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ABSTRACT 

In this paper, a novel method to extend the grayscale 

histogram equalization (GHE) for color images in a multi-

dimension is proposed. Unlike most current techniques, the 

proposed method can generate a uniform histogram, thus 

minimizing the disparity between the histogram and uniform 

distribution. A histogram of any dimension is regarded as a 

mixture of isotropic Gaussians. This method is a natural 

extension of the GHE to a multi-dimension. An efficient 

algorithm for the histogram equalization is provided. The 

results show that this approach is valid, and a psycho-visual 

study on a target distribution will improve the practical use 

of the proposed method.  
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1. INTRODUCTION  

In many image-processing applications, the grayscale 

histogram equalization (GHE) is one of the simplest and 

most effective primitives for contrast enhancement. For a 

given grayscale image, its histogram 1{ }n

i ip  is defined as 

the relative frequency of an intensity appearance, ix , in the 

domain, [0,1]D . The GHE can be performed easily by 

using a cumulative histogram [1][2]. The intensity of ix  for 

every pixel is transformed to ix , as follows: 

k i

i k

x x

x p . (1) 

The histogram specification, a generalization of this 

technique, allows any user-supplied histogram to be used. 

Extending the GHE to a multidimensional case is not 

straightforward, and various methods have been proposed to 

address the difficulty. The simplest extension is to apply the 

GHE independently to the different bands of the color 

image. Another approach is to spread the histogram along 

its principal component axes [3] or along the brightness 

component of the image [4][5]. Using color difference color 

space, [7] equalizes the conditional histogram of saturation 

given luminance and hue. All of these techniques use 

marginal or conditional color histograms only and, therefore, 

do not consider the correlation between the different bands. 

With a different observation on GHE, namely, it matches 

the cumulative distribution function (CDF) of histogram to 

that of target distribution, [6] tries to match the CDFs of the 

histogram and target distribution in multi-dimension. The 

recent method in [8] provides a nearly uniform color 

histogram. This method involves deforming the mesh in the 

RGB color space to fit a given histogram, and then mapping 

it approximately to a uniform histogram. This technique, 

however, requires excessive computational time. 

In this study, a new method for the multidimensional 

extension of the GHE is proposed. Our preliminary work for 

color images was presented in [9]. Accordingly, a given 

histogram with any dimensions, as a probability density 

function (PDF), is regarded as an isotropic Gaussian 

mixture. To fit the PDF to the target distribution, their 

squared error is derived and minimized with respect to 

centers of the Gaussian mixture. The proposed method is 

formulated as a nonlinear optimization problem with bound 

constraints; therefore, the multidimensional extension is 

quite natural. This paper is organized as follows: section 2 

formulates the multidimensional histogram equalization; 

section 3 shows several examples, including the relationship 

between the proposed and the conventional GHE; finally, 

section 4 concludes the paper. 

2. MATHEMATICAL FORMULATION 

To acquire smoothness in the formulation, each probability 

mass of a histogram with any dimensions is approximated 

by an isotropic Gaussian density having the same mass and 

center. For example, the line, plane, and volume densities 

for 1-D, 2-D, and 3-D histograms can be considered. Then, 

their centers are rearranged to fit a mixture of Gaussian 

densities into a uniform density within the domain. As a 

result, the histogram equalization is formulated as a 

nonlinear optimization problem with bound constraints. 

2.1. Grayscale Histogram Equalization 

Given a histogram represented by a positive probability 

1{ }n

i ip  at distinct points 
1{ }n

i ix  in the domain [0,1]D , its 
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PDF can be regarded as a mixture of Gaussian distributions 

with the scaling factor , i.e. 

2 2

1

( ) ( | , )
n

i i i

i

f x p N x x p , (2) 

where 2 2( | , )i iN x x p  is the normal distribution function of 

x  with the mean ix  and variance 2 2

ip . The histogram 

equalization can be defined as adjusting 1{ }n

i ix  to fit ( )f x

into ( )g x , the target PDF. The disparity measure between 

the two PDFs is defined as 
2{ ( ) ( )}

D
g x f x dD . (3) 

While the target distribution may be chosen from the 

features of a vision system or an image displaying device, 

they are set to be uniform for the remainder of this paper: 

( ) 1g x . This gives 

2

2 2

1

2 2

1

2 2 2 2

,

1
1 ( | , )

2

1
( | , )

2

1
     ( | , ) ( | , ) .

2

n

i i i
D

i

n

i i i
D

i

i j i i j j

i j

p N x x p dD

p N x x p

p p N x x p N x x p dD

The closed form of this integral can be obtained precisely in 

D ; however, doing so is complex and there is no further 

benefit in terms of accuracy. To approximate the objective 

function, ( , )D  is assumed temporarily. At this point, 

2

2 2 22 2
,

( )1 1
exp

2 2 2 ( )2 ( )

i j i j

i j i ji j

p p x x

p pp p
.

By eliminating the constant coefficients, the objective 

function is redefined as 
2

2 2 22 2
,

( )1
: exp

2 2 ( )

i j i j

i j i ji j

p p x x

p pp p
. (4) 

Since  is smooth in D , the gradient of , with respect 

to ix , is calculated by 

2 2 2
1

( )

( )

n
i j

ij

ji i j

x x

x p p
, (5) 

where ij  denotes the inner term of the summation of (4). 

Again, taking the derivative of (5) with respect to ix  and 

jx , for  i j , the Hessian is obtained: 

22

2 2 2 2 2 2

2 2

2

( )
1 ,

( ) ( )

.

ij i j

i j i j i j

j i i ji

x x

x x p p p p

x xx

Consequently, the GHE is formulated as a minimization 

problem of  with bound constraints. Furthermore, the 

given histogram will be a good initial guess to find its 

nearest local optimizer in order to alleviate the color change 

from the original image.  

2.2. Multidimensional Histogram Equalization 

Let us denote 2( | , )iN rx x I  as a multivariate, say d-

dimensional, normal distribution function of x  with the 

mean ix  and isotropic covariance 2r I , where I  denotes an 

identity matrix. Equating the probability p  to the volume of 

hyper-sphere with radius r  in d-dimension, we found that 
dr p . Given the positive probability 1

{ }n

i ip  at the 

distinct points 
1{ }n

i ix  in the domain [0,1]dD , the PDF is 

constructed by an isotropic Gaussian mixture with the 

scaling factor :

2 2 /

1

( ) ( | , )
n

d

i i i

i

f p N px x x I . (6) 

Similar to the previous section,   is defined for a 

uniform target distribution:  
2

2 / 2 / / 2 2 2 / 2 /
,

|| ||1
: exp

2 ( ) 2 ( )

i j i j

d d d d d
i j i j i j

p p

p p p p

x x
. (7) 

The gradient and Hessian of  are 

2 2 / 2 /
1

2

2 2 / 2 / 2 2 / 2 /

2 2

2

, and
( )

( )( )
and

( ) ( )

,

n
i j

ijd d
ji i j

T

ij i j i j

d d d d

i j i j i j

j i i ji

p p

p p p p

x x

x

x x x x
I

x x

x xx

where ij  denotes the inner term of the summation of (7).  

3. EXPERIMENTAL RESULTS 

To test the validity of the proposed method, grayscale and 

color images are equalized and the results are displayed. To 

compute the output, a nonlinear optimization with bound 

constraints is implemented with the commercial KNITRO 

5.0 and MATLAB 7.0 software on an Intel Pentium® D 

CPU 3GHz. Through extensive experimentation, we found 

that the scaling factor 0.25  works well with all the 

images we processed. 

3.1. Relation with Grayscale Histogram Equalization 

Even though the formalism in section 2 may appear far from 

the simple GHE of Equation (1), it is a rather natural 

extension. Figure 1(b) shows the result of the proposed 

GHE of Figure 1(a). Figure 1(c) shows that the proposed 

method provides an almost identical transformation of the 

cumulative histogram of Equation (1). KNITRO 5.0 is able 
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to provide a solution within one second via the interior point 

conjugate gradient method [10]. The computational time 

was 0.23 seconds for the Lena image, whose histogram is 

nonzero at 219 gray values out of 256. 

3.2. Color Image Examples 

Figure 2(a) is the original red-green image of a moth’s head, 

an image example from [8]. It has two bands, R and G, with 

16 levels and 335 x 228 pixels. Its histogram is nonzero at 

160 colors out of 256. The contrast of Figure 2(a) is 

relatively low because its histogram, shown in Figure 2(b), 

is denser along the diagonal. Through our algorithm, the 

histogram is expanded more toward the off-diagonal so that 

it is mapped to fit the uniform distribution shown in Figure 

2(d). The equalized image, Figure 2(c), shows a higher 

contrast than the original image. Using MATLAB, a large-

scale nonlinear optimization was implemented. This was 

completed in 8.9 seconds.  

Figure 3 shows a color image with 768 x 512 pixels and 

16 levels for each band. As a result of the color histogram 

equalization, Figure 3(b) shows more diversity in color than 

3(a). Due to lack of space, the three-dimensional histogram 

is not depicted here. In fact, it is equalized uniformly. It 

took 412.6 seconds to equalize the histogram with nonzero 

values at 1501 colors out of 4096. 

4. CONCLUSION 

In this paper, a new method for extending the grayscale 

histogram equalization to a multi-dimension is proposed. 

The histogram of a given image is regarded as an isotropic 

Gaussian mixture, and its squared error from the target 

distribution is minimized. The proposed GHE results in a 

solution nearly identical to the conventional one, which 

demonstrates its validity. The error analysis for the 

canonical configuration which consists of only three 

consecutive probabilities in the histogram would be further 

investigated. The results of the histogram equalization for 

two color images are displayed.  

Even though a uniform target distribution was assumed 

for a simple development, a practical target distribution 

should be investigated through a psycho-visual study on the 

human eye and display device. While this approach can 

equalize a histogram efficiently, there is room for 

improvement. Through a numerical implementation, it was 

found that the point to be optimized is affected most by its 

near-neighbors, and the effect of the remaining points is 

negligible. To hasten the computing time, maintaining a 

proximity list of all points and the numerical calculations 

would be needed only for the near points [11]. We hope to 

apply such a subdivision scheme to build and update the 

proximity list in a future study. 
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 (a) Original image                             (b) Grayscale-equalized image           (c) Cumulative histogram (dotted) and 

proposed transform (solid) 

Figure 1. Grayscale histogram equalization for the Lena image. 
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(a) Original RG image                                                            (b) Histogram of (a)  

(c) Color-equalized image                                                      (d) Equalization of (b) 

Figure 2. Histogram equalization of a two-band color image.  

   
(a) Original image                                                    (b) Color-equalized image 

Figure 3. Histogram equalization of a color image.  
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