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Abstract

Background: Cellular senescence, a permanent state of replicative arrest in otherwise proliferating cells, is a

hallmark of aging and has been linked to aging-related diseases. Many genes play a role in cellular senescence, yet

a comprehensive understanding of its pathways is still lacking.

Results: We develop CellAge (http://genomics.senescence.info/cells), a manually curated database of 279 human

genes driving cellular senescence, and perform various integrative analyses. Genes inducing cellular senescence

tend to be overexpressed with age in human tissues and are significantly overrepresented in anti-longevity and

tumor-suppressor genes, while genes inhibiting cellular senescence overlap with pro-longevity and oncogenes.

Furthermore, cellular senescence genes are strongly conserved in mammals but not in invertebrates. We also build

cellular senescence protein-protein interaction and co-expression networks. Clusters in the networks are enriched

for cell cycle and immunological processes. Network topological parameters also reveal novel potential cellular

senescence regulators. Using siRNAs, we observe that all 26 candidates tested induce at least one marker of

senescence with 13 genes (C9orf40, CDC25A, CDCA4, CKAP2, GTF3C4, HAUS4, IMMT, MCM7, MTHFD2, MYBL2, NEK2,

NIPA2, and TCEB3) decreasing cell number, activating p16/p21, and undergoing morphological changes that

resemble cellular senescence.

Conclusions: Overall, our work provides a benchmark resource for researchers to study cellular senescence, and our

systems biology analyses reveal new insights and gene regulators of cellular senescence.
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Background
In the 1960s, Leonard Hayflick and Paul Moorhead

demonstrated that human fibroblasts reached a stable

proliferative growth arrest between their fortieth and

sixtieth divisions [1]. Such cells would enter an altered

state of “replicative senescence,” subsisting in a non-

proliferating, metabolically active phase with a distinct

vacuolated morphology [2]. This intrinsic form of senes-

cence is driven by gradual replicative telomere erosion,

eventually exposing an uncapped free double-stranded

chromosome end and triggering a permanent DNA

damage response [3, 4]. Additionally, acute premature

senescence can occur as an antagonistic consequence of

genomic, epigenomic, or proteomic damage, driven by

oncogenic factors, oxidative stress, or radiation [5]. Ini-

tially considered an evolutionary response to reduce mu-

tation accrual and subsequent tumorigenesis, the

pleiotropic nature of senescence has also been positively

implicated in processes including embryogenesis [6, 7],

wound healing [8], and immune clearance [9, 10]. By

contrast, the gradual accumulation and chronic

persistence of senescent cells with time promotes dele-

terious effects that are considered to accelerate deterior-

ation and hyperplasia in aging [11]. Senescent cells

secrete a cocktail of inflammatory and stromal regula-

tors—denoted as the senescence-associated secretory

phenotype, or SASP—which adversely impact neighbor-

ing cells, the surrounding extracellular matrix, and other

structural components, resulting in chronic inflamma-

tion, the induction of senescence in healthy cells, and

vulnerable tissue [12, 13]. Mice expressing transgenic

INK-ATTAC, which induces apoptosis of p16-positive

senescent cells, also have increased lifespan and im-

proved healthspan [14]. It is, therefore, no surprise that

in recent years gerontology has heavily focused on the

prevention or removal of senescent cells as a means to

slow or stop aging and related pathologies [15–17].

Research has sought to ascertain the genetic program

and prodrome underlying the development and phenotype

of senescent cells [18]. Expedited by recent advances in

genomic and transcriptomic sequencing, alongside high-

throughput genetic screens, a wealth of publicly available

data now exists which has furthered the understanding of

senescence regulation [19, 20]. Unfortunately, despite

our increasing knowledge of cellular senescence (CS),

determining whether a cell has senesced is not clear-

cut. Common senescence markers used to identify CS

in vitro and in vivo include senescence-associated β-

galactosidase (SA-β-gal) and p16INK4A (p16) [21–23].

However, β-galactosidase activity has been detected in

other cell types such as macrophages, osteoclasts, and

cells undergoing autophagy [24–26]. Furthermore,

some forms of senescence are not associated with p16

expression, while p16 has been detected in non-

senescent cells [3, 27]. As such, there are now over 200

genes implicated in CS in humans alone. Therefore, it

is necessary to conglomerate this data into a purpose-

fully designed database.

Gene databases are highly useful for genomic compu-

tational analyses, as exemplified by the Human Ageing

Genomic Resources (HAGR) [28]. HAGR provides

databases related to the study of aging, including the

GenAge database of aging-related genes, which contains

genes related to longevity and aging in model organisms

and humans, and DrugAge, which includes a compil-

ation of drugs, compounds, and supplements that extend

lifespan in model organisms. CellAge builds on these

HAGR facilities to provide a means of studying CS in

the context of aging or as a standalone resource; the ex-

pectation is that CellAge will now provide the basis for

processing the discrete complexities of cellular senes-

cence on a systematic scale.

Our recent understanding of biological networks has

led to new fields, like network medicine [29]. Biological

networks can be built using protein interaction and gene

co-expression data. A previous paper used protein-

protein interactions to build genetic networks identifying

potential longevity genes along with links between genes

and aging-related diseases [30]. Here, we present the

network of proteins and genes co-expressed with the

CellAge senescence genes. Assaying the networks, we

find links between senescence and immune system func-

tions and find genes highly connected to CellAge genes

under the assumption that a guilt-by-association ap-

proach will reveal genes with similar functions [31].

In this study, we look at the broad context of CS

genes—their association with aging and aging-related

diseases, functional enrichment, evolutionary conserva-

tion, and topological parameters within biological net-

works—to further our understanding of the impact of

CS in aging and diseases. Using our networks, we gener-

ate a list of potential novel CS regulators and experi-

mentally validate 26 genes using siRNAs, identifying 13

new senescence inhibitors.

Results
The CellAge database

The CellAge website can be accessed at http://genomics.

senescence.info/cells/. Figure 1a presents the main

CellAge data browser, which allows users to surf

through the available data. The browser includes several

columns with information that can be searched and

filtered efficiently. Users can search for a comma-

separated gene list or for individual genes. Once selected,

a gene entry page with more detailed description of the

experimental context will open.

CellAge was compiled following a scientific literature

search of gene manipulation experiments in primary,
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immortalized, or cancer human cell lines that caused

cells to induce or inhibit CS. The first CellAge build

comprises 279 distinct CS genes, of which 232 genes

affect replicative CS, 34 genes affect stress-induced CS,

and 28 genes affect oncogene-induced CS. Of the 279

total genes, 153 genes induce CS (~ 54.8%), 121 inhibit it

(~ 43.4%), and five genes have unclear effects, both indu-

cing and inhibiting CS depending on experimental con-

ditions (~ 1.8%) (Fig. 1b). The genes in the dataset are

also classified according to the experimental context

used to determine these associations.

We have also performed a meta-analysis to derive a

molecular signature of replicative CS and found 526

overexpressed and 734 underexpressed genes [32]. These

gene signatures are also available on the CellAge web-

site. Of the 279 CellAge genes, 44 genes were present in

the signatures of CS (15.8%). This overlap was significant

(p value = 1.62e−08, Fisher’s exact test). While 13 of the

CellAge inducers of CS significantly overlapped with the

overexpressed signatures of CS (8.5%, p = 2.06e−06, Fish-

er’s exact test), only 7 overlapped with the underex-

pressed signatures (4.6%, p = 5.13e−01, Fisher’s exact

test). The CellAge inhibitors of CS significantly over-

lapped with both the overexpressed signatures of CS

(n = 7, 5.8%, p = 4.08e−02, Fisher’s exact test) and under-

expressed signatures of CS (n = 17, 14%, p = 2.06e−06,

Fisher’s exact test).

CellAge gene functions

High-quality curated datasets enable systematic compu-

tational analyses [33, 34]. Since we are interested in

learning more about the underlying processes and

Fig. 1 a The CellAge database of CS genes. The main data browser provides functionality to filter by multiple parameters like cell line and

senescence type, and select genes to view details and links with other aging-related genes on the HAGR website. b Breakdown of the effects all

279 CellAge genes have on CS, and the types of CS the CellAge genes are involved in. Genes marked as “Unclear” both induce and inhibit CS

depending on biological context. Numbers above bars denote the total number of genes inhibiting, inducing, or having unclear effects on CS. c

Functional enrichment of the nonredundant biological processes involving the CellAge genes (p < 0.05, Fisher’s exact test with BH correction)

(Additional file 1: Table S3). GO terms were clustered based on semantic similarities
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functionality shared by human CS genes, we started by

exploring functional enrichment within the CellAge

dataset.

Using the database for annotation, visualization and

integrated discovery—DAVID Version 6.8 [35, 36], we

found that genes in CellAge are enriched with several

clusters associated with Protein Kinase Activity, Tran-

scription Regulation, DNA-binding, DNA damage repair,

and Cell cycle regulation in cancer. In particular, genes

that induce senescence were more associated with pro-

moting transcription, while genes that inhibit senescence

were more associated with repressing transcription. Fur-

thermore, we found that inducers of senescence were

significantly associated with VEGF and TNF signalling

pathways (p < 0.01, Fisher’s exact test with Benjamini-

Hochberg correction) (Additional file 1: Table S1 and

S2). WebGestalt 2019 was used to determine which non-

redundant biological processes the CellAge genes are in-

volved in, and REVIGO was used to cluster related

processes (p < 0.05, Fisher’s exact test with BH correc-

tion) [37, 38]. A total of 298 categories were significantly

enriched and clustered: Signal transduction by p53 class

mediator; Aging; Protein localization to nucleus; DNA-

templated transcription, initiation; Epithelial cell prolifera-

tion; Cell growth; Rhythmic process; Cellular carbohydrate

metabolism; Reactive oxygen species metabolism; Cyto-

kine metabolism; Adaptive thermogenesis; Organic hy-

droxy compound metabolism; Methylation; Generation of

precursor metabolites and energy (Fig. 1c; Additional file 1:

Table S3).

Evolutionary conservation of CellAge genes in model

organisms

Next, we looked at the conservation of CellAge genes

across a number of mammalian and non-mammalian

model organisms with orthologues to human CellAge

genes using Ensembl BioMart (Version 96) [39] in order

to understand the genetic conservation of CS processes.

There was a significantly higher number of human

orthologues for CellAge genes than for other protein-

coding genes in mouse, rat, and monkey, while non-

mammalian species did not show significant conservation

of CellAge genes (two-tailed z-test with BH correction)

(Additional file 1: Table S4; Additional file 2: Fig. S1A).

Interestingly, previous studies have found that longevity-

associated genes (LAGs) are substantially overrepresented

from bacteria to mammals and that the effect of LAG

overexpression in different model organisms was mostly

the same [40]. It remains unclear what the evolutionary

origin of most of the CellAge genes is or why they are not

present in more evolutionarily distant organisms. Unique

evolutionary pressures could have played an important

role in the evolution of CellAge genes in mammals. How-

ever, somatic cells in C. elegans and Drosophila are post

mitotic and lack an equivalent CS process, which could

explain why the CellAge genes are not conserved. We fur-

ther compared the conservation of CellAge inducers and

inhibitors of CS and found that while the inducers were

significantly conserved in the mammal model organisms,

the inhibitors were not (Additional file 2: Fig. S1B).

We also report the number of orthologous CellAge

genes present in 24 mammal species using the OMA

standalone software v. 2.3.1 algorithm [41] (Additional

file 2: Fig. S1C). From 279 CellAge genes, we report 271

orthogroups (OGs) (Additional file 3). Twenty-two OGs

were conserved in the 24 mammals, including the

following genes: DEK, BRD7, NEK4, POT1, SGK1, TLR3,

CHEK1, CIP2A, EWSR1, HDAC1, HMGB1, KDM4A,

KDM5B, LATS1, MORC3, NR2E1, PTTG1, RAD21,

NFE2L2, PDCD10, PIK3C2A, and SLC16A7 (Additional

file 1: Table S5). Within the long-lived mammalian

genomes analyzed (human, elephant, naked mole rat,

bowhead whale, and little brown bat), we found 128 OG

CellAge genes (Additional file 3; genomes available in

Additional file 1: Table S6). However, finding OGs is

dependent on genome quality and annotations, and

higher-quality genomes would likely yield more OGs.

For the evolutionary distances, we found that the long-

lived species had similar distances to the other species,

meaning the branch lengths for long-lived species are

distributed throughout the phylogeny as expected in a

random distribution (Additional file 2: Fig. S1D). This

was the case when we analyzed the concatenated tree for

the 271 CellAge OGs as well as when we analyzed the

22 individual CellAge genes conserved among all 24

mammalian species (Additional file 4).

CellAge vs human orthologues of longevity-associated

model organism genes

To understand how senescence is linked to the genetics

of aging processes, we looked at the intersection of

CellAge genes and the 869 genes in the human ortholo-

gues of model organisms’ longevity-associated genes

(LAGs) dataset, collected based on quantitative changes

in lifespan [34]. Like CellAge, where genes are classified

based on whether their upregulation induces, inhibits, or

has an unknown impact on CS, the longevity orthologues

dataset also provides information on the effect of upregula-

tion of its genes, namely whether it promotes (pro, 421) or

inhibits (anti, 448) longevity (Additional file 1: Table S7;

Additional file 2: Fig. S2).

The CS inducers statistically overlapped with the anti-

longevity genes and not with the pro-longevity genes

(anti: n = 9, ~ 6%, p = 1.42e−02; pro: n = 6, ~ 4%, p =

1.40e−01, Fisher’s exact test with BH correction). We

noted an inverse result with the inhibitors of CS, where

there was a much greater overlap between the CellAge

inhibitors and the pro-longevity genes, resulting in the
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smallest p value of all the overlaps (n = 18, ~ 15%, p =

2.61e−10, Fisher’s exact test with BH correction). How-

ever, there was also a significant overrepresentation of

genes inhibiting the CS process within the anti-longevity

genes (n = 7, ~ 6%, p = 2.41e−02, Fisher’s exact test with

BH correction). It is possible that some of the pathways

the CS inhibitors are associated with increase longevity,

whereas other pathways have anti-longevity effects.

Overall, these results highlight a statistically significant

association between CS and the aging process and

suggest a potential inverse relationship between CS and

longevity, at least for some pathways. Gene overlaps are

available in Additional file 1: Table S8.

CellAge genes differentially expressed with age

In another work, we performed a meta-analysis to find

molecular signatures of aging derived from humans, rats,

and mice [42]. To investigate how the expression of

CellAge genes changes with age, we looked for CellAge

genes which either induce (153) or inhibit (121) senes-

cence within the list of aging signatures. The genes over-

expressed with age (449) had a significant overlap

with the CellAge genes (CS inducers: n = 17, ~ 11%,

p = 6.58e−07; CS inhibitors: n = 9, ~ 7%, p = 6.35e−03,

two-tailed Fisher’s exact test with BH correction)

while the genes underexpressed with age (162) did

not (CS inducers: n = 0, p = 8.57e−01; CS inhibitors:

n = 3, ~ 3%, p = 1.64e−01). The overexpressed genetic

signatures of replicative CS (526) also significantly

overlapped with the overexpressed signatures of aging

(n = 60, ~ 11%, p = 1.18e−23), but not the underex-

pressed signatures of aging (n = 3, ~ 1%, p = 8.79e−01).

Finally, the underexpressed signatures of replicative

CS (734) did not significantly overlap with the over-

expressed (n = 18, ~ 3%, p = 8.79e−01) or underex-

pressed (n = 9, ~ 1%, p = 3.26e−01) signatures of aging.

Given that 112 (40%) of CellAge genes have only been

confirmed to control CS in fibroblasts, we repeated the

above analyses using a subgroup of CellAge genes that

have been shown to affect CS in other cell types. A total

of 91 CellAge inducers of CS and 72 inhibitors were

overlapped with the signatures of aging. The same over-

laps were still significant after FDR correction, indicating

that the differential expression of CellAge genes with

age cannot exclusively be attributed to fibroblast idio-

syncrasies (CS inducers overexpressed: n = 10, ~ 11%,

p = 1.50e−04; underexpressed: n = 0, p = 1. CS inhibitors

overexpressed: n = 6, ~ 8%, 1.34e−02; underexpressed:

n = 2, ~ 3%, p = 1.98e−01).

Using all protein-coding genes from the meta-analysis

as a background list [42], we further examined the CS

inducers overexpressed with age for functional enrich-

ment using WebGestalt 2019 to determine if specific

biological processes were enriched [38]. In parallel, we

performed this analysis using the genes which over-

lapped between CellAge inhibitors and genes overex-

pressed with age. In total, 71 GO terms were

significantly enriched for the overlap between CellAge

senescence inducers and age upregulated genes (p < 0.05

Fisher’s exact test with BH correction) (Additional file 1:

Table S9). Because many of the enriched GO terms were

redundant (e.g., wound healing and response to wound

healing, regulation of cytokine production and cytokine

production), they were clustered based on semantic

similarity scores using REVIGO [37]. We found groups

enriched for regulation of apoptotic processes, response

to lipid, epithelium development, rhythmic process, circa-

dian rhythm, cytokine metabolism, and cell-substrate ad-

hesion (Additional file 2: Fig. S3A). A total of 71 enriched

GO terms for the overexpressed signatures of CS overex-

pressed with age were clustered using REVIGO, resulting

in enriched terms relating to regulated exocytosis,

aging, response to beta-amyloid, and cell proliferation

(Additional file 1: Table S10; Additional file 2: Fig.

S3B). No GO terms were significantly enriched for the

inducers of CS underexpressed with age, the inhibitors

of CS differentially expressed with age, the underex-

pressed signatures of CS differentially expressed with

age, or the overexpressed signatures of CS underex-

pressed with age.

Tissue-specific CS gene expression and differential

expression of CS genes in human tissues with age

The Genotype-Tissue Expression (GTEx) project con-

tains expression data from 53 different tissue sites

collected from 714 donors ranging from 20 to 79 years

of age, grouped into 26 tissue classes [43]. We asked if

CellAge genes and differentially expressed signatures of

CS were expressed in a tissue-specific manner [42] and

determined how CS gene expression changes across

different tissues with age [32].

We first examined tissue-specific CS expression and

found that CellAge genes were either expressed in a

tissue-specific manner less than expected by chance, or

in line with expectations; in other words, the majority of

CellAge genes tended to be expressed across multiple

tissues (Additional file 1: Table S11; Additional file 2:

Fig. S4A). Testis was the only tissue with significant dif-

ferences between the actual and expected number of

tissue-specific CellAge genes expressed (less tissue-

specific genes than expected by chance, p < 0.05, Fisher’s

exact test with BH correction). The underexpressed sig-

natures of CS were significantly less tissue-specific in the

testis and liver, while the overexpressed signatures of CS

were significantly less tissue-specific in the brain, liver,

pituitary, and skin, and more tissue-specific in blood.

We also compared the ratio of tissue-specific to non-

tissue-specific genes in the CS datasets to all protein-
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coding genes. While ~ 25% of all protein-coding genes

are expressed in a tissue-specific manner, only ~ 10% of

CellAge genes and ~ 11% of signatures of CS are

expressed in a tissue-specific manner (Additional file 2:

Fig. S4B), significantly less than expected by chance (p =

2.52e−12 and 3.93e−48 respectively, Fisher’s exact test

with BH correction).

Then, we examined the differential expression of CS

genes with age in different tissues. Using a previously

generated gene set of differentially expressed genes

(DEGs) with age in 26 tissues on GTEx [32, 43], we

found overlaps with 268 CellAge inducers and inhibitors

of CS present in the gene expression data (Fig. 2a). The

process of finding DEGs with age filters out lowly

expressed genes, which explains the 11 missing CellAge

CS regulators. Overall, senescence inducers were overex-

pressed across different tissues with age, although none

of the overlaps were significant after FDR correction

(Fisher’s exact test with BH correction, p < 0.05)

(Additional file 1: Table S12). There was the opposite

trend in the inhibitors of CS, where there was noticeably

less overexpression of CS inhibitors with age, although

these overlaps were also not significant after FDR correc-

tion. A total of 1240 differentially expressed signatures of

CS were also overlapped with the GTEx aging DEGs in 26

human tissues, including 9 tissues previously analyzed

(Fig. 2b) [32]. The overexpressed signatures of CS were sig-

nificantly overexpressed across multiple tissues with age,

and only significantly underexpressed with age in the brain

and uterus (p < 0.05, Fisher’s exact test with BH correction)

(Additional file 1: Table S13). Furthermore, the underex-

pressed signatures of CS trended towards being overex-

pressed less than expected by chance across multiple

tissues with age, although these overlaps were only signifi-

cant after FDR adjustment in the colon and nerve, while

the underexpressed signatures of CS were significantly

overexpressed more than expected in the uterus. Finally,

the underexpressed signatures of CS were underexpressed

with age more than expected by chance in the colon, lung,

and ovary, and underexpressed with age less than expected

by chance in the brain. We also compared the ratio of dif-

ferentially expressed to non-differentially expressed CS

genes in at least one tissue with age to the equivalent ratio

in all protein-coding genes (Additional file 2: Fig. S5A and

S5B) (see Overlap Analysis in Methods). We found that

~ 64% of all protein-coding genes did not significantly

change expression with age in any human tissues, while

~ 19% were overexpressed and ~ 17% were underexpressed

(~ 7% were both overexpressed and underexpressed across

multiple tissues) (Additional file 1: Table S14 and S15). For

the CellAge genes, the number of inducers of CS signifi-

cantly overexpressed with age in at least one tissue was sig-

nificantly higher than the genome average (n = 50, ~ 30%,

p = 1.5e−3, Fisher’s exact test with BH correction). The

inducers of CS underexpressed with age and the inhibitors

of CS differentially expressed with age were not significantly

different from the protein-coding average. We also com-

pared the number of signatures of CS differentially

expressed with age in at least one tissue to the protein-

coding genome average. The overexpressed signatures of

CS were significantly differentially expressed with age com-

pared to all protein-coding genes, whereas the number of

underexpressed signatures of CS was underexpressed with

age more than expected by chance.

The overall fold change (FC) with age of the CS genes

was also compared to the FC with age of all protein-

coding genes for each tissue in GTEx (Fig. 2c; Additional

file 1: Table S16). The median log2FC with age of the

CellAge CS inducers and the overexpressed signatures of

CS was greater than the genome median for the majority

of tissues on GTEx, although the difference in log2FC

distribution with age between the inducers of CS and all

protein-coding genes was only significant in seven tis-

sues (Wilcoxon rank sum test with BH correction,

p < 0.05). The median log2FC with age of the CellAge

inhibitors of CS and the underexpressed signatures of

aging was smaller than the genome median in the majority

of tissues, showcasing the opposite trend to the inducers of

CS and overexpressed signatures of CS. However, the only

tissues with significantly different distributions of log2FC

with age for the inhibitors of CS were the skin and esopha-

gus, where the median log2FC distribution was significantly

less than the genome average, and the salivary gland, where

the median log2FC distribution was significantly more than

the genome average. We also found that the distribution of

log2FC with age of the differentially expressed signatures of

CS significantly changed in opposite directions with age in

14 tissues. Interestingly, this trend was present even in the

adrenal gland and uterus, where the signatures of CS

changed with age in the opposite direction to the majority

of other tissues.

The expression of the majority of CS genes does not

change with age (Additional file 2: Fig. S5A), yet a sig-

nificant number of CS genes trend towards differential

expression with age across multiple tissues in humans

(Fig. 2). We ran 10,000 simulations on the GTEx RNA-

seq data to determine the likelihood of a CS gene be-

ing differentially expressed with age in more than one

tissue by chance (see Simulation of CS Gene Expression

in Human Aging in Methods) (Additional file 2: Fig.

S5C; Additional file 5). The likelihood of a CellAge

gene being overexpressed with age in more than three

tissues and underexpressed with age in more than two

tissues by chance was less than 5% (CS gene expression

simulations) (Fig. 2d; Additional file 1: Table S17;

Additional file 2: Fig. S5C). CS inducers overexpressed

in significantly more tissues with age than expected by

chance included CDKN2A, NOX4, CPEB1, IGFBP3.

Avelar et al. Genome Biology           (2020) 21:91 Page 6 of 22



Fig. 2 Differential expression of a CellAge inducers and inhibitors of CS and b differentially expressed signatures of CS in human tissues with age.

Red values indicate that there were more genes differentially expressed with age than expected by chance (−log2(p-val)). Blue values indicate

that there were less genes differentially expressed with age than expected by chance (log2(p-val)). Asterisks (*) denote tissues with significantly

more CS genes differentially expressed with age (p < 0.05, Fisher’s exact test with BH correction, abs(50*log2FC) > log2(1.5)) (Additional file 1: Table

S12 and S13). c Comparison of the median log2FC and distribution of log2FC with age between the CS genes and all protein-coding genes in

human tissues. Red tiles indicate that the median log2FC of the CellAge and CS genes is higher than the median log2FC of all protein-coding

genes for that tissue, while blue tiles indicate that the median log2FC of the CS genes is lower than the median genome log2FC. Asterisks (*)

indicate significant differences between the log2FC distribution with age of CS genes and the log2FC distribution with age of all protein-coding

genes for that tissue (p < 0.05, Wilcoxon rank sum test with BH correction) (Additional file 1: Table S16). d CellAge genes differentially expressed in

at least two tissues with age. Gray tiles are genes which had low basal expression levels in the given tissue and were filtered out before the

differential gene expression analysis was carried out [32]. Colored tiles indicate significant differential expression with age (p < 0.05, moderated t-

test with BH correction, abs(50*log2FC) > log2(1.5)). Numbers by gene names in brackets denote the number of tissues differentially expressing

the CellAge gene with age. Red gene names specify that the CellAge gene was significantly overexpressed with age in more tissues than

expected by chance, while blue gene names show the CellAge genes significantly underexpressed with age in more tissues than expected by

chance (p < 0.05, random gene expression tissue overlap simulations) (Additional file 1: Table S17 – S20). Liver, pancreas, pituitary, spleen, small

intestine, and vagina did not have any significant CS DEGs with age
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ABI3, CDKN1A, CYR61, DDB2, MATK, PIK3R5,

VENTX, HK3, SIK1, and SOX2, while PTTG1, DHCR24,

IL8, and PIM1 were underexpressed in significantly

more tissues (Additional file 1: Table S18; Additional

file 2: Fig. S5D). ZMAT3 and EPHA3 were the two CS

inhibitors overexpressed in significantly more tissues

with age than expected by chance, while CDK1,

AURKA, BMI1, BRCA1, EZH2, FOXM1, HJURP,

MAD2L1, SNAI1, and VEGFA were underexpressed in

significantly more tissues. We also performed simula-

tions to determine the likelihood of gene expression sig-

natures of CS being differentially expressed with age in

multiple human tissues by chance (Additional file 1:

Table S19): less than 5% of the genes in the CS signa-

tures are expected by chance to be overexpressed with

age in more than three tissues or underexpressed with

age in more than two tissues. A total of 46 CS signature

genes (29 overexpressed, 17 underexpressed) were overex-

pressed with age in significantly more tissues than ex-

pected by chance, and 139 CS signature genes were

underexpressed in more tissues than expected by chance

(26 overexpressed genes in CS, 113 underexpressed genes

in CS) (Additional file 1: Table S20).

Do CS and longevity genes associate with aging-related

disease genes?

A previous paper [34] grouped 769 aging-related diseases

(ARDs) into 6 NIH Medical Subject Heading (MeSH) clas-

ses [44] based on data from the Genetic Association Data-

base [45]: cardiovascular diseases (CVD), immune system

diseases (ISD), musculoskeletal diseases (MSD), nutritional

and metabolic diseases (NMD), neoplastic diseases (NPD),

and nervous system diseases (NSD). The same approach

was used to build the HAGR aging-related disease gene se-

lection tool (http://genomics.senescence.info/diseases/

gene_set.php), which we used to obtain the ARD genes for

each disease class and overlap with the CellAge genes.

There were links between the CellAge genes and NPD

genes, which is expected given the anti-tumor role of

senescence (Additional file 1: Table S21). Without ac-

counting for publication bias (i.e., some genes being

more studied than others), all ARD classes are significantly

associated with CellAge genes, with lower commonalities

with diseases affecting mostly non-proliferating tissue such

as NSD. NPD genes are even more overrepresented in the

GenAge human dataset, which could suggest commonality

between aging and senescence through cancer-related path-

ways. Both the strong association of NPD genes with Gen-

Age and senescence, and the strong link between GenAge

and all ARD classes is interesting. Indeed, longevity-

associated genes have been linked to cancer-associated

genes in previous papers [46]. Considering age is the lead-

ing risk factor for ARD [47, 48], the results from GenAge

support the previously tested conjecture that there are (i) at

least a few genes shared by all or most ARD classes; and (ii)

those genes are also related to aging in general [34]. We

also looked for genes that are shared across multiple disease

classes and are also recorded as CS genes. CellAge genes

shared across multiple ARD classes included VEGFA and

IFNG (5 ARD classes), SERPINE1, MMP9, and AR (4 ARD

classes), and CDKN2A (3 ARD classes). Results are summa-

rized in Additional file 2: Fig. S6.

Are CS genes associated with cancer genes?

Cellular senescence is widely thought to be an anti-cancer

mechanism [49]. Therefore, the CellAge senescence in-

ducers and inhibitors of senescence were overlapped with

oncogenes from the tumor-suppressor gene (TSG) data-

base (TSGene 2.0) (n = 1018) [50] and the ONGene data-

base (n = 698) [51] (Additional file 1: Table S22 – S27).

The number of significant genes overlapping are shown in

Fig. 3a, while the significant p values from the overlap ana-

lysis are shown in Fig. 3b (p < 0.05, Fisher’s exact test with

BH correction).

The significant overlap between CellAge genes and

cancer indicates a close relationship between both pro-

cesses. Specifically, the overlap between CellAge inhibi-

tors and oncogenes, and the overlap between CellAge

inducers and TSGs were more significant, with lower

p values and larger odds ratios (Fig. 3) [52]. This analysis

was repeated after filtering out CellAge genes that were

only shown to induce senescence in fibroblasts. The

overlaps were still significant after FDR correction,

indicating that the overlap between CellAge and cancer

genes is not specific to genes controlling CS in fibroblasts

(CS inducers with oncogenes: n = 10, p = 9e−05; with TSGs:

n = 23, p = 4e−12. CS inhibitors with oncogenes: n = 17,

1e−12; with TSGs: n = 8, p = 9e−04, p < 0.05, Fisher’s exact

test with BH correction) (Additional file 2: Fig. S7).

Gene ontology (GO) enrichment analyses were performed

using WebGestalt to identify the function of the overlapping

genes [38]. Overlapping genes between CellAge senescence

inducers and TSGs were enriched in GO terms related to

p53 signalling and cell cycle phase transition (Add-

itional file 2: Fig. S8A). The enriched functions of overlap-

ping genes between CellAge senescence inducers and

oncogenes were mainly related to immune system processes

and response to stress (Additional file 2: Fig. S8B). Overlap-

ping genes between CellAge senescence inhibitors and TSGs

were enriched in only 5 terms, which are cellular response

to oxygen-containing compound, positive regulation

of chromatin organization, and terms relating to fe-

male sex differentiation (Additional file 2: Fig. S8C).

Finally, overlapping genes between CellAge senescence

inhibitors and oncogenes were related to processes

such as negative regulation of nucleic acid-templated

transcription, cellular response to stress, and cell

proliferation (Additional file 2: Fig. S8D). All of the
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functional enrichment data can be found in Add-

itional file 1: Table S28 – S31.

Network analyses

The CellAge genes form both protein-protein and gene

co-expression networks. The formation of a protein-

protein interaction (PPI) network is significant in itself

given that only ~ 4% of the genes in a randomly chosen

gene dataset of similar size are interconnected [53]. In

order to have a more holistic view of CS, we were inter-

ested in the topological parameters of the networks that

CS genes form. For this, several types of networks were

constructed using the CellAge genes as seeds: the CS

PPI network, along with two CS gene co-expression net-

works built using RNA-seq and microarray data. Bio-

logical networks generally have a scale-free topology in

which the majority of genes (nodes) have few interactions

(edges), while some have many more interactions, result-

ing in a power law distribution of the node degree (the

number of interactions per node) [31, 54]. As expected,

the node-degree distribution of the above networks does

confirm a scale-free structure (Additional file 2: Fig.

S9). Additional file 1: Table S32 presents the network

summary statistics for the resulting networks.

The network parameters we looked at were as follows:

Degree, Betweenness Centrality (BC), Closeness Central-

ity (CC), and Increased Connectivity (IC). The degree is

the number of interactions per node and nodes with

high degree scores are termed network hubs. BC is a

measure of the proportion of shortest paths between all

node pairs in the network that cross the node in ques-

tion. The nodes with high BC are network bottlenecks

and may connect large portions of the network which

would not otherwise communicate effectively or may

monitor information flow from disparate regions in the

network [31]. CC is a measure of how close a certain

node is to all other nodes and is calculated with the in-

verse of the sum of the shortest paths to all other nodes.

Lower CC scores indicate that nodes are more central to

the network, while high CC scores indicate the node

may be on the periphery of the network and thus less

central. The IC for each node measures the statistical

significance for any overrepresentation of interactions

between a given node and a specific subset of nodes (in

our case CellAge proteins) when compared to what is

expected by chance. Taken together, genes that score

highly for degree, BC, CC, and IC within the senescence

networks are likely important regulators of CS even if up

until now they have not been identified as CS genes.

Looking at the topology of CS networks, the PPI network,

microarray-based co-expression network, and RNA-seq co-

expression network all possess comparable scale-free struc-

tures. However, gene co-expression data is less influenced

by publication bias. This is particularly important consider-

ing published literature often reports positive protein-

protein interactions over protein interactions that do not

exist [55]. The lack of negative results for protein inter-

action publications complicates the interpretation of PPI

networks even more, as the absence of edges in networks

does not necessarily mean they do not exist. On the other

hand, RNA-seq and microarray co-expression data, while

not influenced by publication bias, does not give indications

of actual experimentally demonstrated interactions (phys-

ical or genetic). Furthermore, RNA read counts do not dir-

ectly correlate to protein numbers, with previous studies

reporting that only 40% of the variation in protein

Fig. 3 a Overlap between CellAge inducers and inhibitors, and oncogenes and tumor-suppressing genes. b Adjusted p value and odds ratio of

the overlap analysis. The number of overlapping genes in each category was significant (p < 0.05, Fisher’s exact test with BH correction). p values

are shown in gray writing for each comparison. Data available in Additional file 1: Table S22 – S27
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concentration can be attributed to mRNA levels, an im-

portant aspect to consider when interpreting RNA-seq data

[56]. Finally, the microarray network was constructed using

the COXPRESdb (V6), which contains 73,083 human sam-

ples and offered another degree of validation [57]. Although

RNA-seq reportedly detects more DEGs including ncRNAs

[58], GeneFriends [59] contains 4133 human samples, far

less than the microarray database from COXPRESdb.

The protein-protein interaction network associated with CS

We only used interactions from human proteins to build

the CellAge PPI network. The network was built by

taking the CellAge genes, their first-order partners and

the interactions between them from the BioGrid data-

base. The CellAge PPI network comprised of 2487 nodes

across four disjointed components, three of which only

comprised of two nodes each, and the main component

containing 2481 nodes.

The genes with the highest degree scores were TP53,

HDAC1, BRCA1, EP300, and MDM2. These same genes

also ranked in the top five CC. Expectedly, several of

these genes also possessed the highest BC: TP53,

BRCA1, HDAC1, and MDM2 (with BAG3, a gene with a

slightly smaller degree also within the top 5). On the

other hand, the genes ranked by top 5 IC were CCND1,

CCND2, CDKN2A, SP1, and EGR1. Of note among these

nodes, EP300, MDM2, CCND2, and EGR1 were not

already present in CellAge. Additional file 2: Fig. S10

summarizes the gene intersection across the computed

network parameters, while Additional file 1: Table S33

identifies potential senescence regulators not already

present in CellAge from the PPI network. We found that

from the top 12 PPI candidates, 11 have been recently

shown to regulate senescence in human cell lines and

will be added to CellAge build 2.

Within the main PPI network component, a large

portion of CS genes and their partners formed a single

large module with 1595 nodes. Using DAVID version

6.8, we found the terms enriched within the module;

the top five are: Transcription, DNA damage & repair,

cell cycle, Proteasome & ubiquitin, and ATP pathway

[35, 36] (Additional file 1: Table S34). These results are

all in line with previously described hallmarks of cellu-

lar senescence [60].

It is prudent to note that centrality measures in PPI

networks must be interpreted with caution due to publi-

cation bias that can be an inherent part of the network

[61, 62]. The top network genes identified from the PPI

network are likely to be heavily influenced by publica-

tion bias [63]. Looking at the average PubMed hits of

the gene symbol in the title or abstract revealed a mean

result count of approximately 2897 per gene, far higher

than the genome average (136) or existing CellAge genes

(712) (Additional file 2: Fig. S11).

Unweighted RNA-Seq co-expression network

We used CellAge genes that induce and inhibit CS and

their co-expressing partners to build a cellular senes-

cence co-expression network. The network consists of a

main connected network with 3198 nodes, and a num-

ber of smaller “islands” that are not connected to the

main network (Fig. 4a).

The main interconnected network included 130 Cel-

lAge genes. Among these, we also found that 14% of

them are also human aging-related genes, reported in

GenAge - Human dataset, whereas the remainder of the

smaller networks only comprised of 1.6% longevity genes

[64]. Next, we looked at a number of centrality parame-

ters to see how CellAge genes are characterized com-

pared to the entire network. CellAge genes had a mean

BC of 0.00363, whereas the remainder of the genes had

a BC of 0.00178, revealing that if CellAge genes are re-

moved, modules within the network may become dis-

connected more easily. While nodes scoring highly for

BC in PPI networks are likely bottleneck regulators of

gene expression, this is not necessarily true for co-

expression networks. In this case, nodes can also have

high BC scores if they are co-activated via various signal-

ling pathways. Although BC alone is not enough to de-

termine which genes are regulating CS, taking BC into

account with other network topological parameters can

be a good indicator of gene function. Aside from high

BC, CellAge genes also had a lower local clustering coef-

ficient of 0.58, compared to a mean of 0.76 across non-

CellAge genes, indicating that locally, CellAge genes

connect to other genes less than the average for the net-

work. This can also be seen at the degree level, where

CellAge genes averaged only 53 connections, compared

to an average of 103 connections in non-CellAge genes.

Finally, the mean CC score was not significantly differ-

ent between CellAge nodes and other genes in the net-

work (0.148 in CellAge vs 0.158). CellAge genes were

therefore more likely to be bottlenecks in signalling

across different modules and occupy localized areas with

lower network redundancy, suggesting that perturba-

tions in their expression might have a greater impact on

linking different underlying cellular processes.

The topological analysis of the main network compo-

nent as a whole revealed a more modular topology than

the PPI network, resulting in genes tending not to ap-

pear in multiple measures of centrality. There were 23

nodes with significant IC with senescence-related genes,

including PTPN6, LAPTM5, CORO1A, CCNB2 and

HPF1. No node from the top 5 IC was present in the top

5 genes with high BC, CC, or Degree. Overall, the pri-

mary candidates of interest included KDM4C, which had

a significant IC and was at the top 1% of CC and top 5%

of BC, along with PTPN6, SASH3 and ARHGAP30,

which all had significant IC values and were at the top
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Fig. 4 a Cluster analysis of the RNA-Seq Unweighted Co-expression Network. The 171 seed nodes obtained from CellAge and their first order

interactors. The colours represent the breakdown of the network into clusters. The algorithm revealed 52 distinct clusters, of which we color and order

the 19 clusters with the best rankings for modularity, or in the case of module 17–19, size. The CellAge nodes are colored in dark purple, appearing

throughout the network. Larger nodes have higher betweenness centrality. In order of decreasing modularity, the main function clusters of the

modules were related to; Spermatogenesis (Module 1), Synapse (Module 2), Cardiac muscle contraction (Module 3), Cell Cycle (Module 4), Secreted

(Module 5), Tudor domain (Module 6), ATP-binding (Module 7), Symport (Sodium ion transport) (Module 8), DNA damage and repair (Module 9),

transit peptide: Mitochondrion (Module 10), Steroid metabolism (Module 11), Transcription regulation (Module 12), Protein transport (Module 13),

Mitochondrion (Module 14), Heme biosynthesis (Module 15), Innate immunity (Module 16), Signal peptide (Module 17), Keratinocyte (Module 18),

and Transcription repression (Module 19) (Enrichment results in Additional file 1: Table S35, genes in Additional file 1: Table S36). b RNA-Seq

Unweighted Co-expression Network, local clustering. Red/Orange represents nodes with high clustering coefficient, whereas pale green represents

nodes with lower clustering coefficient. Degree is also weighted using node size. CellAge nodes are colored purple, and GenAge Human nodes are

also shown and highlighted in bright green. The right-hand panel is an enlarged view of the left-hand panel
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5% of BC. We found that KDM4C and PTPN6 have been

shown to regulate CS in human cell lines, and will be

added to build 2 of CellAge [65, 66].

Previous studies have advocated that measures of cen-

trality are generally important to identify key network

components, with BC being one of the most common

measures. However, it has also been postulated mathemat-

ically that intra-modular BC is more important than inter-

modular BC [67]. Therefore, by isolating network clusters

of interest and identifying genes with high BC or centrality

within submodules, we propose to identify new senes-

cence regulators from the co-expression network.

Using the CytoCluster app (see Networks in Methods)

[68], we found 54 clusters in the network, of which we

represent the top clusters colored according to modular-

ity (Module 1–16) or size (Module 17–19) (Fig. 4a).

Reactome pathway enrichment for all main clusters

highlighted cell cycle and immune system terms in the

two largest clusters [35, 36]. The largest cluster of 460

nodes (17 CellAge nodes, Module 4), possessed a high

modularity score and was strongly associated with cell

cycle genes, including the following general terms: Cell

Cycle; Cell Cycle, Mitotic; Mitotic Prometaphase; Reso-

lution of Sister Chromatid Cohesion; and DNA Repair.

The second largest cluster (Module 16), however, had

weak modularity (ranking 26); it comprised of 450 nodes

(19 CellAge nodes) and was enriched for immune-

related pathways including: Adaptive Immune System;

Innate Immune System; Immunoregulatory interactions

between a Lymphoid and a non-Lymphoid cell; Neutro-

phil degranulation; and Cytokine Signaling in Immune

system. Cluster 4 and Cluster 5 were not enriched for

Reactome Pathways. A visual inspection showed a num-

ber of bottleneck genes between Module 1 and Module

16, consistent with the role of the immune system in

clearance and surveillance of senescence cells and the

secretion of immunomodulators by senescent cells [69]

(Additional file 1: Table S35).

We were also interested in visualizing areas in the net-

work with a high local clustering coefficient, as this par-

ameter represents areas with many neighborhood

interactions and, therefore, more robust areas in the net-

work. It was found that the two clusters of interest,

enriched for cell cycle terms and immune system terms,

overlapped with regions of lower clustering coefficient,

potentially implying parts of the biological system with

less redundancy in the underlying process. Figure 4b

depicts regions of high local clustering coefficient in the

network (orange) and regions less well connected locally

(green).

Unweighted microarray co-expression network

We also made an unweighted microarray co-expression

network built from the COXPRESdb database of

microarray gene co-expression (V6) [57] (Additional file 2:

Fig. S12). Compared with the RNA-seq co-expression net-

work, the microarray network is significantly smaller, and

only included 34% of the CellAge genes (Additional file 1:

Table S32). However, we found that SMC4 was an import-

ant bottleneck in the microarray network, being in the top

5% CC and IC (Additional file 2: Fig. S12D and S12E).

SMC4 was not independently associated with senescence

despite being part of the condensing II complex, which is

related to cell senescence [70]. Furthermore, SMC4 is as-

sociated with cell cycle progression and DNA repair, two

key antagonist mechanisms of cell senescence develop-

ment [71, 72]. SMC4 has been linked to cell cycle progres-

sion, proliferation regulation, and DNA damage repair, in

accordance to the most significantly highlighted functional

clusters in the module 2 and in the whole Microarray

network (Additional file 1: Table S39 and S40; Additional

file 2: Fig. S13) [73, 74]. There was limited overlap be-

tween the microarray co-expression network and the

RNA-seq co-expression network, although this is not sur-

prising considering the higher specificity and sensitivity,

and ability to detect low-abundance transcripts of RNA-

seq [75].

Experimental validation of senescence candidates

We set out to test if candidate genes from our network

analyses are indeed senescence inhibitors using a

siRNA-based approach, whereby knockdowns enable the

p16 and/or the p21 senescence pathway to be induced,

leading to senescence [76]. We tested 26 potential senes-

cence inhibitor candidates, 20 of which were chosen

using GeneFriends, a guilt-by-association database to

find co-expressed genes [59]. For this, we used the

CellAge CS inhibitors as seed genes, with the assump-

tion that genes co-expressed with senescence inhibitors

would also inhibit senescence, and generated a list of the

top co-expressed genes with CS inhibitors based on

RNA-seq data (Additional file 1: Table S41). Further-

more, CellAge has multiple ways of partitioning genes,

including the type of senescence the genes are involved

in (Fig. 1b). We decided to look for genes co-expressed

with stress-induced premature senescence (SIPS) inhibi-

tors. We generated a list of genes that are co-expressed

with the CellAge SIPS genes (Additional file 1: Table

S42). We chose to validate five additional genes that

were both co-expressed with the CellAge SIPS and are

present as underexpressed in our signature of CS [32].

Finally, we chose SMC4 from the microarray network

due to its interaction with other senescence genes within

the network, its association with cell cycle progression,

and the fact that it is underexpressed in senescent cells,

indicating it may be inhibiting senescence in replicating

cells. The genes chosen, along with experimental valid-

ation results are shown in Fig. 5, while the justification
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for our validation and Z-scores are shown in Additional

file 1: Table S43 and S44 respectively.

Next, we performed transient siRNA transfections of

normal human fibroblasts using the 26 candidates and

identified those siRNAs that generated the induction of

a senescence phenotype, using multiparameter analysis

of morphological measures and a panel of senescence

markers. Senescence induction is associated with a loss

of proliferation, as measured by a decrease in Ki67 index

and cell number, and changes in cellular morphology, as

measured by an increase in cell and nuclear area. We

also quantitated changes in p16 and p21 (key senescence

effectors [76]), interleukin 6 (IL-6, a common SASP

marker) and SA-β-galactosidase. Knockdown of cyclo-

philin B, a housekeeper, acted as a negative control [2],

while knockdown of CBX7, a potent senescence inhibi-

tor, was included as a positive control for senescence in-

duction [77]. Of the 26 genes tested, 80.7% (21/26)

Fig. 5 Experimental validation of 26 senescence candidates. a–e Representative images of fibroblasts following transfection with cyclophilin B

siRNA (top row), CBX7 siRNA (middle row), or GFT3C4 siRNA (bottom row). a DAPI (blue) and Ki67 (green). b DAPI (blue) and Cell Mask (red). c

DAPI (blue), p16 (green) and p21 (red). d DAPI (blue) and IL-6 (red). e Brightfield images following staining for SA-β-galactosidase. Size bar,

100 μm. f Heatmap of multiparameter analysis of proliferation markers (cell number and % Ki67 positive), senescence-associated morphology

(cellular and nuclear area) and senescence markers (% p16 positive, p21 intensity, perinuclear IL-6 and perinuclear SA-β-galactosidase). Colors

illustrate the number of Z-scores the experimental siRNA is from the cyclophilin B (cycloB) negative control mean. Data are ranked by whether or

not the siRNA is a top hit (siRNAs between the thick horizontal lines), and then by the cell number Z-score. Red values indicate Z-scores that are

“senescence-associated measures.” The CBX7 positive control is also shown for comparison. Data presented are from at least two independent

experiments each performed with a minimum of three replicates. All Z-scores are available in Additional file 1: Table S44
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resulted in a decrease in Ki67 positive nuclei greater

than 1 Z-score (i.e., direction of change also observed

for the CBX7 siRNA positive control, Fig. 5; Additional

file 1: Table S44); 80.7% (21/26) increased p16; 96.2% in-

creased p21 (25/26); 65.4% increase IL-6; and 65.4% (17/

26) increase SA-β-galactosidase. Of the siRNAs that re-

sulted in a decrease in Ki67 index, 61.9% (13/21) were

classified as top hits as they concomitantly decreased cell

number and altered at least one morphological measure.

92.3% (12/13) of the top hits activated both the p16 and

p21 pathway, 84.6% (11/13) upregulated the SASP factor

IL-6, while 61.5% (8/13) generated an increase in the

percentage of SA-β-galactosidase positive cells. In gen-

eral, we have shown the power of networks in predicting

gene function, with 13 “top hits” (GTF3C4, C9orf40,

HAUS4, MCM7, TCEB3, CDC25A, CDCA4, CKAP2,

MTHFD2, NEK2, IMMT, MYBL2, and NIPA2).

Discussion
CellAge aims to be the benchmark database of genes

controlling cellular senescence and we expect it to be an

important new resource for the scientific community.

The development of CellAge has also provided us with

the means to perform systematic analyses of CS. While

showcasing the functionality of CellAge in this manu-

script, we have also explored the links between CS and

aging, ARDs, and cancer. At the same time, we have

aimed to expand the knowledge on both the evolution

and function of senescence genes, and on how CS genes

interact and form genetic networks. We showed that the

use of CellAge may help in identifying new senescence-

related genes and we have validated several such genes ex-

perimentally. As the body of knowledge around senescence

grows, it is our aim to maintain a quality resource to allow

integrative analyses and guide future experiments.

We began our CellAge analysis by gaining further

insight into the function of CellAge genes (Additional

file 2: Fig. S3). Unsurprisingly, inducers of CS were

enriched for both VEGF and TNF signalling (Additional

file 1: Table S1 and S2). Secretion of VEGF is a compo-

nent of the senescence phenotype and has been shown

to contribute towards cancer progression [78]. Interest-

ingly, the CellAge genes are more strongly conserved in

mammals compared to other protein-coding genes, an

effect not seen in worms, yeast, or flies (Additional

file 1: Table S4; Additional file 2: Fig. S1A and S1B).

Given the role that many of the senescence genes in

CellAge play in regulating the cell cycle, it makes

sense that they are evolutionarily conserved; it is not

entirely surprising that there is a greater evolutionary

pressure towards conserving cell cycle tumor-suppressor

genes than there is towards conserving other genes. Not-

ably, the pattern of evolutionary conservation of CS genes

was found to be almost identical to that of cancer-

associated genes, apparently reflecting the co-evolution

between these two phenomena [53]. Nonetheless, evolu-

tionary genomics in a comparative context allows us to

have a more comprehensive understanding of the genetic

bases in important phenotypic traits, like longevity [79].

During their evolutionary history, it is possible that long-

lived species found ways to more efficiently solve prob-

lems related to the aging process [80, 81]. Lineages where

naturally important gene regulators (e.g., TP53) have alter-

native molecular variants or have been lost from their

genomes [82, 83] can be investigated as natural knockouts

[84], since they have found a different way to solve aging-

related diseases like cancer [85, 86]. We also found that

the evolutionary distance between long-lived species

is randomly distributed (Additional file 2: Fig. S1D;

Additional file 4). Since longevity is a plastic trait that

is related to multiple factors in the evolutionary his-

tory of the organisms (e.g., reproduction, body mass,

habitat, metabolism, risk of predation), the way in

which these genes evolved could be independent in

the long-lived species analyzed.

The relationship between CS and longevity was

highlighted across various sections of this manuscript.

The inducers of senescence were significantly overrepre-

sented in the anti-longevity human orthologues, while

the inhibitors of senescence were even more overrepre-

sented in the pro-longevity human orthologues (Add-

itional file 1: Table S7) [34]. Furthermore, both the

CellAge regulators of CS and the overexpressed signa-

tures of CS were significantly overrepresented in the

overexpressed aging signatures from the human, rat, and

mouse aging signature meta-analysis [42]. Interestingly,

we found that the overexpressed signatures of replicative

CS overexpressed with age were significantly enriched

for regulated exocytosis (including leukocyte activation),

cell proliferation, and aging (Additional file 1: Table S10;

Additional file 2: Fig. S3B). The SASP is a known in-

ducer of chronic inflammation in aged tissue [12, 13],

and the enrichment of terms relating to leukocyte activa-

tion highlights the role CS plays in activating the immune

system via inflammatory factors with age. One tissue that

consistently showed different CS expression patterns with

age was the uterus. This observations was already noted in

a previous study which also observed that DEGs downreg-

ulated in cancer were upregulated with age and DEGs up-

regulated in cancer were downregulated with age in six

tissues, but not in the uterus [32].

CS genes are not expressed in a tissue-specific manner

(Additional file 1: Table S11; Additional file 2: Fig. S4)

and less than half of the CS genes undergo a significant

change in expression with age (Fig. 2; Additional file 2:

Fig. S5A), suggesting that the pathways triggering differ-

ential expression of CS genes with age are shared between

cells across tissues. Indeed, we found that CDKN2A was
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overexpressed in 19 human tissues with age, albeit only

significantly so in 10 of the tissues (Additional file 1: Table

S18) [32]. Nonetheless, across all simulations, CS genes

significantly overexpressed across multiple tissues with

age by chance never exceeded seven tissues (Fig. 2d;

Additional file 1: Table S17 and S19). The significant in-

crease in CDKN2A expression across a significant number

of human tissues with age is an indicator that at least

some cell types are undergoing CS with age. ZMAT3, an

inhibitor of CS, was also significantly overexpressed with

age in seven tissues, including blood vessel, lung, and

prostate, which also had significant increases in CDKN2A

expression. Indeed, both ZMAT3 and CDKN2A were

overexpressed across the majority of GTEx tissues with

age (Additional file 2: Fig. S5D). Furthermore, ~ 40% of

the CellAge database was compiled using experiments ex-

clusively in human fibroblast cell lines. Of the 20 studies

used to compile the signatures of CS, 10 also performed

gene manipulation experiments on fibroblasts [32]. Fibro-

blasts are present in connective tissues found between

other tissue types across the human body, and the tissue

samples analyzed to compile GTEx likely contained fibro-

blast gene expression. This may partially explain the lack

of tissue-specific CellAge genes. It is further unclear

whether the trends in differential expression of the Cel-

lAge genes we see across aged human tissue samples is a

result of fibroblast senescence, or if heterogenous gene

populations are undergoing CS. We have partially ad-

dressed this issue by doing subgroup analysis of CellAge

genes confirmed to control senescence outside of fibro-

blast cell lines and found that the overlap between these

genes and both the signatures of aging and cancer genes is

still significant.

We found a strong association between senescence

and neoplastic diseases (Additional file 1: Table S21).

This is not surprising given the known role of senes-

cence in tumor suppression. Some CS genes were also

shared between many of the ARD classes. These results

are in line with a previous analysis investigating the rela-

tionship between CS and ARD genes carried out using

different datasets [53]. Tacutu et al reported significant

overlaps (i.e., 138 genes – 53% – in common between

CS and cancer vs 21–8% – between CellAge and neo-

plasms); many more than we did. The study found that

many genes shared between CS and several non-cancer

ARDs are also involved in cancer. While removing can-

cer genes from our ARD dataset did not result in such a

striking effect, it nonetheless substantially cut the num-

ber of overlaps to a statistically insignificant level, adding

weight to the hypothesis that cancer genes have a bridg-

ing role between CS and ARDs. Furthermore, we found

a significant overlap between both the CellAge inhibitors

and inducers of senescence, and oncogenes and TSG

(Fig. 3). Genes that induce senescence, however, tended

to be tumor suppressors, while genes that inhibit senes-

cence tended to be oncogenes, a finding that is consist-

ent with the classical view of cellular senescence as a

tumor-suppressor mechanism.

We next explored what information could be obtained

by applying a network analysis to CellAge. From the list

of CellAge genes, three networks of CS were generated:

a PPI network and two co-expression networks, with the

aim of identifying new senescence regulators based pri-

marily on network centrality of the genes.

The examination of the PPI network to identify pos-

sible regulators based on centrality revealed 25 central

genes in the network, ranking in the top 1% in at least

two network topological parameters (degree, BC, CC,

or IC) (Additional file 1: Table S33). However, 13 of

these genes are already in the CellAge database, and we

found 11 of these genes have already been shown to

drive CS in human cell lines and will be added into

build 2 of CellAge.

We looked at the RNA-Seq co-expression network in

detail, using the main connected component of 3198

genes to find highly central genes to the network as a

whole, and those occupying subnetworks of interest. The

RNA-Seq was a highly modular network, separated into

some subnetworks of distinct functions (Fig. 4). The two

largest and more central networks contained a number of

known senescence genes. We expanded the analysis of

these networks in particular, identifying a number of

bottleneck nodes. Cluster 1 was enriched for cell cycle

processes, which is not overly surprising given that senes-

cence involves changes in cell cycle progression. However,

cluster 2 comprised of enriched terms relating to immune

system function. One of the aims in biogerontology is to

understand and reverse the effects of aging on the im-

mune system. Additional file 1: Table S38 highlights the

genes in both clusters that are potential CS bottlenecks

within the network and may warrant further study.

Using siRNAs, we were able to test the potential role of

26 gene candidates in inhibiting senescence (Fig. 5). The

list of candidates was primarily compiled using CellAge

inhibitors as seeds to generate co-expressed genes in Gen-

eFriends, a collection of RNA-seq co-expression data [59]

(Additional file 1: Table S43). Of the 26 genes, 13 were

top hits, decreasing cell number, altering at least one mor-

phological measure, and activating the p16 and/or p21

pathway. Additional file 1: Table S45 highlights the four

CS candidates we found that have not yet been associated

with senescence. We have showcased how co-expression

networks can be used to accurately infer senescence gene

candidates, which can then be experimentally verified.

Conclusion
Overall, our CellAge database is the first comprehensive

cellular senescence database, which will be a major
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resource for researchers to understand the role of senes-

cence in aging and disease. Besides, we found that CS

genes are conserved in vertebrates but not invertebrates

and that genes related to the CS tend not to be tissue-

specific. We observed that genes inducing CS trended

towards upregulation with age across most human tis-

sues, and these genes are overrepresented in both anti-

longevity and tumor-suppressing gene datasets, while

genes inhibiting senescence were not overexpressed with

age and were overrepresented in pro-longevity and

oncogene datasets. CS genes were also overrepresented

in genes linked to aging-related diseases, primarily in

neoplasms.

Using network biology, we implicated the CellAge

genes in various processes, particularly cell division and

immune system processes. We used network topology to

identify potential regulators of CS and bottlenecks that

could impact various downstream processes if deregu-

lated. Indeed, we identified 11 genes that have already

been shown to contribute towards CS, which will be

added to future versions of CellAge. Finally, we experi-

mentally verified 26 genes that induce CS morphology or

biomarkers when knocked down in human mammary fi-

broblasts. Of these, 13 genes (C9orf40, CDC25A, CDCA4,

CKAP2, GTF3C4, HAUS4, IMMT, MCM7, MTHFD2,

MYBL2, NEK2, NIPA2, and TCEB3) were strong hits in

inducing a senescent phenotype.

Cellular senescence is one of the hallmarks of aging

[87] and the accumulation of senescent cells in human

tissues with age has been implicated as a driver of aging-

related diseases. Indeed, pharmacological approaches

targeting senescent cells, like senolytics, are a major and

timely area of research that could result in human clin-

ical applications [5, 88]. It is imperative that we fully

understand and deconstruct cellular senescence in order

to target aging-related diseases. We hope that CellAge

will help researchers understand the role that CS plays

in aging and aging-related diseases and contributes to

the development of drugs and strategies to ameliorate

the detrimental effects of senescent cells.

Methods
CellAge compilation

CellAge was compiled following a scientific literature

search, manual curation, and annotation, with genes be-

ing appended to the database if they met the following

criteria:

� Only gene manipulation experiments (gene knockout,

gene knockdown, partial or full loss-of-function muta-

tions, overexpression or drug-modulation) were used

to identify the role of the genes in cellular senescence.

The search focussed on genes from genetic

manipulation experiments to ensure objectivity in the

selection process.

� The genetic manipulation caused cells to induce or

inhibit the CS process in the lab. Cellular senescence

was detected by growth arrest, increased SA-β-

galactosidase activity, SA-heterochromatin foci, a

decrease in BrdU incorporation, changes in

morphology, and/or specific gene expression

signatures.

� The experiments were performed in primary,

immortalized, or cancer human cell lines.

40% of the experiments were conducted exclusively in

fibroblasts. The data was compiled from 230 references.

The curated database comprises cell senescence genes

together with a number of additional annotations useful

in understanding the context of each identified CS gene

(Additional file 1: Table S46).

We categorized genes according to three types of sen-

escence: replicative, oncogene-induced or stress-induced.

Replicative senescence was the default category, while

genes were listed as oncogene-induced if the reference

explicitly mentioned the gene induced or delayed

oncogene-induced senescence. Finally, stress-induced

senescence was used to indicate that the gene was neces-

sary to induce or inhibit senescence caused by external

stressors like drugs/chemicals, serum deprivation, or ra-

diation. We also recorded whether a gene induces or in-

hibits CS. For example, a gene whose overexpression is

associated with increased senescence is classified with

the “induces” tag, whereas if the overexpression of a

gene inhibits senescence, then it is classified with the

“inhibits” tag. Similarly, if the knockout or knockdown

of a gene induces senescence, then it is recorded with

the “inhibits” tag. Together with the annotations identified

in Additional file 1: Table S46, we also incorporated a

number of secondary annotations into the database such

as various gene identifiers, the gene description, gene in-

teraction(s), and quick links to each senescence gene. The

CellAge database also provides crosslinks to genes in other

HAGR resources, i.e., GenAge, GenDR and Longevity-

Map, which we hope will enable inferences to be made re-

garding the link between human aging and CS.

CellAge data sources

Build 1 of CellAge resulted in a total of 279 curated cell

senescence genes which we have incorporated into the

HAGR suite of aging resources. The HAGR platform

comprises a suite of aging databases and analysis scripts.

The CellAge interface has been designed with the help

of JavaScript libraries to enable more efficient retrieval

and combinatorial searches of genes. As with the other

HAGR databases, we have used PHP to serve the data

via an Apache web server. The raw data can be
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downloaded via the main HAGR downloads page in

CSV format or filtered and downloaded from the main

search page.

The first part of our work consisted in finding which

genes driving CS are also associated with ARDs or with

longevity, using the following data sources:

� Human genes associated with CS: CellAge build 1.

� Human genes associated with human aging: GenAge

human build 19.

� Human orthologues of model organisms’ genes

associated with longevity: proOrthologuesPub.tsv

and antiOrthologuesPub.tsv file (https://github.com/

maglab/genage-analysis/blob/master/Dataset_4_

aging_genes.zip) [34].

� Human oncogenes: Oncogene database (http://

ongene.bioinfo-minzhao.org/index.html).

� Human tumor suppressor gene database: TSGene

2.0 (https://bioinfo.uth.edu/TSGene/index.html).

� Human genes associated with ARDs (https://github.

com/maglab/genage-analysis/blob/master/

Dataset_5_disease_genes.zip) [34]. This data

concerns the 21 diseases with the highest number of

gene associations, plus asthma, a non-aging-related

respiratory system disease used as a control.

� Human genes differentially expressed with age from

the GTEx project (v7, January 2015 release) [32, 43].

CellAge data analysis

Statistical significance was determined by comparing the

p-value of overlapping CellAge gene symbols with the

different data sources, computed via a hypergeometric

distribution and Fisher’s exact test. We used PubMed to

understand the relative research focus across the

protein-coding genome and incorporate this into the

analysis to account for publication bias. We used Bio-

Mart to obtain approximately 19,310 protein-coding

genes, then using an R script we queried NCBI for the

publication results based on the gene symbol using the

following query [89, 90]:

(“GENE_SYMBOL”[Title/Abstract] AND Homo

[ORGN]) NOT Review [PTYP]

The GENE_SYMBOL was replaced in the above query by

each of the genes in turn. Certain genes were removed as

they matched common words and, therefore, skewed the

results: SET, SHE, PIP, KIT, CAMP, NODAL, GC, SDS,

CA2, COPE, TH, CS, TG, ACE, CAD, REST, HR, and MET.

The result was a dataframe in R comprising variables for

the “gene” and the “hits.” We used the R package called

“rentrez” to query PubMed for the result count [91].

Evolution of CellAge genes

The percentage of CellAge genes with orthologues in

Rhesus macaque, Rattus norvegicus, Mus musculus,

Saccharomyces cerevisiae, Caenorhabditis elegans, and

Drosophila melanogaster were found using Biomart ver-

sion 88 by filtering for genes with “one2one” homology

and an orthology confidence score of one [89]. We also

found the total number of human genes with ortholo-

gues in the above species using Biomart. Significance

was assessed using a two-tailed z-test with BH

correction.

The phylogenetic arrangement included twenty-four

species representative of major mammalian groups. The

genomes were downloaded in CDS FASTA format from

Ensembl (http://www.ensembl.org/) and NCBI (https://

www.ncbi.nlm.nih.gov/) (Additional file 1: Table S6).

To remove low quality sequences we used the cluster-

ing algorithm of CD-HITest version 4.6 [92] with a se-

quence identity threshold of 90% and an alignment

coverage control of 80%. The longest transcript per gene

was kept using TransDecoder.LongOrfs and TransDeco-

der. Predict (https://transdecoder.github.io) with default

criteria [93]. In order to identify the orthologs of the 279

CellAge human genes in the other 23 mammalian spe-

cies, the orthology identification analysis was done using

OMA standalone software v. 2.3.1 [41]. This analysis

makes strict pairwise sequence comparisons “all-against-

all,” minimizing the error in orthology assignment. The

orthologous pairs (homologous genes related by speci-

ation events) are clustered into OrthoGroups (OG) [94];

this was done at the Centre for Genomic Research com-

puting cluster (Linux-based) at the University of Liver-

pool. The time calibrated tree was obtained from

TimeTree (http://www.timetree.org/) and the images

were downloaded from PhyloPic (http://phylopic.org/).

In order to structure the evolutionary distance for the

CellAge genes between the five long-lived mammals and

the others 19 mammalian species, the amino acid se-

quences from the 271 CellAge OrthoGroups were

aligned using the L-INS-i algorithm from MAFFT v.7

[95]. Ambiguous and missing sites were removed from

the alignments using the pxclsq function from phyx [96].

We concatenated the amino acid alignments using the

concat function from AMAS [97] for the 271 CellAge

genes. To analyze the variation of the CellAge genes in

mammals, we obtained the branch lengths using log-

likelihood for a fixed tree through IQ-TREE [98] for (a)

the concatenated alignment (271 CellAge genes) and (b)

the 22 CellAge genes conserved among the 24 mamma-

lian species in order to understand the individual gene

evolution. The topology of reference was the phylogen-

etic tree from TimeTree.

We used the Faith’s phylogenetic diversity index (PD)

[99] through the “picante” R package [100] to calculate

the evolutionary distances. The Faith’s PD index was

used to calculate the sum of the total phylogenetic

branch length for one or multiples species. We

Avelar et al. Genome Biology           (2020) 21:91 Page 17 of 22

https://github.com/maglab/genage-analysis/blob/master/Dataset_5_disease_genes.zip
https://github.com/maglab/genage-analysis/blob/master/Dataset_5_disease_genes.zip
https://github.com/maglab/genage-analysis/blob/master/Dataset_5_disease_genes.zip
http://ongene.bioinfo-minzhao.org/index.html
http://ongene.bioinfo-minzhao.org/index.html
https://bioinfo.uth.edu/TSGene/index.html
https://github.com/maglab/genage-analysis/blob/master/Dataset_5_disease_genes.zip
https://github.com/maglab/genage-analysis/blob/master/Dataset_5_disease_genes.zip
https://github.com/maglab/genage-analysis/blob/master/Dataset_5_disease_genes.zip
http://www.ensembl.org/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://transdecoder.github.io
http://www.timetree.org/
http://phylopic.org/


calculated the observed Faith’s PD from our data and we

compared the results with the expected Faith’s PD

(expected.pd) using a binomial sampling with a fixed

probability of each tip being sampled.

Overlap analysis

We conducted overlap analysis using R to understand

how the CellAge genes and signatures of CS were differ-

entially expressed with GenAge, ARD, and cancer genes.

We also examined the overlap between CS genes and

differentially expressed signatures of aging [42], and

genes differentially expressed in various human tissues

with age. Fisher’s exact test was used on the contingency

tables and significance was assessed by p values adjusted

via Benjamini-Hochberg (BH) correction. For the com-

parison of genes differentially expressed in at least one

tissue with age between the CS genes and the genome,

some genes were differentially expressed in opposite di-

rections across numerous tissues (Additional file 2: Fig.

S5A). Genes differentially expressed in both directions

were added to the overexpressed and underexpressed

DEGs in each CS gene list, and to the total number of

genes in the genome to compensate for the duplicate

gene count (Additional file 1: Table S14 and S15). Fish-

er’s exact test was also used to test for significance of

tissue-specific CellAge gene expression. Significance of

overlap analysis between CellAge and LAGs was com-

puted using a hypergeometric distribution and FDR was

corrected using Bonferroni correction. The GeneOverlap

package in R was used to test for overlaps between the

CellAge inducers and inhibitors of senescence, and the

oncogenes and TSGs [101]. Results for all overlap ana-

lyses were plotted using the ggplot2 library [90, 102].

Simulation of CS gene expression in human aging

The RNA-seq gene expression data on GTEx was scram-

bled in such a way that all protein-coding genes in each

tissue were assigned a random paired p and log2FC value

from the original gene expression data of each respective

tissue. The randomly sorted gene expression data was

then filtered for significance (p < 0.05, moderated t-test

with BH correction, absolute log2FC > log2(1.5)) [32, 103],

and the CellAge accessions were extracted and overlapped

across all the simulated expression data in 26 tissues from

GTEx. The probability of a CS gene being overexpressed

or underexpressed across multiple tissues by chance was

calculated across 10,000 simulations.

Functional enrichment

The analysis of CellAge included gene functional enrich-

ment of the database. We used DAVID functional clus-

tering (https://david.ncifcrf.gov/) to identify functional

categories associated with CellAge [35, 36].

The Overrepresentation Enrichment Analysis (ORA)

of biological processes (Gene Ontology database) was

done via the WEB-based Gene SeT AnaLysis Toolkit

(WebGestalt) for the analysis of all CellAge genes,

CellAge CS regulators and overexpressed signatures of

CS overexpressed in the meta-analysis of aging signa-

tures, and for the CellAge genes overlapping with tumor

suppressor and oncogenes [38]. A p value cutoff of 0.05

was used, and p values were adjusted using BH correc-

tion. Redundant GO terms were removed and the

remaining GO terms were grouped into categories based

on their function using the default parameters on Re-

duce + Visualize Gene Ontology (REVIGO) [37]. Results

were then visualized using and the R package treemap

[104] (Fig. 1c; Additional file 2: Fig. S8A – S8D). Venn

diagrams to represent gene overlaps were created using

Venny [52] and the ggplot2 library [90, 102].

Networks

We used Cytoscape version 3.6.1 to generate networks

and R version 3.3.1 to perform aspects of the statistical

analysis [90, 105]. The networks were built starting from

a list of seed nodes—all genes included in build 1 of Cel-

lAge, part of the Human Ageing Genomic Resources

[28]. Network propagation was measured using the

Cytoscape plugin Diffusion [106].

The analysis of the fit to the scale-free structure was

calculated by the Network Analyzer tool of Cytoscape

3.2.1 [105]. Network analyzer is a Cytoscape plugin

which performs topological analysis on the network and

reports the pillar nodes on the network structure based

on a series of mathematical parameters. Network

analyzer also calculates the fit of the distribution of the

number of edges per node to the power law distribution.

A significant fit to the power law indicates the presence

of a scale-free structure in the network [61, 107]. The

analysis was applied to the PPI network, the RNA-seq

Unweighted Co-expression network, and the Microarray

Unweighted Co-expression network of cellular senes-

cence (Additional file 2: Fig. S9). The Network Analyzer

tool was also used to calculate BC, CC, and IC in the

networks.

Protein-protein interaction network

The protein-protein interaction network was built from

the BioGrid database of physical multi-validated protein

interactions (Biology General Repository for Interaction

Datasets) version 3.4.160, using CellAge proteins as seed

nodes and extracting the proteins encoded by CellAge

genes as well as the first-order interactors of CellAge

proteins [108]. After removing duplicated edges and

self-loops, the network consisted of 2643 nodes and 16,

930 edges. The network was constructed and visualized

in Cytoscape version 3.6.1. The “CytoCluster” App in
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Cytoscape was used to identify modules in the network

with the following parameters: HC-PIN algorithm; Weak,

Threshold = 2.0; ComplexSize Threshold = 1% [68].

Unweighted RNA-Seq co-expression network

The RNA-seq co-expression network was built using

CellAge data and RNA-Seq co-expression data taken

from Genefriends (http://genefriends.org/RNAseq) [59].

The unweighted co-expression network was built

applying the method of correlation threshold selection

described by Aoki to the GeneFriends database of RNA-

Seq co-expression version 3.1 [109]. Aoki initially de-

signed this methodology for plant co-expression network

analysis, but it has been successfully applied to build hu-

man networks [110]. The Pearson Correlation Coeffi-

cient (PCC) threshold which generated the database of

edges with the lowest network density was selected. The

network density is the proportion of existing edges out

of all possible edges between all nodes. The lower the

network density is the more nodes and fewer edges are

included in the network. The lower the number of edges,

the higher the minimum correlation in expression be-

tween each pair of genes represented by the edges. The

higher the number of nodes, the higher the portion of

nodes from CellAge included, and, therefore, the more

representative the network is of the CellAge database.

The PCC threshold of 0.65 generated the database of in-

teractions of RNA-Seq co-expression with the lowest

network density, 0.01482 (Additional file 2: Fig. S14A).

The unweighted RNA-Seq network was generated and

visualized in Cytoscape 3.6.1.

Microarray co-expression network

The microarray co-expression network was generated

using the CellAge genes as seed nodes and their direct

interactions and edges, derived using the COXPRESdb

database of Microarray co-expression (version Hsa-

m2.c2-0) [57]. PCC threshold of 0.53 created the Micro-

array database with the lowest network density, 1.006 ×

10− 2 (Additional file 2: Fig. S14B). The adjustment of

the node-degree distribution to the power law distribu-

tion had a correlation of 0.900 and an R-squared of

0.456 (Additional file 2: Fig. S9C). The fit to the power

law distribution confirmed the scale-free structure of the

network.

Experimental validation of new CS genes

We used normal human mammary fibroblasts (HMFs)

and siRNAs to find new CS regulators based on high-

ranking co-expressed inhibitors of CS and SIPS inhibi-

tors. We also tested SMC4 due to its high-scoring topo-

logical parameters within the microarray co-expression

network (see Experimental Validation of Senescence

Candidates in Results).

Cell culture and reagents

Fibroblasts were obtained from reduction mammoplasty

tissue of a 16-year-old individual, donor 48 [111]. The

cells were seeded at 7500 cells/cm2 and maintained in

Dulbecco’s modified Eagle’s medium (DMEM) (Life

Technologies, UK) supplemented with 10% fetal bovine

serum (FBS) (Labtech.com, UK), 2 mM L-glutamine (Life

Technologies, UK) and 10 μg/mL insulin from bovine

pancreas (Sigma). All cells were maintained at 37 °C/5%

CO2. All cells were routinely tested for mycoplasma and

shown to be negative.

siRNA knockdown experiments

For high-content analysis (HCA), cells were forward

transfected with 30 nM siRNA pools at a 1:1:1 ratio

(Ambion) using Dharmafect 1 (Dharmacon) in 384-well

format. Control siRNA targeting cyclophilin B (Dharma-

con) or Chromobox homolog 7 (CBX7, Ambion) were

also included as indicated. Cells were incubated at 37 °C/

5% CO2 and medium changed after 24 h. Cells were then

fixed/stained 96 h later and imaged as described below.

The siRNA sequences are provided in Additional file 1:

Table S47A and S47B.

Z-score generation

For each of the parameters analyzed, significance was

defined as one Z-score from the negative control mean

and average Z-scores from at least two independent ex-

periments performed in at least triplicate are presented.

Z-scores were initially generated on a per experiment

basis according to the formula below:

Z−score ¼ mean value of target siRNA �mean value for cyclophilin B siRNAð Þ

=standard deviation SDð Þ for cyclophilin B siRNA:

Immunofluorescence microscopy and high-content analysis

Cells were fixed with 3.7% paraformaldehyde, perme-

abilized for 15min using 0.1% Triton X and blocked in

0.25% BSA before primary antibody incubations. Primary

antibodies used are listed in Additional file 1: Table S48.

Cells were incubated for 2 h at room temperature with the

appropriate AlexaFluor-488 or AlexaFluor-546 conjugated

antibody (1:500, Invitrogen), DAPI, and CellMask Deep

Red (Invitrogen). Images were acquired using the IN Cell

2200 automated microscope (GE), and HCA was

performed using the IN Cell Developer software (GE).
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