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ABSTRACT With the development of specialization, coordination and intelligence in the manufacturing

service process, the issue of how to quickly extract potential resources or capabilities for distributed

manufacturing service requirements, and how to carry out resource matching for manufacturing service

requirements with correlated mapping characteristics, have become the critical issues to be addressed in

the cloud manufacturing environment. Through the combination of the characteristics of relevance, synergy

and diversity of manufacturing service tasks on the intelligent cloud platform, a matching decision method

for manufacturing service resources is proposed in this paper based on multidimensional information

fusion. On the basis of integrating multidimensional information data in cloud manufacturing resource,

the information entropy and rough set theory are applied to classify the importance of manufacturing

service tasks, while the matching capability are analyzed by using a hybrid collaborative filtering (HCF)

algorithm. Then, the information of function attribute, reliability and preference is employed to match and

push manufacturing service resources or capabilities actively, so as to realize the matching decision of

manufacturing service resources with precise quality, stable service and maximum efficiency. At last, a case

study of resources matching decision for body & chassis manufacturing service in a new energy automobile

enterprise is presented, in which the experimental results show that the proposed approach is more accuracy

and effective compared with other different recommendation algorithms.

INDEX TERMS Manufacturing service, information fusion, hybrid collaborative filtering, resource

matching.

I. INTRODUCTION

With the development of cloud computing, big data, ‘‘Inter-

net +’’, Internet of things, artificial intelligence and other

emerging technologies, the manufacturing industry has also

changed from the previous single production model to a

service-oriented, collaborative and intelligent cloudmanufac-

turingmodel [1]. Based on big data, cloudmanufacturing will

not only improve production efficiency, but also generate new

product and servicemodels in addition to traditional products,

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Hua Chen .

open up new growth space, and redefine the operation mode

and competitiveness of manufacturing industry [2].

Cloud manufacturing is a new model of networked and

agile manufacturing based on knowledge, which supports

customers to acquire resources and capability of manufactur-

ing services in real time, and increases or decreases manu-

facturing resources dynamically and nimbly, then completes

all kinds of process throughout the manufacturing life cycle

intelligently [3]. For manufacturing applications and busi-

ness operations on the virtual cloud manufacturing systems,

the resources and capabilities required by customers come

from the large scale manufacturing cloud pool. The man-

ufacturing resources and capability are integrated by cloud
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manufacturing, and virtualized to customers in the form of

services. In particular, on-requirement matching is the basic

link to achieve the goal of cloud manufacturing services.

That is, the resources and capability on the cloud manufactur-

ing platform is searched and selected according to customer

requirements. Therefore, how to select the most suitable

resources from the cloudmanufacturing service resource pool

andmatch them to customers in an appropriate form to satisfy

various requirements is a key issue in the research field of

cloud manufacturing service [4].

From the previous research, the research on the cloud man-

ufacturing service resource selection and optimal matching

has made some achievements. However, there are two major

challenges to be solved. One is the analysis of influencing fac-

tors for resource selection and matching, the other is resource

matching methods of manufacturing service.

On one hand, analysis of influencing factors in the

search andmatching for manufacturing service resources, has

evolved from a single item to multiple indicators gradually.

Those influencing factors include product function, manufac-

turing and service quality, and so on. But most of them only

consider single environment or element in the resource selec-

tion and optimization [5]. Zhang et al. proposed a Bayesian

method based on time perception in a distributed manufactur-

ing environment, for better recommendation effect of manu-

facturing service resources [6]. According to the importance

of each part in collaborative assembly, Fei et al. presented

a matching scheme through genetic optimization algorithm,

which has a good effect on reducing the remaining num-

ber of parts [7]. Raj et al. applied an ant colony algorithm

for selection and matching of products and services, and

examples showed that using lower precision parts can obtain

higher precision assemblies [8]. Based on service quality

attributes, Yahyaoui et al. established a classification plan,

using rough set theory to match the best Web service to

users [9]. In order to solve the problem of on-requirement

mutual selection of service providers and tasks in cloud

manufacturing environment, Zhao et al. Established a task-

resource bilateral matching model based on quality of ser-

vice (QoS), and adopted cloud model and variable fuzzy

recognition method for quantitative analysis and calcula-

tion [10]. Tursi et al. established an ontology-based service

resource information system with product performance as

the core, and a resource model with the service information

system [11].

In order to obtain better resource matching effect, multi-

ple influencing factors is analyzed and studied. For exam-

ple, to reduce the information loss of function indicators,

increase the controllable range of data measurement, and

analyze the conditions that require interval fuzzy preference

for resource decision, Bentkowsk et al. introduced interval

numbers instead of real numbers for function indicators of

resource requirement (power, size, etc.) [12]. Considering the

ambiguity of qualitative indicators in the decision-making

process for cloud resource selection and the difficulty of func-

tion indicators represented by interval measures, Liu et al.

suggested a hybrid multi-index method of resource matching

decision for cloud manufacturing based on OWA operator in

uncertain environment [13], and proposed a QoS matching

method of personalized clustering and reliable trust percep-

tion for resource recommendation in cloud manufacturing

environment for personalized requirements [14]. The above

results show that the influencing factors of cloud manufac-

turing resource matching are mainly distributed in unilat-

eral aspects such as function, reliability. However, there are

few studies that comprehensively consider these multiple

influencing factors.

On the other hand, there is still the need for a detailed map-

ping relationship between manufacturing service resources

and task requirement implementation in cloud environment.

And the research mainly focuses on resource selection based

on task characteristics at first [15], [16]. Jones presented an

analysis method based on customer requirements for product

services, and assisted designers in the design and improve-

ment of service products by mining service product task char-

acteristics [17]. Kotekar et al. proposed a clustering method

for Web services based on task / function similarity using

cat swarm optimization algorithm [18]. Shen et al. stud-

ied the agglomeration mechanism of cloud manufacturing

resources and used the weight-based intuitionistic trapezoid

fuzzy method to achieve the matching of required tasks and

services [19]. According to the new characteristics of the rel-

evance of manufacturing tasks and service synergy on cloud

platform, Ren et al. proposed a two-side matching decision

method for manufacturing tasks which takes into account

learning and synergy, by using the expected utility theory and

social network theory [20].

Subsequently, in order to improve the efficiency and effec-

tiveness of matching, quick search method for manufactur-

ing service resources is studied extensively. Schaefer et al

proposed a keyword-based Web service matching method,

and designed a binary algorithm solution model for maxi-

mum similarity [21]; Strunk et al. used semantic matching

and genetic algorithms to find services that satisfy require-

ments [22]. Argoneto et al. adopted the cooperative game

algorithm based on GaleShapley model and the fuzzy engine

in resources searching, and verified the high efficiency of the

matching method for cloud manufacturing capabilities. [23].

In addition, Armstrong et al. analyzed user task differences

through K-means algorithm, determined the number of clus-

ters within a certain range, and used evaluation criteria to

obtain the optimal fast clustering results [24]. Yuan et al.

proposed a recommendation method based on VSM and

Bisecting K-means clustering in order to improve the uses

personalized experience [25].

At the same time, the research of rapid resource matching

by task ordering is also carried out gradually [26], [27].

PageRank et al proposed an importance ranking method that

considers the efficiency relation between tasks and resource

nodes [28], and the LeaderRank algorithm also considered

the ordering correlation between tasks/resource nodes, so it

is more suitable for fast matching [29].
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In the above researches, most of them focus on the direct

matching and selection of manufacturing service requirement

and related resources under single influence factors or envi-

ronmental conditions. Moreover, in the cloud manufacturing

environment, research on the matching decision of manufac-

turing service resources and task sequencing simultaneously,

is still rare [30]. In order to improve the matching decision

accuracy between manufacturing service resources and tasks

in the cloud environment, this paper takes into account the

multiple influence factors in resource matching and con-

structs a multi-source information fusion model. And rough

sets are proposed to sort the importance of manufacturing ser-

vice task requirements for the rapid effectiveness of resource

matching. On this basis, through the hybrid collaborative

filtering method, reasonable matching and push of manufac-

turing service resources are achieved, and the results of other

recommendationmethods are compared and evaluated. In this

paper, the importance of task identification of manufacturing

service requirement is sorted, and the requirements of man-

ufacturing service with functional characteristics, reliability,

preference similarity and other influencing factors can be

accurately matched, to push the potential resources of man-

ufacturing service. Therefore, it has certain theoretical and

practical significance to realize the accurate, rapid and effec-

tive matching decision of manufacturing service resources

and task requirements in cloud environment.

The remainder of this paper is organized as follows:

Section 2 presents a resource matching decision architec-

ture of cloud manufacturing services based on multidi-

mensional information fusion. Section 3 proposes a hybrid

collaborative filtering algorithm based on rough sets to

match and push the manufacturing service resources, and

Section 4 presents the experiments and results based on the

proposed approach. Finally, some conclusions of this paper

and future work are drawn in Section 5.

II. THE RESOURCE MATCHING ARCHITECTURE OF

MANUFACTURING SERVICES

In order to satisfy the initiative, timeliness and collaboration

requirements of manufacturing services in the cloud envi-

ronment, based on the description of cloud manufacturing

service data, a manufacturing services resource matching

architecture oriented multi-dimensional information fusion is

proposed, so as to realize the use of resource library in cloud

manufacturing environment. As a concrete form of manufac-

turing service resourcematching decision, information fusion

can accelerate the mining and utilization of resources in the

cloud environment to realize the new cloud manufacturing

service pattern.

A. MAIN COMPONENTS IN THE RESOURCES MATCHING

ARCHITECTURE

In the decision-making process of manufacturing service

resource matching in the cloud environment, the main

goal of the proposed architecture is to analyze, divide and

map task modules according to the manufacturing service

requirements, select appropriate task resources and capabil-

ities, match and push them to the manufacturing service

customer requirement proactively. Asmanufacturing services

are restricted by many requirements, the whole process of

manufacturing service resourcematching is a process of com-

pleting the expected tasks continuously. The decision process

of manufacturing resource matching based on multidimen-

sional information fusion can be defined as: a manufacturing

service requirement or target is decomposed into specific

tasks, and the matching and push of manufacturing service

resources are realized by combining the information about

the relationship between tasks and requirements. According

to the matching results of manufacturing service tasks and

resources, the corresponding manufacturing service activities

are implemented. When a corresponding task changes, it is

necessary to further select the collaborative resources, until a

manufacturing service activities is completed. The resources

matching architecture of the manufacturing service in the

cloud manufacturing environment mainly consists of three

parts: matching decision process, collaborative manufactur-

ing service activities, application support modules (protocol

library, algorithm library, database). The details of each part

can be showed in Figure 1.

Figure 1 presents that the expected target of manufacturing

service is decomposed into a series of manufacturing service

subtasks according to the task decomposition rules in the

protocol library. Using the matching decision algorithm in

the algorithm library and multidimensional information such

as task content and resource characteristics in the database,

the matching manufacturing service resource is obtained.

Then the manufacturing service resources receive subtasks

and process collaboratively until the manufacturing service

activity is completed.

B. MULTI-DIMENSIONAL INFORMATION IN CLOUD

MANUFACTURING

The resources matching of cloud manufacturing service is

to push the corresponding resource information from the

resource database to the corresponding customers according

to the task conditions defined in the initial stage. Prior to

the decision-making of resources matching, those related

multi-dimensional information is classified and explained.

(1) Requirements information of manufacturing services

The requirements information of manufacturing services

are comprehensive details of manufacturing service resources

and capabilities, considering the customer requirements of

market forecasting, personalized customization, mass pro-

duction, and other factors that affect the technical parameters

of manufacturing services.

The requirements information for manufacturing service

is comprehensive requirements detail of resources and capa-

bilities, which is put forward by considering the customer

requirements for market prediction, personalized customiza-

tion, mass production, etc., and combining with various

influencing factors such as manufacturing service technical
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FIGURE 1. Resource matching architecture oriented multi-dimensional information fusion.

parameters. Its information structure can be described as

follows:

CS = (CSI, CSB, CSD, CSN) is defined as requirement

information of manufacturing service. Where CSI represents

the identification number of the requirement, CSB is the prod-

uct and service module to which the requirement belongs.

CSD denotes domain knowledge, that is, information about

the manufacturing services domain related to requirements.

CSN describes specific manufacturing service requirements,

such as manufacturing requirement content, service time

requirements, manufacturing service conditions, and cus-

tomer requirement preferences and so on.

(2) Task information of manufacturing services

Manufacturing service tasks, that is, in the initial phase

of collaborative work, manufacturing service requirements

or objectives are broken down into specific tasks or sub-

tasks. According to the specific manufacturing service tasks,

the requirements can be clearly defined. Meanwhile, task

information of manufacturing service will be provided to the

corresponding resources and capabilities.

PST = (PSTI, PSTC, PSTO, PSTD, PSTA) is defined

as task information of manufacturing service. Where PSTI

represents the identification number of themanufacturing ser-

vice task, PSTC is the importance of the task (weight), PSTO

denotes the manufacturing service object and the category to

which it belongs, and the PSTD is the specific description of

manufacturing service tasks. The PSTA describes ancillary

conditions for the completion of manufacturing service tasks,

such as task time constraints, workflow order, and so on.

(3) Resources information of manufacturing services

Manufacturing service resources are the collection of

resources and capabilities in the cloud environment. Accord-

ing to the basic rules of requirement satisfaction and task

ordering, resource or capability information is actively

pushed to the manufacturing service customer require-

ment. Resource information of manufacturing service can be

extracted from data such as capability qualifications, process

parameters, design templates, and product examples.

PSR = (PSRI, PSRB, PSRS, PSRA, PSRD) is defined

as resource information of manufacturing service. Where,

PSRI represents the identification number of manufacturing

service resource. PSRB describes the service category of

manufacturing service resource, such as requirement analy-

sis, planning and design, process structure, simulation and

trial-production, production and manufacturing, logistics

and warehousing, operation and maintenance, remanufac-

turing. PSRS is the description object of manufacturing

service resource, that is, the resource information to solve a

manufacturing service problem. PSRA describes the stored

information of manufacturing service resources, including

the ownership of resource. And PSRD is specific service

content description, which can be design scheme, product

parameters, production process, operation and maintenance

methods, etc., or successful case of manufacturing ser-

vice resources. Through the objective description of

the resources information, the conflicts or constraints

that may occur in manufacturing service could be

solved.
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(4) Characteristic information of manufacturing services

The characteristic information of manufacturing service is

the collection of active factors that directly participates in the

resource matching decision and the main basis for pushing

matched resources to the manufacturing service requirement.

The characteristics information of manufacturing services

can be described in multiple dimensions such as QOS, oper-

ational effects, process, etc.

PSC = (PSCI, PSCB, PSCD) is defined as characteris-

tic information of manufacturing service. Where PSRI rep-

resents the identification number of manufacturing service

characteristic, PSRB describes the manufacture service type

to which the resource belongs. PSRD is a specific descrip-

tion of the characteristics of manufacturing services, such as

QOS, collaboration or coordination, efficiency, energy con-

sumption and stability in operation; materials, time, cost and

quality in the process, flexibility in production, environment,

and so on.

(5) Professional information of manufacturing services

Professional information of manufacturing services is a

data collection created by industry definitions or standards,

which includes the division information of parts, assemblies,

components, parts and assemblies, and information on gen-

eral, specialized, intelligent devices by industry or size, infor-

mation of general parts and special parts according to the

production or processing standard division.

PSP = (PSPI, PSPB, PSPS, PSPD) is defined as profes-

sional information of manufacturing services. Where PSPI

is the identification number of manufacturing service indus-

try, PSPB refers to the category of manufacturing service

industry, PSPS are subclasses of industry. For example,

the industries belonging to the middle category in the special

equipment include: mining and metallurgy, electronics and

electrical machinery, and so on. And PSPD is a specific

description of professional information for the manufacturing

services.

In the cloud manufacturing environment, multi-

dimensional information of manufacturing service resources

is collected, analyzed, and pushed to obtain the matching of

resources and tasks. Subsequently, the cloud manufacturing

service tasks are completed together, based on actual experi-

ence. Through the analysis of multidimensional information

for manufacturing services, an information fusion process of

resources matching in cloud manufacturing environment is

introduced.

C. INFORMATION FUSION PROCESS OF MANUFACTURING

SERVICE IN CLOUD ENVIRONMENT

The multi-dimensional information fusion process, in which

manufacturing service resources utilize available services and

capabilities such as processing, product, technology and per-

sonnel to satisfy customer requirements continuously, is for-

mulated as follow.

Rm = i← 2 {T , I , S,N ,E} (1)

where, Rm is defined as the manufacturing service require-

ment, and the target example of manufacturing service

can be obtained from the customer requirement. i is an

instance of manufacturing service resource.2 refers to a pro-

cess of matching decision-making for manufacturing service

resources, T describes the manufacturing service target. I is

the collaborative information, which is mainly composed of

multidimensional information for manufacturing services. S

denotes the condition that the constraint satisfies in the manu-

facturing service, N is the number of manufacturing services,

and E represents the manufacturing service experience.

Based on the multi-dimensional information fusion model,

the system actively matches and pushes manufacturing ser-

vice resources, so as to reduce the difficulty and time for cus-

tomers to obtain manufacturing services as much as possible,

and to improve efficiency and effectiveness of manufacturing

service resources in collaborative work.

III. RESOURCES MATCHING OF

MANUFACTURING SERVICE

The processing and searching of a large number of mul-

tidimensional data presents challenges in cloud environ-

ment [31]. The Collaborative filtering is an important method

to avoid invalid data search and obtain effective data in big

data platform [32]. So the manufacturing service resources

is matched and pushed by a hybrid collaborative filtering

algorithm in this paper. In the context of rapid changes in

personalized demand, the capabilities and quality require-

ments of cloud manufacturing service resources have also

changed accordingly. Therefore, based on multidimensional

information and characteristics of the manufacturing ser-

vice resources in cloud, the matching influencing factors

are divided into three aspects: functional domain, reliability,

preference, so as to complete the comprehensive matching

estimation of manufacturing service resources [6], [33].

A. MATCHING OF FUNCTION ATTRIBUTES

Assume there are n field concepts {rj|1 ≤ j ≤ n} of func-
tional attribute for manufacturing services. And the associ-

ated set of manufacturing service resources ua is expressed as

{ui|1 ≤ i ≤ l, a /∈ [1, l]}, si,j is represented as the

matching degree between resource ui and the field concepts

rj of functional attribute for manufacturing service. While

Ii is described as a field concepts set of functional attribute

for manufacturing service in known matching degree of ui
currently. At the same time Ia is the field concepts set of

functional attribute in known matching degree of ua. Then

the matching degree sa,j of manufacturing service resource

ua and functional attribute rj is given as follows:

sa,j = s̄a +
l

∑

i=1,rj∈Ii

w(a, i)(si,j − s̄i)/
l

∑

i=1
w(a, i) (2)

where, s̄i is the average value of the matching degree between

the definedmanufacturing service resources ui and functional
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attributes.

s̄i =
∑

rj∈Ii

si,j/|Ii| (3)

In the same way, s̄a is the average value of the matching

degree between the defined manufacturing service resources

ua and functional attributes. Meanwhile, w(a, i) is the sim-

ilarity between manufacturing service resources ua and ui
which satisfy customer requirements in terms of functional

attributes. w(a, i) can be expressed as follow:

w(a, i) =

∑

rj∈Ia
(sa,j − s̄a)(si,j − s̄i)

√

∑

rj∈Ia
(sa,j − s̄a)2

∑

rj∈Ia
(si,j − s̄i)2

(4)

If multiple functional attribute vectors need to be matched

at the same time, the similarity wF (i, j) can be calculated

using linear weighting. According to the difference between

wF (i, j) and the actual data, whether to adjust the similarity

weight is determined.

B. RELIABILITY MATCHING

During the reliability matching of manufacturing service

resources, characteristic information of manufacturing ser-

vice is mainly involved, which include the process credibility,

the reliability of product or service quality, the timeliness

of delivery and other factors. The calculation equation of

similarity is consistent with the equation (4) in function

attribute matching. So the reliability similarity wR(i, j) of

the manufacturing service resources ui and uj to customer

requirements is showed as follow.

wR(i, j) = α1wr1(i, j)+ α2wr2(i, j)+ α3wr3(i, j) (5)

where, α1, α2 and α3 are the reliability regulation coefficients,

and
3
∑

i=1
αi = 1.

C. PREFERENCE SIMILARITY MATCHING

As the customer requirement include the preferences in inno-

vation, cost control, energy conservation, emission reduction,

efficiency optimization and so on, and the feature vector of

preferences can be composed of 0 and 1. Jaccard is used

to obtain the preferences similarity wp(i, j) of manufacturing

service resources.

wp(i, j) = Jaccard(gi, gj) =
∣

∣gi ∩ gj
∣

∣

∣

∣

∣

∣gi ∪ gj
∣

∣

∣

∣

(6)

So the similarity matching between manufacturing service

resources and customer preferences is showed as follow.

wP(i, j) = β1wp1(i, j)

+β2wp2(i, j)+ β3wp3(i, j)+ β4wp4(ii, j) (7)

where, βi is the adjustment coefficient of preference

similarity, and
4
∑

i=1
βi = 1.

D. COMPREHENSIVE SIMILARITY MATCHING

Similarly, a linear weighting function wC (i, j) is used to cal-

culate the comprehensive similarity of manufacturing service

resources in adjacent sets.

wC (i, j) = γ1wF (i, j)+ γ2wR(i, j)+ γ3wP(i, j) (8)

where, γk is the adjustment coefficient of comprehensive

similarity and k ∈ 1, 2, 3. The value of γk will affect the inte-

grated similarity between manufacturing service resources.

By adjusting the value of γk to observe the change in the

integrated matching effect, the appropriate γk can be obtained

when the matching effect is the best.

And the formula of selection and matching for manufac-

turing service resource is shown as follows.

Pim =

∑

uj∈Ui
wC (i, j)× Pjm
∑

uj∈Ui
wC (i, j)

=

∑

uj∈Ui

3
∑

k=1
γkwk (i, j)× Pjm

∑

uj∈Ui

3
∑

k=1
γkwk (i, j)

(9)

The adjacent resources set of the manufacturing service

resource ui is expressed as {uj|uj ∈ Ui}, Pjm represents the

result of resource uj being selected by m-th customer. If uj
has been selected, Pjm is 1, otherwise is 0.

Through the integration of multi-dimensional informa-

tion, such as function attribute, process credibility and

service preference in matching decision of manufacturing

service resource, the hybrid collaborative filtering algorithm

is used for data analysis of manufacturing service resources.

Then, the selection and matching of manufacturing service

resources can be obtained by combining the customer‘s inten-

tion to the adjacent resources selection.

E. TASK IMPORTANCE-ORIENTED RESOURCE MATCHING

DECISION OF MANUFACTURING SERVICE

In order to further improve the processing efficiency of

multidimensional information, the order of manufacturing

service tasks should be determined in advance on the basis

of resource matching using collaborative filtering algorithm.

Allow for rough set theory is a useful tool for dealing with

uncertainty and ambiguity, which start from the description of

a given problem, the inner law of the problem can be obtained

through the approximation domain of the indistinguishable

relation of the given problem. Meanwhile the defect can be

overcome that the traditional methods of processing uncer-

tain information often need prior knowledge or additional

data [34]. The rough sets are used to rank the importance of

manufacturing service subtasks, which can deal with the com-

plexity of collaborative manufacturing service environment

and the uncertainty of task information more effectively than

the traditional methods such as genetic algorithm, analytic

hierarchy process and fuzzy evaluation [35], [36].

Definition 1: A quad S = (U ,A,V , f ) is an information

system, of which U 6= φ is known as domain; A represents a

Non-empty finite set of all attributes, using V = ∪
a∈A

Va; Va
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FIGURE 2. Task importance-oriented manufacturing service resource matching decision.

is range of attribute a; f represents an information function

of U × A→ V , which assigns an information value to each

attribute of each object.

Definition 2: A binary equivalence relation IND(B) is

determined by each attribute subset B ⊆ A:

IND(B) = {(x, y) ⊂ U × U |∀a ∈ A, f (x, a) = f (y, a)} (10)

Definition 3: Equivalence relation IND(B) constitutes a

division of U , while B ⊆ A, expressed by U/IND(B) =
{X1,X2, . . . ,Xn}. Where, Xi represent different equivalence

classes, which form an equivalence class with all indistin-

guishable objects in case of IND(B), denoted as [x]IND(B).

Definition 4: If a ∈ A, and IND(B) 6= IND(A − {a}), a is

necessary in A; otherwise a is redundant.

Definition 5: H (P) is the information entropy of attribute

subset P ⊆ A, which can be obtained by the following

function:

P(Xi) =
|Xi|
|U |

, i = 1, 2, . . . ,m (11)

H (P) = −
m

∑

i=1
P(Xi)InP(X i) (12)

Inwhich,U/IND(P) = {X1,X2, . . . ,Xm} andP(Xi) = |Xi||U | ,
i = 1, 2, . . . ,m.

Definition 6: SA(a) is used to express the important of

attribute which in a ∈ A, given as follows:

SA(a) = |H (A)− H (A− {a})| (13)

If SA(a) > 0, then a ∈ A is necessary in A. If SA(a) = 0,

then a is redundant.

Then the process of resource matching decision and col-

laborative data push based on manufacturing service task

importance is shown in figure 2, which mainly includes the

following six steps:

Step 1: On the basis of the previous multidimensional data

collection and analysis, the information fusion is applied to

identify and determine the influence degree of each task on

the whole manufacturing service.

Step 2: Through the analysis of customer‘s requirements,

the manufacturing service requirements are decomposed into

each subtask by combining with the multiple manufactur-

ing service objectives. Subtasks should have an appropri-

ate granularity, which can be decomposed from the product

level, component level, part level and process level layer by

layer [37].

Step 3:Using the calculation of rough set theory, the prior-

ity of importance is obtained. Then the subtask of manufac-

turing service with large influence degree is selected, and the
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TABLE 1. Attribute table of resource matching decision based on multidimensional information fusion.

multivariate matching decision or push is implemented based

on the data of the manufacturing service resource base.

Step 4: Whether a matching decision succeeds is judged.

If it is successful, turn to (5), and then make the matching

decision between the next task and the resource. Otherwise,

the manufacturing service resources are updated, and match-

ing decisions of manufacturing service subtasks in this round

is made. Meantime the matching data of manufacturing ser-

vice resources is supplemented, and the multivariate match-

ing decision and push are re-conducted, and then turned (5).

Step 5:Whether there are any remaining tasks to be judged.

If so, combined with the requirement conditions of multi-

variate matching decision mentioned above, the constraint

conditions of the existing task are updated turning to (3).

Otherwise turn (6).

Step 6: Then the matching decisions and active push of

manufacturing service resources are obtained, and manu-

facturing service tasks are completed to satisfy customers’

multiple requirements for manufacturing services in the cloud

environment.

IV. CASE STUDY AND RESULTS ANALYSIS

In this section, a matching decision of manufacturing service

resource in a new energy automobile was toke as a case.

Considering the new energy automobile enterprise has mas-

tered one of the core technologies for new energy: vehicle

controller technology, which needs to form a cooperative

relationship with a number of resources in the cloudmanufac-

turing platform to cooperatively complete the multiple tasks

such as vehicle manufacturing and service of a new car at the

same time.

A. PRIORITY RANKING OF MANUFACTURING

SERVICE TASKS

According to the specific manufacturing service tasks pro-

posed by new energy automobile enterprises, the order of

task importance was obtained using rough set theory, which

could accelerate manufacturing service activities in the cloud

environment. In this case, using the actual business data of

the enterprise, the manufacturing service requirements are

decomposed into 8 subtasks according to the product level:

battery research and development, car chassis manufacturing

services, products and services of motor drive systems, brak-

ing energy recovery system (BER), anti-lock braking system

(ABS), products and services of both inside and outside

decoration, electronic stability program (ESP), vehicle intel-

ligent information processing system, etc., which denoted as

C1,C2,C3 · · ·C8, respectively.

For discussing importance of each subtask, the definitions

are given as below.

A quad S = (U ,A,V , f ) is defined as a decision informa-

tion system in manufacturing service tasks. Where, E 6= φ is

domain, and A is a nonempty finite set for decision attributes

identification. In a general way, A = C ∪ D, C ∩ D = φ,

where C is called a conditional attribute, and D is decision

attribute.

Meanwhile the task descriptions in the solutions provided

by the previous 28 resources of cloud manufacturing service

are selected and denoted as E1,E2,E3 · · ·E28 to calculate

the importance of manufacturing service subtasks. And the

manufacturing services effect of each solution is divided into

very consistent, consistent, non-compliant, with described as

D = (D1,D2,D3). Where, D1 = 3,D2 = 2,D3 = 1.

In combination with the multidimensional information set

of manufacturing service, the conditional attribute indexes

are R&D period, service quality, manufacturing cost, pro-

duction quality, functional attribute, preference satisfaction,

reliability, credibility, etc. All conditional attribute values are

discretized. According to the certain discrete rules, the condi-

tional attribute values are converted into graded values, which

are classified into three levels, and the three levels correspond

to 3, 2, 1. Thus, the values of the conditional attribute and the

decision attribute in 28 solutions are obtained, as shown in

table 1.
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TABLE 2. Importance degree of conditional attributes in matching decisions for manufacturing service resources.

Based on the table 1, the dependence of decision attribute

D to condition attribute C can is defined, represented by

γCi(D). There is dependence between D and C , and the

dependency indicates the proportion of equivalence instance

to all instances in the decision system, which can be correctly

divided into equivalence classes about C , using information

of condition attribute C . And the dependence is expressed as

a coefficient γCi(D):

γCi(D) =
card(posCi(D))

card(E)
(14)

where, the cardinality of set is represented by card(·).
And the importance degree of attribute C is solved. The

importance degree of conditional attribute Ci(Ci ∈ C) can be
understood as thematching degree of change in decisionmak-

ing, removing attributeCi from the conditional attributes. The

greater the change, the more important the attribute is. The

calculation equation for importance degree of the attribute C

is:

Sig(Ci = γC(D)− γ (C − Ci)(D) (15)

Then the importance degree is normalized. The importance

factor is obtained by normalizing the importance degree of

attributes. ωi is the importance degree of the i-th condition

attribute, show as below:

ωi =
Sig(Ci)
n
∑

i=1
Sig(Ci)

(16)

So the operation results can be awarded using equation

(14-16), which include:

card(E) = 28,

card(posC(D)) = 28,

γC(D) =
card(posC(D))

card(E)
=

28

28
= 1.

While the importance degree of each attribute is shown in

table 2:

After the above calculation, the importance degree of 8

subtasks in the matching decision of manufacturing service

resources was obtained. Among them, battery R&D andman-

ufacturing, body and chassis manufacturing services, brak-

ing energy recovery system are more important, and motor

drive system and other tasks are second. According to the

importance of subtasks and specific requirements of subtasks,

such as functional attribute requirements, cost information,

system maintenance services, and so on, the matching and

push of resources in cloud manufacturing services could be

implemented.

B. MATCHING AND PUSH OF CLOUD MANUFACTURING

SERVICE RESOURCES

Considering the greater importance of body and chassis, suit-

able vehicle chassis resources of the manufacturing service

is matched and pushed, using historical data such as the

cooperation effect and evaluation of previous manufactur-

ing service resources. Relevant data were collected on the

website of ‘‘Cloud Service Innovation Platform for High-end

Equipment Manufacturing’’. The hybrid filtering algorithm

and multi-dimensional information of manufacturing ser-

vice resources proposed in this paper was used in related

operations, among which the similarity calculation is a key

step of hybrid collaborative filtering. In the similarity cal-

culation, the subtasks of the body and chassis are broken

down into modules such as the frame, suspension, transmis-

sion, steering system, brake at the component level. And

the similarity calculation is carried out from three aspects

of multi-dimensional information: functional attributes, reli-

ability, and preference matching. Moreover, the classifica-

tion and utility information of each resource are shown

in table 3:

In the selecting and matching of resources, website related

data were used, and positive feedback behavior and weight-

ing rules were adopted: inquiry = 1, negotiation = 1,

purchase = 4. At the same time, the collected data were

denoised and normalized to obtain behavior statistics of

requirement & resource. During the similarity degree match-

ing, the information weight of basic function, reliability,

cost was assigned to 0.5 according to the customer experi-

ence, and the other matching weights of the same kind were

equally distributed. Then the each weight of comprehensive

similarity degree matching was the same and recorded as

γ1 = γ2 = γ3 = 0.33. Using the hybrid collabora-

tive filtering algorithm, the results of comprehensive sim-

ilarity degree matching are obtained and shown as ‘‘
√
’’

in table 4.

In order to verify the effectiveness of the proposed match-

ing and recommendation method, the data set of the existing

manufacturing service platform was used to compare with

other recommended methods. Typically, the indicator such

as f-measure is used to judge the matching effect, which is

determined by both precision rate and recall rate. Among

them, the precision rate indicates the accuracy, and the high

precision rate shows the high accuracy of thematched objects.

And the recall rate is based on the coverage of recommended

results. A large recall rate indicates a high coverage ratio

of the matched objects. The matching effect degree is com-

prehensively expressed by f-measure. The larger F value is,

the better the comprehensive matching effect will be. The
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TABLE 3. The classification and utility information of manufacturing service resource.

TABLE 4. Matching and predicting of manufacturing service resources.

equation for F is showed as follow [38].

Precision =
1

m
×

m
∑

i=1

|Ri ∩ Li|
|Li|

(17)

Recall =
1

m
×

m
∑

i=1

|Ri ∩ Li|
|Ri|

(18)

F − measure =
2× Precision× Recall
Precision+ Recall

(19)

Among them, |Ri ∩ Li| means the number of tasks that

resource ui is recommended to customer Ci and that cus-

tomer Ci does use resource ui to accomplish. |Li| represents
the number of tasks for recommendation resources ui, |Ri|
is the number of tasks that the customer actually adopts

the resources, m is the resources number of recommenda-

tion. Then the values comparison of P and R in different

algorithms are shown in figure 3 and figure 4 separately.

The different algorithms included: Item CF, User CF, Vector

SpaceModel(VSM) K-means clustering, VSM and Bisecting

K-means clustering, Cosine- CF, Pearson Correlation Coef-

ficient –CF, Adjusted Cosine-CF, Rough Set-CF and so

on. As shown in Figure 3 and 4, our approach achieves P

value of higher accuracy and R value of higher coverage

compare with other matching and recommendation meth-

ods. Meanwhile, in Figure 5, we can find that the F value

of comprehensive matching effect is relatively high in the

approach.

In the case, the adjustment coefficients are selected with

an interval of 0.2 and gradually increased from 0 to 1. The

length N of tasks recommended list is gradually increased

from 10 to 30 at intervals of 5. As can be seen from figure 5,

the effectiveness range of the optimal recommendation is

basically the same as that of other current recommendation

methods [39]–[41].

Using F values, the hybrid-CF based on RS (RS-CF)

method was compared with other recommendation algo-

rithms, such as traditional text-based collaborative filtering,

user-based collaborative filtering and so on. Figure 3 shows
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FIGURE 3. Comparison of P values for different recommendation algorithms.

FIGURE 4. Comparison of R values for different recommendation algorithms.

FIGURE 5. Comparison of F values for different recommendation algorithms.

the comparison results. It can be seen that the F value of

the hybrid collaborative filtering algorithm proposed in this

paper increases faster, indicating that the matching effect of

this method is better, which is more conducive to the rapid

identification and push of manufacturing service resources

reasonably and effectively.
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V. CONCLUSION

In this paper, the resource matching decision framework

is constructed in the cloud manufacturing environment,

and the multivariate information of manufacturing service

tasks, requirements, resources, characteristics, specialties,

etc., is analyzed. Then a manufacturing service resource

matching decision method based on multidimensional infor-

mation fusion is proposed, which includes: the rough set the-

ory is used for dynamic analysis and the importance ranking

of manufacturing service tasks. Taking advantage of the sim-

ilarity degree of manufacturing service resources, the hybrid

collaborative filtering algorithm is used to recommend and

push manufacturing service resources, so as to complete the

matching decision task of manufacturing service resources.

Subsequently, the rationality and effectiveness of the pro-

posed method are verified, by analyzing a case of matching

decision of body and chassis manufacturing service resources

in a new energy automobile enterprise. At the same time,

compared with other recommendation algorithms, the match-

ing effect of this method is proved to be superior. In the future

work, the different effects of multidimensional information

on resource matching decision in collaborative manufactur-

ing service are further analyzed. In addition, the selection and

optimization of different adjustment coefficients in the hybrid

collaborative filtering algorithm, as well as the influence and

correlation of the matching results, which is generated by the

number of recommended projects and the number of adjacent

similar projects, are also deeply studied.
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