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Abstract—An article introduces a modified architecture 

of the neo-fuzzy neuron, also known as a 

"multidimensional extended neo-fuzzy neuron" 

(MENFN), for the face recognition problems. This 

architecture is marked by enhanced approximating 

capabilities. A characteristic property of the MENFN is 

also its computational plainness in comparison with 

neuro-fuzzy systems and neural networks. These qualities 

of the proposed system make it effectual for solving the 

image recognition problems. An introduced MENFN’s 

adaptive learning algorithm allows solving classification 

problems in a real-time fashion. 

 

Index Terms—Computational Intelligence, Facial 

Expression, Image Recognition, Extended Neo-Fuzzy 

Neuron, Machine Learning, Data Stream. 

 

I.  INTRODUCTION 

Automatic analysis of signals on a human face is used 

in different subsystems of vision, including tracking a 

viewing direction and focus of attention, lip reading, 

bimodal speech processing, synthesis of visual 

morphemes, forming teams based on facial expressions. 

Tracking the viewing direction or focus of attention can 

be used for releasing a user from using a mouse or a 

keyboard. To realize a robust speech interface, the speech 

lip reading opportunity can be very useful. Automatic 

detection of fatigue, boredom and stress will be valuable 

in situations where some constant attention is crucial for a 

person, for example, onboard the aircraft or while driving 

a truck, a train or a car. In real-world applications, this 

sort of tasks is usually solved by means of various fuzzy 

clustering techniques [1-6]. Identification of such facial 

expressions is based on processing real-time video 

streams, where the required features are allocated. Thus,  

 

recognition of facial expressions may be reduced to 

clustering multidimensional data in a real-time mode. 

A goal of the developed research is to synthesize a 

clustering architecture, which enables distributing the 

real-time multivariate data through a set of clusters 

automatically. 

Fuzzy Inference Systems (FISs) and Artificial Neural 

Networks (ANNs) have dilated into a large class of Data 

Mining problems of variant nature under conditions of 

the prior doubt and instant ambiguity. Hybrid neuro-

fuzzy systems (HNFS) [7-10] combine learning abilities 

typical for artificial neural networks as well as both 

interpretability and results’ "clarity" peculiar to fuzzy 

inference systems. Basic limitations of the hybrid neuro-

fuzzy systems are simulation awkwardness and a quite 

slow training speed. 

To overpass some of the outlined above problems, a 

neuro-fuzzy system also known as a ―neo-fuzzy neuron‖ 

(NFN) was taken into consideration and explored in [11-

13]. Fig.1 gives a demonstration of the neo-fuzzy 

neuron’s organization.  

The NFN structure is a non-linear learning mechanism 

that has control over multiple inputs and an only one 

output. This framework generally brings into action a 

presentation 
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where ix  is a component i  of the n dimensional vector 

of input signals,  1,..., ,...,
T n

i nx x x x R  , ŷ denotes a 

scalar output for the NFN. NFN’s structural blocks are 

non-linear synapses iNS that guarantee a non-linear 

permutation for the component i  of ix  in the type of 
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where liw  stands for a synaptic weight l  of the nonlinear 

synapse i , 1,2,...,l h , 1,  2,...,i n ;  li ix  signifies a 

membership function l  in the nonlinear synapse i , 

which finally yields a fuzzified element 
ix . In this way, 

an NFN-implemented conversion may be marked down 

in the following manner 

 

 

Fig.1. A neo-fuzzy neuron 
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An NFN-realized fuzzy inference is given by 
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where lic  specifies selected (usually distributed 

uniformly) centroids (at random fashion) of membership 

functions in the interval [0,1], although in a natural way 

0 1ix  . 

NFN’s inventors [11-13] brought into requisition 

common triangular frameworks as membership functions 

that meet the requirements of the unity partition. 

 

 

Certainly, some other functions apart from triangular 

frameworks may be employed as membership functions, 

first of all, B-splines [14-18] that proved successfully 

their effectiveness just being parts of the neo-fuzzy 

neuron. A generalized view of B-spline-based 

membership functions of the q  order may be put 

forward in the shape of 
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In case when 2q  , the conventional triangular 

constructions are gained. It also bears mentioning that the 

B-splines may ensure the unity partition by way of 
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which are non-negative, i.e. 
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and have a support area 
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Consequently, the input vector signal 

        1 ,..., ,...,
T

i nx k x k x k x k  (here 1,2,...k   

marks a current discrete time indicator) being fed to the 

NFN’s input yields a scalar value at its output 
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ˆ 1
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                (1) 

 

where  1liw k   stands for a current value of tuned 

synaptic weights to have been gained (as a result of 

learning) by previous  1k   observations. 

Bringing in the membership functions’  1nh  – 

vector  
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and        11 1 211 1 ,..., 1 , 1 ,...,hw k w k w k w k      

 

   1 ,..., 1
T

li hnw k w k   

 

which conforms with the vector of synaptic weights, the 

conversion (1) carried out by the NFN may be marked 

down in a slightly different manner 

 

      ˆ 1Ty k w k x k  .                 (2) 

 

To set the NFN’s parameters, its developers put into 

use the gradient procedure for minimization of a training 

criterion 
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and has the shape of 
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where  y k  designates an external reference signal, 

 e k  denotes a learning error,   refers to a parameter of 

a learning rate. 

To speed the NFN’s training process up, a special-type 

algorithm was introduced in [19] having both tracking 

(for processing non-stationary signals) and filtering (for 

"noisy" data) properties 
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In the circumstances of 0  , the scheme (3) is 

credible in its organization to the one-step Kaczmarz-

Widrow-Hoff learning algorithm [20], and when 1  , 

it’s similar to the method of stochastic approximation by 

Goodwin-Ramage-Caines [21]. 

It will be observed that training the NFN’s synaptic 

coefficients (weights) can be utilized by an amount of 

other methods for identification and learning inclusive of 

the common least-squares method with its upgrades. 

 

II.  AN EXTENDED NEO-FUZZY NEURON  

As previously stated, the neo-fuzzy neuron’s non-linear 

synapse iNS  performs the zero-order Takagi-Sugeno 

inference, which is in fact the elementary Wang-Mendel 

neuro-fuzzy system [22-24]. 

It seems certain that approximating inferiorities of this 

system may be amended by dint of a system node also 

known as an ―extended non-linear synapse‖ ( iENS , 

Fig.2). A framework of an ―extended neo-fuzzy neuron‖ 

[25-26] (ENFN) is built with reference to the iENS  

elements in exchange for the common iNS  nodes. 

By establishing several additional variables 
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we can note down 
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As one can notice, the ENFN embodies  1p hn  

synaptic weights to be tweaked, and a fuzzy output 

performed by every iENS  takes on a form 

 

 

i liIF x IS x THEN AN OUTPUT IS
 

 
0 1

1 1 ... , 1,2,...,p p

i i i li iw w x w x l h                  (6) 

 

which is essentially in agreement with the p-order 

Takagi-Sugeno inference. 

It should be also marked that ENFN stands seized of a 

simpler architecture as opposed to the common neuro-

fuzzy system that leads to its simplified numerical 

realization. 

When the ENFN’s input is given as a vector signal 

 x k  in the system, there appears an output scalar value  

 

      ˆ 1Ty k w k x k                (7) 

 

whereby the listed above expression stands out from the 

formula (2) only by the fact that it embraces  1p   

times more parameters to be set as contrasted with the 

conventional NFN. It stands to reason that ENFN settings 

may be trained with the algotirhm (3) that acquires in this 

case a shape of 

 

Fig.2. An extended non-linear fuzzy synapse 
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Fig.3 displays a scheme of an extended neo-fuzzy 

neuron. 

 

 

Fig.3. An extended neo-fuzzy neuron 

The extended neo-fuzzy neuron is a building block for 

the multidimensional neo-fuzzy neuron (MENFN). Its 

architecture is depicted in Fig. 4. 

 

That looks on reasonable grounds to put in several 

layers in the MENFN for solving the pattern recognition 

task. The first layer encapsulates the extended neo-fuzzy 

neurons, and their quantity brings into accordance with 

the output vector’s  my k  dimensionality.  

A quantity of non-linear synapses that configures each 

neo-fuzzy neuron complies with dimensionality of the 

input feature vector  nx k . The succeeding layer 

represents an activation function 

 

    j jv k y k                     (9) 

 

where  
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An output layer of the MENFN computes values 

 jv k  in response to the positive rationing 
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which is necessary if a learning vector is set in the range 

[0,1]. 

If a learning vector utilizes the numerical coding of an 

output signal, the MENFN performs a fuzzy conjunction 

of elements in the output vector  j k   
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Fig.4. A multidimensional extended neo-fuzzy neuron 

III.  EXPERIMENTS 

To bear out superiority of the architecture under 

consideration, several experiments were carried out for 

the task of basic emotions’ recognition. Several 

depictions from the open-source database Psychological 

Image Collection at Stirling (PICS) [27], as well as some 

illustrations partly from the Cohn-Kanade (Extended, 

CK+) database [28] and some other images taken from 

public access were mainly used as objects for recognition. 

The learning dataset contains 344 depictions; learning 

was repeated during 30, 50, and 80 epochs as the case 

may be. For the algorithm (8), a learning rate 

1/ r  was taken equal 0.75. A capacity of membership 

functions for every ENS equals 9; the fuzzy inference 

represented by the iENS  can be put down like 

 

 

i liIF x IS x THEN AN OUTPUT IS  

 
0 1

1 1 ... , 1,2,...,p p

i i i li iw w x w x l h     

 

and agrees with the Takagi-Sugeno inference of the 

second order. 

As noted above, a quantity of neo-fuzzy neurons m 

measures up dimensionality of the output vector. Seven 

basic emotions are selected for recognition: anger, disgust, 

fear, surprise, happiness, sadness, and neutral expression. 

Therefore, m = 7. The character features’ vector contains 

the two-dimensional coordinates of 35 feature points 

position (Fig.5) [29]. 
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Fig.5. Arrangement of control points 

So, dimensionality of the input vector  nx k  equals 70. 

The MENFN’s framework confirms a sufficiently 

higher learning rate as opposed to a scheme described in 

[30]. A plot for errors’ change by epochs is shown in 

Fig.6; results of learning are demonstrated in Table 1. 

The algorithm was tested on a sample of 78 images. 

 

 

Fig.6. Dependency of a learning error on a number of learning epochs 

The developed framework of multidimensional 

extended neo-fuzzy neuron definitely provides both a 

high learning rate and the high recognition accuracy for 

multidimensional data. These inferiorities are particularly 

useful for detecting facial expressions in a real-time mode. 

Table 1. Training MENFN for recognition of 7 emotions. Results 

Basic 

emotions 

A number 

of images 

in the 

training 

set 

Percentage of unrecognized 

images, % 

30 epochs 50 epochs 80 epochs 

Anger 49 2 0 0 

Disgust 66 0 0 0 

Fear 35 0 0 0 

Happiness 45 2 0 0 

Sorrow 19 5 0 0 

Surprise 50 0 0 0 

Neutral 80 4 3 0 

 

IV.  CONCLUSION 

The paper proposes a structure of the multidimensional 

extended neo-fuzzy neuron which is an extension of the 

conventional neo-fuzzy neuron for a case of the fuzzy 

inference procedure when its order is higher than a zero 

order and which possesses both a multidimensional data 

input and an output. The proposed learning algorithm 

allows distributing effectively the aggregate data into an 

amount of previously known clusters. The considered 

MENFN enhances clustering qualities, incorporates both 

a high training speed and its quite simple numerical 

feasibility. 
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