-
action to reveal its (partial) result to other transac-
tions before it commits. By doing so, the isolation
granularity of the global transaction is reduced to the
subtransaction level instead of the global transaction
level. A global transaction consisting only of sub-
transactions which can be compensated is called a

saga [GS87].

However, in the real world, not all subtransactions
can be compensated. For example, subtransactions

that are accompanied by real actions are typically
non-compensatable. To address the fact that some

of the subtransactions may be compensat,able, we in-

troduce in our model the concept of mixed transac-

tions. A global transaction is mixed if some of its sub-
transactions are compensatable and some are not. In

a mixed transaction, the subtransactions which are
compensatable may be allowed to commit before the
global transaction commits, while the commitment of
the non-compensatable subtransactions must wait for
a global decision. When a decision is reached to abort
a mixed transaction, the subtransactions in progress

and the non-compensatable subtransactions waiting
for a global decision are aborted, while t,he commit-
ted compensatable subtransactions are compensated.
In this sense, mixed transactions are different from

the s-transactions [EVTM] or the sagas [GS87] which
allow only compensatable subt,ransactions.

Hence, mixed transactions fill the spectrum from

509

sagas, (assuming the compensability of all subtrans-

actions) to to traditional distributed transactioos (as-
suming that subtransactions are non-compensatable).
Mixed t’ransactions are more flexible because they al-
low compensatable and non-compensatable subtrans-
actions to coexist within a single global transaction.

2.3 Temporal Aspects of Transaction
Processing

Unlike t,raditional distributed database systems, ICP

cal database systems in a multidatabase environment
are usually autonomous in deciding when to execute
a subt,ransaction. Frequently, it is not realistic to
assume that all local database systems are opera-
tional at the same time when the global transaction
is submitted [WQ87]. Consider a bank transaction
which involves a bank in the USA and one in Japan.

It is quite possible that because of the time differ-

ence the subtransactions may not be executed at the

same t#ime. In order to execute a global transaction

successfully, we may need to know when a specific
subtransaction can be executed at the designated lo-
cal database system. Furthermore, even if all local
database systems are available at the same time, we

may still prefer to execute different subtransactions
at different times. For example, consider a customer
who wants to reserve a car and to order a flight ticket
for a vacation next week. He may want to rent a car

today, while the good selection is still available, and
wait to order the flight ticket until two days later,

when a special discount price comes in effect.

To specify the execution time of a subtransaction,

we associate a temporal predicate with each subtrans-

action. This temporal predicate indicates when the
subtransaction should be executed. A subtransaction
can be executed only when its temporal predicate is
true. The temporal predicate has the following for-
mat :

temporal-operator time-spec

The time-spec has the following format:

hh:mm:MM:dd:yy

In the above definition, hh stands for hour; mm
stands for minute; MM stands for month; dd stands
for day; and yy stands for ear. A wild card “*” can
be used in an
condition. T K

of these fiel cl s to denote a “don’t care”
e temporal operators and their mean-

ings are shown in the following table.

Figure 1: A value function

operator use meaning
between between (C)8:*:*:*:*, 17:*:*:*:*) between 8am

and 5pm
after after (14:*:*:*:*) after 2pm
before before (*:*:01:15:90) before January

15th 1990

Another temporal aspect of multidatabase t,ransac-
tion is the transaction completion time. Transaction

mangement based on serializability, t.ypically does not,
take into account the timing characteristics of t.rans-
action execution. The only problem addressed by
the serializability is the correctness of int,erleaved ex-
ecutions of multiple transact,ions. *The question of
whether the transaction has accomplished its objec-

tives “in time” is frequently ignored. In contrast, real
time database systems attempt to schedule the execu-
tion of transactions to meet their external real-time
constraints [AG88b]. Similarly, the concept of a valve

date has been introduced to indicate the fact, that
a certain data item in a database can be safely ac-

cessed only after a specified point in time has been
reached [LT88]. We will consider here incorporating

the concept of the completion value of a transaction

into transaction management. The completion value
reflects the fact that some transactions may have as-
sociated with them certain utility of their comple-
tion, as a function of time. This reflects the fact that
the utility of the completion of a transaction may,

.
in general, change with time. This problem is simi-
lar to the real time constraint in real-time databases,
although the time constraints in the multidatabase
environment are usually less stringent. As an exam-
ple consider a transaction “Sell 500 stock of XYZZY
Co. on the NYSE”, assuming that it is Friday and

the price of stock ia going down. To model this phe-

nomenon, we adopt the value function [AGSSa] to
model the usefulness of a global transaction. A value
function is a function of the global transaction exe-

cution time (Figure 1).

In Figure 1, we assume that the origin of the time
axis is the time when the global transaction is sub-

mitted. lo is the time that after which the comple-
tion of the global transaction has no value. As far as
the scheduling of a global transaction is concerned,
when the execution time of the global transaction

reaches to, the execution should be aborted. With the
value function, it is possible to formulate the inter-

transaction scheduling as an optimization problem.
In this case, the objective of a scheduling policy is
to maximize the total value of all global transactions,
subject to their precedence constraints. The problem
of optimization will be left outside of the scope of this
paper.

3 Transaction Model

In this section, we will present the new transaction

model. We will first give some preliminary defini-
tions, and then formally define the model.

3 .l Preliminary Definitions

To specify a global transaction in the new model, we
need to specify the execution dependency among the
subtransactions of a global transaction. Execution
dependency is a relationship among subtransactions
of a global transaction which determines the legal exe-

cution order of the subtransactions. In order to define

the general execution dependency among subtransac-
tions, we define two basic dependencies. The first is
the positive dependency. A positive dependency be-

tween subtransaction ti and t2 exists if subtransac-
tion tl can not be executed until subtransaction t2

succeeds. This occurs, for example, if subtransac-
tion t1 has to wait for results from subtransaction t2
[ED891 before it can start. The second basic depen-

dency is called the negative dependency, which is used

to specify the alternative subtransactions. Subtrans-

action tl negatively depends on 12 if tl has to wait
until t2 has been executed and failed before it can
start. This happens when tl and t2 implement the
same task in a global transaction and t2 is preferred

to tl To facilitate the specification of the execution

dependency, we define a transaction execution state

as follows:

Definition 1 For a global transaction T with m sub-
transactions, the transaction execution state x is an

m-tuple (21,x2,c.,,) where

N if subtransaction ti has not been
submitted for ececution;

E
Xi =

if ti is currently being executed;

S if ti has successfully completed;
F if ti has failed or completed without

acheiveing its objective;

The transaction execution state is used to keep

track of the execution of the subtransactions. It is
also used to determine if a global transaction has
achieved its objectives. All zi’s are initialized to N
when the global transaction starts its execution. The
value of zi is set to E when ti is submitted for execu-
tion to its local database system. When a subtrans-
action ti completes the corresponding execution state
wi is set to S if the subtransaction has achieved its ob-

jective, and to F, otherwise. The execution state, x,
changes as the subtransactions are executed. The set
of all possible execution states is denoted by X.

At a certain point of execution, the objectives of
the global transaction may be achieved. In this case,
the global transaction is considered to be successfully
completed and can be committed. An execution state
in which a global transaction achieves its objectives is
called an acceptable state. Frequently, there is more
than one acceptable state for a global transaction.
The set of all acceptable states of a global transaction
is denoted by A.

Definition 2 The acceptable state set, A, of a global

transaction T is a subset of X, where

A = { x 1 I E X, and in state x, the objectives of T

are achieved }

In order to express execution dependencies, we as-

sociate with each subtransaction ti, a precedence pred-
icate, ppi. The precedence predicate is a boolean
function defined on the transaction execution state,

as follows:

Definition 3 A precedence predicate ppi for a sub-
transaction ti is a predicate defined on X, where

ppi : X + {true, false}

To indicate that tj positively depends on ti, we for-
mulate the precedence predicate ppj := (zi = S).

We use the precedence predicate ppj := (xi = F)
to denote that tj negatively depends on ti. Having

511

defined the basic dependencies, we can express any

execution dependency in terms of boolean combina-
tion of the basic dependencies. A predicate ppi is de-
fined on the transaction execution state and is used to
determine whether the corresponding subtransaction
can be submitted for execution at the current time.

The value of the precedence predicate changes as the
global transact*ion is executed.

3.2 The Extended Transactions

To capture all the previously discussed semantics of
a multidatabase transaction, we use additional primi-
tives in the definition of a transaction. A global trans-
action in our model is formally defined as follows:

Definition 4 A global transaction T is a 6-tuple
(ST, 0, PP, TP, A, V) where

l ST is subtransaction set of T

l 0 2s th.e partial order on ST

l PP as the set of all precedence predicates of ST

l TP is the set of all temporal predicates of ST

l A as the set of all acceptable states of T

l V is the value function of T

In order to specify a global transaction, we have to

specify, at the subtransaction level, the set of sub-
transactions. Then with every subtransaction we
specify its subtransaction type as follows:

Subtransaction type:

l C - if the subtransaction is compensatable

l NC - if the subtransaction is non-compensatable

We also specify the precedence predicate and the tem-
poral predicate of the subtransaction. At the global
transaction level, we specify the partial order 0, the
set of acceptable states A and the value function.

We illustrate the above definition using as an ex-

ample the travel agent transaction, introduced in the

previous section.

Ecample 2: Consider the travel agent transaction
introduced in example 1. In addition, we assume the

following: (1) the subtransactions for ordering tickets

are non-compensatable; (2) ticket ordering subtrans-
actions must run within business hours from 8am to
5pm, other subtransactions do not have time con-
straints; (3) the global transaction has to complete

within one day in order to be useful, and within the
time limit, the utility of the transaction completion
depends on the completion time. This transaction
can be formally specified as follows:

ST = (tl(NC),t2(~C),ts(C)rt4(C),t5(C)rts(C)}
0 : 11 4 t3, t2 -t t3, 23 4 t4, t3 + t5, t3 4 ttj

i

ppl := true
pp2 := (Xl = F)

PP :
pp3 := (q = S) v (x2 = S)

pp4 := (23 = S) A (z-5 = F)

pp5 := (23 = S)

pp6 := (c3 = s) A (x4 = F) A (x5 = F)

(

tpl = between(08 : * : * : * : *, 17 : * : * : + : *

tp2 = between(08 : * : + : * : t, 17 : * : * : + : +

TP:
tpg = *
tp4 = *
tp5 = *
tp6 = +

A = { (S,N,S,N,S,W,

(S, N, S, S, F, N),
(S,N,S,F,F,S),

(F,S,S,N,S,W,
(F, S, S, S, F, W,
(F, S, S, F, F, S) 1

{

1 if t <= 12 hours

v(l) = 0.5 if 12 < t <= 24 hours

0 otherwise

The execution of a global transaction has to abide
by a set of execution rules. Before we formulate the
set of execution iules for the extended transactions,
we will introduce an additional definition.

Definition 5 For a subtransaction ti, its predeces-
sors are those subtransactions which precede ti in the

partial order 0. We will use pred(ti) to denote the

set of all predecessors of ti, i.e.

pred(ti) = {tj 1 tj E ST and tj 4 ti in 0).

512

For a given execution state x, we define a subtrans-
action ti as executable if

1. ti has not been submitted for execution;

2. v tk E precqt;), either tk has been executed or
the ppk is false; and

3. both the ppi (the precedence predicate of ti) and

the tpi(t) (the temporal predicate of ti) are true.

We can now formulate the execution rules as fol-
lows:

1. Start from the initial execution state of the
global transaction;

2. Schedule the executable,subtransactions for exe-

cution until the termination condition has been
met;

3. When a subtransaction ti is submitted, 2i is set
to E. When the execution of a subtransaction

is completed, set xi to S, if the objective of the
subtransaction has been achieved and to F, oth-
erwise.

4. The execution of a global transaction terminates
when any of the following conditions occurs:

l the current execution state is acceptable,

l none of the subtransactions is executable

and no subtransaction is currently execut-

ing,

l time to of the value function ilr reached (if

applicable).

According to the above execution rules, concur-
rent execution of subtransactions is allowed if they

are executable at the same time. When the result

of the execution is known, we modify the transac-
tion execution accordingly. After the completion of
a subtransaction, we check if the termination con-

dition is satisfied. If the termination condition is
not satisfied, we continue scheduling the executable
subt,ransactions. If the global transaction terminates

and an acceptable state has been reached, we can
commit the global transaction; otherwise, it must be
aborted. To commit a global transaction, we send

a “commit” message to all non-compensatable sub-
transactions which are waiting in their “prepared to
commit” states (the compensatable subtransactions
may have been committed earlier). If the global

transaction terminates without reaching an accept-
able state, the global transaction must be aborted.
To abort a global transaction, we send an “abort”
message to all subtransactions which are waiting in

a prepared state, and then issue compensating sub-
transactions for those compensatable subtransactions
that are committed.

4 Execution of the Global

Transact ion

In this section we will discuss the execution of ex-
tended global transactions specified using the ex-
tended transaction model. Since our discussion will
be based on the Predicate Petri Nets (PPN) formal-
ism, we will review briefly the basic concepts of Pred-

icate Petri Nets. Then we will show how the problem
of scheduling extended transactions can be mapped
into an appropriate PPN. Finally, we will show how
the execution of the multidatabase transactions can
be controlled using this mechanism.

4.1 The Predicate Petri N&s

To control the execut.ion of global tra.nsactions, we
will use the Predicate Petri Nets [LM86], [Gen87].

The PPN control structure can ident.ify, at any ex-
ecution step of the global transaction, the set of re-
lated (and possibly executable) subtransact.ions. We
assume that the reader is familiar with the basic Pebri

Nets theory [Pet81].

To represent a global transaction we associate with

each transition of a Predicate Petri Net a subt,ransac-
tion and its corresponding precedence predicat.e and
temporal predicate. The partial order 0 of the global

transaction is reflected in a PPN graph.

For a given global transaction, a PPN cons&s of:

1. a biparlile graph G = (P,T,F) where P and T are
called places and fransition~s respectively, and F
is a set of directed arcs, each connecting a place
p E P to a transition tr E T or vice versa. Places
are represented by circles while transitions are

represented as a bars. For each transition, t.hose
places that have edges direct.ed into the transi-

tion are called the znput places of the transition,
and the places that, have edges directed out, of
this transition are called t,he outpuf places of t,he
transition. A place can hold tohs. A t.oken is
represented as a dot.

513

2. A function PP (stands for Precedence Predi-
cate), which maps the set of transitions to the
set of precedence predicates.

3. A function TP (stands for Temporal Predicate),
which maps the set of transitions to the set of
temporal predicates.

4. A function h’, which associates each transition
with a subtransaction of the global transaction.

The PPN graph can be derived from the prece-
dence predicate a.nd the partial order 0 of the global
transaction. The dynamic aspect of a PPN corre-
sponds to the execution of the corresponding global
transaction. A marking M is a distribution of tokens
over the places of a PPN which represents the cur-
rent status of the global transaction execution. A

PPN models the execution of a global transaction by
firing transitions in accordance with the conditions
specified by the predicates associated with each tran-
sition. As usual, we define a transition to be enabled

if all of its input places contain at least one token.

We then define a transition to be executable ’ if it is
enabled and both the associated precedence predicate
and temporal predicate are true. Finally, we define a
transition to be jr-able if it is executable and the asso-
ciated subtransaction has been executed successfully.
In a marking M, the set of all enabled transitions is
called the enabled set. Similarly, the set of all exe-
cutable transitions is called the etecvtable set. We
attempt to fire a transition by submitting its associ-

ated subt,ransaction for execution. If the execution
is successful, then we fire the transition; otherwise,

we update the corresponding execution state variable.
To be more specific, when transition Iri is fired, we
perform the following actions:

l Update the execution state variable xi by setting

it to S.

l calculate the new marking by taking one loken

from each of the input places of the transition
tri, and put one token into each of tri’s output
places.

4.2 Constructing the Predicate Petri
Nets

In constructing a PPN graph for a global transac-
tion, we have to use the information of partial order

‘This implies that its associated subtransaction is
executable.

n .
ti x

Figure 2: PPN graph for subtransactions with no pre-
decessor

graph connected to t ,

Figure 3: PPN graph for a disjunction form

0 and the positive dependency of t.he global t,ransac-
tion. The negative dependency is not considered in
constructing the graph since it will be taken care of
when the corresponding precedence predicate is eval-
uated. In the construction process, we first filter all
negative dependencies from every precedence predi-
cate. We then transform the results into conjunctive

normal forms 2.

Afterwards, we apply the following procedure to

construct the PPN graph:

1.

2.

construct a graph as shown in Figure 2 for every
subtransaction tj which has an empty predeces-
sor set.

repeat the following two steps until all transi-
tions are constructed.

For any subtransaction ti which has all of its pre-
decessors been constructed, do the following:

(a) For every disjunction form (ci = S)V(Z~

= S) v. ..(Xk = S), construct a graph as

shown in Figure 3.

(b) Connect the resulting graph of (a) to tran-
sition ti.

2As shown in the propositional calculas [LPSl], every pred-
icate haa at least one conjunctive normal form, and there is an
algorithm that transforms any predicate into its corresponding
conjunctive normal form.

514

3.

.

t
1 88

t
2

Figure 4: PPN graph after step 1

t
1

t
2

Figure 5: PPN graph for 13

connect each transition which does not have an

output place to an output place; then terminate
this procedure.

To illustrate this procedure, we will apply it to con-
struct the PPN graph for the global transaction in

example 2. Figure 4 shows the PPN graph after step
1. Now consider the construction of the graph for

t3. Since there is only one disjunction form (tl =

S)V(zz = S), we construct a graph as in Figure 5.
The final graph becomes Figure 6 after we complete
this procedure.

4.3 The PPN Execution Control Al-
gorit hm

Global transaction execution must satisfy the partial
order 0, the precedence predicate and the tempo-
ral predicate. By capturing all this information, the
PPN significantly simplifies the execution control of
the global transaction. To maintain the utility of the
completion of a global transaction, we use a timeout

. . t
1 u t

2

v
t

3

Ill

t t t

5 6

Figure 6: PPN graph for the travel agent transaction

mechanism to abort the execution of a global trans-
action when the value function becomes 0 and the
global transaction is still in execution. Before invok-
ing the algorithm, we calculate to (the time at which
the value function becomes 0). We then use to as a
parameter for the timeout mechanism.

The global transaction scheduling problem is event

driven in the sense that the scheduling activity is in-
voked when a subtransaction completes (either suc-
cessfully or unsuccessfully). We use a queue & to
buffer the responses (i.e. events) from the local
database systems. The algorithm will enter a re-
sponse in Q when it receives the response from a local
database system.

The algorithm is shown in figure 7.

In the algorithm, t is the current enabled set; U
is the current executable set derived from E; 6 is the
scheduled set which contains the transitions whose

corresponding subtransactions have been submitted
for execution and .whose results are still not known.
The algorithm starts from the initial transaction exe-
cution state (all state variables are initialized to IV).

When started, the algorithm calculates, from the ini-
tial marking, the enabled set C; a.nd uses it t#o cal-
culate U. All subtransactions whose corresponding

transitions are in 21 are concurrently submitted to
the local database systems for execution.

Whenever a subtransaction completes, successfully
or unsuccessfully, a new executable set U is calcu-
lated. In the new executable set, some of the transi-
tions have been submitted (for those contained in I;)

515

procedure evaluatePPN(NT, ST, PP, TP, n, A, to)
Initialize timeout mechanism with timeout interval to;

begin

x + (N, N, N,. . .,N) /* n N’s ‘1
on timeout flexabort;

f 6 6; /* E - enabled set */
u + b; /* U - executable set */

G - 4; /* G - scheduled set “‘1

Q + empty; /* Q - nsponse Queue “1
compute&enabled-set & from NT;
computeexecutableset 2.4 from the new enabled set E;

repeat
9+ + u - p;

For each tr. E Pt do
begin

submit tr, to the local database system;
C + D U { tri};

2, 6 E
end;

on receiving response enqueue the response in Q;
while (Q = empty) do

begin
if (check-terminate) then

begin
flexabort;
exit -

end
end;

RESPc dequeue(Q);

/*assume that RESP is from ti*/
D + G - (tr, };
if (RESP = SUCCESS)
then

begin
I, + s;

fire(tri);
comuute~nabled~et E

end

else
2, c F

endii;
computeexecutablest U;

until (check-terminate);
if I E A then flexsommit

else flexabort;
end.

Figure 7: The execution control algorithm

Function checkferminate(+, A, NT, E, 2.4, TP)
W:Waiting set;

begin
check-terminate + false /* initialized to false */
if (z E A)
then

check-terminate + true
else

begin

w + 4;
For each tri E & and TP(tr,) = false
and operator of TP(tri) # before

W + W U (tri);

if (U = I$ and W = 4)
then

check-terminate + true
end

end

Figure 8: The function for checking termination con-

dition

while some have not. The transitions which are ex-

ecutable and not yet submit.ted are contained in G+

which is the difference of N and G. Only subhansac-
tions whose corresponding transitions are in @ need

to be submitted each time when a new executable

set is derived. In order not to overlook responses

from the local database syst,ems. the- responses are
first buffered in Q. If Q is empty, it is possible ghat

the execution of the global transaction has failed. In
this case, the termination condition is checked. If Q is

not empty, we can dequeue a response from Q. After
we dequeue a response from Q, if the response reports
that subtransaction ti is executed successfully, zi, the

corresponding execution state variable of ti is set to
S; otherwise, it is set to F. After this, the algorithm
evaluates the enabled set ?Z (in the first case) and the
executable set U and then continues scheduling the
global transaction. When the execution terminates,

if the final execution state z is acceptable (i.e. z E
A), the global transaction is committed; otherwise, it
is aborted.

The execution of a global transaction terminates in
either of the following two cases:

1. x is acceptable (x E A). In this case, the global
transaction is successfully executed;

2. there is no executable transition and no subtran-
sition is waiting for its temporal predicate to be-
come true.

The function for the termination detection is shown

in figure 8. To commit a global transaction, for

each non-compensatable subtransaction t; whose cor-
responding execution state variable z; is S, send a

516

“commit” message to ib local d&&me eyskm; for
each non-compensatable rubtrawution $ (if-y) in

0, send au “abort” message to its local database sys-
tech; and then compensaie each compensatable rub

transaction in G.

To abort a global transaction, each subtransaction
ti, whose corresponding execution state variable zi is
S, haz to be aborted or compensated depending on
its type.

5 Conclusion

The need for local autonomy in a multidatabsse sys-
tem makes the traditional models of a transaction ob-
solete. More flexible and powerful models are needed.

The model presented in this paper, addresses the need
for multiple execution alternatives, very frequent in
practical applications. It also provides for mixed

transactions consisting of compensatable and non-
compensatable subtransactions. Mixed transactions

generalize the concepts of nested transactions and
sagas. It also deals with time and utility functions,
providing new possibilities for transaction scheduling.
We have explained the rationale of our model, and
have formalized it. We have also proposed an imple-

mentation using the Predicate Petri Nets.

The InterBase project is currently investigating
these and other related issues [LeuOO]. The need

for a transaction specification language based on our

model has become apparent and is the subject of at-
tention at the Laboratory. Predicate Petri Nets also
appear useful as an analysis tool for global transac-
tions. Additional work is needed to design schemes
for concurrency control and recovery in the new en-
vironment. The results are of great importance, as
multidatabase systems become more widely used and
needed. Our results may be also applicable in the
CAD/CAM, CASE and SDE database areas, where
similar work on extending the conventional notions of
transaction processing and correctness criteria is also

being carried out.

Acknowledgements

The authors would like to thank Gio Wiederhold for
helpful suggestions, and the referees for their valu-
able comments. We also thank Roni Martin for very
helpful comments and thorough proofreading.

This research is supported by a PYI Award from
NSF under grant IRI-8857952 and grants from AT&T
Foundation, Tektronix, SERC and Mobil Oil. The

work by Litwin is supported by DARPA under con-
tract N3Q84-G211, task 24.

References

[AG88a]

[AG88b]

[AGS87]

[BST87]

R. Abbott and
H. Garcia-Molina. Scheduling real-time

transaction. SIGMOD RECORD, 17(l),
March 1988.

R. Abbott
and H. Garci*Molina. Scheduling real-
time transactions: a performance evalub
tion. In Proceedings of ihe fourteenth in-
ternational conference on very large data
bases, pages 1-12, August 1988.

R. Alonso, H. Garcia-Molina, and
K. Salem. Concurrency control and re-

covery for global procedures in federated
database systems. In IEEE Data Engi-
neering, pages 5-11, September 1987.

Y. Breitbart , A. Silberschatz, and
G. Thompson. An update mechanism for
multidatabase systems. In IEEE Data
Engineering, pages 135-142, 1987.

(DEL0891 W. Du, A. Elmagarmid, Y. Leu, and
S. Ostermann. Effects of autonomy on

global concurrency control in heteroge-
neous distributed database systems, In

Proceedings of the Second International
Conference on Data and Knowledge Sys-
tems for Manufacturing and Engineering,
pages 113-120, Gaithersburg, MD, Otto
ber 1989.

[ED891

[ED901

[EH88]

A. Elmagarmid and W. Du. Supporting
value dependency for nested transactions
in interbase. Technical Report CSD-TR-
885, Purdue University, May 1989.

A. Elmagarmid and W. Du. A paradigm

for concurrency control in heterogeneous
distributed database systems. In Proceed-

ings of the Sixth International Conference

on Data Engineering, February 1990.

A. Elmagarmid and A .A. Helal. Support-
ing updates in heterogeneous distributed
database systems. In Proceedings of the
International Conference on Data Enqt
neerinq, 1988.

517

[EVT88]

[Gen87]

[GKSS]

[GS87]

[GP86]

[GraBl]

[HR83]

[LE90]

[LER89]

[Leu90]

[LMSGJ

F. Eliassen, J. VeijaIainen, and H. Tirri.
Aspects of transaction modelling for in-

teroperable information systems. In In-

terim Report of the COST liter Project,
pages 39-55, 1988.

H. J. Genrich. Predicate/ l’kansition Nets.
Number 2. Springer-Verlag, 1987.

H. Garcia-Molina and B. Kogan. Node

autonomy in distributed systems. In Proc.
Int’l Conf. on Data Engineering, pages

158-166, 1988.

H. Garcia-Molina and K. Salem. Sagas.
In Proceedings of the ACM Conference
on Management of Data, pages 249-259,

May 1987.

V.D. Gligor and R. Popescu-Zeletin.
Transaction management in distributed

heterogeneous database management sys-
tems. Inform. Systems, 11(4):287-297,

1986.

J. Gray. The transaction concepts:

Virtues and limitations. In Proceedings
of the International Conference on Very

Lalge Data Bases, pages 144-154, 1981.

T. Haerder and A. Reuter. Principles

of transaction-oriented database recovery.
ACM Computing Serueys, X(4):287-317,
December 1983.

Y. Leu and A. Elmagarmid. A hierarchi-
cal approach to concurrency control for
multidatabases. In Second International
Symposium on Databases in Parallel and

Distributed Systems, July 1990.

Y. Leu, A. Elmagarmid ,

and M. Rusinkiewicz. An extended trana-

action model for multidatabase systems.

Technical Report CSD-TR-925, Depart-
ment of Computer Science, Purdue Uni-

versity, 1989.

Y. Leu. Tmnsaction management for

mu&database systems. PhD thesis in

preparation, Computer Sciences Depart-
ment, Purdue University.

C. Lin and D. C. Marinescu. Applica-
tion of modified predicate transition nets

to modeling and simulation of communi-

cation protocols. Technical Report CSD-
TR-599, Purdue University, May 1986.

[LPSl]

[LT88]

[MOST i]

[Pet811

[Pu88]

[RELLSO]

[ROELSO]

NW

[WQ871

[WV~OI

H.R. Lewis and C.H. Papadimitriou. El-
ements of the theory of computation.

Prentice-Hall Book Company, 1981.

W. Litwin and H. Tirri. Flexible con-
currency control using value dates. IEEE
Distributed Processing Technical Commit-

tee Newsletter, 10(2):42-49, November

1988.

J.E. Moss. Nested Transactions: An Ap-
proach to Reliable Distributed Computing,
PhD thesis, Dept. of Electrical Engineer-
ing and Computer Science, MIT, April

1981.

J. L. Peterson. Petri Net Theory and the

Modeling of Systems. Prentice-Hall, En-
glewood Cliffs, 198 1.

C. Pu. Superdatabases for composition of

heterogeneous databases. In Proceedings
of the International Conference on Data

Engineering, 1988.

M. Rusinkiewicz, A. Elmagarmid, Y. Leu,
and W. Litwin. Extending the transaction

model to capture more mkaning. In ACM
SIGMOD RECORD, volume 19, 1990.

M. Rusinkiewicz, S. Ostermann, A. El-
magarmid, and K. Loa. The distributed
operational language for specifying multi-
system applications. In Proceedings of the

1st International Conference on Systems

Integration, 1990.

J. Veijalainen and R. Popescu-Zeletin. On
multi-database transactions in a coopera-
tive, autonomous environment. Techni-
cal report, Hahn-Meitner Institut, Berlin

GmbH, Glienickerstrasse 100, D-1000

Berlin 39, FRG, 1986.

G. Wiederhold and X. Qian. Modeling
asynchrony in distributed databases. In
Proc. Int’l Conf. On Data Engineering,

1987.

A. Wolski and J. Veijalainen. 2PC agent
method: achieving serializability in pres-
ence of failures in a heterogeneous multi-
database. In Proc. PARBASE- Confer-
ence, March 1990.

518

