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A B S T R A C T
This paper describes a second-order upwind scheme for multidimensional magnetohydro-
dynamics, which uses a linear approximation for all Riemann problems except those involving
strong rarefactions. This enables it to cope with initial data for which previously published
schemes might fail. The condition =·B ¼ 0 is not enforced in multidimensions, but the
numerical problems associated with this are dealt with by adding source terms to the equations,
as suggested by Powell. We also show that there are advantages to adding second-order
artificial dissipation at shocks.

Key words: MHD.

1 I N T RO D U C T I O N

There are numerous astrophysical objects that involve the motion of
a conducting, compressible fluid containing a dynamically signifi-
cant magnetic field (see e.g. Parker 1979). Examples include
supernova remants, stellar wind bubbles, accretion discs, stars,
planets, the solar wind and many others. In many cases the
continuum approximation is valid, the fluid velocities are sub-
relativistic and the ohmic dissipation time is much longer than the
dynamical time-scale, which means that one can use the equations
of ideal magnetohydrodynamics (MHD). Although these equations
also arise in a number of terrestrial applications, these do not
usually involve shocks, whereas many of the astrophysical flows
do. As in ordinary gas dynamics, the complexity of the equations is
such that there are many important questions that require numerical
calculations since they cannot be answered by analytic means. It is
therefore important to develop numerical algorithms for the com-
pressible MHD equations, which can cope with shocks and other
discontinuites. Since experience has taught us that conservative
upwind schemes are the most appropriate for ordinary gas
dynamical flows with discontinuities (see e.g. Roe 1986), it is
likely that such schemes will also be effective for MHD.

Although upwind schemes have been applied to relativistic
hydrodynamics (e.g. Eulderink & Mellema 1994; Font et al.
1994; Falle & Komissarov 1996), it has not been quite so easy to
extend them to MHD. The main reasons for this are that an exact
solution to the Riemann problem is extremely complex (Gogosov
1961; Jeffreys & Taniuti 1964) and the fact that such schemes do not
automatically ensure =·B ¼ 0.

The complexity of the Riemann problem need not worry us too
much since there are a number of ways of constructing approximate
solutions (e.g. Brio & Wu 1988; Zachary, Malagoli & Collela 1994;
Ryu & Jones 1995) and codes based on these methods seem to work
quite well. In any case, although an exact Riemann solver is

expensive, this has little effect on the total computational cost if it
is only invoked for the relatively small number of Riemann
problems for which there is a large difference between the two
states.

It is well known that although the exact equations preserve
=·B ¼ 0, numerical schemes do not necessarily do so. Brackbill
& Barnes (1980) have shown that this can cause conservative
schemes to behave badly in regions where the forces are close to
equilibrium. They suggest using the non-conservative form of the
momentum equation, but this is clearly unsatisfactory for flows
containing strong shocks. Zachary et al. (1994) therefore only use a
non-conservative differencing for the troublesome terms. They also
ensure that the field is divergence free by solving a Poisson equation
for a pseudo-potential and then using this to correct the field. We
prefer not to correct the field since not only is it is quite expensive to
solve a Poisson equation, but their results suggest that it is not really
necessary. It is however, essential to avoid the evil effects of a non-
vanishing =·B ¼ 0. Some recent work by Powell (1994) suggests
that one can do this by adding appropriate source terms to the
equations. We find that a slightly modified version of this works
quite well.

Although upwind schemes are generally very good at shock
capturing, they can suffer from a non-linear instability if the flow is
very closely aligned with the grid (Quirk 1994). They also tend to
generate long wave entropy errors behind shocks which are moving
slowly relative to the grid. In Falle & Komissarov (1996) we showed
that these problems can be eliminated by adding appropriate
viscous fluxes to those computed from the solution to the Riemann
problem. We find that this also considerably improves the perfor-
mance of our MHD code.

2 T H E M H D R I E M A N N P RO B L E M

In cartesian coordinates, the equations of ideal MHD can be written
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in the conservative form (Brio & Wu 1988)

∂U
∂t

þ
∂F
∂x

þ
∂G
∂y

þ
∂H
∂z

¼ 0;

where

U ¼ ½r; rvx; rvy; rvz; e;Bx;By;Bzÿ
t ð1Þ

is a vector of conserved variables. Here t denotes the transpose and

e ¼
pg

ðg ¹ 1Þ
þ

1
2

B2 þ
1
2
rv2

is the total energy per unit volume. pg is the gas pressure.
The fluxes are given by

F ¼

rvx

rv2
x þ pg þ pm ¹ B2

x

rvxvy ¹ BxBy

rvxvz ¹ BxBz

fe þ pg þ pmgvx ¹ Bxðv·BÞ

0
vxBy ¹ vyBx

vxBz ¹ vzBx

266666666664

377777777775
; ð2Þ

G ¼

rvy

rvyvx ¹ ByBx

rv2
y þ pg þ pm ¹ B2

y

rvyvz ¹ ByBz

fe þ pg þ pmgvy ¹ Byðv·BÞ

vyBx ¹ vxBy

0
vyBz ¹ vzBy

266666666664

377777777775
; ð3Þ

H ¼

rvz

rvzvx ¹ BzBx

rvzvy ¹ BzBy

rv2
z þ pg þ pm ¹ B2

z

fe þ pg þ pmgvz ¹ Bzðv·BÞ

vzBx ¹ vxBz

vzBy ¹ vyBz

0

266666666664

377777777775
ð4Þ

where

pm ¼
1
2

B2

is the magnetic pressure. The units in these equations are such that
the velocity of light and the factor 4p do not appear.

The Riemann problem is governed by the one dimensional
version of these equations

∂U
∂t

þ
∂F
∂x

¼ 0: ð5Þ

Although other authors have used the conserved variables, it is more
convenient to solve the linear Riemann problem in terms of the
primitive variables

P ¼ ½r; vx; vy; vz; pg;By;Bzÿ
t
:

These satisfy

∂P
∂t

þ A
∂P
∂x

¼ 0

where the matrix A is given by

A ¼

vx r 0 0 0 0 0

0 vx 0 0
1
r

By

r

Bz

r

0 0 vx 0 0 ¹
Bx

r
0

0 0 0 vx 0 0 ¹
Bx

r

0 ra2 0 0 vx 0 0

0 By ¹Bx 0 0 vx 0

0 Bz 0 ¹Bx 0 0 vx

26666666666666666666664

37777777777777777777775

:

Here a is the adiabatic sound speed

a ¼ ðgpg=rÞ1=2
:

This system of equations only has seven variables since the
condition =·B ¼ 0 requires that the x component of the magnetic
field must be constant if there is no y or z dependence. There are
therefore seven waves whose speeds are given by the eigenvalues of
A. These are

l1;7 ¼ v 7 cf ; l2;6 ¼ v 7 ca;l3;5 ¼ v 7 cs; l4 ¼ v;

where

ca ¼ jBxj =
√

r

is the Alfvén speed and

c2
s;f ¼

1
2

a2 þ
B2

r
7 a2 þ

B2

r

� �2

¹
4a2B2

x

r

" #1=2( )
are the slow and fast magnetosonic speeds. Note that we have
labelled these so that l1 # l2 # . . . l7.

The right eigenvectors corresponding to these are

r1;7 ¼ r;7cf ;6
cfBxBt

Df
; ra2

;

rc2
f Bt

Df
;

� �t

;

r2;6 ¼ ½0; 0; sBz;¹sBy; 0;6Bz

√
r;7By

√
rÿ

t
;

r3;5 ¼ r;7cs;6
csBxBt

Ds
; ra2

;

rc2
s Bt

Ds

� �t

;

r4 ¼ ½1; 0; 0; 0; 0; 0; 0ÿt
;

ð6Þ

where

s ¼ signðBxÞ; Ds;f ¼ rc2
s;f ¹ B2

x :

and Bt is the transverse magnetic field.
Although not strictly necessary, it is also useful to determine the

left eigenvectors

l1;7 ¼ 0;7cf ;6
cfBxBt

Df
;

1
r
;

c2
f Bt

Df

� �
;

l2;6 ¼ 0; 0; sBz;¹sBy; 0;6
Bz√
r
;7

By√
r

� �
;

l3;5 ¼ 0;7cs;6
csBxBt

Ds
;

1
r
;

c2
s Bt

Ds

� �
;

l4 ¼ ½1; 0; 0; 0;¹1=a2
; 0; 0ÿ:

It convenient to normalize these so that

li·rj ¼ dij:
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This can obviously be done by multiplying the left and right
eigenvectors by appropriate factors. However, one has to be
rather careful how one does this since otherwise the eigenvectors
corresponding to the Alfvén waves and two of the magnetosonic
waves are not well-defined when the transverse component of the
magnetic field vanishes (Brio & Wu 1988).

For the Alfvén waves we have

l2;6·r2;6 ¼ 2ðB2
y þ B2

z Þ ¼ 2B2
t

where Bt is the magnitude of the transverse magnetic field. The
symmetry of the left and right eigenvectors suggests that we should
multiply them both by

a ¼ 1=
√

2Bt:

Apart from the factor
√

2, this is the same as the normalization that
Brio & Wu derived without considering the left eigenvectors. If we
use this, then the non-zero components of both the left and right
eigenvectors are proportional to By =Bt and Bz =Bt. These remain
finite as Bt → 0, but are undetermined unless we specify the
direction of the tranverse field as it tends to zero. We therefore
need to show that, whatever direction we choose, the eigenvectors
remain linearly independent when Bt ¼ 0. In order to do this we
have to consider the behaviour of the magnetosonic waves when the
transverse field vanishes.

For the magnetosonic waves we have

ls;f ·rs;f ¼ 2c2
s;f 1 þ

B2
xB2

t

D2
s;f

" #
:

As for the Alfvén waves, the form of the eigenvectors suggests that
we normalize them by multiplying both left and right eigenvectors
by

bs;f ¼
1

ðls;f ·rs;fÞ
1=2 ¼

Ds;f√
2cs;fðD

2
s;f þ B2

xB2
t Þ

1=2 :

Although this normalization is different from that adopted by Brio
& Wu (1988), it is entirely equivalent and seems somewhat more
natural. When Bt ¼ 0 we have cs ¼ ca if ca < a, whereas cf ¼ ca if
ca > a. We therefore have slow-wave degeneracy at Bt ¼ 0 (Ds ¼ 0)
if ca < a and fast-wave degeneracy (Df ¼ 0) if ca > a.

First suppose that the slow waves are degenerate (ca < a).
Then

Ds → ¹
B2

t B2
x

rða2 ¹ c2
aÞ

as Bt → 0;

which means that

bs → Ds√
2BxBtcs

as Bt → 0:

The normalized slow-wave eigenvectors therefore also have com-
ponents which are proportional to By =Bt and Bz =Bt as Bt → 0. It is
easy to show that, although the Alfvén waves and the slow waves
have the same wavespeed when Bt ¼ 0, the corresponding eigen-
vectors are linearly independent whatever the direction of the
transverse field as it tends to zero.

If the fast waves are degenerate (ca > a), then

Df → B2
t B2

x

rðc2
a ¹ a2Þ

as Bt → 0;

so that, apart from the change of sign, the fast waves behave in the
same way as the slow waves do when ca < a.

Finally, if both sets of waves are degenerate (ca ¼ a), we have

Ds;f → 72aBt

√
r as Bt → 0:

and

bs;f → 2
5

� �1=2 1
ca

as Bt → 0:

The normalized eigenvectors still contain components proportional
to By =Bt and Bz =Bt as Bt → 0. Note that although the Alfvén, fast
and slow speeds now become identical when Bt ¼ 0, the corre-
sponding eigenvectors are still linearly independent provided we
assume that Ds → 0¹ and Df → 0þ as Bt → 0.

When Bx ¼ 0, things become very simple. The fast waves are no
longer able to change the transverse velocity and the slow and
Alfvén waves merge with the contact discontinuity. The equations
reduce to those of ordinary gas dynamics with a total pressure given
by P ¼ pg þ pm. The magnetic field is determined by the condition
that Bt = r for each fluid particle be independent of time. In this case
nothing special happens when Bt → 0.

The solution to the one dimensional Riemann problem satisfies
(5) with the initial conditions

Uðx; 0Þ ¼ constant ¼ UR for x $ 0;
Uðx; 0Þ ¼ constant ¼ UL for x < 0:

Since there is no length-scale in the problem, the solution must have
the self-similar form Uðx; tÞ ¼ Uðx = tÞ and can therefore only contain
contact discontinuities, Alfvén shocks, and magnetosonic shocks or
centred rarefactions. As in ordinary gas dynamics, the solution cannot
be found explicitly but has to be determined from a set of non-linear
algebraic equations. As we have already pointed out, one could use
the exact solver in a numerical scheme since, although it is expensive,
it is only needed for the small number of Riemann problems for
which there is a large difference between the left and right states.
However, as we shall see, a simple linear Riemann solver works just
as well for everything apart from strong rarefactions.

2.1 Approximate solutions to the Riemann problem

The simplest way of constructing an approximate solution is to
solve the linear problem

∂P
∂t

þ A
∂P
∂x

¼ 0

where AðPL;PRÞ is some mean matrix.
For some systems, such as classical gas dynamics, it is easy to

construct a mean matrix with the property (Roe 1981)

FðURÞ ¹ FðULÞ ¼ AðUR ¹ ULÞ; ð7Þ

which ensures that the solution to the Riemann problem is exact for
a single shock. Brio & Wu (1988) showed that such a matrix does
not have a simple form in MHD unless g ¼ 2, but this does not
matter much since it is not shocks, but rarefactions, which cause
problems for approximate Riemann solvers.

In fact both Brio & Wu (1988) and Ryu & Jones (1995) found that

AðPL;PRÞ ¼ A
1
2
ðPL þ PRÞ

� �
ð8Þ

works just as well as one which satisfies (7).
Whatever mean matrix one chooses, the state at x ¼ 0 is given by

P¬ ¼ PL þ
X
li<0

li·ðPR ¹ PLÞ

ðli·riÞ

¼ PR ¹
X
li>0

li·ðPR ¹ PLÞ

ðli·riÞ

where li, ri, li are the eigenvalues and eigenvectors of A.
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As we have already pointed out, something special has to be done
when Bt ¼ 0 in A. Brio & Wu use the limiting forms of the
eigenvectors with By =Bt → 1 =

√
2, Bz =Bt → 1 =

√
2 as Bt → 0, but

since the field directions in the exact solution to the Riemann
problem are determined by those in the left and right states, it might
seem sensible to do something similar in the approximate solution.
However, we find that not only does the choice of field direction
make no detectable difference to the numerical solution, but one can
get away with using ordinary gas dynamics when Bt ¼ 0 in A. This
simply amounts to ignoring the Alfvén waves and the degenerate
magnetosonic waves and supposing that the remaining magneto-
sonic waves do not change the transverse components of either the
field or velocity. Although this is clearly a very drastic approxima-
tion, it is not really any worse than imposing an arbitrary field
direction on the degenerate waves. It certainly seems to work just as
well and is a great deal simpler.

It is possible to avoid using a mean matrix by supposing that
A ¼ AL ¼ AðPLÞ on the left of the contact discontinuity and
A ¼ AR ¼ AðPRÞ on the right. Let us denote the eigenvalues and
eigenvectors of these matrices by the superfixes L and R. Then if P¬

L

and P¬
R are the states on either side of the contact discontinuity, we

have

P¬
L ¼ PL þ

X3

i¼1

bir
L
i ;

P¬
R ¼ PR þ

X7

i¼5

bir
R
i :

We have excluded the contact discontinuity, so there must be
exactly six coefficients bi in these equations. At the contact
discontinuity we have

v¬
L ¼ v¬

R;B
¬
L ¼ B¬

R; p
¬
L ¼ p¬

R:

Since the x component of the magnetic field is constant, these
conditions are sufficient to determine the six coefficients bi. If the
transverse magnetic field is zero in either the left or the right state,
then we can use ordinary gas dynamics on that side, just as before.

In Falle & Komissarov (1996) we called the approximation that
uses the mean matrix defined by equation (8) Riemann solver A,
and the one with two matrices Riemann solver B. We found that B
was much better for relativistic flows than A, but in classical gas
dynamics or MHD there appears to be very little difference between
them. If this is always true, then A is clearly better since it is
somewhat cheaper than B.

2.2 The exact solution to the Riemann problem

As we have already pointed out, although a linear solver is perfectly
adequate for the great majority of the Riemann problems that occur
in a numerical calculation, it is possible for a linear solver to
generate unphysical negative pressures and/or densities if strong
rarefaction waves are present. One remedy to fix such solutions by
setting the pressure and density to the prescribed floor values, but it
is known that in pure gas dynamics this does not always help. In
such cases it is much safer to use an exact Riemann solver.

Linear solutions of MHD Riemann problems may also include
magnetosonic waves (both shocks and rarefactions) which change
the sign of the tangential component of magnetic field i.e. non-
evolutionary solutions. One might suppose that it is these that give
rise to the intermediate shock in the numerical solution of Brio &
Wu problem and hope that an exact Rieman solver can cure this. As
we shall see in Section 5, this is a vain hope, but we still need an

exact Riemann solver which excludes intermediate waves in order
to test our numerical solutions.

The larger number of waves and the various degenerate cases
make the Riemann problem much more complicated for MHD than
it is for pure gas dynamics. This is presumably why there have, as
yet, only been a couple of attempts to construct a numerical
algorithm for this problem. Dai & Woodward (1994) describe a
technique in which shocks, Alvfén waves and contact discontinu-
ities are treated exactly, but rarefactions are approximated by
rarefaction shocks. Obviously, such a method only gives good
results for problems with weak rarefactions. Ryu & Jones (1995)
have devised an improved version in which rarefactions are treated
correctly. However, they found that it does not converge in the cases
involving switch-on or switch-off waves. In this section we describe
a different exact Riemann solver, which seems to be robust.

2.2.1 Parameter space

Our first task is to decide upon a suitable set of parameters to
describe the wave strengths. These parameters must obviously
determine the strengths of all permitted waves uniquely, but it is
very convenient if they also have a known finite range for all
physically admissible waves.

Let the suffices 1 . . . 6 denote the states between the waves
ordered from left to right. The Alfvén waves are the only ones
that can affect the angle

v ¼ tan¹1ðBy =BzÞ;

that the transverse field makes with the y-axis. Since this angle must
be the same on both sides of the contact discontinuity, we must have
v3 ¼ v4 ¼ vc. Hence

Qa ¼ vc = 2p

lies in ½0; 1Þ and uniquely determines the strengths of both Alfvén
waves.

Unfortunately, it is not so easy to find appropriate parameters for
magnetosonic waves. Both Dai & Woodward (1995) and Ryu &
Jones (1995) used the magnitudes of the transverse field,

Bt ¼ ðB2
y þ B2

z Þ
1=2
;

in the states P1, P3, and P6 as the other parameters. Since Bt3 ¼ Bt4

this provides one post-wave variable for each of the magnetosonic
waves and would therefore appear to be sufficient to determine their
strengths. However, this choice has several disadvantages. First, it is
obviously no good for pure gasdynamic waves for which Bt ¼ 0.
Secondly, the jump in Bt does not always determine fast shocks
uniquely (Jeffreys & Taniuti 1964; Kulikovskiy & Lyubimov 1965).
Finally, there is a maximum possible variation of Bt in slow
rarefactions, which corresponds to cavitation. Thus, an arbitrarily
chosen value of Bt in the state behind the slow wave may well fall in
a prohibited range. Unfortunately, the permitted range of Bt behind
the slow wave in a Riemann problem is not known a priori, but
depends on the strength of the fast wave that precedes it.

We therefore choose to describe the strengths of magnetosonic
waves in a somewhat different way. The left fast wave (shock or
rarefaction) is described by the parameter

QfL ¼ ½r1 ¹ rminðPLÞÿ = ½ðrmaxðPLÞ ¹ rminðPLÞÿ;

where rminðPÞ is the minimum density that can be attained in a fast
rarefaction and rmaxðPÞ is the maximum density that can be attained
in a fast shock with upstream state P. We can define an analogous
parameter , QfR, for the right fast wave. The permitted range for
these is obviously ½0; 1Þ. Given QfL one can compute r1, decide
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whether the wave is a shock (r1 > rL) or rarefaction (r1 < rL), and
then compute P1.

We cannot do quite the same thing for slow waves since the
downstream density does not determine the slow shock uniquely
(Jeffreys & Taniuti 1964). Instead, we use

QsL ¼ r3=rsoðPÞ;

where rsoðPÞ is the density downstream of a switch-off shock with
upstream state P. Since the density can fall to zero in a slow
rarefaction, the permitted range of QsL is ð0; 1ÿ. Given P2 and QsL

one can compute rsoðP2Þ and hence r3. If r3 < r2, then the wave is a
rarefaction and we can safely use r3 to compute the downstream
state, P3. However, if r3 > r2 then the wave is a slow shock and r3

should not be regarded as the density in the downstream state.
Instead we simply use it to calculate the shock speed, ũs, relative to
the upstream state from

ũs ¼ cs þ ðca ¹ csÞ ¬
r3 ¹ r2

rso ¹ r2
;

where cs, ca correspond to the upstream state, P2. ũs can then be
used to determine the downstream state uniquely. Exactly the same
thing can be done for the right slow wave.

The five parameters, Q ¼ ðQa;QfL;QfR;QsL;QsRÞ, clearly deter-
mine the wave strengths uniquely and all lie in the interval ½0; 1Þ for
physically admissible waves. Given these, we can compute the
states P3 and P4 on either side of the contact discontinuity (in
section 2.1 these were called P¬

L and P¬
R respectively). They have to

satisfy

Bt3 ðQfL;QsLÞ ¼ Bt4 ðQfR;QsRÞ;

v3ðQfL;Qa;QsLÞ ¼ v4ðQfR;Qa;QsRÞ;

pg3
ðQfL;QsLÞ ¼ pg4

ðQfR;QsRÞ;

ð9Þ

which gives five equations to determine the five wave strengths. We
solve these by iteration using the Newton–Raphson technique.

In order to compute P3 and P4 one has to be able to determine the
jumps across fast and slow shocks and fast and slow rarefactions
from the above parameters.

2.2.2 Solution of the shock equations

For fast shocks we use the downstream density as a parameter, in
which case the shock equations reduce to a cubic equation for the
jump in the magnetic field

h3 þ a2h2 þ a1h þ a0 ¼ 0; ð10Þ

where

a2 ¼ sin Q0ð2 ¹ ghÞ;

a1 ¼ h ðg ¹ 1Þh þ 2ðs0 ¹ 1Þ
� �

;

a0 ¼ ¹2s0 sin Q0h
2
:

Here we have adopted the notation of Jeffreys & Taniuti (1964)

h ¼
½rÿ

r0
; h ¼

½Byÿ

B0
;

B2
0 ¼ B2

x þ B2
y0
; sin Q0 ¼ By0

=B0; s0 ¼ gpg0
=B2

0;

The suffix 0 indicates the upstream state and we have chosen a
reference frame in which Bz0

¼ 0 and By0
> 0.

The fast shock solution of (10) is the one which gives the maximum
increase in By. The other variables in the downstream state can then

be found from

½pgÿ ¼
1
4
h½Byÿ

2 þ
g

g ¹ 1
pg0

h

� �
1

g ¹ 1
¹

1
2

h

� �¹1

; ð11Þ

G2 ¼ ¹
1
½tÿ

½pgÿ þ
1
2
½Byÿ

2 þ By0
½ByÿÞ

� �
;

½uzÿ ¼ 0 ð12Þ

½uyÿ ¼
Bx

G
½Byÿ; ð13Þ

in which t ¼ 1=r is the specific volume and G

G ¼ r0ðux0
¹ usÞ

is the mass flux through the shock. us is the shock speed in the
laboratory frame.

As we have already pointed out, we cannot use the downstream
density as a parameter for slow shocks since it does not determine
the shock uniquely. Instead we use the shock speed relative to the
upstream state, ũs0

. Then if By0
Þ 0, the shock equations reduce to a

fourth-order equation for t (Cabannes 1970)

ðt ¹ t¬Þ
2 2K ¹

2g

g ¹ 1
Fnt þ

g þ 1
g ¹ 1

G2t2
� �
þ F2

t
t

t¬

� �
g

g ¹ 1
t¬ ¹ t

� �
¼ 0;

ð14Þ

where Fn, Ft, and K are the other shock invariants

Fn ¼ G2t þ pg þ
B2

y

2
; ð15Þ

Ft ¼ Byðt ¹ t¬Þ ð16Þ

K ¼
g

g ¹ 1
tpg þ

1
2

G2t2 1 þ
B2

y

B2
x

 !
; ð17Þ

t¬ ¼ B2
x =G2

:

Once (15) has been solved for t, the other downstream variables
can be found from (15–17) and (12,13). The slow shock solution is
selected by using the conditions By < By0

, By $ 0.
If By0

¼ 0, then instead of (15) one obtains

2K ¹
2g

g ¹ 1
Fnt þ

g þ 1
g ¹ 1

G2t2 ¼ 0;

which has the two solutions

t1 ¼ t0;

t2 ¼ t0
g ¹ 1
g þ 1

þ
2

g þ 1
a2

0

ũ2
s0

 !
: ð18Þ

Jeffreys & Taniuti (1964, p. 247) suggest that the slow shock
vanishes as By0

=Bx → 0, but this is not quite true. From (18) one can
see that t2 < t0 only if ũs0

> a0. Therefore, if a0 > ca0
, then t1 is

indeed the only acceptable solution for slow shock. However, if
a0 < ca0

then t2 is also acceptable. In this case the slow shock does
not vanish but tends to a pure gas dynamic shock. The maximum
compression ratio of such a limiting shock is determined by the
condition ũs0

¼ ca0
and is equal to

r2

r0

� �
max

¼
g þ 1

g ¹ 1 þ 2ða0=cx0
Þ2

For higher values of ũs0
, this pure gas shock first turns into a limiting

intermediate shock and then into a limiting fast shock. This explains
the division of the shock diagram in Jeffreys & Taniuti (1964,
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fig. 6.9b) into the X, Y, and Z regions (a similar analysis is given in
Kulikovskiy & Lyubimov 1965).

2.2.3 Rarefactions

Rarefactions are described by the following system of ordinary
differential equations

dP
dm

¼ rk ð19Þ

where m is some variable parameter and rk is one of the right
eigenvectors given by equations (6) with k ¼ 1; 3; 5 or 7.

As before, we use the suffix 0 to indicate the upstream state, and
choose a reference frame in which Bz0 ¼ 0, By0 > 0. From (19) it is
easy to show that

uz ¼ uz0; pg ¼ pg0ðr = r0Þ
g
: ð20Þ

It is convenient to introduce the variables a ¼ c2
s;f = a2 and

b ¼ a2
=ca

2. These are related by

da

db
¼

2 ¹ g

g

a2ða ¹ 1Þ

a2b ¹ 1

� �
: ð21Þ

(Jeffreys & Taniuti 1964). In terms of these we get

r ¼ r0ðb=b0Þ
1=g
; ð22Þ

By
2 ¼ Bx

2 ða ¹ 1Þðba ¹ 1Þ

a
: ð23Þ

The minimum density rmin that can be attained via a fast
rarefaction occurs in a switch-off rarefaction and corresponds to
ab ¼ 1. Therefore, in order to find rmin it is convenient to define a
new variable, y ¼ ab. Equation (21) can then be written

db

dy
¼ g

bðy2 ¹ bÞ

y½2yðy ¹ bÞ þ gbðy ¹ 1Þÿ
: ð24Þ

Integrating this equation from y ¼ y0 to y ¼ 1 gives bmin, which
can be used in 22 to get rmin.

Given the density downstream of the rarefaction wave, the other
variables can be found as follows: pg, uz, and b are obtained from
equations (20,22); equation (21) is then integrated to get a, which
allows us to compute By from equation (23); finally ux and uy are
obtained by a numerical integration of the appropriate components
of the system (19).

The numerical integration of equations (21,24) presents no
problems, except near the critical point ða; bÞ ¼ ð1; 1Þ where we
need to use an approximate analytic solution. We can use m ¼ r in
(19) unless the tangential field becomes small (ab ¹ 1 p 1), in
which case it is better to put m ¼ By.

2.2.4 Degeneracies

There are two degenerate types of MHD Riemann problems that
require special treatment. If Bx ¼ 0, then the slow and Alfvén waves
merge with the contact discontinuity. We deal with this by ignoring
the slow and Alfvén waves when B2

x = ðrc2
f Þ is small enough for

rounding errors to be important.
Another kind of degeneracy occurs when the solution to the

Riemann problem has vanishing tangential component of the
magnetic field in the states 1 and 6. In this case all derivatives
with respect to Qa vanish and the Jacobian of (9) becomes singular.
If this degeneracy is detected, then we eliminate Qa from the list
of unknowns and reduce the number of equations in (9) by
combining the equations for vy and vz. As in the previous
case, we have to switch to this procedure when the tangential

magnetic field becomes small enough for rounding errors to be
significant.

Although this method of dealing with degeneracies makes the
Riemann solver robust when it is used in a numerical scheme, it
does mean that our solution is not exact for such cases. However, we
can get so close to the degenerate limit by using the asymptotic
expressions for the wavespeeds and components of the eigenvec-
tors, that there seems to be little point in trying to devise a more
elaborate procedure.

Since the linear solutions of the nonlinear Riemann problems are
not particulary close to the exact ones and may even be unphysical,,
there is not much point in using them as an initial guess for the
Newton–Raphson iterations. Instead our initial guess is obtained by
ignoring the magnetosonic waves and setting vc ¼ 0:5ðvL þ vRÞ.
Surprisingly, this converges for all the test problems in Dai &
Woodward (1994) as well as the ones in the present paper. In fact we
have not yet been able to find a case for which our procedure fails.

3 N U M E R I C A L M AG N E T I C M O N O P O L E S

Although the exact equations ensure =·B ¼ 0 remains true if it is so
initially, a numerical scheme does not automatically do this. Brack-
bill & Barnes (1980) have shown that a conservative numerical
scheme which does not enforce =·B ¼ 0 misbehaves in regions
where the other forces are close to equilibrium. We also find that if
we do not do anything about =·B ¼ 0, then our scheme fails in more
than one dimension if the initial state contains a discontinuity in the
magnetic field. The reason for this is that, although the scheme
maintains =·B ¼ 0 to truncation error, these errors are Oð1Þ at
discontinuities. The effect of this is to introduce a significant
density of numerical monopoles at discontinuities which then
wreak havoc with the solution.

There are a number of ways of dealing with this. It is possible
to enforce =·B ¼ 0 exactly by working with the the integral form
of the induction equation, but, as Zachary et al. (1994) have
pointed out, this requires a staggered grid. They therefore ensured
a divergence free magnetic field by solving a Poisson equation for
a pseudo-potential and then using this to correct the field. Since
this is clearly quite expensive, it is worth asking if it is really
necessary.

There are really two aspects to this problem. The first is that a
divergence-free field has certain topological properties. If these are
crucial to the problem, then it might seem that one has no choice but
to enforce =·B ¼ 0 exactly. However, all numerical schemes have a
finite resistivity, which means that the topological properties of the
field are in any case not as they would be for a perfectly conducting
fluid. It is therefore not at all obvious that it is worth going to the
trouble of correcting the field to make it divergence free. Indeed,
Zachary et al. found that it made no discernible difference to their
results. The other effects are much more serious. These arise
because, if =·B Þ 0, then the conservative forms of the equations
contain terms that are not present in the non-conservative forms. It
is these terms which are responsible for the bad behaviour of
conservative schemes. Fortunately, this difficulty can be removed
by simply modifying the conservative equations.

First consider the momentum equation. If =·B does not vanish,
then conservative and non-conservative forms of this equation are
no longer equivalent because the divergence of the momentum
fluxes in the conservative form contains an extra term which is
proportional to =·B. We can, however, restore the equivalence
between the two forms by adding a term to the conservative form
which cancels with the offending term. If one does this, then the
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conservative form of the momentum equation becomes

∂rv
∂t

þ =·ðrvv þ PI ¹ BBÞ ¼ ¹B=·B; ð25Þ

where I is the 3 × 3 unit tensor and P ¼ pg þ pm is the total pressure.
We can think of the term on the right-hand side of this equation as

a body force which balances the force resulting from the numerical
monopoles. The presence of this extra force means that we must add
the work that it does to the energy equation

∂e
∂t

þ =·½ðe þ PÞv ¹ Bðv·BÞÿ ¼ ¹ðv·BÞ=·B: ð26Þ

Actually Zachary et al. (1994) did not just correct the field to
ensure that =·B ¼ 0, they also used a non-conservative differencing
of the troublesome terms in the momentum and energy equations.
Since this is entirely equivalent to using equations (25) and (26), it is
not surprising that their scheme works well even when they do not
correct the field.

It is not obvious that one needs to anything to the induction
equation, and indeed Zachary et al. left it unchanged. However, if
one uses the product rule on the divergence term in the conservative
form, then there is also a term proportional =·B ¼ 0 in this
equation. We should therefore also add this term to the right-hand
side of the equation. The result is

∂B
∂t

þ =·ðvB ¹ BvÞ ¼ ¹v=·B: ð27Þ

If we take the divergence of this we get

∂=·B
∂t

þ =·ðv=·BÞ ¼ 0; ð28Þ

which tells us that v=·B is the flux of magnetic monopoles. One can
therefore regard the extra term in (27) as a monopole current, which
has to be added to the induction equation in order to compensate for
the motion of the numerical monopoles. Note that although the
monopoles are advected away from where they are created, they are
not destroyed.

Equations (25–27) could also have been obtained by insisting
that the equations be Galilean invariant even when =·B Þ 0. This is
essentially the argument that Powell (1994) used to determine the
extra terms, although what he actually did was to consider how the
one-dimensional equations should be modified to allow eight waves
instead of seven while maintaining Galilean invariance. Since
equation (28) means that the quantity =·B = r is advected with the
fluid velocity, he also included an extra wave in the Riemann solver.
However, we find that this is not necessary.

Whatever argument that is used to obtain the extra terms, there is
no dispute about what they should be. What is worrying is that these
source terms are at their most important at shocks, which is precisely
where we need exact conservation to ensure that the shock conditions
are satisfied. We find that these terms can be dispensed with if we use
a Poisson equation to correct the field, but since this also destroys
conservation, it is not clear that it is any better.

4 N U M E R I C A L S C H E M E

The properties of an upwind schemes does not just depend on the
particular approximate solution to the Riemann problem, but also
on the way in which these problems are set up and the fluxes
computed from the solution. This is not the place to discuss the
various possibilities, except to say that, as far as we are aware, all
the upwind schemes for MHD that have so far appeared in the
literature have used a Roe-type second-order scheme (Roe 1986). In
such schemes the second-order fluxes are calculated by integrating

the solution to the linear Riemann problem over a time step. In
contrast to this, we use the second-order scheme described in Falle
(1991) and Falle & Komissarov (1996). Although these papers
contain a detailed description of the scheme, it is worth repeating
the basic ideas here for the sake of completeness.

The equations for the conserved variables are

∂U
∂t

þ
∂F
∂x

þ
∂G
∂y

þ
∂H
∂z

¼ S; ð29Þ

where U, F, G and H are given by (1–4) and the source terms are
those in equations (25–27)

S ¼ ½0;¹B=·B;¹ðv·BÞ=·B;¹v=·Bÿt
:

We start by defining a regular grid such that the i; j; k cell
occupies the region ði ¹ 1=2Þh # x # ði þ 1=2Þh, ð j ¹ 1=2Þh # y #
ðj þ 1=2Þhðk ¹ 1=2Þh # z # ðk þ 1=2Þh, where h is the mesh
spacing. Now suppose that we know the solution at t ¼ tn and we
want to calculate it at a later time tnþ1. We integrate equations (29)
over the i; j; k cell and from t ¼ tn to t ¼ tnþ1 to get

Uijknþ1 ¹ Uijkn

tnþ1 ¹ tn

þ
1
h

ðFiþ1
2 j k nþ1

2
¹ Fi¹1

2 j k nþ1
2
Þ

þ
1
h

ðGijþ1
2 k nþ1

2
¹ Gij¹1

2 k nþ1
2
Þ

þ
1
h

ðHijkþ 1
2 n þ1

2
¹ Hijk¹ 1

2 n þ1
2
Þ

¼ Sijknþ1
2
:

ð30Þ

Here

Uijkn ¼
1
h3

�
V

Uðr; tnÞdV

is the mean value of U in the ijk cell at time tn and

Fiþ1
2 j k n þ 1

2
¼

1
h2ðtnþ1 ¹ tnÞ

�tnþ1

tn

�
S

iþ1
2

F i þ
1
2

� �
h; y; z; t

� �
dSdt;

Gijþ 1
2 k n þ 1

2
¼

1
h2ðtnþ1 ¹ tnÞ

�tnþ1

tn

�
Sjþ1

2

G x; j þ
1
2

� �
h; z; t

� �
dSdt;

Hijkþ 1
2 n þ 1

2
¼

1
h2ðtnþ1 ¹ tnÞ

�tnþ1

tn

�
S

kþ1
2

H x; y; k þ
1
2

� �
h; t

� �
dSdt;

are the fluxes averaged over time and the cell interfaces, Siþ1
2
, Sjþ1

2

and Skþ1
2
.

Sijknþ1
2
¼

1
h3ðtnþ1 ¹ tnÞ

�
Vijk

Sðr; tÞdV

is the source term averaged over time and the cell volume, Vijk .

4.1 First-order scheme

Equation (30) is exact and forms the basis of all conservative
schemes. In a first-order Godunov-type scheme (Godunov 1959),
the approximations to the fluxes and source terms are determined by
assuming that the solution is uniform within each cell and constant
over a time step. Thus, if U¬ðUL;URÞ is the state at the position of
the initial discontinuity, the first-order fluxes are

Fiþ1
2 j k n þ 1

2
¼ F½U¬ðUijkn;Uiþ1jknÞÿ;

Gijþ 1
2 k n þ 1

2
¼ G½U¬ðUijkn;Uijþ1knÞÿ;

Hijkþ 1
2 n þ 1

2
¼ H½U¬ðUijkn;Uijkþ1nÞÿ:
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In curvilinear coordinates one has to be careful how the source
term is approximated (Falle 1991), but in cartesian coordinates
there is no difficulty. If the source term depended only on U, the
first-order approximation would be

Sijkn þ 1
2
¼ SðUijknÞ:

In this case the source term depends on =·B as well as U and we
therefore need an approximation to =·B. Since these terms
arise because the equations are not conservative when =·B Þ 0,
we should determine =·B from the fields used to compute the
fluxes i.e.

ð=·BÞijkn ¼
1
h

½ðBxÞiþ 1
2 j k n ¹ ðBxÞi¹ 1

2 j k n

þðByÞijþ 1
2 k n ¹ ðByÞij¹ 1

2 k n

þðBzÞijkþ 1
2 n ¹ ðBzÞijkþ 1

2 nÿ:

Since the field perpendicular to the cell interfaces is the average
of that in the adjoining cells, this amounts to using central
differences.

4.2 Second-order scheme

In order to achieve second-order accuracy, we use the first-order
scheme to obtain the solution, Unþ1

2
at the half time, tnþ1

2
and then

use this to compute average gradients in each cell as follows

∂P
∂x

� �
ijknþ1

2

¼
1
h

avðPijknþ1
2
¹ Pi¹1jknþ1

2
;Piþ1jknþ1

2
¹ Pijknþ1

2
Þ;

∂P
∂y

� �
ijknþ1

2

¼
1
h

avðPijknþ1
2
¹ Pij¹1knþ1

2
;Pijþ1knþ1

2
¹ Pijknþ1

2
Þ;

∂P
∂z

� �
ijknþ1

2

¼
1
h

avðPijknþ1
2
¹ Pijk¹1nþ1

2
;Pijkþ1nþ1

2
¹ Pijknþ1

2
Þ;

where avða; bÞ is a non-linear averaging function, the purpose of
which is to reduce the scheme to first order in the neighbourhood
of discontinuities. This is necessary since Godunov’s theorem
(Godunov 1959) tells us that a scheme that is second order
everywhere will not be monotonic near discontinuities. The
averaging function must be homogeneous of degree one and have
the properties

avða; bÞ ¼ 1
2ða þ bÞ as a → b;

¼ 0 if ab < 0;

→ a as jaj=jbj → 0;

→ b as jbj=jaj → 0:

There are obviously an infinite number of functions with these
properties and there is no general agreement about which is best.

We will adopt the following simple prescription,

avða; bÞ ¼
ða2b þ ab2Þ

ða2 þ b2Þ
if a2 þ b2 Þ 0 and ab > 0;

¼ 0 otherwise;

which obviously has the correct properties (van Leer 1977).
These gradients can now be used to set up the left and right states

for the second-order Riemann problems. For the fluxes in the x
direction we have

PL ¼ Pijknþ1
2
þ

1
2

h
∂P
∂x

� �
ijknþ1

2

PR ¼ Piþ1jknþ1
2
¹

1
2

h
∂P
∂x

� �
iþ1jknþ1

2

Fiþ 1
2 j k n þ1

2
¼ F½U¬ðPL;PRÞÿ;

and similarly for those in the y and z directions.
The second-order source term is computed from Unþ1

2
in the same

way as for the first-order scheme. This means that =·B is still obtained
from a central difference in smooth regions, but the averaging function
turns it into a one-sided difference at discontinuities.

Although this scheme requires that the Riemann problem be
solved twice at each interface, it is genuinely second order and the
fact that it is not operator split makes it easy to ensure that source
terms are approximated to second order. Roe-type schemes are not
strictly second order since they do not take into account the change
in the mean matrix over a time step. This scheme has proved to be
accurate and robust, both for ordinary gas dynamics (Falle 1991)
and relativistic hydrodynamics (Falle & Komissarov 1996).

4.3 Artificial dissipation

Although upwind schemes of this type generally perform very well,
they are inclined to misbehave in regions where the dissipation
generated by the truncation errors becomes small or very aniso-
tropic. This can lead to unphysical distortions of shock fronts and a
non-linear instability for plane shocks that are nearly aligned with
the grid (Quirk 1994). Adding some extra dissipation to the
Riemann solver removes these problems and also reduces the
long-wavelength entropy errors that occur behind slowly moving
shocks (Roberts 1988).

Since the extra dissipation is only needed at shocks, we have to
be careful that we do not degrade the accuracy of the scheme in
smooth regions. We therefore use the left and right states in the
Riemann problem to determine a diagonal viscous stress tensor, S,

272 S. A. E. G. Falle, S. S. Komissarov and P. Joarder

q 1998 RAS, MNRAS 297, 265–277

Table 1. Parameters for the test cases. BW – Brio & Wu; AW – Alfvén wave; FS – fast shock; SS – slow shock; FR – fast rarefaction; SR – slow rarefaction;
OFS – oblique fast shock (note that these are the states for a shock whose normal is parallel to the x-axis).

Case Left State Right State

BW r ¼ 1; pg ¼ 1;v ¼ ð0; 0; 0Þ;B ¼ ð0:75; 1; 0Þ r ¼ 0:125; pg ¼ 0:1;v ¼ ð0; 0; 0Þ;B ¼ ð0:75;¹1; 0Þ

AW r ¼ 1; pg ¼ 1;v ¼ ð0; 1; 1Þ;B ¼ ð1; 1; 0Þ r ¼ 1; pg ¼ 1;v ¼ ð0; 1; 1Þ;B ¼ ð1; 1; 0Þ

FS r ¼ 3; pg ¼ 16:33;v ¼ ð¹0:732;¹1:333; 0Þ;B ¼ ð3; 2:309; 1Þ r ¼ 1; pg ¼ 1;v ¼ ð¹4:196; 0; 0Þ;B ¼ ð3; 0; 0Þ

SS r ¼ 1:368; pg ¼ 1:769;v ¼ ð0:269; 1:0; 0Þ;B ¼ ð1; 0; 0Þ r ¼ 1; pg ¼ 1;v ¼ ð0; 0; 0Þ;B ¼ ð1; 1; 0Þ

FR r ¼ 1; pg ¼ 2;v ¼ ð0; 0; 0Þ;B ¼ ð1; 3; 0Þ r ¼ 0:2641; pg ¼ 0:2175;v ¼ ð3:6;¹2:551; 0Þ;B ¼ ð1; 0; 0Þ

SR r ¼ 1; pg ¼ 2;v ¼ ð0; 0; 0Þ;B ¼ ð1; 0; 0Þ r ¼ 0:2; pg ¼ 0:1368;v ¼ ð1:186; 2; 967; 0Þ;B ¼ ð1; 1:6405; 0Þ

OFS r ¼ 1; pg ¼ 1;v ¼ ð6:505; 1; 0Þ;B ¼ ð1; 1; 1Þ r ¼ 3; pg ¼ 20:268;v ¼ ð2:169; 1:331; 0:331Þ;B ¼ ð1; 3:153; 3:153Þ
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given by

Sxx ¼ hr¬c¬
f ðvxR ¹ vxLÞ;

Syy ¼ hr¬c¬
f ðvyR ¹ vyLÞ;

Szz ¼ hr¬c¬
f ðvzR ¹ vzLÞ;

ð31Þ

where r¬, c¬
f are the density and fast speed in the resolved state and h

is a dimensionless parameter. In all our calculations we have set
h ¼ 0:15.

In those places where the scheme reduces to first order we have
jvL ¹ vRj ~ h and (31) therefore corresponds to a kinematic
viscosity, n, of the form

n ¼ hcfh;

whereas in smooth regions jvL ¹ vRj ~ h2 and the viscous fluxes
are of second order. The order of the scheme in such places is
therefore not reduced by the addition of these fluxes.

5 T E S T S

Since codes of this type are designed for flows containing shocks, it
is customary to test them on various Riemann problems. We start
with the shock tube problem considered by Brio & Wu (1988),
which is a MHD version of the Sod problem (Sod 1978). The
parameters for this, together with those for our other test problems,
are given in Table 1.

Fig. 1 shows the results both for a strictly one-dimensional
calculation and a two-dimensional one in which the initial dis-
continuity makes an angle of 458 with grid. In both cases the quality
of our solution is the same as that obtained by Brio & Wu with the
same numerical resolution. The transverse field changes sign in this
case, so this shows that our simple method of dealing with
degeneracy works just as well as their more complicated one. The
results for the two-dimensional calculation are almost as good
except that there is small jump in the normal field at the discon-
tinuities. This hardly surprising given that the initial state actually
consist of a series of steps and therefore does not satisfy =·B ¼ 0.
Apart from that, the shock conditions are pretty accurately satisfied
even though the code is not strictly conservative. This is gratifying
because, although Fig. 1 shows that =·B is only appreciably
different from zero in the the discontinuities, the fact that the
calculation fails if we do not include the extra terms in the equations
tells us that they are playing a significant role. It has to be said that
this case is not a very stringent test of this since the shocks are quite
weak, but we shall see later that the results are similar for a strong
fast shock.

As Brio & Wu have already pointed out, the numerical solution
contains an intermediate shock and a compound wave. It is well
known (see e.g. Jeffrey & Taniuti 1964) that intermediate shocks are
non-physical and that the solution to the Riemann problem may not
be unique if such shocks are allowed. This particular problem is an
example of this and Fig. 2 shows an alternative solution in which the
sign of the transverse field is reversed by an Alfvén wave instead of
an intermediate shock. The fact that all numerical schemes seem to
generate an intermediate shock in this case is simply because the
velocity and the magnetic field define the same plane everywhere.
Such coplanar problems are clearly rather special and, like Barmin,
Kulikovskiy & Pogorelov (1996), we find that our numerical scheme
does not generate intermediate shocks for more generic data. The
existence of intermediate shocks is, however, a subtle question and
we prefer to postpone discussion of this to a later paper. It is
nevertheless worth pointing out that we get the same numerical
solution for this initial data if we use an exact Riemann solver.
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Figure 1. Density, transverse field, normal field and =·B for the Brio & Wu
problem (BW). The line is a one-dimensional calculation and the points are
a two-dimensional one in which the initial discontinuity makes an angle of
458 with the axes.
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The fact that the solution to the Brio & Wu problem contains a
number of different waves makes it a good test of a numerical
scheme, but it is somewhat controversial. Although there are many
other types of MHD Riemann problems, we believe that the
most rational procedure is to test our code with a complete set of

pure waves i.e. shocks, contact discontinuities, Alfvén waves and
centred rarefactions.

Fig. 3 shows the results for a single wavelength of a sinusoidal
Alfvén wave in which the tangential component of the field rotates
through 2p. It can be seen that the errors are undetectable except for
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Figure 2. Density, total pressure and transverse field for a solution to the Brio & Wu problem (BW) that does not contain an intermediate shock. This was
obtained with the exact Riemann solver described in Section 2.2.

Figure 3. x, y, and z velocity in an Alfvén wave which rotates the field through 2p (AW). The wave has travelled a distance of three times its width. The points are
the numerical solution and the line is the exact solution.

Figure 4. Density, total pressure and transverse field in a fast switch-on shock (FS). The points are the numerical solution and the line is the exact solution.
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some numerical diffusion at the discontinuity in the gradient at the
leading and trailing edge of the wave. Such errors are, of course,
unavoidable in schemes of this type. Note that, although Alfvén
waves are linearly degenerate in the sense that the wavespeed is
constant in the wave, the eigenvectors are not unless we write them
in terms of the magnitude and angle of the transverse field. The
linearized Riemann solver is therefore not exact. However, in this

case the wave is so well-resolved that it does not make any
difference which Riemann solver we use.

As a further test of our procedure for handling degeneracy, we
chose our fast and slow shocks to be switch on and switch off shocks
respectively. We can see froms Figs 4 and 5 that the code handles
both of these extremely well with about four mesh points in the slow
shock and three in the fast shock. Although this is wider than many
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Figure 5. Density, total pressure and transverse field in a slow switch-off shock (SS). The points are the numerical solution and the line is the exact solution.

Figure 6. Density, total pressure and transverse field in a fast switch-off rarefaction (FR). The points are the numerical solution and the line is the exact solution.

Figure 7. Density, total pressure and transverse field in a slow switch-on rarefaction (SR). The points are the numerical solution and the line is the exact solution.
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people would like, the width of the shock structure does not just
depend upon the scheme, but also on the strength of the shock and
its speed relative to the grid. If we had chosen the left and right
states so that the shocks are stationary on the grid and there were no
artificial viscosity, then the jumps would have been only one mesh
point wide. This is because our linearized Riemann solver always
chooses the upstream state when confronted with a stationary
shock. Since the flux in this state is the same as that in the
downstream state, the result is that the initial solution remains
unchanged. Although it could pick either the upstream or down-
stream state, an exact Riemann solver produces exactly the same
result because both these states have the same fluxes.

While such sharp shocks look impressive, they are highly
undesirable in multidimensional calculations. To see this, consider
a steady flow with a curved shock. Any part of the shock that is
closely aligned with the grid will be much thinner than those parts
that are not, which tends to produce large errors at the point where
the shock thickness changes. As we have already pointed out in
Section 4.3, this can be avoided by introducing extra dissipation in
regions in which the second derivatives are large. Since this only
affects very thin shock structures, it makes no discernible difference
to the numerical results in Figs 3 and 4.

Apart from the finite width of the shock, the only other errors in
Figs 4 and 5 are some small-amplitude waves, which travel away
from the shock. These are generated as the initially discontinuity
evolves into a steadily propagating shock with finite width. All
shock capturing schemes do this when they are given discontinuous
initial data.

Start-up waves are also generated in the fast and slow rarefaction
waves (Figs 6 and 7) because of the Oð1Þ errors that inevitably arise
when the initial discontinuity spreads out. They would not have
appeared had we started the rarefactions with finite width.

In order to test the various Riemann solvers to destruction, we
have deliberately chosen quite strong switch-on and switch-off
rarefactions. We find that both linearized Riemann solvers fail for
these cases unless we include explicit artificial dissipation. This is
in contrast to both ordinary and relativistic gas dynamics, where
Riemann solver B can handle anything except two strong rarefac-
tions. The reason for this is that in ordinary or relativistic gas
dynamics, Riemann solver B can only generate a resolved state with
a negative pressure if there are two strong rarefactions, whereas in
MHD it can do so even if there is only a single rarefaction. There is,
of course, no such problem with the exact Riemann solver.

Although all the results presented here were obtained with
Riemann solver A, they are indistinguishable from those
with Riemann solver B. This tells us that there is no point in
using Riemann solver B since it is no better than A and is much
more expensive. Strong rarefactions can be handled either by using
artificial dissipation and a finite floor pressure in the resolved state,
or by using the exact solver if the Riemann solution contains strong
rarefactions. The former is easier, but the latter is more intellec-
tually respectable.

Our final test is designed see how much damage the monopole
source terms do to the jump conditions at strong shocks. Since the
shocks in the two-dimensional Brio & Wu problem are not really
strong enough to do this, we computed a strong fast shock (case
OBF) at an angle of 458 to the x-axis. We can see from Fig. 8 that,
apart from the usual start-up waves, the only significant error is that
the normal component of the field changes across the shock by
about the same fraction as it does in the Brio & Wu problem.
Although this is larger than one would like, it is encouraging that it
is no worse for strong shocks than it is for weak ones. This suggests
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Figure 8. =·B, normal magnetic field, x velocity and magnetic pressure in a
two dimensional calculation of a strong fast shock which make an angle of
458 with the axes (OBF). The points are the numerical solution and the line is
the exact solution.
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that the error occurs because the initial states in these numerical
calculations do not satisfy =·B ¼ 0 and has nothing to do with our
failure to satisfy strict conservation at shocks.

Although the scheme fails on two-dimensional problems with an
initial discontinuity in the field if monopole source terms are not
included, it can manage without them if the initial discontinuity is
smeared over a few mesh points. This is consistent with the fact that
Zachary, et al. (1994) found that it made no difference whether or
not they used a pseudo-potential to correct the field in their two-
dimensional calculations with an initially continuous field. It
would, however, be unwise to conclude from this that these terms
can be ignored. Even if one confines oneself to initially continuous
fields, the numerical monopoles can still cause problems in places
where the physical forces are close to equilibrium.

This case also provides a further demonstration of the value of
adding extra dissipation at shocks. The shock is stationary on the
grid and would therefore be very sharp if we relied on the dissi-
pation owing to the truncation errors. In fact, it is so sharp that the
scheme fails if we do not include extra dissipation.

Finally, it is worth mentioning that neither Riemann solver A nor
B have any trouble with the one-dimensional Riemann problems
considered by Zachary et al. (1994) or Ryu & Jones (1995).

6 C O N C L U S I O N S

Although our scheme is very similar to the ones devised other by
authors, it has a number of features which make it more reliable and
robust. Even if one is only interested in one dimensional problems,
both Brio & Wu and Ryu & Jones recommend Riemann solver A,
which, as we have shown, fails on strong, initially discontinuous
rarefaction waves. Fortunately, we find that this can be cured either
by adding artificial viscosity, or by using an exact solver whenever
the solution to the Riemann problem contains strong rarefactions.
We have also shown that there is a much simpler way of dealing
with the case of zero transverse field than the one proposed by Brio
& Wu (1988).

A purely one-dimensional scheme is not particularly useful, so it is
gratifying that ours also works in multidimensions. As is well known,
the condition =·B ¼ 0 means that it is not a trivial matter to extend a
one-dimensional scheme to multidimensions. Of the various ways of
dealing with this, adding terms to undo the effect of the numerical
monopoles is by far the simplest. Although it might seem dangerous
to allow numerical monopoles to exist, both our results and those of
Powell (1994) suggest that they do not cause any trouble. They are
only significant in the neighbourhood of discontinuities and the fact
that almost equal amounts of positive and negative monopoles are
generated in close proximity to each other means that they are
unlikely to do too much damage to the field topology.

Finally, it is somewhat bizarre that the Brio & Wu problem,
which contains intermediate shocks and compound waves, has
become a standard test problem for upwind MHD codes. As Dai
& Woodward (1994) have suspected and we have shown there is
an alternative solution to this problem, which does not contain
such structures. Despite this, all sound numerical schemes should
reproduce the solution containing intermediate shocks. This is
clearly something which requires further work, but it is such a
complex and subtle question that we prefer to postpone it to a
later paper.
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