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A Multidimensional Phase-Locked Loop
for Blind Multiuser Detection
John R. Barry, Member, IEEE, and Anuj Batra, Member, IEEE

Abstract—This paper concerns the problem of blind multiuser
detection, a special case of the blind source separation problem
in which the source signals have finite alphabets. Specifically, we
address the problem of identifying and resolving the uni-
tary matrix ambiguity U that results from whitening the receiver
observations, where is the number of sources. We propose the
multidimensional phase-locked loop (MPLL) as a generalization
of a scalar decision-directed PLL to vector-valued signals. The
MPLL adapts an estimate of U according to the recursion

Û +1 = Û R , where R is an -dimensional Householder-like
rotation depending on only the th receiver observation. The
( 2) complexity of an efficient implementation of the algorithm

is extremely low. Nevertheless, simulation results demonstrate
good convergence properties and superior steady-state perfor-
mance when compared with prior techniques. The algorithm is
also able to accommodate large alphabets and shaped alphabets.

Index Terms—Adaptive unitary filtering, finite alphabets, source
separation.

I. INTRODUCTION

E
ARLY strategies for managing interference in wireless

communication networks were based on a philosophy of

interference avoidance, whereby multiple users competing for

the same medium were allocated orthogonal channels in space,

time, or frequency. In contrast, modern networks utilizing

code- or space-division multiple access are (by design) subject

to a significant amount of multiuser interference. Multiuser

detection is the process of mitigating this interference through

signal processing at the receiver with the aim of recovering the

information transmitted by each user.

A partially blind multiuser detector exploits partial knowl-

edge of the matrix channel that maps transmitted symbols to

receiver observations. For example, the generalized sidelobe

canceler [1], MUSIC [2], and ESPRIT [3] algorithms exploit

knowledge of the array geometry, and the code-division-mul-

tiple-access detectors of [4]–[6] exploit knowledge of the

signature sequence of the desired user. In contrast to the

partially blind problem, this paper concerns the fully blind

problem in which the receiver has no a priori knowledge of

the channel matrix. Instead, the receiver can exploit only its
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knowledge of the statistics of the channel inputs. The blind

multiuser detection problem is a special case of the blind source

separation problem [7] with the restriction that the sources are

finite-alphabet digital communications signals having the same

signaling rate (and often the same alphabet).

A common and effective strategy for implementing a blind

multiuser detector is to decompose the process into two steps

by first whitening and then rotating [8]–[21]. The whitening step

requires only second-order statistics and is well suited for blind

implementation. The effect of whitening is to transform the un-

known channel matrix into an unknown unitary matrix of di-

mension , where is the number of users. The focus of

this paper is on the second step of rotation, which blindly iden-

tifies and resolves this unknown unitary matrix.

Among the previously proposed blind source separation al-

gorithms, many do not constrain the alphabets to be discrete.

For example, Cardoso and Souloumiac proposed the joint ap-

proximate diagonalization of eigenmatrices (JADE) algorithm

[10], which is an effective separator that places few restrictions

on the source signals. (See also [20]). It estimates the columns

of from the eigenvectors of an sample cumulant

matrix. The main drawbacks of JADE are its batch-oriented

nature, making it ill-suited for time-varying channels, and its

high computational complexity [22]. Another example

is the equivariant adaptive source separation (EASI) algorithm

[23] of Cardoso and Laheld. It is an adaptive algorithm whose

complexity is significantly lower, albeit with slower con-

vergence. Lower still in complexity is the adaptive al-

gorithm of Zarzoso and Nandi [24], but its convergence speed

is comparable to that of EASI, and it is untested in noise.

Other separation algorithms require knowledge of a specific

property of the alphabet at the receiver. For example, the clus-

tering algorithms of [19] and [25] exploit the finite nature of

the symbol alphabets, but they are batch-oriented and restricted

to binary alphabets, and their exponential complexity is

often prohibitive. A related approach with complexity is

proposed by van der Veen [26]. Constant-modulus algorithms

[21], [27], [28] have low complexity and can be effective for

finite alphabets but suffer from slow convergence and can fail

with shaped alphabets.

This paper proposes a decision-directed rotation strategy that

is substantially different from prior techniques. Our approach is

motivated by the single-user problem of blind carrier recovery

in which the receiver must blindly resolve an unknown unitary

scalar of the form . In that setting, the phase-locked loop

(PLL) is almost universally adopted. By analogy, we propose

an extension of the PLL to vector-valued signals. The resulting

multidimensional PLL (MPLL) is an ad hoc algorithm in the

1053-587X/02$17.00 © 2002 IEEE
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sense that it is not derived according to any criterion of opti-

mality. Although the scalar PLL has been tied to Kalman fil-

tering [29], we make no such claims for the MPLL. Neverthe-

less, we will see that many of the same features of the scalar PLL

that make it a workhorse in the scalar setting carry over into

the higher dimensional problem of adapting unitary matrices.

Specifically, the MPLL algorithm has the following attributes.

• It is adaptive.

• Its complexity is significantly lower than prior

techniques.

• It has good convergence properties.

• Its decision-directed nature leads to excellent steady-state

performance.

• It can accommodate higher order alphabets and shaped

alphabets.

The MPLL algorithm is also conceptually simple, with a useful

geometric interpretation that will facilitate its application to new

areas. Finally, the MPLL is parameterized by only a single pa-

rameter, which helps contribute to its robustness.

The remainder of this paper is organized as follows. In Sec-

tion II, we present our system model and problem statement. In

Section III, we review the scalar PLL and then present its multi-

dimensional extension. In Section IV, we present numerical re-

sults, illustrating the effectiveness of the MPLL algorithm.

II. CHANNEL MODEL AND PROBLEM STATEMENT

We consider a memoryless unitary channel in which the re-

ceiver observation at time is given

by

(1)

where represents a vector of trans-

mitted symbols, is an unknown unitary matrix,

and where the noise is a complex circularly symmetric

Gaussian noise sequence with diagonal autocorrelation matrix

and for , where

denotes complex conjugate transpose. We assume that the

symbol sequences are mutually independent, with symbols in

each sequence being chosen independently from possibly

distinct (although often identical) finite alphabets. The alpha-

bets are assumed to be known a priori at the receiver and are

normalized to have unit energy so that . The

problem addressed in this paper is straightforward: Given the

unitary model (1), blindly and adaptively identify and resolve

. We remark that while not strictly necessary, it is advan-

tageous for the receiver to exploit the fact that the channel is

unitary because this reduces the number of degrees of freedom

and thus may lead to better performance, faster convergence,

or lower complexity.

The unitary model of (1) may arise in a wide variety

of applications, including blind multiuser detection, blind

beamforming, array-to-array (MIMO) communications, and

multicarrier modulation. For example, consider the problem of

blind multiuser detection for an -user system in which the th

observation at an array of sensors is

(2)

where is as before, where is an unknown (nonunitary)

complex-valued channel matrix with and full

column rank, and where is a complex circularly symmetric

white-Gaussian noise sequence satisfying . If

is a truncated SVD for which

and is diagonal, then , , and may be recov-

ered blindly using second-order statistics only, namely, from

an eigendecomposition of . It fol-

lows that is an whitening matrix and that

accomplishes the whitening step. Then, the unitary

model of (1) describes the whitened data , where the

noise autocorrelation matrix is .

For the convolutive case of channels with memory, a combi-

nation of spatial and temporal whitening will also lead to the

unitary model (1) [13], [17], [30]. Alternatively, the whitening

step need not be based on second-order statistics; for example,

a whitener based on higher order statistics and a vector con-

stant-modulus algorithm has been proposed [21], [28].

III. PHASE-LOCKED LOOP

We describe the multidimensional PLL (MPLL), a low-com-

plexity technique for adapting a unitary matrix. Since the MPLL

can be viewed as a generalization of a scalar PLL to vector-

valued signals, we begin by reviewing a first-order scalar PLL

for carrier phase synchronization.

A. Scalar PLL

A single-user quadrature-amplitude modulation (QAM) com-

munication system with carrier-phase offset is a special case of

(1) in which all signals are scalars. In this case, (1) reduces to

where is the unknown phase, is the transmitted symbol

chosen from a finite alphabet, and is the noise. The vast

majority of practical receivers mitigate such phase offset using

a PLL. In Fig. 1(a), we depict the traditional first-order dis-

crete-time PLL.

The structure of the PLL is easily motivated by first ne-

glecting noise. Let denote the receiver’s estimate of at

time . In an attempt to cancel the phase offset, the receiver

multiplies by , producing . In the ab-

sence of noise, this reduces to , where

denotes the estimation error. With knowledge of (i.e., with

training), the receiver may then recover by measuring the

angle between and . If this angle is known exactly at time

, the receiver can force the estimation error to zero at time

by choosing the next phase estimate to be .

The impact of noise is to prevent the receiver from knowing

exactly. Let denote the receiver’s estimate of at time ,

as estimated by measuring the angle between and using

the phase detector

Im
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Fig. 1. (a) Phase-locked loop for scalar channels. (b) Its equivalent model. (c) MPLL for matrix channels.

Because of noise, this estimate differs from . As illustrated in

Fig. 1(a), a first-order PLL updates the phase estimate according

to [31]:

(3)

where the parameter is referred to as the loop-filter

gain or step size. Choosing is appropriate only in the ab-

sence of noise. A smaller gain will mitigate noise at the expense

of slower convergence and poorer tracking (for the case when

varies with time). A proper choice of trades off convergence

speed and tracking capability for noise immunity.

The block diagram of Fig. 1(a) shows the traditional view of

the PLL described by (3), consisting of a phase detector with

output , a loop filter with output , an accumulator with

output , and a complex exponentiator with

output . The cascade of the accu-

mulator and complex exponentiator is commonly referred to as

a VCO, in deference to its analog origins. In the absence of

training, the PLL can be operated in a decision-directed mode

by substituting decisions in place of in the phase detector,

where is the alphabet symbol closest to . The PLL shown

in Fig. 1(a) is decision directed.

We now present an alternative model of the scalar PLL that

will facilitate its generalization to vector-valued signals. The al-

ternative model is shown in Fig. 1(b) and is precisely equiva-

lent to that of Fig. 1(a). The basic difference here is that pro-

cessing is performed on directly instead of indirectly

via . In particular, let denote the receiver’s esti-

mate of at time . Rather than viewing the VCO as

an accumulator followed by a complex exponentiator, we opt

instead to view it as a complex exponentiator followed by a

product accumulator so that the VCO output can be rewritten

as . By definition of the phase detector,

we may interpret the term as the unique unitary scalar

that rotates to . To emphasize this interpretation,

we introduce the new notation

The VCO output may now be expressed as

, where may be inter-

preted as the unique unitary scalar that rotates a fraction of

the way from to .
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As shown in Fig. 1(b), we define the rotation detector as the

cascade of the phase detector, loop filter, and exponentiator. The

rotation detector takes two inputs ( and ) and produces the

output . Simply stated, the rotation detector pro-

duces the unique unitary scalar that rotates a fraction of the

way from one of its normalized inputs to the other. The VCO

output can then be generated recur-

sively using

(4)

This recursion is a compact and exact description of a first-order

decision-directed PLL.

That the PLL always converges is not immediately evident,

given that it is both blind and decision directed, and initial deci-

sions will almost surely be incorrect. (A decision-directed LMS-

based linear equalizer is known to be a poor blind equalizer, for

example.) Indeed, with a 16-QAM alphabet and in the absence

of noise, Simon and Smith [32] have shown that the output of

the phase detector is identically zero when the phase error is

or . For sufficiently small

step size , therefore, may linger near for a long

time. In theory [32], however, such misconvergence will not last

indefinitely; even for zero noise and infinitesimal , an appro-

priate sequence of symbols will eventually occur that allows the

PLL to escape this local minimum, and is guaranteed to con-

verge eventually to a multiple of 90 . Fortunately, in practice,

there is always noise, and is always significantly larger than

zero, both of which prevent the PLL from getting trapped indef-

initely in an undesirable stable point. For this reason, the exis-

tence of local minima rarely causes a problem in practice.

B. Multidimensional PLL

In this section, we generalize the scalar decision-directed

phase-locked loop of the Section II to vector-valued signals.

Assume the model (1), and let denote the receiver’s esti-

mate of the unitary matrix at time . Let denote

the MPLL output, and let denote the receiver’s estimate

of , as found through either quantizing or via training.

(In the former case, the th component of is taken as the

element of the th alphabet closest to the th component of .)

Generalizing (4) to higher dimensions leads to the following

recursion for updating the receiver’s estimate of :

(5)

where is the rotation detector output at time , as shown

in Fig. 1(c). The key question is how to define this rotation de-

tector. Extending the scalar definition, we will require that it par-

tially rotate to . Unlike the scalar case, how-

ever, such an is not unique. We define a suitable in the

following.

Because the two inputs to lie within the sub-

space spanned by and , the rotation detector at time can

learn nothing about vectors orthogonal to this subspace, and

hence, it is intuitively reasonable to limit the action of the ro-

tation detector to this subspace. This observation suggests that

for any Span . We will thus

require that the unitary satisfy the following two conditions:

i)

ii) for any Span .

Even with the second constraint, is not unique.

We can make it unique by choosing the satisfying conditions

i) and ii) that minimizes the Frobenius distance between and

the identity matrix; this strategy is intuitively pleasing because

we expect to approximate the identity near convergence. As

shown in Appendix A, the unitary matrix closest to the iden-

tity and satisfying conditions i) and ii) is

(6)

where is the inner product between

and , where , where ,

where , and where is chosen so

that forms an orthonormal basis for the span of and .

For the singular and rare case of , we set in (6).

As expected, reduces to the Householder matrix

when .

In principle, we may use (6) directly in (5). However, this

would require that be raised to a fractional power at each

iteration. In practice, we can avoid this computationally inten-

sive task by solving for directly as a function of and .

As derived in Appendix A, with given by (6), may be ex-

pressed as

(7)

where , , and are as defined in (6); where and

with , , and

; and where .

The expression for in (7), together with (5), defines the

MPLL algorithm. It is parameterized by the step size .

We emphasize that the MPLL is a true generalization of a scalar

PLL and that (5) and (7) collapse to a conventional scalar deci-

sion-directed first-order PLL when .

We remark that because matrix multiplication is not commu-

tative, we had to make a choice about the ordering of and

in (5). Our choice to postmultiply

by is easily motivated on heuristic grounds. By definition

of the rotation detector, should be closer to than was

, or equivalently, should be closer to than was

, where we used . However, from (1), we have

; therefore, another equivalent statement is that

should be closer to than was . It thus follows that

the postmultiplication in (5) is the natural choice.

The multiplicative recursion of (5) can be implemented as an

additive recursion with lower complexity since the difference

is a rank-two matrix consisting of the sum of

four outer products. Specifically, substituting (7) into (5) yields

(8)

The matrix multiplication in (8) has only complexity,

which is significantly less than the complexity of a di-

rect implementation of the matrix multiplication in (5). Both re-
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cursions preserve orthogonality exactly, without the need for an

extra normalization step (like that used in [23]).

While an analytical study of the convergence of the MPLL has

proven difficult (see [21]), the numerical results of Section IV

demonstrate that, like the scalar PLL, the MPLL exhibits good

convergence properties.

C. Reduced-Complexity Approximations to the Rotation

Detector

The rotation detector of (7) is expressed as a func-

tion of the angle and the factor

, neither of which

possesses a straightforward geometric interpretation. The com-

plexity required for computing and may also be significant

in certain applications. As alternatives, in this section, we

present two approximations to the rotation detector (7); both

approximations have reduced complexity and are somewhat

easier to interpret than (7).

First, from (17) in Appendix A, we have that

the product of two matrices, where . Raising

each of the two matrices to the power individually leads to the

approximation

This approximation possesses a simple geometric interpretation

as a partial plane rotation followed by a complex scalar rotation.

It also requires fewer operations than (19). The approximate ro-

tation detector that results is given by

(9)

Second, we can derive another approximation to the rotation

detector (7) by introducing an intermediate vector

between and . Based on the observation that the

true rotation detector will approximately rotate

to , we may approximate (7) using

(10)

where is computed from (6) with replacing .

For the special case in which all alphabets are real, it is shown

in [21] that (10) is equivalent to (7), albeit with a different value

for .

Although (9) and (10) only approximate (7), they are equally

valid extensions of the PLL to higher dimensions in the sense

that they both reduce to a conventional scalar decision-directed

first-order PLL when . The performance and complexity

of the two approximations (9) and (10) will be compared with

the true rotation detector (7) in the Section IV.

IV. NUMERICAL RESULTS

At first glance, it might seem that the goal of a blind mul-

tiuser detector is to force the channel-whitener-rotation cascade

Fig. 2. Convergence slows with increasing alphabet size.

to the identity matrix. However, there are two am-

biguities in the blind setting that make this goal unattainable.

First, the ordering of the users is arbitrary and unobservable,

and second, rotating each user’s alphabet by certain angles may

also be unobservable. These two ambiguities are inherent to any

blind source separation problem and are captured by a complex

permutation matrix , which we define as any matrix express-

ible as the product of a permutation matrix and a diagonal uni-

tary matrix. Thus, the actual goal of a blind multiuser detector is

to force the channel-whitener-rotation cascade to any complex

permutation matrix .

Consider a square 3 3 version of the multiuser channel (2),

with each of the three symbols in being chosen i.i.d. uni-

formly from a unit-energy QAM alphabet, and assume that an

ideal whitener is used, where is an

SVD. The performance of the blind MPLL algorithm (7) and

(8) is shown in Fig. 2, where we plot the instantaneous esti-

mation error versus time for three different

alphabet sizes: 4-QAM, 16-QAM, and 64-QAM. Here, is

computed anew at each time as the complex permutation ma-

trix closest to . The channel was generated randomly

with i.i.d. real and imaginary components, the SNR

was dB, and the MPLL step size was . The

performance of the JADE algorithm is also shown in Fig. 2.

Based on Fig. 2, we make the following observations. First,

the convergence of the blind MPLL slows as the size of the al-

phabets increases. This is because initial decisions are less likely

to be correct when the alphabet is large. Nevertheless, even with

64-QAM, the blind MPLL converges successfully after 95 itera-

tions. Second, the blind MPLL converges faster than JADE, and

it offers superior steady-state performance. This latter fact is due

primarily to the decision-directed nature of the blind MPLL. In

contrast, JADE does not exploit the finite-alphabet property.

The steep slopes of the MPLL curves in Fig. 2 are typical

of an individual trial, but the exact instant at which the error

drops can vary significantly from one trial to the next. Indeed,

there may exist symbol and noise realizations for which the

blind MPLL converges slower than JADE. To better illustrate
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Fig. 3. Convergence slows as the number of users increases.

average performance, we now average the instantaneous results

over 1000 independent trials. This time, we fix the alphabet at

and vary the number of users . As before, we

assume an ideal whitener , where is

an SVD, SNR dB, and . The average per-

formance of the MPLL algorithm is shown in Fig. 3, where we

plot average estimation error versus time

for . Here, the operator indicates an arithmetic

average over the trials, and is again the complex permuta-

tion matrix closest to . The results were averaged over

1000 independent symbol, noise, and channel realizations, with

having i.i.d. real and imaginary components.

Two cases are shown: The blind MPLL algorithm generates the

symbol estimates in (7) using a memoryless component-wise

decision device, and the trained MPLL algorithm uses the actual

transmitted symbols in place of .

We should emphasize at this point that the trained MPLL is

not a blind receiver since it has access to all of the transmitted

symbols. Nevertheless, the trained MPLL is of interest for three

reasons. First, it provides an empirical bound on the perfor-

mance of the blind MPLL. Second, by comparing the blind

MPLL to the trained MPLL, we can immediately discern the

impact of incorrect decisions on the performance of the blind

MPLL. Third, a trained MPLL may be useful in unrelated non-

blind applications that are beyond the scope of this paper; for

example, a trained MPLL may be used to adapt unitary matrices

to implement a singular-value decomposition of the channel ma-

trix [17], [33].

Observe from Fig. 3 that the trained MPLL converges sig-

nificantly faster than the blind MPLL. The initial sluggishness

of the blind MPLL can be blamed on the fact that many of the

decisions are initially incorrect. The initial decision errors are

not catastrophic, however; the performance of the blind MPLL

eventually equals that of the trained MPLL. In addition, observe

that for the trained as well as the blind MPLL, the speed of con-

vergence decreases as the number of users increases. This latter

fact is not surprising, given that at any iteration, the MPLL is

able only to compensate for a rotation within the two-dimen-

Fig. 4. User 1 constellations at different times (columns) and different SNRs
(rows).

sional (2-D) subspace defined by its two inputs at that time, and

hence, it must average over many iterations in order to compen-

sate for a rotation in the full -dimensional space.

Like the scalar PLL, the MPLL is effective at low SNR. Con-

sider the system (2) with independent 4-QAM users and

an ideal whitener . The performance of the blind

MPLL algorithm is illustrated in Fig. 4, where the first-output

constellations are shown after 20, 40, 60, 80, and 100 itera-

tions. (The constellation at time was

generated by passing 30 000 symbol vectors through the noisy

channel while holding fixed at .) The results are shown

for SNR values of 4, 6, 8, and 10 dB. The channel

was generated randomly with i.i.d. real and imag-

inary components, and the MPLL step size was . The

decision-directed MPLL performs well for SNR as low as 6 dB,

despite the occurrence of frequent decision errors.

To examine the impact of SNR on the MPLL performance

statistics, consider again the system (2) with independent

4-QAM users. We applied the MPLL algorithm with

over 40 000 independent channel, noise, and symbol realiza-

tions, where the components of the channel were generated

randomly with i.i.d. real and imaginary compo-

nents and using an ideal whitener. The performance of the blind

MPLL is compared with that of the trained MPLL in Fig. 5,

where we plot performance as a function of SNR

after 400 iterations. In this example, we measure performance in

three different ways, using mean-squared error, median-squared

error, and 90%-percentile squared error. All three performance

measures take the form with but

with the operator appropriately defined in each case.

We make a number of observations based on Fig. 5. As ex-

pected, the estimation errors decrease with increasing SNR. In

all cases, the blind and trained MPLL curves have the same

slope at high SNR. The performance penalty of the blind MPLL

relative to the trained MPLL seems to depend on which per-

formance measure is used. In terms of mean-squared error, the

blind MPLL never attains the same performance as the trained

MPLL, with a SNR gap of about 2 dB. Nevertheless, the blind
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Fig. 5. MPLL performance as a function of SNR, after 400 iterations, averaged
over 40 000 trials.

Fig. 6. Histograms of estimation error for different values of SNR, with
training and blind.

and trained MPLL do agree at high SNR in terms of median-

squared error and 90%-percentile squared error. Apparently, the

blind MPLL departs from the trained MPLL only on a small

fraction of trials, which nevertheless has a substantial impact of

the mean-squared error. This bimodal behavior leads to similar

median and percentile measurements but differing mean mea-

surements. The bimodal statistics are illustrated more directly

in Fig. 6, where we plot histograms of the squared estimation

error from this experiment for different values of SNR. For the

most part, the performance histograms for the trained and blind

MPLLs coincide, even at low SNR, except for the heavier tail

for the blind MPLL at high estimation errors and low SNR.

The blind MPLL is also effective in the presence of shaped al-

phabets with probability density functions approximating that of

a Gaussian distribution. As an illustration, consider the complex

alphabet defined by choosing from the hexagonal lattice

Fig. 7. Performance with a shaped constellation.

Fig. 8. Constellation of the first output for the (a) JADE and (b) blind MPLL
detectors, using a shaped input alphabet.

the 26 elements closest to the origin.

To shape the alphabet, the symbols are chosen i.i.d. according to

the pdf , with chosen so that . The

resulting alphabet satisfies , which is

close to the complex-Gaussian value of 2. Consider a two-user

system, with both users independently drawing symbols from

this shaped alphabet. The performance of the blind MPLL is

compared with that of JADE in Fig. 7, where we plot average

estimation error versus time. The results were averaged over

1000 independent symbol, noise, and channel realizations, with

having i.i.d. real and imaginary components,

with SNR dB, and with a time-varying step size

. The MPLL is seen to consistently con-

verge even with shaped alphabets, which is a by-product of its

decision-directed nature. In contrast, the JADE algorithm fails.

The results of a single typical trial are shown in Fig. 8, where

constellations are shown for the first output of both the MPLL

and JADE algorithms, based on the final at time . Only

the MPLL is able to faithfully reconstruct the original alphabet.

To test the performance of the MPLL in the presence of fre-

quency offset between the transmitter and receiver local oscil-

lators, consider the system (2) with independent 4-QAM

users. To emulate frequency offset for user 1, the channel matrix

in (2) is replaced by a time-varying matrix with

diag , where is the frequency offset
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Fig. 9. Performance of a trained MPLL in the presence of frequency offset.
For each �fT , results are shown for the three MPLLs that result from using
(7), (9), and (10) for the rotation detector. The inset shows the corresponding
complexity.

(in Hertz) between the transmitter and receiver local oscilla-

tors, and is the signaling rate. Assume an ideal whitener

, where and are

SVDs, with . The ideal whitener is seen to be

time-invariant and independent of . In this case, the uni-

tary model of (1) applies but with a time-varying ambiguity

.

The performance of the trained MPLL with frequency

offset is shown in Fig. 9, where we plot average estimation

error versus time for ,

SNR dB, and . The results were averaged over

independent channel, symbol, and noise realizations, with

having i.i.d. real and imaginary components.

The good performance demonstrated in the figure indicates

that the MPLL is able to track the time-varying unitary matrix

ambiguity, albeit with a small steady-state error that increases

linearly with . Classical linear analysis of a single-user

first-order PLL with frequency offset and in the absence of noise

predicts a steady-state phase offset of [31]. The

simulation results of the MPLL are seen to match this prediction

since diag , as depicted by the

dashed lines in Fig. 9.

Fig. 9 also illustrates the impact of using the approximate ro-

tation detectors of (9) and (10) in place of the original rotation

detector of (7) in the MPLL update of (8). Close inspection of

Fig. 9 reveals that for each value of , there are three nearly

indistinguishable curves shown in Fig. 9; from lower to upper,

these three curves correspond to using (7), (9), and (10). The

figure indicates that the approximations (9) and (10) converge

slightly slower than the original (7) but with no perceptible per-

formance degradation at steady state. The inset to Fig. 9 illus-

trates the corresponding complexity reduction, with an MPLL

based on the approximations of (9) and (10) requiring 74 and

75% fewer FLOPs (as measured using the MATLAB flops com-

mand) per iteration, respectively, than the original based on (7).

This reduction in complexity diminishes with increasing , as

the complexity of (8) eventually dominates for large , regard-

less of how the rotation detector is implemented.

V. SUMMARY

We have proposed the MPLL as an extension of the scalar

first-order PLL to vector-valued signals. We have demon-

strated the effectiveness of the MPLL in the context of blind

multiuser detection or blind source separation with finite-al-

phabet sources. Despite its decision-directed nature, the MPLL

exhibits good convergence properties, with fast convergence

and excellent steady-state performance. The MPLL is able to

accommodate shaped alphabets and carrier frequency offset.

Furthermore, the complexity of the MPLL is only ,

where is the number of sources. Further results on the MPLL,

including a second-order extension and an empirical conver-

gence study, may be found in [21]. Still lacking is a theoretical

understanding of the convergence properties of the MPLL.

APPENDIX

DERIVATION OF THE ROTATION DETECTOR

Let , satisfy . Let denote the uni-

tary matrix closest in Frobenius distance to the identity matrix

that satisfies and for any Span .

In this appendix, we show that is given by (6) and that is

given by (7).

Let denote the inner product

(11)

Because and are unit length, satisfies . Con-

sider first the case , which implies that . Let

be a unitary matrix whose columns

form a basis for . In this case, the set of all unitary matrices

mapping to is given by

(12)

for some unitary matrix . To ensure that

for Span , we must have . It follows

that is

when (13)

This is identical to (6) with .

On the other hand, if , then and span a 2-D sub-

space. Let us introduce the angles and

so that may be written as .

Let be a basis for the span of and , where from the

Gram–Schmidt procedure, we have

(14)

Let be a unitary matrix whose

columns form an orthonormal basis for . In terms of this

basis, and are described by the vectors and

, respectively. However, any
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unitary matrix mapping to must

have the Givens-like form

(15)

for some . Therefore, must take the form

(16)

where and is some unitary

matrix. Again, to satisfy for any Span ,

we must have . It is easy to see from (15) that choosing

will minimize the Frobenius distance between and the

identity matrix, in which case, (15) reduces to

(17)

From (17) and (16) with , reduces to (6).

We now derive the expression for of (7). Since of (17)

is unitary, its eigendecomposition takes the form

with diag , where both and are unitary [34].

It can be verified that

(18)

and , , where

, and

We can then compute as , which, after some

manipulation, reduces to

(19)

where

From (19) and (16) with , reduces to (7). Q.E.D.
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