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Abstract 

The management of multidatabase transactions 
present,s new and interesting challenges, due mainly 
to the requirement of the autonomy of local database 
systems. In this paper, we present an extended trans- 

action model which provides the following features 
useful in a multidatabase environment: (1) It al- 
lows the composition of flexible transactions which 

can tolerate failures of individual subtransactions 

by taking advantage of the fact that a given func- 
tion can frequently be accomplished by more than 

one da.tabsse system; (2) It supports the concept of 
mtxed transactions allowing compensatable and non- 
compensatable subtransactions to coexist within a 

single global transaction; and (3) It incorporates the 
concept, of time in both the subtransaction and global 

transaction processing, thus allowing more flexibility 

in transaction scheduling. We formally define the 2x- 
tended transaction model and discuss its transaction 
scheduling mechanism. 
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1 Introduction 

The InterBase project in the department of Com- 
puter Science at Purdue University investigates mul- 

tidatabase management systems. The prototype cur- 
rently links the database systems Ingres, GURU, 

Sybase and DBASE IV, running on various hardware 
platforms and operating systems. Using an InterBase 
language called DOL, users write global programs ac- 
cessing autonomous databases and other software sys- 

tems. [ROELSO]. 

The problem of transaction processing involving 
data in multiple autonomous and possibly hetero- 
geneous database systems has received more atten- 
tion recently. Several concurrency control, commit- 
ment and recovery schemes for the multidatabase 
environment have been proposed in the literature 

[EDgO], [EH88], [LE90], [Pu88], [BST87], [AGS87], 
[WV901 [EVT88]. Most of the work in this area 
has been performed in the context of the traditional 
transaction models, assuming two-level nested trans- 

actions [MosSl], [GP86] and using serializability as 

a correctness criterion. However, it has been ar- 
gued in [EVT88] [LER89] that these models may not 
suffice for the environment consisting of cooperat- 

ing autonomous systems. The traditional require- 

ments of atomicity, consistency, isolation and durabil- 

ity [Gra81] [HR83] may be too difficult to enforce or 

inappropriate when multiple databases are involved. 
We propose a transaction model especially designed 
for this new environment. 

A fundamental characteristic of a multidatabase 
system is the autonomy of the part,icipating database 
systems pP86], [GK88], [DELO89]. The autonomy 

requirements have a profound effect on t,he ability of 
a multidatabase system to support at*omic transac- 
tions, and its performance. Due to design autonomy, 

the control of availability shifts to the local systems. 
A local system may choose to delay a subtransaction 
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or even refuse its execution. This would delay the 

completion of a multidatabase transaction or would 

inhibit its success if the traditional criteria are used. 
The response time of different local systems may also 
differ by orders of magnitude simply because the sites 
and local database systems have different process- 
ing speeds and capabilities. A traditional transaction 
would be forced to proceed at the rate of the slowest 
system. 

The new environment makes it difEcult or impos- 
sible to complete a transaction if the traditional cri- 

teria are enforced. Extensions to the known transac- 
tion models are required. We propose a new model 

which is used in our InterBase prototype. Failures 
of subtransactions in a flexible transaction are tol- 
erated by taking advantage of the fact that a given 
function can frequently be accomplished by more 

than one database system. Furthermore, compensat- 
able and non-compensatable subtransactions can co- 
exist within a single global transaction. Finally, time 
used in conjunction with subtransaction and global 

transaction processing can be exploited in transac- 
tion scheduling. 

In this paper, we formally define the new model, 

and describe an implementation of the scheduling 

mechanism using Predicate Petri Nets. The rest of 
this paperis organized aa follows. In section 2, we dis 
cuss the new requirements on transaction processing 
in multidatabase systems. In section 3, we formally 
describe the new transaction model. In section 4, we 
present a global transaction scheduling algorithm, ut+ 
ing the Predicate Petii Nets. Section 5 concludes this 

paper. 

2 Extending the transaction 

semant its 

To deal with the specific requirements of the mul- 
tidatabase environment, we incorporate additional 

features in the new transaction model. Although 
a global transaction in our model is syntactically a 

( two level nested transaction, its semantics are signif- 
icantly expanded. The extensions go in three basic 

directions. 

l We take advantage of the fact that in a mul- 
tidatabase system a given objective can be fre- 
quently accomplished by submitting a function- 
ally equivalent (sub-)transaction to one of several 

available local systems. This property (referred 
to as fir&ion replicaiion) PER.891 [RELLSO] al- 

lows the user additional flexibility in composing 

global transactions (section 2.1). 

Some subtransactions in a multidatabase system 
may allow their effects to be semantically “un- 
done”, after they are committed, by their corre- 
sponding compensating subtransactions. In the 
model, we take advantage of this fact by allow- 
ing some subtransactions to be committed before 
their corresponding global transaction is com- 
mitted. Transactions allowing a combination 

of both compensatable and non-compensatable 
subtransactions are called naked transactions 

(section 2.2). 

We also allow the specification of the value 

of completion time for the execution of (sub- 
)transactions. This information can be then used 
to schedule the execution of the global transac- 
tions (section 2.3). 

These features are explained in greater detail below. 

2.1 Function Replication 

In contrast to conventional distributed database sys- 

tems, a multidatabaae system is composed of indepen- 
dently created and administered database systems. 
This kind of environment usually allows a user to 
perform a given task on more than one local database 

system. For example, if multiple car rental databases 
are available to the users of a multidatabase system, 
then a user can perform the (functionally equivalent) 

rent-a-car task in any of the member databases pro- 
viding this service. Another example is the banking 

environment such as the S.W .I.F.T [EVT88], where a 
customer can choose to withdraw money from any of 

the participating banks. Since this kind of flexibility 
seems to be quite common in multidatabase environ- 

ments, it is highly desirable to be able to capture it in 
the transaction model. In the new model, flexibility 
is supported by allowing the user to specify alterna- 

tive subtransactions for implementing the same task 
or specifying alternative sources of data. This can be 
further illustrated by the following example. 

Emmple 1: Consider a travel agent information sys- 

tem [GraSl]; a transaction in this system may consist 

of the following subtasks: 

1. Customer calls the agent to schedule a trip. 

2. Agent negotiates with airlines for flight tickets. 
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3. Agent negotiates with car rental companies for 
car reservations. 

4. Agent negotiates with hotels to reserve rooms. 

5. Agent receives tickets and reservations and then 
gives them to the customer. 

Let us assume that for the purpose of this trip the 
only applicable airlines are Northwest and United, 
the only car rental company is Hertz and three ho- 
tels in the destination city are Hilton, Sheraton and 
Ramada. The travel agent can then order a ticket 
from either Northwest or United airlines. Similarly, 
the agent can reserve a room for a customer at any 
of t,he three hotels. Based on these observations, the 

travel agent may construct a global transaction for 
this application as follows: 

Subtransaction Aclion/Condi2ion 

t1 Order a ticket at Northwest Airlines; 

tz Order a ticket at United Airlines, 
if tl fails; 

23 

t4 

Rent a car at Hertz; 
Reserve a room at Hilton, 
if t5 fails; 

t5 

hi 

Reserve a room at Sheraton; 

Reserve a room at Ramada, 

if t4 and t5 fail; 

In this example, tl and tz are two alternative sub- 

transactions for ordering a ticket. In this case, 12 will 

be executed when subtransaction tl fails to achieve 

its objective. Similarly, 14, 15 and t6 are alternative 

subtransactions for reserving a room. Usually, a pref- 
erence order for a set of alternatives will be given by 
the user, and the system should execute the alterna- 
tive subtransactions according to the specified order. 

An individual subtransaction may fail to achieve its 

objective either due to unavailability of a local site, 
communication failure, etc. (physical failure), or be- 

cause of the checks embedded in the transaction code 
(logical failure). However, if a functionally equivalent 

alt,ernative transaction is specified, the global trans- 
action can execute it to achieve its (partial) objective, 
and be able to continue. In this sense, the global 

transaction is fault-tolerant and, therefore, can sur- 

vive a local failure and achieve its global objectives 
in a multidatabase system, even if the availability of 

the local database systems is quite low. 

2.2 Mixed Transactions 

The fundamental properties of a transaction are 
atomicity, isolation and durability. These properties 
are important for maintaining the data consistency 

in many real world applications. However, when ap- 
plied to the multidatabase environment, these prop- 
erties may become too restrictive. As we have dis- 
cussed in the previous section, global transactions in a 
multidatabase environment are potentially long lived, 
which may cause serious performance and throughput 
problems. It has been argued that the presence of 
long lived transactions may significantly increase the 
possibility of deadlock [GraBl]. In addition, a long 
lived global transaction may block the execution of 
many high-priority short local transactions by hold- 
ing the resources which are required by these local 
transactions. 

To solve this problem, the granularity of isolation 

of the global transaction has to be reduced. Gray 

[G&l] proposed to associate with each subtransac- 

tion a compensating subtransaciion which can seman- 
tically “undo” the effects of a committed subtransac- 
tion, if required. This concept allows the glo.bal trans- 
action to reveal its (partial) result to other transac- 
tions before it commits. By doing so, the isolation 
granularity of the global transaction is reduced to the 
subtransaction level instead of the global transaction 
level. A global transaction consisting only of sub- 
transactions which can be compensated is called a 

saga [GS87]. 

However, in the real world, not all subtransactions 
can be compensated. For example, subtransactions 

that are accompanied by real actions are typically 
non-compensatable. To address the fact that some 

of the subtransactions may be compensat,able, we in- 

troduce in our model the concept of mixed transac- 

tions. A global transaction is mixed if some of its sub- 
transactions are compensatable and some are not. In 

a mixed transaction, the subtransactions which are 
compensatable may be allowed to commit before the 
global transaction commits, while the commitment of 
the non-compensatable subtransactions must wait for 
a global decision. When a decision is reached to abort 
a mixed transaction, the subtransactions in progress 

and the non-compensatable subtransactions waiting 
for a global decision are aborted, while t,he commit- 
ted compensatable subtransactions are compensated. 
In this sense, mixed transactions are different from 

the s-transactions [EVTM] or the sagas [GS87] which 
allow only compensatable subt,ransactions. 

Hence, mixed transactions fill the spectrum from 
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sagas, (assuming the compensability of all subtrans- 

actions) to to traditional distributed transactioos (as- 
suming that subtransactions are non-compensatable). 
Mixed t’ransactions are more flexible because they al- 
low compensatable and non-compensatable subtrans- 
actions to coexist within a single global transaction. 

2.3 Temporal Aspects of Transaction 
Processing 

Unlike t,raditional distributed database systems, ICP 

cal database systems in a multidatabase environment 
are usually autonomous in deciding when to execute 
a subt,ransaction. Frequently, it is not realistic to 
assume that all local database systems are opera- 
tional at the same time when the global transaction 
is submitted [WQ87]. Consider a bank transaction 
which involves a bank in the USA and one in Japan. 

It is quite possible that because of the time differ- 

ence the subtransactions may not be executed at the 

same t#ime. In order to execute a global transaction 

successfully, we may need to know when a specific 
subtransaction can be executed at the designated lo- 
cal database system. Furthermore, even if all local 
database systems are available at the same time, we 

may still prefer to execute different subtransactions 
at different times. For example, consider a customer 
who wants to reserve a car and to order a flight ticket 
for a vacation next week. He may want to rent a car 

today, while the good selection is still available, and 
wait to order the flight ticket until two days later, 

when a special discount price comes in effect. 

To specify the execution time of a subtransaction, 

we associate a temporal predicate with each subtrans- 

action. This temporal predicate indicates when the 
subtransaction should be executed. A subtransaction 
can be executed only when its temporal predicate is 
true. The temporal predicate has the following for- 
mat : 

temporal-operator time-spec 

The time-spec has the following format: 

hh:mm:MM:dd:yy 

In the above definition, hh stands for hour; mm 
stands for minute; MM stands for month; dd stands 
for day; and yy stands for ear. A wild card “*” can 
be used in an 
condition. T K 

of these fiel cl s to denote a “don’t care” 
e temporal operators and their mean- 

ings are shown in the following table. 

Figure 1: A value function 

operator use meaning 
between between (C)8:*:*:*:*, 17:*:*:*:*) between 8am 

and 5pm 
after after (14:*:*:*:*) after 2pm 
before before (*:*:01:15:90) before January 

15th 1990 

Another temporal aspect of multidatabase t,ransac- 
tion is the transaction completion time. Transaction 

mangement based on serializability, t.ypically does not, 
take into account the timing characteristics of t.rans- 
action execution. The only problem addressed by 
the serializability is the correctness of int,erleaved ex- 
ecutions of multiple transact,ions. *The question of 
whether the transaction has accomplished its objec- 

tives “in time” is frequently ignored. In contrast, real 
time database systems attempt to schedule the execu- 
tion of transactions to meet their external real-time 
constraints [AG88b]. Similarly, the concept of a valve 

date has been introduced to indicate the fact, that 
a certain data item in a database can be safely ac- 

cessed only after a specified point in time has been 
reached [LT88]. We will consider here incorporating 

the concept of the completion value of a transaction 

into transaction management. The completion value 
reflects the fact that some transactions may have as- 
sociated with them certain utility of their comple- 
tion, as a function of time. This reflects the fact that 
the utility of the completion of a transaction may, 

. 
in general, change with time. This problem is simi- 
lar to the real time constraint in real-time databases, 
although the time constraints in the multidatabase 
environment are usually less stringent. As an exam- 
ple consider a transaction “Sell 500 stock of XYZZY 
Co. on the NYSE”, assuming that it is Friday and 

the price of stock ia going down. To model this phe- 

nomenon, we adopt the value function [AGSSa] to 
model the usefulness of a global transaction. A value 
function is a function of the global transaction exe- 

cution time (Figure 1). 

In Figure 1, we assume that the origin of the time 
axis is the time when the global transaction is sub- 



mitted. lo is the time that after which the comple- 
tion of the global transaction has no value. As far as 
the scheduling of a global transaction is concerned, 
when the execution time of the global transaction 

reaches to, the execution should be aborted. With the 
value function, it is possible to formulate the inter- 

transaction scheduling as an optimization problem. 
In this case, the objective of a scheduling policy is 
to maximize the total value of all global transactions, 
subject to their precedence constraints. The problem 
of optimization will be left outside of the scope of this 
paper. 

3 Transaction Model 

In this section, we will present the new transaction 

model. We will first give some preliminary defini- 
tions, and then formally define the model. 

3 .l Preliminary Definitions 

To specify a global transaction in the new model, we 
need to specify the execution dependency among the 
subtransactions of a global transaction. Execution 
dependency is a relationship among subtransactions 
of a global transaction which determines the legal exe- 

cution order of the subtransactions. In order to define 

the general execution dependency among subtransac- 
tions, we define two basic dependencies. The first is 
the positive dependency. A positive dependency be- 

tween subtransaction ti and t2 exists if subtransac- 
tion tl can not be executed until subtransaction t2 

succeeds. This occurs, for example, if subtransac- 
tion t1 has to wait for results from subtransaction t2 
[ED891 before it can start. The second basic depen- 

dency is called the negative dependency, which is used 

to specify the alternative subtransactions. Subtrans- 

action tl negatively depends on 12 if tl has to wait 
until t2 has been executed and failed before it can 
start. This happens when tl and t2 implement the 
same task in a global transaction and t2 is preferred 

to tl To facilitate the specification of the execution 

dependency, we define a transaction execution state 

as follows: 

Definition 1 For a global transaction T with m sub- 
transactions, the transaction execution state x is an 

m-tuple (21,x2, . . ..c.,,) where 

N if subtransaction ti has not been 
submitted for ececution; 

E 
Xi = 

if ti is currently being executed; 

S if ti has successfully completed; 
F if ti has failed or completed without 

acheiveing its objective; 

The transaction execution state is used to keep 

track of the execution of the subtransactions. It is 
also used to determine if a global transaction has 
achieved its objectives. All zi’s are initialized to N 
when the global transaction starts its execution. The 
value of zi is set to E when ti is submitted for execu- 
tion to its local database system. When a subtrans- 
action ti completes the corresponding execution state 
wi is set to S if the subtransaction has achieved its ob- 

jective, and to F, otherwise. The execution state, x, 
changes as the subtransactions are executed. The set 
of all possible execution states is denoted by X. 

At a certain point of execution, the objectives of 
the global transaction may be achieved. In this case, 
the global transaction is considered to be successfully 
completed and can be committed. An execution state 
in which a global transaction achieves its objectives is 
called an acceptable state. Frequently, there is more 
than one acceptable state for a global transaction. 
The set of all acceptable states of a global transaction 
is denoted by A. 

Definition 2 The acceptable state set, A, of a global 

transaction T is a subset of X, where 

A = { x 1 I E X, and in state x, the objectives of T 

are achieved } 

In order to express execution dependencies, we as- 

sociate with each subtransaction ti, a precedence pred- 
icate, ppi. The precedence predicate is a boolean 
function defined on the transaction execution state, 

as follows: 

Definition 3 A precedence predicate ppi for a sub- 
transaction ti is a predicate defined on X, where 

ppi : X + {true, false} 

To indicate that tj positively depends on ti, we for- 
mulate the precedence predicate ppj := (zi = S). 

We use the precedence predicate ppj := (xi = F) 
to denote that tj negatively depends on ti. Having 
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defined the basic dependencies, we can express any 

execution dependency in terms of boolean combina- 
tion of the basic dependencies. A predicate ppi is de- 
fined on the transaction execution state and is used to 
determine whether the corresponding subtransaction 
can be submitted for execution at the current time. 

The value of the precedence predicate changes as the 
global transact*ion is executed. 

3.2 The Extended Transactions 

To capture all the previously discussed semantics of 
a multidatabase transaction, we use additional primi- 
tives in the definition of a transaction. A global trans- 
action in our model is formally defined as follows: 

Definition 4 A global transaction T is a 6-tuple 
(ST, 0, PP, TP, A, V) where 

l ST is subtransaction set of T 

l 0 2s th.e partial order on ST 

l PP as the set of all precedence predicates of ST 

l TP is the set of all temporal predicates of ST 

l A as the set of all acceptable states of T 

l V is the value function of T 

In order to specify a global transaction, we have to 

specify, at the subtransaction level, the set of sub- 
transactions. Then with every subtransaction we 
specify its subtransaction type as follows: 

Subtransaction type: 

l C - if the subtransaction is compensatable 

l NC - if the subtransaction is non-compensatable 

We also specify the precedence predicate and the tem- 
poral predicate of the subtransaction. At the global 
transaction level, we specify the partial order 0, the 
set of acceptable states A and the value function. 

We illustrate the above definition using as an ex- 

ample the travel agent transaction, introduced in the 

previous section. 

Ecample 2: Consider the travel agent transaction 
introduced in example 1. In addition, we assume the 

following: (1) the subtransactions for ordering tickets 

are non-compensatable; (2) ticket ordering subtrans- 
actions must run within business hours from 8am to 
5pm, other subtransactions do not have time con- 
straints; (3) the global transaction has to complete 

within one day in order to be useful, and within the 
time limit, the utility of the transaction completion 
depends on the completion time. This transaction 
can be formally specified as follows: 

ST = (tl(NC),t2(~C),ts(C)rt4(C),t5(C)rts(C)} 
0 : 11 4 t3, t2 -t t3, 23 4 t4, t3 + t5, t3 4 ttj 

i 

ppl := true 
pp2 := (Xl = F) 

PP : 
pp3 := (q = S) v (x2 = S) 

pp4 := (23 = S) A (z-5 = F) 

pp5 := (23 = S) 

pp6 := (c3 = s) A ( x4 = F) A (x5 = F) 

( 

tpl = between(08 : * : * : * : *, 17 : * : * : + : * 

tp2 = between(08 : * : + : * : t, 17 : * : * : + : + 

TP: 
tpg = * 
tp4 = * 
tp5 = * 
tp6 = + 

A = { (S,N,S,N,S,W, 

(S, N, S, S, F, N), 
(S,N,S,F,F,S), 

(F,S,S,N,S,W, 
(F, S, S, S, F, W, 
(F, S, S, F, F, S) 1 

{ 

1 if t <= 12 hours 

v(l) = 0.5 if 12 < t <= 24 hours 

0 otherwise 

The execution of a global transaction has to abide 
by a set of execution rules. Before we formulate the 
set of execution iules for the extended transactions, 
we will introduce an additional definition. 

Definition 5 For a subtransaction ti, its predeces- 
sors are those subtransactions which precede ti in the 

partial order 0. We will use pred(ti) to denote the 

set of all predecessors of ti, i.e. 

pred(ti) = {tj 1 tj E ST and tj 4 ti in 0). 
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For a given execution state x, we define a subtrans- 
action ti as executable if 

1. ti has not been submitted for execution; 

2. v tk E precqt;), either tk has been executed or 
the ppk is false; and 

3. both the ppi (the precedence predicate of ti) and 

the tpi(t) (the temporal predicate of ti) are true. 

We can now formulate the execution rules as fol- 
lows: 

1. Start from the initial execution state of the 
global transaction; 

2. Schedule the executable,subtransactions for exe- 

cution until the termination condition has been 
met; 

3. When a subtransaction ti is submitted, 2i is set 
to E. When the execution of a subtransaction 

is completed, set xi to S, if the objective of the 
subtransaction has been achieved and to F, oth- 
erwise. 

4. The execution of a global transaction terminates 
when any of the following conditions occurs: 

l the current execution state is acceptable, 

l none of the subtransactions is executable 

and no subtransaction is currently execut- 

ing, 

l time to of the value function ilr reached (if 

applicable). 

According to the above execution rules, concur- 
rent execution of subtransactions is allowed if they 

are executable at the same time. When the result 

of the execution is known, we modify the transac- 
tion execution accordingly. After the completion of 
a subtransaction, we check if the termination con- 

dition is satisfied. If the termination condition is 
not satisfied, we continue scheduling the executable 
subt,ransactions. If the global transaction terminates 

and an acceptable state has been reached, we can 
commit the global transaction; otherwise, it must be 
aborted. To commit a global transaction, we send 

a “commit” message to all non-compensatable sub- 
transactions which are waiting in their “prepared to 
commit” states (the compensatable subtransactions 
may have been committed earlier). If the global 

transaction terminates without reaching an accept- 
able state, the global transaction must be aborted. 
To abort a global transaction, we send an “abort” 
message to all subtransactions which are waiting in 

a prepared state, and then issue compensating sub- 
transactions for those compensatable subtransactions 
that are committed. 

4 Execution of the Global 

Transact ion 

In this section we will discuss the execution of ex- 
tended global transactions specified using the ex- 
tended transaction model. Since our discussion will 
be based on the Predicate Petri Nets (PPN) formal- 
ism, we will review briefly the basic concepts of Pred- 

icate Petri Nets. Then we will show how the problem 
of scheduling extended transactions can be mapped 
into an appropriate PPN. Finally, we will show how 
the execution of the multidatabase transactions can 
be controlled using this mechanism. 

4.1 The Predicate Petri N&s 

To control the execut.ion of global tra.nsactions, we 
will use the Predicate Petri Nets [LM86], [Gen87]. 

The PPN control structure can ident.ify, at any ex- 
ecution step of the global transaction, the set of re- 
lated (and possibly executable) subtransact.ions. We 
assume that the reader is familiar with the basic Pebri 

Nets theory [Pet81]. 

To represent a global transaction we associate with 

each transition of a Predicate Petri Net a subt,ransac- 
tion and its corresponding precedence predicat.e and 
temporal predicate. The partial order 0 of the global 

transaction is reflected in a PPN graph. 

For a given global transaction, a PPN cons&s of: 

1. a biparlile graph G = (P,T,F) where P and T are 
called places and fransition~s respectively, and F 
is a set of directed arcs, each connecting a place 
p E P to a transition tr E T or vice versa. Places 
are represented by circles while transitions are 

represented as a bars. For each transition, t.hose 
places that have edges direct.ed into the transi- 

tion are called the znput places of the transition, 
and the places that, have edges directed out, of 
this transition are called t,he outpuf places of t,he 
transition. A place can hold tohs. A t.oken is 
represented as a dot. 
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2. A function PP (stands for Precedence Predi- 
cate), which maps the set of transitions to the 
set of precedence predicates. 

3. A function TP (stands for Temporal Predicate), 
which maps the set of transitions to the set of 
temporal predicates. 

4. A function h’, which associates each transition 
with a subtransaction of the global transaction. 

The PPN graph can be derived from the prece- 
dence predicate a.nd the partial order 0 of the global 
transaction. The dynamic aspect of a PPN corre- 
sponds to the execution of the corresponding global 
transaction. A marking M is a distribution of tokens 
over the places of a PPN which represents the cur- 
rent status of the global transaction execution. A 

PPN models the execution of a global transaction by 
firing transitions in accordance with the conditions 
specified by the predicates associated with each tran- 
sition. As usual, we define a transition to be enabled 

if all of its input places contain at least one token. 

We then define a transition to be executable ’ if it is 
enabled and both the associated precedence predicate 
and temporal predicate are true. Finally, we define a 
transition to be jr-able if it is executable and the asso- 
ciated subtransaction has been executed successfully. 
In a marking M, the set of all enabled transitions is 
called the enabled set. Similarly, the set of all exe- 
cutable transitions is called the etecvtable set. We 
attempt to fire a transition by submitting its associ- 

ated subt,ransaction for execution. If the execution 
is successful, then we fire the transition; otherwise, 

we update the corresponding execution state variable. 
To be more specific, when transition Iri is fired, we 
perform the following actions: 

l Update the execution state variable xi by setting 

it to S. 

l calculate the new marking by taking one loken 

from each of the input places of the transition 
tri, and put one token into each of tri’s output 
places. 

4.2 Constructing the Predicate Petri 
Nets 

In constructing a PPN graph for a global transac- 
tion, we have to use the information of partial order 

‘This implies that its associated subtransaction is 
executable. 

n . 
ti x 

Figure 2: PPN graph for subtransactions with no pre- 
decessor 

graph connected to t , 

Figure 3: PPN graph for a disjunction form 

0 and the positive dependency of t.he global t,ransac- 
tion. The negative dependency is not considered in 
constructing the graph since it will be taken care of 
when the corresponding precedence predicate is eval- 
uated. In the construction process, we first filter all 
negative dependencies from every precedence predi- 
cate. We then transform the results into conjunctive 

normal forms 2. 

Afterwards, we apply the following procedure to 

construct the PPN graph: 

1. 

2. 

construct a graph as shown in Figure 2 for every 
subtransaction tj which has an empty predeces- 
sor set. 

repeat the following two steps until all transi- 
tions are constructed. 

For any subtransaction ti which has all of its pre- 
decessors been constructed, do the following: 

(a) For every disjunction form (ci = S)V(Z~ 

= S) v. ..(Xk = S), construct a graph as 

shown in Figure 3. 

(b) Connect the resulting graph of (a) to tran- 
sition ti. 

2As shown in the propositional calculas [LPSl], every pred- 
icate haa at least one conjunctive normal form, and there is an 
algorithm that transforms any predicate into its corresponding 
conjunctive normal form. 
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3. 

. 

t 
1 88 

t 
2 

Figure 4: PPN graph after step 1 

t 
1 

t 
2 

Figure 5: PPN graph for 13 

connect each transition which does not have an 

output place to an output place; then terminate 
this procedure. 

To illustrate this procedure, we will apply it to con- 
struct the PPN graph for the global transaction in 

example 2. Figure 4 shows the PPN graph after step 
1. Now consider the construction of the graph for 

t3. Since there is only one disjunction form (tl = 

S)V(zz = S), we construct a graph as in Figure 5. 
The final graph becomes Figure 6 after we complete 
this procedure. 

4.3 The PPN Execution Control Al- 
gorit hm 

Global transaction execution must satisfy the partial 
order 0, the precedence predicate and the tempo- 
ral predicate. By capturing all this information, the 
PPN significantly simplifies the execution control of 
the global transaction. To maintain the utility of the 
completion of a global transaction, we use a timeout 

. . t 
1 u t 

2 

v 
t 

3 

Ill 

t t t 

5 6 

Figure 6: PPN graph for the travel agent transaction 

mechanism to abort the execution of a global trans- 
action when the value function becomes 0 and the 
global transaction is still in execution. Before invok- 
ing the algorithm, we calculate to (the time at which 
the value function becomes 0). We then use to as a 
parameter for the timeout mechanism. 

The global transaction scheduling problem is event 

driven in the sense that the scheduling activity is in- 
voked when a subtransaction completes (either suc- 
cessfully or unsuccessfully). We use a queue & to 
buffer the responses (i.e. events) from the local 
database systems. The algorithm will enter a re- 
sponse in Q when it receives the response from a local 
database system. 

The algorithm is shown in figure 7. 

In the algorithm, t is the current enabled set; U 
is the current executable set derived from E; 6 is the 
scheduled set which contains the transitions whose 

corresponding subtransactions have been submitted 
for execution and .whose results are still not known. 
The algorithm starts from the initial transaction exe- 
cution state (all state variables are initialized to IV). 

When started, the algorithm calculates, from the ini- 
tial marking, the enabled set C; a.nd uses it t#o cal- 
culate U. All subtransactions whose corresponding 

transitions are in 21 are concurrently submitted to 
the local database systems for execution. 

Whenever a subtransaction completes, successfully 
or unsuccessfully, a new executable set U is calcu- 
lated. In the new executable set, some of the transi- 
tions have been submitted (for those contained in I;) 
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procedure evaluatePPN(NT, ST, PP, TP, n, A, to) 
Initialize timeout mechanism with timeout interval to; 

begin 

x + (N, N, N,. . .,N) /* n N’s ‘1 
on timeout flexabort; 

f 6 6; /* E - enabled set */ 
u + b; /* U - executable set */ 

G - 4; /* G - scheduled set “‘1 

Q + empty; /* Q - nsponse Queue “1 
compute&enabled-set & from NT; 
computeexecutableset 2.4 from the new enabled set E; 

repeat 
9+ + u - p; 

For each tr. E Pt do 
begin 

submit tr, to the local database system; 
C + D U { tri}; 

2, 6 E 
end; 

on receiving response enqueue the response in Q; 
while (Q = empty) do 

begin 
if (check-terminate) then 

begin 
flexabort; 
exit - 

end 
end; 

RESPc dequeue(Q); 

/*assume that RESP is from ti*/ 
D + G - ( tr, }; 
if (RESP = SUCCESS) 
then 

begin 
I, + s; 

fire(tri); 
comuute~nabled~et E 

end 

else 
2, c F 

endii; 
computeexecutablest U; 

until (check-terminate); 
if I E A then flexsommit 

else flexabort; 
end. 

Figure 7: The execution control algorithm 

Function checkferminate(+, A, NT, E, 2.4, TP) 
W:Waiting set; 

begin 
check-terminate + false /* initialized to false */ 
if (z E A) 
then 

check-terminate + true 
else 

begin 

w + 4; 
For each tri E & and TP(tr,) = false 
and operator of TP(tri) # before 

W + W U ( tri ); 

if (U = I$ and W = 4) 
then 

check-terminate + true 
end 

end 

Figure 8: The function for checking termination con- 

dition 

while some have not. The transitions which are ex- 

ecutable and not yet submit.ted are contained in G+ 

which is the difference of N and G. Only subhansac- 
tions whose corresponding transitions are in @ need 

to be submitted each time when a new executable 

set is derived. In order not to overlook responses 

from the local database syst,ems. the- responses are 
first buffered in Q. If Q is empty, it is possible ghat 

the execution of the global transaction has failed. In 
this case, the termination condition is checked. If Q is 

not empty, we can dequeue a response from Q. After 
we dequeue a response from Q, if the response reports 
that subtransaction ti is executed successfully, zi, the 

corresponding execution state variable of ti is set to 
S; otherwise, it is set to F. After this, the algorithm 
evaluates the enabled set ?Z (in the first case) and the 
executable set U and then continues scheduling the 
global transaction. When the execution terminates, 

if the final execution state z is acceptable (i.e. z E 
A), the global transaction is committed; otherwise, it 
is aborted. 

The execution of a global transaction terminates in 
either of the following two cases: 

1. x is acceptable (x E A). In this case, the global 
transaction is successfully executed; 

2. there is no executable transition and no subtran- 
sition is waiting for its temporal predicate to be- 
come true. 

The function for the termination detection is shown 

in figure 8. To commit a global transaction, for 

each non-compensatable subtransaction t; whose cor- 
responding execution state variable z; is S, send a 
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“commit” message to ib local d&&me eyskm; for 
each non-compensatable rubtrawution $ (if-y) in 

0, send au “abort” message to its local database sys- 
tech; and then compensaie each compensatable rub 

transaction in G. 

To abort a global transaction, each subtransaction 
ti, whose corresponding execution state variable zi is 
S, haz to be aborted or compensated depending on 
its type. 

5 Conclusion 

The need for local autonomy in a multidatabsse sys- 
tem makes the traditional models of a transaction ob- 
solete. More flexible and powerful models are needed. 

The model presented in this paper, addresses the need 
for multiple execution alternatives, very frequent in 
practical applications. It also provides for mixed 

transactions consisting of compensatable and non- 
compensatable subtransactions. Mixed transactions 

generalize the concepts of nested transactions and 
sagas. It also deals with time and utility functions, 
providing new possibilities for transaction scheduling. 
We have explained the rationale of our model, and 
have formalized it. We have also proposed an imple- 

mentation using the Predicate Petri Nets. 

The InterBase project is currently investigating 
these and other related issues [LeuOO]. The need 

for a transaction specification language based on our 

model has become apparent and is the subject of at- 
tention at the Laboratory. Predicate Petri Nets also 
appear useful as an analysis tool for global transac- 
tions. Additional work is needed to design schemes 
for concurrency control and recovery in the new en- 
vironment. The results are of great importance, as 
multidatabase systems become more widely used and 
needed. Our results may be also applicable in the 
CAD/CAM, CASE and SDE database areas, where 
similar work on extending the conventional notions of 
transaction processing and correctness criteria is also 

being carried out. 
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