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Abstract—In this paper, we develop a new multiscale modeling
framework for characterizing positive-valued data with long-
range-dependent correlations (1=f noise). Using the Haar wavelet
transform and a special multiplicative structure on the wavelet
and scaling coefficients to ensure positive results, the model
provides a rapid O(N) cascade algorithm for synthesizingN -
point data sets. We study both the second-order and multifractal
properties of the model, the latter after a tutorial overview of
multifractal analysis. We derive a scheme for matching the model
to real data observations and, to demonstrate its effectiveness,
apply the model to network traffic synthesis. The flexibility and
accuracy of the model and fitting procedure result in a close fit to
the real data statistics (variance-time plots and moment scaling)
and queuing behavior. Although for illustrative purposes we
focus on applications in network traffic modeling, the multifractal
wavelet model could be useful in a number of other areas
involving positive data, including image processing, finance, and
geophysics.

Index Terms—Long-range dependence, multifractals, network
traffic, positive 1=f noise, wavelets.

I. INTRODUCTION

A. Fractal Signal Models

T HE DISCOVERY of the fractal, self-similar, or
nature of many phenomena has led to exciting break-

throughs in a variety of scientific disciplines, including
physics, chemistry, astronomy, biology, meteorology, hydrol-
ogy, and soil science [1], [2]. In signal and image processing,
fractals have been applied in fields such as computer graphics,
texture modeling, image compression, and pattern recognition
[3], [4].

Fractal models have made a major impact in the area of
communications recently, particularly in the area of computer
data networks. As the work of Lelandet al. [5] and subsequent
studies have demonstrated, network traffic loads exhibit fractal
properties such as self-similarity, burstiness, andlong-range
dependence(LRD). Inadequately modeled by classical Poisson
or Markov models, these properties strongly influence network
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performance [5]. For instance, performance predictions based
on classical traffic models are often far too optimistic when
compared against actual performance with real data. Fractal
traffic models have provided exciting new insights into net-
work behavior and promise new algorithms for network data
prediction and control.

The fractional Brownian motion(fBm) has been the
most broadly applied fractal signal model [5]–[7]. Its power
lies in its simplicity: fBm is statistically self-similar1

(1)

Thus while it has rich statistical properties, it remains
amenable to a tractable analysis. The fBm is not stationary,
but its increments form the stationaryfractional Gaussian
noise (fGn) process. When theHurst parameter ,
fGn exhibits LRD.

samples of fGn can be simulated exactly via direct
Cholesky factorization ( computational complexity) [4]
or Levinson’s recursion ( complexity) [8]. These costs
can become overbearing, especially in networking applications
where often . For such problems, approximate
synthesis techniques ( complexity) based on wavelets
have been developed.

The discrete wavelet transform represents a one-dimensional
(1-D) real signal in terms of shifted and dilated versions
of a prototype bandpass wavelet function and shifted
versions of a low-pass scaling function [9], [10]. For
special choices of the wavelet and scaling functions, the atoms

(2)

ZZ (3)

form an orthonormal basis, and we have the signal represen-
tation [9], [10]

(4)

with2

(5)

(6)

1The equality is in the sense of finite-dimensional distributions.
2We consider the signalX(t) to be random and so use capital letters for

all quantities derived from it.
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(a)

(b)

Fig. 1. (a) The Haar scaling and wavelet functions�j;k(t) and  j;k(t):
(b) Binary tree of scaling coefficients from coarse to fine scales.

For a wavelet centered at time zero and frequency
, the wavelet coefficient measures the signal content

around time and frequency . Thescaling coefficient
measures the local mean around time . In the wavelet

transform, indexes thescale of analysis: indicates the
coarsest scale or lowest resolution of analysis, and larger
correspond to higher resolutions of the analysis.

The Haar scaling and wavelet functions [see Fig. 1(a)]
provide the simplest example of an orthonormal wavelet
basis. Because of (3), the supports of the fine-scale scaling
functions nest inside the supports of those at coarser scales;
this can be neatly represented by the binary tree structure of
Fig. 1(b). Row (scale) of this scaling coefficient tree contains
an approximation to of resolution . Row of the
complementary wavelet coefficient tree (not shown) contains
the details in scale of the scaling coefficient tree that
are suppressed in scale. In fact, the consist simply
of scaled sums and differences of the and .

The wavelet transform closely approximates the
Karhunen–Lo`eve transform for fBm and fGn [11]–[13]. This
fact has been leveraged into efficient approximate fBm and
fGn models [14]: we posit that the wavelet coefficients
are simply independent zero-mean Gaussian random variables
with power-law decaying variance , with

for fBm and for fGn.
Unfortunately, despite their great simplicity, fractal mod-

els such as fBm and fGn have significant limitations for
modeling certain types of natural and man-made processes.
First, fBm and fGn are Gaussian models, whereas many LRD
processes, including network traffic, turbulence, financial data,
and images, are inherentlypositive and often spiky. Both

of these qualities are explicitly non-Gaussian. Second, many
signals exhibit LRD but also display short-term correlations
and scaling behavior inconsistent with the strict self-similarity
of (1).

B. A Multifractal Wavelet Model (MWM)

In this paper, we develop a new wavelet-based signal model
for positive, stationary, and LRD data. While characterizing
positive data in the wavelet domain is problematic for general
wavelets, for the Haar wavelet, we have the simple condition:

is positive if and only if for all .
In the multifractal wavelet model(MWM), we ensure a

positive signal output by modeling the wavelet coefficients
as , with the multipliers independent
random variables supported on . For simplicity, we
choose (beta) and simple point mass distributions for the
multipliers.

The MWM flows as a multiscale, coarse-to-fine synthesis
down the tree in Fig. 1(b): given the approximation to at
resolution (the ), we compute the wavelet coefficients

with random . The approximation to
at resolution (the ) is then obtained from

scaled sums and differences of the and . This process
can be iterated until any desired resolution/signal-length is
reached; the total cost is a meager operations for an

-point output.
Like fGn models, the MWM can closely model the power

spectrum, and hence the LRD, of a set of training data if
the variances of the multipliers are chosen appropriately.
Unlike fGn models, the MWM can also match positivity and
higher order statistics due to its multiplicative construction.

For example, Fig. 2 compares real data (Bellcore Ethernet
packet interarrival data, August 1989) with synthetic MWM
and fGn data, at different aggregation levels. Both models
match the mean, variance, and correlation decay of the real
data. Evident from the figure are the large number of (un-
acceptable) negative values of fGn, caused by the real data
having a high standard deviation to mean ratio. The MWM
data much more closely matches the characteristics of the real
data. Moreover, a length- MWM synthesis required just
eight seconds of workstation run time, in contrast to eighteen
hours for a Levinson fGn synthesis.

C. Cascades and Multifractals

The multiplicative construction of the MWM process is
reminiscent of thebinomial measure, a classicalmultifractal
process. Multifractals were first introduced to model dissipa-
tion of energy in turbulence [15], [16] and have proved well-
suited to modeling nonhomogeneous phenomena [17], [18].
More recently, the multifractal nature of network traffic has
been demonstrated convincingly, first in [19] and subsequently
in [20] and [21]. The beauty of the multifractal formalism
has motivated considerable research effort in mathematics
[22]–[32]; however, few multifractal data models have been
developed to date.

In the most simple terms, multifractals possess a local
smoothness that depends on in an erratic way. Equiv-
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(a) (b) (c)

Fig. 2. Interarrival times of groups of packets of (a) Bellcore August 1989pAug data [5], (b) one realization of the multifractal wavelet model (MWM)
synthesis, and (c) one realization of fGn synthesis. The top, middle, and bottom plots correspond to interarrivals of 100 packets, 10 packets, and 1 packet,
respectively. The ten- and one-packet plots correspond to the last tenth of the data from the 100- and 10-packet plots, respectively, as indicated by the
vertical dotted lines. Approximately 30% of the fGn values are negative.

alently, multifractals have moments that scale nonlinearly. By
matching the multifractal properties of training data, the MWM
can capture and synthesize rare events in addition to global
behavior. Random products are “usually” small, but “some-
times” extremely large. This results in the burstiness seen
in Fig. 2(b). Models based on fBm/fGn, on the other hand,
exhibit a nonvarying behavior in both and moments—they
are “monofractal.”

With regards to network traffic, self-similar additive
schemes model traffic arrivals as a mean rate with super-
imposed fGn fluctuations. This agrees with the conception of
traffic as the superposition of individual components and is
accurate on large time scales. Multiplicative models, on the
other hand, represent traffic arrivals as the product of random
multipliers, which mimicks the partitioning of total traffic
throughput into parts. This point of view is appealing when
considering small time scales [33].

D. Organization

After some background on fractals and wavelets in
Section II, we provide the construction and basic properties
of the MWM in Section III. In Section IV, we develop the
modeling framework and provide a procedure for fitting
the MWM to actual data measurements. Section V reviews

multiplicative cascades and reveals the relationship between
the MWM and the binomial cascade. We give a brief
introduction to multifractal analysis (MFA), relate the MFA
to wavelets and LRD, and perform an MFA of the MWM in
Section VI. To illustrate the effectiveness of the MWM, in
Section VII, we employ it to generate high-quality synthetic
network traffic data. We confirm the accuracy of the synthesis
in terms of both statistical measures and queuing behavior
and comment on possible physical reasons for the presence
of multiplicative processes in network traffic. We close with
a discussion and conclusions in Section VIII. In Appendix
A, we give a tutorial review of the MFA. The proof of the
multifractal formalism for the MWM appears in Appendix B.

II. FRACTALS, SCALING, AND WAVELETS

Fractals are geometric objects exhibiting an intricate, highly
irregular appearance on all resolutions [34]. Thefractal di-
mension [35] measures the degree of irregularity or
roughness of a set . Here, we are mainly interested in
fractal signals, i.e., signals having a fractal graph. Most known
fractals areself-similar; if we “zoom” (in or out) of the fractal,
we obtain a picture similar to the original. In a deterministic
setting, this imposes strong restrictions on the fractal, and the
easiest way to obtain such an object is to apply a simple



RIEDI et al.: MULTIFRACTAL WAVELET MODEL WITH APPLICATION TO NETWORK TRAFFIC 995

geometrical rule iteratively to obtain details up to infinitely
fine resolution. Consequently, deterministic fractals consist of
highly repetitive patterns. Real-world phenomena can rarely be
described using such simple models. Nevertheless, “similarity
on all scales” sometimes holds in a statistical sense, leading
to the notion of random fractals.

A. Fractional Brownian Motion and Fractional
Gaussian Noise

For processes, the notion of “similarity on all scales” can
be made precise in various ways. A very strict one is that of
self-similar with stationary increments:A process is -sssi
if it has stationary increments and for all

(7)

[cf. (1)].
The preeminent random fractal signal model at present

is the fBm . This process is uniquely defined through
two properties: -sssi and Gaussianity [7], [36]. The Hurst
parameter lies in the range ; smaller corresponds
to fBm’s with “wilder” or rougher looking local behavior.

Although fBm is useful for theoretical analysis, its incre-
ments process (for finite increment )

(8)

known asfractional Gaussian noise(fGn), is often more useful
in practice. While fBm is nonstationary, fGn is stationary.

For fBm, self-similarity (7) is equivalent to its autocorrela-
tion function having the form

(9)

or its (generalized) power spectral density behaving as
[12]. It follows from (9) that fGn has

an autocorrelation function

(10)

As with fBm, fGn has a discrete-time power spectrum that
behaves as for near zero. Thus fBm
and fGn are often called noise.

B. Long-Range Dependence

While the rigid correlation structure of fGn is somewhat
restrictive for modeling purposes, the tail decay of has
proven to be of importance in itself. In particular, it inspires
weaker notions of “similarity on all scales” in terms of second-
order statistics only.

It is easy to see that (10) decays like . For
, the correlation is strictly positive and decays so

slowly that it is nonsummable. A processwith this property
is said to exhibitlong-range dependence

(LRD), since it possesses strong correlations at large lags. LRD
can be equivalently characterized in terms of the behavior of
the aggregated processes

(11)

The fGn with has proven useful for signal
modeling, because it has LRD yet permits tractable theoretical
analysis due to (7). In particular, the -sssi property (7)
together with (8) imply that

(12)

Processes for which are
termedsecond-order self-similar processes[2]. For such pro-
cesses, a log–log plot of the variance of as a function
of —the variance-time plot—is strictly linear with a slope
of [5]. The variance-time plot can be used to detect
the self-similarity and LRD of a trace and can be applied to
non-Gaussian, nonzero-mean data as well.3

C. Wavelets and Processes

The inherent scaling property of the wavelet basis is well-
suited for analyzing self-similar processes. Wavelets serve
as an approximate Karhunen–Lo`eve transform for pro-
cesses [11], including fBm [12] and fGn [13]. These highly-
correlated, LRD signals become nearly uncorrelated in the
wavelet domain. This property has lead to the widespread use
of wavelets for the analysis and synthesis of fractal and LRD
signals [14].

In particular, the energy of the wavelet coefficients of a
continuous fBm exhibits a power-law decay with scale [12].
The variance progression of the wavelet transform of sampled
fBm and fGn does not follow a strict power-law, but rather
includes scale-dependent factors [12], [13]. Kaplan and Kuo
[13] have shown that for the Haar wavelet, the variance
progression of the wavelet transform of fGn satisfies

(13)

Moreover, the wavelet coefficients of fGn are typically much
less correlated than those of the underlying sampled fBm
process. Kaplan and Kuo use these facts to develop a robust
wavelet-based estimator for the of an fGn submerged in ad-
ditive white Gaussian noise. Similar wavelet-based estimators
for compare favorably with standard estimation techniques
[37] and have been applied to practical problems such as
network traffic analysis [14].

Wavelets can also be used to synthesize approximate
processes with generalized spectra of the form

, which includes fBm and fGn.4 Playing off the
Karhunen–Lòeve property of the wavelet transform, Wornell
generates zero-mean, independent Gaussian random variables

with power scaling according to [11]

(14)

He then inverts the wavelet transform to obtain the syn-
thesized process. Even though the mean and variance of
the synthesized signal are stationary, this approach generally
results in a nonstationary Gaussian process with time-varying

3Although the Hurst parameterH is sometimes used strictly in the context
of fGn, we will view H as a variance-time plot parameter to characterize
LRD processes in general.

4Processes corresponding to a wider range of’s can also be synthesized,
using wavelets with regularity greater than two [12].
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correlation function (see Section III-D). However, thetime-
averagedcorrelation and spectrum do approximate that of a

process [11]. Though only approximate, this method’s
computational cost compares favorably with the

cost of the Levinson algorithm for exact synthesis [8] and the
cost of direct Cholesky factorization [4].

D. Moving Beyond fBm

Although fBm and fGn are powerful and tractable signal
models, their strict self-similarity is too restrictive to ade-
quately characterize many types of signals [19], [38]. For
instance, we have the following.

1) Many signals possess significant LRD, but display short-
term correlations and scaling behavior inconsistent with
strict self-similarity.

2) In many signals, the scaling behavior of moments as the
signal is aggregated is a nontrivial (nonlinear) function
of the moment order.

3) Many signals have increments that are inherently posi-
tive and hence non-Gaussian.

Signals with these properties fall naturally into the class of
multifractal processes. Multifractal signal models are positive
measures or distributions possessing self-similarity but non-
homogeneous scaling. The goal of this paper is a multifractal
extension of traditional fBm and fGn signal models suitable for
analyzing, characterizing, and synthesizing positive processes
with LRD. As with fractals, we will find the wavelet transform
useful for constructing and analyzing our model.

III. A M ULTIFRACTAL WAVELET MODEL

The primary goal of this paper is to develop a wavelet-
domain model for a positive stationary LRD signal and
its integral . (The integral will be more convenient for
the analysis in Section V.)

In practice, we will work with a discrete-time signal
that approximates at resolution . To reflect this in
the wavelet transform, we replace the semi-infinite sum in (4)
with a sum over the finite number of scales

ZZ . Here, we also set, without loss of generality,
the coarsest scale , meaning that the first sum in
(4) reduces to the single term . This corresponds to
a single scaling coefficient tree approximating on the
interval . While we will emphasize this case in the sequel,
in certain cases (as in Section IV-D below), we will find it
convenient to employ a forest of trees rooted at scaling
coefficients . In this case, the process

is assumed to lie in the interval .
Using the Haar wavelet, the discrete process takes

values that correspond to the integral of in the interval
. Such processes have a natural interpreta-

tion as an increment process

(15)

for . Equation (15) is similar to (8) with
.

To be useful in real applications, our model must be simple,
produce a fast analysis and synthesis, and closely match the
process’s positive, non-Gaussian marginals and its LRD. We
will now show how this is possible using a simple Haar
wavelet construction of the increments process .

A. Positivity Through Multiplication

Wavelet-domain modeling of positive processes is com-
plicated by the fact that the wavelet coefficient constraints
required to ensure a positive output are nontrivial. Quite
the contrary for the Haar wavelet, however. For the Haar
wavelet, the scaling and wavelet transform coefficients can
be recursively computed using

(16)

and

(17)

Furthermore, in the Haar transform of positive data, we know
that all , since each equals a scaled local mean.
Rearranging (16) and (17) to

and

(18)

we thus find a simple constraint to guarantee that the process
is positive

(19)

Although we have derived (19) as a necessary condition, it is
easy to see that it is also sufficient. For more general wavelet
systems (with longer, overlapping wavelets), the conditions
are considerably more complex.

We wish to build a statistical model for the ’s that
automatically incorporates (19). This leads us to a simple
multiplicative signal model. Let be a random variable
supported on the interval and define the wavelet
coefficients by

(20)

In Section III-D1, we will place some additional constraints
on the .

Themultifractal wavelet model(MWM) consists of the Haar
wavelet transform and the structure constraint (20).

B. Synthesis Procedure

The MWM can be interpreted as a simple coarse-to-fine
synthesis running as follows (see Fig. 3):

1) Set . Fix or compute the coarsest (root) scal-
ing coefficient (modeling of is discussed in
Section IV-D).

2) At scale , generate the random multipliers and
calculate each via (20) for .
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(a)

(b)

Fig. 3. (a) More detailed tree structure of scaling coefficients. (b) MWM
construction. At scalej, we form the wavelet coefficient as the product
Wj;k = Aj;kUj;k, with Aj;k a random variable distributed in[�1; 1]. Then,
at scalej + 1, we form the scaling coefficientsUj+1;2k andUj+1;2k+1 as
sums and differences ofUj;k andWj;k (normalized by1=

p
2).

3) At scale , use and in (18) to calculate
and , the scaling coefficients at scale for

.
4) Iterate steps 2) and 3), replacingby until the

finest scale is reached.

Since we generate the scaling coefficients simultaneously
with the wavelet coefficients, there is no need to invert the
wavelet transform. The finest-scale scaling coefficients are in
fact the MWM output process, i.e.,

. The total cost for computing MWM
signal samples is .

Because of the simple structure of the Haar transform, Steps
2) and 3) above can be combined, eliminating the wavelet
coefficients altogether

and

(21)

C. Closed-Form Coefficient Expressions

Because of its simplicity, we can easily obtain explicit
formulas for the MWM’s fine-scale Haar wavelet and scaling
coefficients in terms of the scaling coefficients and multipliers
at coarser scales. We begin by defining an indexing scheme
to relate the coarsest-scale scaling coefficient to its
“descendants” at finer scales, the scaling coefficients

[see Fig. 3(a)]. Let , , be the variable indexing
the possible shifts of the descendants of at scale . We can
relate the shift of a scaling coefficient to the shift of one of
its two direct descendants (children) via ,
with corresponding to the left descendant and
the right descendant [see Fig. 3(a)]. From this, we can express

as a binary expansion in terms of the

(22)

Moreover, and , with
the largest integer less than or equal to. Note that fixing a
sequence specifies not only , but a “line of descendants”
of from down to .

Using this notation, we can derive closed-form expressions
for the MWM wavelet and scaling coefficients.

Proposition 1: Define the wavelet coefficients of the Haar
wavelet system through (20), with the random variables
supported on . We then have the general relations

(23)

and

(24)

D. Properties of the MWM

1) Additional Constraints on the Multipliers:The Haar
wavelet coefficients of a stationary signal will be, using (5),
identically distributed within each scale with .
To model these properties in the MWM, we will assume that,
within each scale , we have the following:

a) The multipliers areidenticallydis-
tributed according to some random variable

.
b) The are symmetricabout zero.
c) (Simplifying assumption) The are independentof

both the coarsest scaling coefficient and the
on finer scales .5

2) Marginal Density and Stationarity:Under the above as-
sumptions, Proposition 1 leads us to the marginal density and
stationarity properties of . Setting in (22) and
(23), and setting in (15) yields6

(25)

Thus is first-order stationary and identically dis-
tributed. Note that without the requirement that be

5Strictly speaking, for our development we need only assume independence
along “lines of descendants.” That is, multipliers on different scales can be
dependent as long as one is not a descendant of the other.

6The symbol “
d
=” denotes equality in distribution.
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symmetric, the marginal distribution of would depend
on and (25) would not hold. Hence, symmetry of the
multipliers is key for modeling stationary processes.

However, will not be second-order stationary in
general. Due to the dyadic structure of the wavelet transform,
wide-sense stationarity of is unattainable using a
wavelet-domain model with uncorrelated wavelet coefficients
(except in the trivial case of white noise). In the MWM, for a
fixed shift will vary as a function
of in relation to the size of the smallest subtree containing
both and . If the multipliers are
independent and identically distributed (iid), then the smaller
the subtree, the stronger the potential correlation.

Given our independence assumptions, the moments of
are readily calculable from (25) via

(26)

As we increase the number of scales in the wavelet
transform , an appropriately scaled version of

converges to a lognormal random variable as long
as is bounded for . This follows from
the application to of the Berry–Esseen theorem
[39], a Central Limit Theorem for nonidentically distributed
random variables.

3) Wavelet-Domain Dependency Structure:If we assume
that the ’s are independent both between scales and within
scales, then the wavelet coefficients will be dependent, but
uncorrelated. This lack of correlation follows from the fact
that terms of the form factor out of any correlation
calculation, with . However, a higher order
dependency structure remains, which is of course key for
preserving signal positivity.

While a dependency structure with no correlations be-
tween wavelet coefficients may at first seem somewhat un-
natural, such models are not entirely unrealistic. For in-
stance, wavelet coefficients of random signals can exhibit
minimal second-order correlations (approximately decorre-
lated via the Karhunen–Loève transform), yet still have strong
dependencies in higher order moments. For instance, many
real-world data sets exhibit strong dependencies in the energy
of the wavelet coefficients, corresponding to fourth-order
cross-moments [40], [41].

E. Related Work

Constructions similar to the MWM were developed earlier
in [42] and [43]. A similar multiplicative model for wavelet
coefficients has been developed in [44] and [45], where it is
applied to wavelet-domain Bayesian estimation of the intensity
of a Poisson process. There, the ’s are independent mul-
tipliers that, within each scale, are identically-distributed as
mixtures of random variables. The primary difference with
this work is that we model the data directly, whereas [44] and
[45] model a wavelet-domain prior density for the intensity
function of a Poisson process.

In other related work, [46] models the wavelet coeffi-
cients using a context-based hidden Markov model. It can

be shown that this model corresponds to (20), again with
the ’s identically-distributed within each scale, but with
each distributed according to a mixture density dependent
on the value of . Although this model proves to be
quite flexible and accurate for characterizing positive LRD
data, it requires iterative maximum-likelihood (expectation-
maximization) training, has numerous parameters, and is dif-
ficult to characterize analytically.

IV. DATA MODELING USING THE MWM

To complete our model, we now specify probability density
functions (pdf’s) for the coarsest scaling coefficient and
for the multipliers at each scale. We can use the degrees
of freedom in these pdf’s in order to control two key signal
properties. First, we control the correlations and LRD of
the output signal through the wavelet energy decay.
Second, we control the higher order moments and marginal
pdf of through the scaling coefficient moments.

A. Controlling the Wavelet Energy Decay

To approximate the correlation behavior of a target signal,
we vary the wavelet energy decay across scale. We choose the
pdf’s for the ’s to control the wavelet coefficients’ scaling
behavior via (24). The fact that this scaling behavior allows
us to model correlations can be explained as follows.

Consider the Karhunen–Loève properties of the wavelet
transform. Previous work [11], [12], [47] has demonstrated that
the wavelet transform approximately decorrelates or whitens a
general class of LRD signals, including processes. If the
decorrelation were exact, then specifying the correct variances
of the wavelet coefficients would fully capture the correlation
structure of the signal. Since this decorrelation is approximate,
we can approximately control the correlation behavior by
appropriately setting the second moments (energies) of the
wavelet coefficients at each scale.

The simplest way to control energy scaling is to fix the
energy at the coarsest scale and then set the ratios of
energy for the other scales with .
For a stationary process, we see from (13) that

is constant. Using Proposition 1, we can calculate the
’s of the MWM via

(27)

To match a given variance decay, we can recursively solve
(27) for in terms of and for

. We initialize the calculation at the coarsest
scale through

(28)
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Fig. 4. Examples of the pliable pdfgA(a) of the �(p; p) random variable
A, for different values ofp. For p = 0:2, A resembles a binomial random
variable, and forp = 1 it has a uniform density. Forp > 1, the density
resembles a truncated Gaussian density, with the resemblance increasing with
p.

B. Controlling the Moments of the Scaling Coefficients

It is easily shown that the moments of the scaling coeffi-
cients scale according to

(29)

Through (29) we can control the scaling of the higher order
(and even negative) moments of the scaling coefficients—and
thus of —through the moments of the ’s.

C. Distributions for the Multipliers

We will investigate two distributions for the multipliers, the
symmetric distribution and a symmetric point-mass distri-
bution. Both of these distributions are compactly supported,
easily shaped, and amenable to closed-form calculations.

1) Symmetric Beta Distribution:A random vari-
able , symmetrically distributed over , has pdf
[48]

(30)

Here is the beta function, and is a shape factor
(see Fig. 4). For large, the approximates a Gaussian
distribution [48]. The variance is given by

(31)

Combined with (27), (31) tells us how to choose the’s to
obtain the desired scaling behavior as parameterized via.
Denoting by the beta parameter at scale, we find that

(32)

When we use -distributed multipliers, we call the model the
multifractal wavelet model MWM .
2) Point-Mass Distribution:The point mass distribution

we consider is defined at three points

(33)

with . Although seemingly not as rich as the
, this distribution has two parameters and thus can match an

additional higher order moment of the signal.
The point-mass distribution has variance .

The higher order moments of , which are useful for
characterizing the scaling coefficient moments [see (26)], are
given by

(34)

D. Distribution for the Root Scaling Coefficient

What remains is to model the density of , the root of
the tree in Fig. 3. In theory, this distribution should be strictly
positive. However, if there are enough scales in the wavelet
transform, we can appeal to Central Limit Theorem-type
arguments (although LRD makes precise analysis somewhat
cumbersome) that the root scaling coefficient is approximately
Gaussian, thus characterized only through its mean
and the variance . Crucial to this assumption is that
the mean greatly outweighs the variance so that the probability
of a negative value is negligible.

Although our development has focused on a single wavelet
tree with a single scaling coefficient , in certain synthesis
applications it is useful for the MWM to employ several
wavelet trees with one root scaling coefficient per tree. For
instance, we may wish to synthesize a trace of length, but
have only enough coarse-scale information to form a model
over scales. In this case, we can concatenate
length- traces, which corresponds to an MWM with
iid coarsest-scale scaling coefficients . Of course, an iid
assumption for the is suboptimal in that it destroys LRD
over time lags greater than . This problem, along with a
potential solution, is discussed further in Section IV-F.

E. Modeling Positive Noise

We next investigate how to parameterize the MWM in order
to model a stationary positive-valued increments process
with Hurst parameter , or spectrum decay . It
is easily seen from (13) that we should choose
independently of scale. This leads to:

Proposition 2: Assume that the in (20) are iid within
each scale (distributed as ), supported on , sym-
metric about 0, and such that

(35)

Then the MWM output process is posi-
tive and exhibits power-law behavior of the wavelet coefficient
energies (14) with exponent . Moreover

(36)

The first part, i.e., (35), follows from (27). By solving (35)
for the fixed point, we obtain (36). A simple analysis of (36)
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TABLE I
ASYMPTOTIC VALUES FOR THE SHAPE p AND VARIANCE IE(A2) OF THE � MULTIPLIERS Aj;k AS A FUNCTION OF H

H 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
p 0.077 0.175 0.301 0.470 0.707 1.06 1.66 2.86 6.47

IE[A2] 0.866 0.741 0.625 0.516 0.414 0.320 0.231 0.149 0.072

shows that for the iteration is well-defined on
all scales, since the variance of must lie in for all .

If we use a distribution for the multipliers, the fixed point
formula for the variance leads to a fixed point for
of the form

(37)

Table I provides typical fixed-point values forand the vari-
ance given the desired . There is no such expression
for the point-mass distribution, since even though the variance
converges, an extra degree of freedom remains available for
matching higher order moments.

We conclude that the MWM can approximate a positive-
valued process with Hurst parameter to
infinitely fine resolution.

F. Fitting the MWM to Data Measurements

We now develop a procedure for fitting the MWM to
actual data measurements. The first step in the fitting is
a wavelet analysis: we compute the wavelet coefficients of
the measurements (a length-signal) using a Haar wavelet
transform algorithm (filter bank, etc. [9], [10]) The number
of wavelet scales in the transform is chosen as mentioned
below.

We require and to
fit the MWM via (27) and (28). (Values for the higher order
scaling coefficient moments (29) may also be useful if the
multiplier densities have more than one free parameter.) There
exist two reasonable approaches for selecting these values. We
can either plug in the empirical wavelet variances directly, or
we can assume a parametric model for the variances and use
the measured data to fit the model.

If we plug the empirical moments directly into (27) and (28),
we must ensure that we have enough data to collect reliable
statistics. This problem is most pressing for the coarsest-scale
wavelet and scaling coefficients, of which we have the fewest.
In practice, we set the number of levelsof the Haar transform
such that the number of coarsest-scale wavelet and
scaling coefficients is sufficient for estimating and

.
A parametric model for the moment scaling would allow us

to extrapolate the coarse-scale scaling and wavelet coefficient
moments that we have difficulty measuring due to lack of
data. It would also render the modeling more robust and
provide a more concise representation of the data’s behavior.
Parametric models for as a function of scale are currently
under investigation.

In some cases, it may be impossible to exactly match the
moment scaling of the data using the MWM. The scaling
of moments of the actual data may be inconsistent with the
possible moments of the multipliers. For instance, the

positive moments of are bounded above by those of a
random variable with point masses of weight at and at

. The moment scaling of certain data may lead to multiplier
moment constraints outside these bounds that cannot be fit
exactly. This could occur, for example, if the data exhibited
dependencies between the and .

V. MULTIPLICATIVE CASCADES

Multiplicative cascades generalize the self-similarity of fBm
by offering greater flexibility and richer scaling properties.
Identifying the MWM algorithm with a multiplicative cascade
allows us to benefit from the accumulated theoretical and prac-
tical knowledge of the field of multifractals, including a precise
understanding of the convergence of the algorithm, properties
of the marginal distributions, advantages over monofractal fGn
models, and a range of possible refinements and extensions
[15], [16], [22]–[32], [49]–[57]. The theory of cascades comes
with a dedicated set of tools for analysis, both theoretical and
numerical, that we will outline in the next two sections (see
Appendixes A and B for more details).

At this point, our discussion will become decidedly more
technical, mainly because we wish to extend the MWM to
a continuous-time process. Though indispensable for a true
understanding of multiplicative processes, readers may, at least
at first reading, wish to bypass the following two sections for
Section VII, where we present an application of the MWM
framework to computer network traffic modeling.

A. The MWM is a Binomial Cascade

The MWM extends the simple, classical multifractal—the
binomial measure [22], [53], [54], [57]—in a natural fashion.
This measure is most conveniently constructed iteratively
through a so-calledcascadestructure, where it is often ad-
dressed as abinomial cascade. As we will show, its distribu-
tion function coincides with the integral
of the MWM signal .

The iterative cascade construction is illustrated in Fig. 5.
Starting from a uniform distribution on the unit interval of
total mass , we “redistribute” this mass by splitting it
between the two subintervals of half size in the ratio
to , with . Proceeding iteratively, we
obtain after steps a distribution that is uniform on intervals

and assigns to these intervals the
mass

(38)

Here we again use the notation (22) at scale . The tree
structure of Fig. 3 translates easily into the present situation:
the interval lies within the intervals
which form a nested sequence. If , then is the
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Fig. 5. Iterative construction of the binomial cascade. In the second image,
the productsM1

i
� M

0
0 give the area of the respective shaded region, i.e.,

the incrementC(1)
i

of D over I1
i

, etc. The height of a rectangle of length

2�n is thus2n � C
(1)
i

. Relation (39) guarantees that the areas add up in the
right way. In particular, the height of the shaded rectangles is2Mn

k
times the

height of the respective “parent rectangle.” This is how “spikiness” is created:
small heights give rise to at least one even smaller child, while large ones
produce at least one even larger child. A more precise statement can be found
in Section C of Appendix A from which it can be inferred that in the limit the
spikes will actually be infinitely large on a rather large dense subset of[0; 1].

left subinterval of its parent interval ; if , it lies on
the right.

To generate a random , we choose the various to be
random variables. Their distributions may depend onand
and are arbitrary, as long as they are positive and provided
that for all and

(39)

almost surely. This introduces a strong dependency between
“siblings,” i.e., the multipliers at the two child nodes sharing
the same parent. We will require for all and that all
multipliers appearing in (38) are mutually independent. We
will call this propertyindependence along lines of descendants.
A compact way of writing this is

if then and are independent (40)

As long as the two dependency requirements (39) and (40)
are satisfied, we are completely free to introduce additional
correlation structure.

Comparison with Proposition 1 (applied with ) or,
more pointedly, with (25) reveals that the MWM is a random
binomial cascade. Indeed, setting

and

(41)

the increments of this binomial distribution function
[cf. (38)] coincide with the increments of integral

of the MWM signal [cf. (25)]. Thus we drop the subscript
“ ” in the sequel.

B. Additional Properties of the MWM

Since the MWM is a binomial cascade, known results on
cascades transfer immediately.

1) Ordinary Convergence of : In the limit the above
iterative construction will converge, meaning that is well
defined for all . This is due essentially to two simple prop-
erties of distribution functions such as: they are increasing
and continuous from the right. Thus it is enough to define

at all dyadic points, and to take limits from the right at
nondyadic points. At stage, we define through
(38) with the convention . At later steps of the
construction, these values remain unchanged due to (39). This
completes the argument.

Let us note that the increment of between dyadic
points tends to zero as due to (38) and the fact that the
multipliers are less than one. Consequently,is continuous.

2) Distributional Convergence of : We have con-
structed through its dyadic increments and by
passing to the limit of infinitely fine resolution .
Later, we will be mainly interested in the increments

. Nevertheless, defining itself is handy, since
it is a continuous-time process and provides a compact
representation of the increment processes (38) and (15) at
various resolutions .

Moreover, we cannot define a “process” with
in the usual sense. Indeed, the approximations

(plotted in Fig. 5) tend either to
zero or (cf. Section C of Appendix A). In particular, the
derivative of is zero almost everywhere, as follows from
(75) in Section A of Appendix A. Thus the essential growth
of happens “at” the points where does not exist. This
explains the spiky appearance of the increments for
large .

The proper way to define is in the distributional sense

(42)

As a particular case, the wavelet and scaling coefficients of
are properly defined, and it is an easy task to check that

they are indeed given by (23) and (24).
To emphasize the fact that is not a proper function

in the cases of interest here, let us show that the-norm
of its wavelet coefficients is infinite, at least in expectation.
Indeed, using Proposition 1 we find after a short calcula-
tion that

. For this expression to
remain finite as would have to decay
to zero (as ) due to . This
requirement, however, leads to processes with uninteresting
fine scale behavior, and it certainly does not hold in the
presence of LRD [see (36)].

The fact that the MWM algorithm does not furnish an
-signal7 in the limit provides a further strong

7Since the Haar transform is orthonormal, thel2 norm of the wavelet
coefficients equals theL2 norm of the output signal.
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argument toward leaving the usual framework of wavelets
when performing multiplicative iteration schemes. Given the
decay of the wavelet coefficients (cf. Section VI-C) we can
determine in whichBesov spacesthe limiting MWM signal

lives (see Section B6 of Appendix A).
3) Marginals of : Our next observation concerns

the marginals of the discrete approximation to the
MWM signal . If we assume that the multipliers
appearing in (38) are mutually independent with finite third
moments, then the logarithms of the increments of

are approximately Gaussian due to the Law of Large
Numbers (LLN). A cascade process has, thus approximately
lognormal marginals . Note that these marginals have
finite moments of the same order of the multipliers appearing
in (38).

The theory of cascades, which in mathematics are addressed
as -martingales [22], [52], provides a wealth of possible
generalizations. Softening the conservation condition “

almost surely” to “ ” (consistency
in the mean), we can use multipliers with lognormal
distribution. Then, the marginals of the increment process are
exactly lognormal on all scales. In this case, convergence is
guaranteed by martingale arguments.

Also of considerable importance is the possibility to go
beyond the binary structure imposed by the Haar wavelet
system and to introduce randomness in the geometry of the
construction [24], [25] and—as a particular case—wide sense
stationarity in the signal. To describe such systems is, however,
beyond the scope of this paper.

VI. M ULTIFRACTAL ANALYSIS OF THE MWM

So far we have noted two attractive properties of cascades:
their increment processes are spiky and have non-Gaussian
marginals. Surprisingly, these two properties are strongly
related, and much effort has been expended connecting them
rigorously under various assumptions [23]–[32]. The scaling
of moments, which is captured with the simple and efficient
partition function , acts as the bridge. This function can
be viewed as a concise way of describing various features of
cascades and of processes in general.

After introducing the variousmultifractal spectra
(measures of spikiness) and relating them to , we show
that fBm has a degenerate multifractal structure. It is, thus
of limited use for modeling purposes in view of higher order
moments. Next, we relate the multifractal analysis (MFA) to
the wavelet transform of a signal and unravel the connection
between MFA and LRD. We end this section by computing
the multifractal spectrum of the MWM explicitly.

A thorough review of the key features of multifractal
analysis is given in Appendix A.

A. Multifractal Spectra

1) Spikiness:The strength of growth, also called thedegree
of Hölder continuity, of an increasing process at time can
be characterized by

(43)

with

(44)

(45)

and .
The smaller the , the faster grows at . Considering

only for simplicity, the frequency of occurrence of
a given strength at coarse scales can be measured by the
coarse (grained) multifractal spectrum

(46)

In this setting, takes values between zero and one and is
often shaped like a (concave). The smaller is, the
“fewer” points act like . If denotes the value

assumed by “most” points, then (cf. Section
C of Appendix A).

2) Non-Gaussianity and Higher Order Moments:Like any
Gaussian process, fBm is completely determined by its second-
order statistics. Things are quite the contrary for cascades such
as the MWM. Being especially interested in thescaling of
moments, we define thepartition function

(47)

Note that is always concave. For a typical plot of and
, see Fig. 6.
3) The Multifractal Formalism:The multifractal spectrum

and are closely related, as the following quick and
dirty argument shows. Omitting in the sum of (47) all terms
but the ones with and using (46), we obtain

(48)

We conclude that we should “expect” to be smaller than
, or equivalently . Since this

holds for all and , we find

(49)

and

(50)

This relation is established rigorously in Section B of Appen-
dix A.

The transform appearing in (50) is called theLe-
gendre transform. If , then we find by simple
calculus that

and

at
(51)

We may write this equivalently as the dual formula
at . This is illustrated
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Fig. 6. The Legendre transformT 7! T� in the simple case of a concave
differentiable function such as the spectrum of a�MWM [(66) with p = 1:66;
H = 0:85]. Set� = T 0(q); thenT�(�) is such that the tangent at(q; T (q))
passes through(0;�T�(�)). In other words,�T�(�) + q� = T (q) [see
(51)]. By symmetry, the tangent at(�;T�(�)) has slopeq and passes through
(0;�T (q)). There are two special values ofq. Trivially, T (0) = �1, hence
the maximum ofT� is one. In addition, every positive increment process has
T (1) = 0, henceT� touches the bisector.

in Fig. 6. Since is typically differentiable and always
concave, (51) is sufficient for our purposes. More details on
the Legendre transform are given in Section B of Appendix A.

This relation via the Legendre transform is typical in the the-
ory of large deviations [58], which establishes relations such
as equality in (50) under the weakest possible assumptions.
In proper terminology, is the rate functionof a so-called
Large Deviation Principle(LDP): it measures how frequently
or how likely the observed deviates from the “expected
value” . We will elaborate on this, especially the use of a
theorem of G̈artner–Ellis [59] toward an improvement of (50)
in Appendix A (cf. Theorems 6 and 9).

B. Numerical Estimation of

For the MWM, we have ,
and the sum in (47) becomes

(52)

In order to numerically estimate , we will first ignore
the expectation, which is fair for large under an ergodicity
assumption. (This procedure is also viable in more general
circumstances, as we show in Section B4 of Appendix A.)
Then, we seek a relation of the form , which
we obtain numerically from a linear plot of against

.

C. Multifractal Analysis and Wavelets

Wavelet decompositions contain considerable information
on the singularity behavior of a process. Indeed, adapting
the argument of [60, p. 291] and correcting for thewavelet
normalization used in this paper, it is easily shown that

implies that

(53)

if is chosen as usual to satisfy .
This holds for any and any compactly supported
wavelet. Given knowledge on the decay of the maximum
of the wavelet coefficients in the vicinity of and sufficient
wavelet regularity, this relation can be inverted. For a precise
statement, see [60] and [9, Theorem 9.2]. This suggests that
replacing the increments in the definition (43) of by the
left-hand side of (53) would produce an alternative description
of the local behavior of . In nice cases, we expect the
resulting scaling exponent to be equal to . This could prove
particularly useful for more general classes of processes.

Let us rejoin the MWM. By construction, we actually
know the wavelet coefficients of the MWM signal, which
is the distributional derivative of the increasing process.
Following the above recipe we may define, thus amultifractal
scaling exponent based on waveletsfor

as
(54)

Since , we expect to be closely
related to . Adapting (47) to (54) results in

(55)

An analysis using (55) is of particular interest in the context
of Besov spaces, as is explained further in Section B6 of
Appendix A.

All general results on the multifractal formalism hold also
with and , in particular (50) and Lemma 5, Theorem 6,
Lemma 7, and Corollary 8 of the Appendix A. We should
mention that [21] uses this fact in its analysis of cascades.

For the Haar wavelet coefficients of an MWM, we have
. Provided that the converge in distri-

bution as , they do not contribute to the scaling law
. For the sum in (55), we have then that

using (52). Hence

(56)
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Let us assume in addition that there exists such that
for all . Then, for all ,

and using again we find

(57)

This is exactly the relation we expect between the scaling
exponents of a process and its (distributional) derivative,
unless the process contains more complex oscillatory behavior
such as chirps [61].

Differentiating (56), we find , which
is by Legendre transform (51) in agreement with (57). From
this it becomes clear that all results on the MFA of the MWM
process translate directly into a scaling analysis of its
distributional derivative . In particular, see Corollary 3,
(65) and (66) below, as well as Theorems 9 and 11, and (103).

D. Multifractal Scaling of Moments and LRD

The multifractal scaling exponent of a process
is closely related to LRD parameter , since both measure
the power-law behavior of second-order statistics.8 More pre-
cisely, captures the scaling behavior of the second sample
moments, while captures the decay of the covariances.

For a process with zero-meanincrements, this rela-
tion can be made precise. To this end we use the fact
that can be measured through a scaling of the sam-
ple variance derived from (12) [2]. Therefore, let

denote the increment process of at some given
(finest) resolution . Following (11), we let then
be the aggregated increment process, i.e., at aggregation level

the process is the in-
crement of at resolution . According to
(12) the variance of scales as

for an LRD process . On the other hand,

according to (47). Comparing the scaling
terms , we find that , or

(58)

for zero-mean processes. For fBm, this is in agreement with
(60) below.

Multifractal measures such as the MWM signal are
not second-order stationary. Hence, LRD cannot be defined
through the decay of the autocovariances. However, alternative
fractal properties, such as the decay of aggregate variances (11)
or wavelet coefficients (13)—which are equivalent to LRD in
the presence of second-order stationarity—can still be defined
and calculated.

As a further difficulty, processes obtained from cas-
cades have positive increments , so that the above

8While we may define an MFA for an arbitrary process as in (43), the
interpretation in terms of Ḧolder continuity is valid only for increasing
processes with positive increments. Moreover, here we neglect the fact that
T (2) is defined through a limit of arbitrary fine resolutions while LRD is an
asymptotic law for large scales. In other words, we assume that scaling is
perfect on all relevant scales.

argument using the variances has to be corrected to read

, noting that is independent
of the scale . Since we may, thus still expect the
same relation (58), at least in the limit of very fine resolution
(small and ).

The variance-time plot method above is known to be an
unreliable (but simple) estimator of LRD behavior [8], while
the wavelet method of [37] is more robust. Since we are
dealing with increment processes, we need to apply (13):

. Recalling that we can obtain
through (55) and (56), we find by stationarity

, and the
same relation (58) follows again in the limit to fine resolution

.
Finally, checking the value predicted by theory in (66),

we again find agreement with (58). The same is actually true
for much larger classes of cascade multifractals.

E. The Multifractal Spectrum of fBm

We now show that fBm does not possess a rich multifractal
structure. Stationarity of increments and self-similarity yield
immediately that

(59)

and thus

fBm:
for
for

(60)

for
for

(61)

This means that there are no values to be
observed. This is somewhat in agreement with a result of Adler
[62] that states that the degree of H¨older continuity9 of fBm is

everywhere in with probability one. The formula also
indicates that will be observed. This is due to the
fact that the increments of fBm are zero-mean Gaussian on
all scales, where there is a considerable probability of finding
small increments, i.e., large . In other words, converges
very nonuniformly to .

In conclusion, the of fBm is linear, i.e., a degenerate
concave function. This captures the monofractal structure of
fBm in simple terms. Real-world signals such as network
traffic, however, exhibit truly multifractal behavior, i.e., they
possess a strictly concave (see Fig. 9).

F. The Multifractal Spectrum of MWM

We begin by stating a corollary to Theorem 9.

Corollary 3: Consider an MWM as given in (25) or (38),
with multipliers symmetrical and identically distributed

9Since fBm is not an increasing process, the notion of Hölder regularityHt

we introduce in Secton A of Appendix A has to replace�(t). A wavelet-based
analysis using~� and ~S usually reflects Adler’s result more closely.
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within scale and independent along any line of descendants
(cf. (40)). Assume furthermore that the converge in
distribution as . Then, we have with probability one
that

(62)

on the entire interval , i.e., on
, which corresponds to the-interval bounded

by the two values and where the tangent at passes
through the origin.

This result follows as a consequence of the work of [22],
[24], [25], and [32] together with (100) under the additional
assumption that the are all identically distributed. With
Theorem 11 we show in Appendix B how to generalize the
argument of [24] to our case.

Let the assumptions of the corollary be in force for the
remainder of this section. Then, the multipliers generating
a binomial cascade equivalent to the MWM [cf. (41)] are
independent along lines of descendants (40). Also, they are
identically distributed within scale due to the symmetry of

(63)

These two facts allow the following calculation, which is
the basic step toward calculating . We denote by the
sum over all and use again the notation
of (22). Then

(64)

Let us add now the fact that the (respectively ) con-
verge in distribution to a random variable, say(respectively

). Then, we find

MWM:

(65)

As an example, consider theMWM defined in Proposition
2 with symmetrical multipliers . Since the variance
of the multipliers converges by (36), so does the only
parameter and, hence, the whole distribution. The
limiting random variable has the standard symmetrical

distribution, supported on . Its parameter is
for by (37). Using

the well-known formula for the moments of a distribution
we find for

MWM: (66)

with for . For the point mass -
distribution (33) the obvious formula results using (34)

MWM:

Having now two parameters available provides more flexi-
bility. This will be used in Section VII-A to match not only
the energy decay, i.e., as is done with the MWM, but
also the first negative moment, i.e., . Fitting negative
moments results in better matching of small values. These cor-
respond to large (43), i.e., to negative and the decreasing
part of (cf. Fig. 9).

More generally, in a mixture model the moments are convex
combinations of the moments of the mixing distributions.
Thus is readily available for such cases using (65). The
additional parameters introduced in this way allow for even
greater flexibility.

In conclusion, the partition function displays a diverse
array of statistical properties of a signal in a concise way.
The parameters of the MWM, however, should not be looked
for among the but rather among the parameters of the
underlying distributions of the multipliers.

VII. A PPLICATION TO NETWORK TRAFFIC

Let us now turn to a problem of considerable current
practical interest—computer network traffic modeling. Data
traffic models are an invaluable asset to the network analyst.
In network analysis, model parameters are used to capture
and summarize important characteristics of data traffic. With
simple models, the impact of various parameters on network
performance can be studied through analytical means [6],
[63]–[67]. In cases where theoretical analysis is intractable,
models are routinely used to synthesize test data traces for
simulation purposes [68]. Here, computational efficiency of
the synthesis becomes as important as the accuracy.

We begin with some historical remarks. Although LRD
models have long been known to characterize a variety of
phenomena, only recently has LRD been discovered in data
network traffic [5]. This has lead to new insights about traffic
and network performance [5], primarily that high levels of
LRD lead to poor network performance and that classical
models like Markov and Poisson processes are too optimistic
in their performance predictions. As a consequence, incorpo-
rating LRD in traffic models for network analysis has lead to
more realistic results, and self-similar models like fGn have
been suggested for modeling LRD traffic.

Norros [66] surveys the theoretical bounds for the queu-
ing performance of self-similar traffic. Here, the total traffic
arriving up to time is modeled by

(67)

where is fBm (with Hurst exponent and
), and and are constants. In other words, the incoming

traffic is assumed to arrive with a mean rate
superimposed on a colored Gaussian noise (fGn) process. The
parameter controls the overall variance.

The successes of self-similar models such as (67) have
lain mainly in their ability to capture LRD while permit-
ting tractable theoretical analysis. However, self-similar mod-
els like fBm/fGn have three severe drawbacks: 1) Gaussian
marginals, meaning the process must take negative values;
2) computational inefficiency for exact synthesis; and 3)
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degenerate multifractal properties. While the first two clearly
limit the use of self-similar models for synthesis, it is the
object of ongoing research to establish the importance of the
third for queuing performance. The MWM exhibits power
spectra, marginals, and multifractal behavior consistent with
actual traffic while providing an synthesis algorithm
for -point output traces.

In this section, we synthesize network traffic data by training
the MWM on real data. This data-fitting exercise demonstrates
the accuracy of the model not only in statistical terms (mul-
tifractal properties), but also through queuing experiments.
Though we are not claiming to present a physical model
for network traffic, the close fit of the multiplicative process
underlying the MWM to the real data provides valuable insight
into the mechanisms of buffering and multiplexing of network
traffic.

Interesting quantities for simulation include packet inter-
arrival times, packets-per-time, and bytes-per-time. Packet
interarrival times can be converted directly into packets-per-
time by binning the packet arrivals into time bins of the
required size, whereas bytes-per-time includes the additional
information of packet size. Here, we train on a set of -like
packet interarrival time data, since interarrival times, being
continuous-valued, are most natural for the MWM. In addition,
analysis of interarrival times avoids the problem of choosing
an appropriate time unit as in packets-per-time and bytes-per-
time. However, we could as well apply the MWM to approx-
imate discrete-valued packet-per-time or bytes-per-time. For
these cases, we could quantize the MWM’s continuous-valued
output into discrete-valued data or follow the approach of [45].

A. Synthesis Via Matching

1) Real Data: We focus on the August 1989 Bellcore Eth-
ernet tracepAug of 10 interarrival times [Fig. 2(a)], as
measured by Lelandet al. [5]. Although slightly dated, this
data set provides a well-known benchmark useful for examin-
ing the fractality and LRD of network traffic.

First, we analyze the properties of the trace. Recognizing
its limitations as an LRD estimator, we use the variance-
time plot (Fig. 7) to obtain a qualitative characterization of
the correlations present in the data. From the plot, we find the
trace exhibits LRD with . Since the plot is somewhat
“kinked,” the trace most likely does not exhibit a strict second-
order scaling. As Fig. 2 plainly shows, modelingpAug as an
fGn process with and the same mean and variance
leads to nearly 30% of the synthesized data being negative.
The culprit is the large standard deviation to mean ratio of
1.8 of pAug. The oft used butad hoc procedure of setting
all negative points to zero would clearly result in a process
with very different statistics to those required. In general, fGn
models are of limited utility for positive data with small mean
and large variance.

Moving beyond second-order statistics, we measure the
multifractal properties ofpAug. As discussed in Section VI-B,
we estimate as the slope of a linear fit of the log–log
plot of the sample moments at resolution against
the scale (52). In Fig. 8(a), the only noticeable deviation

Fig. 7. Variance-time plot of the BellcorepAugdata “�” and one realization
of the �MWM synthesis “�.” Here,m denotes the level of aggregation and
Z(m)(n) the aggregated process defined through (11).

from linearity is at the very finest resolution of analysis—a
fact that is enhanced in Fig. 8(b), where the increments of the
log–log plot are displayed. With 16 octaves (five decades) of
excellent scaling, we can be confident in concluding thatpAug
is multifractal.10 The only noticeable deviation from linearity
is at the very finest resolution of analysis. The linearity of the
log–log plots can be more closely verified in Fig. 8(b), which
displays the increments of the log–log plot from Fig. 8(a).

Extracting using (52) from Fig. 8 and applying the
Legendre transform (51), we obtain the multifractal spectrum

of Fig. 9. As indicated by the multifractal formalism
(see Section VI-A3, Corollary 3, and Theorems 6 and 9), this
function gives the large deviations from the “most frequent”
singularity exponent and thus displays valuable information
about the occurrence of rare events such as bursts (small).
Fig. 9 reveals a rich multifractal spectrum. In contrast, fBm
has a trivial spectrum consisting only of one point indicating
that it has the same “burstiness” everywhere [70].

2) Synthetic Data:Having established the LRD and multi-
fractal characteristics of thepAug trace, we will next model
these properties using theMWM. To train the MWM, we
use the approach outlined in Section IV-F. We choose the
number of wavelet scales to synthesize data sets
of points. This allows us to collect multiple realizations
of the wavelet coefficients and root scaling coefficient, and
thus form reliable mean and variance estimates. For the root
scaling coefficient, we use the Gaussian assumption discussed
in Section IV-D.

With trained MWM in hand, we synthesize 15 length-2
subtraces and concatenate them to form a trace of approxi-
mately length-10, the size of the real data set. We now apply
the same battery of tests to this trace as we applied to the actual
BellcorepAugdata. Fig. 2(b) shows that the synthesized data
captures much of the gross structure of the Bellcore data at
different aggregation levels, including the one-sided marginal
density. In addition, the variance-time plots of Fig. 7 depict
an excellent match of the correlation structure.11

10Since we characterize traffic interarrival times, our result does not conflict
with that of [69], which concluded that thebytes-per-timeand packets-per-
time of the August 1989 Bellcore traces were not multifractal. Multifractal
scaling of similar quality over five decades has been reported for several TCP
traces in [19].

11We remind the reader that the variance-time plot must be interpreted with
care due to the nonstationarity of the wavelet-synthesized data.
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(a)

(b)

Fig. 8. (a) Scaling of log momentslog
2
(Sj(q)) versus scalej for the 106

Bellcore interarrival timespAugwith q ranging from�3.2 to 3.2 andj ranging
from 1 to 19, withj = 19 the finest scale. (To compare with Fig. 7, note
log

2
(m) = 19 � j.) (b) Increments of the log scaling shown in (a). The

closeness of the linear fits in (a), as indicated by the stable behavior of the
increments in (b), indicates that the interarrival times are indeed multifractal.

We next measure the multifractal properties of the synthetic
trace. From the linearity of the log–log plots in Fig. 10(a),
we see that the synthetic trace exhibits a multifractal scaling,
except for strongly negative and large. In converting these
plots into the multifractal spectrum of Fig. 9, we see that
spectrum of the synthesized data closely matches thepAug
spectrum for near one. The close match in the upper left
part, which corresponds to values ( slopes of tangents
to the spectrum) between zero and two, indicates that the

MWM matches these low (th) order moments very well.
The divergence of the spectra on the right indicates that the
chance of observing large in the MWM data is somewhat
too high. Since large correspond to fast decay, this means
that the MWM trace has values that are too small. In fact,
the minimum value of the wavelet-synthesized trace is on the
order of 10 , whereas the minimum ofpAugis on the order
of 10 . This is due to the fact that, unlike the coarser scale
multipliers , the fine-scale multipliers have pdf’s with
significant mass near 1. Clearly, from (25) we see that this
results in small values for the synthesized process .

Fig. 9. Multifractal spectra (51) of the BellcorepAug data,�MWM syn-
thesis, and a hybrid MWM employing beta distributions at coarse scales and
point masses at fine scales. The spectra were obtained through the Legendre
transform of the scaling of the moments (see Figs. 8 and 10). The close match
in the upper left part, which corresponds toq values (=slopes of tangents to
the spectrum) between zero and two, indicates that the�MWM matches these
low (qth)-order moments very well. The divergence of the spectra on the
right indicates that the chance of observing large� in the �MWM data is
somewhat too high. This behavior is improved significantly by adding point
mass multipliers in the fine scales.

This may be indicative of different phenomena in the fine
scales of the real data as compared to the coarse scales.

Using distributions in the coarse scales and point mass
distributions in the fine scales, we can largely correct this
problem, synthesizing data with a minimum value of
while preserving the other features of theMWM (see Fig. 9).
We choose the point mass parameters (see Section IV-C2) to
match both the wavelet energy decay and the scaling of the
negative first moment of the real data in (29). We do not
claim that the point mass multipliers are realistic—using point
mass multipliers at all scales results in syntheses that look
somewhat artificial. Here, we simply illustrate the fact that we
can choose the multiplier distributions to better match higher
order or lower order moments of the data.

B. Queuing Behavior

As a final test of the accuracy of the match of theMWM
to the pAug target data, we now compare their queuing
behaviors. The queuing behavior of traffic is important because
of its influence on network management algorithms, such as
connection admission control, that strive to support certain
quality of service (QoS) demands [71], [72].

The presence of LRD in traffic has been shown to signifi-
cantly affect queuing performance [65]. For stationary traffic
with only short-range dependence (SRD), classical queuing
results for Markov models show that the tail of the distribution
of the queue-length in a single server queue with deterministic
service satisfies

(68)

where the positive constant depends on the service rate at
the queue and the statistical properties of the arrivals process.
Unlike (68), fBm-based models for LRD traffic exhibit Weibull
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(a)

(b)

Fig. 10. (a) Log–log moment scaling and (b) incremental scaling for the
�MWM synthesized data. (See Fig. 8 for more detail.) The synthetic data
exhibits a linear multifractal scaling, with the exception of strongly negative
q’s and largej.

tail distributions of the form

(69)

where is the Hurst exponent [6], [63], [73]. Clearly, we
see from (68) and (69) that the tail queue probability of self-
similar traffic decays at a much slower rate than that of SRD
traffic. With the LRD of Ethernet traffic being established
beyond doubt, it is important for traffic models to incorporate
LRD, without which the prediction of queuing performance
can be overly optimistic. However, as mentioned earlier, fGn’s
Gaussian marginals makes it unsuitable for thepAugdata set;
it is meaningless to perform queuing experiments with the
data of Fig. 2(c).

In the simulations that follow, we consider the performance
of an infinite-length single server queue with a single trace as
input. We assume a constant service rate of 500 packets/s. For
simplicity we assume all packets to be of equal size.

The ideal experiment comparing the queuing behavior of
real world and synthesized traces would be to compute the
average tail queue behavior of several realizations of the real
pAug process as well as several realizations of theMWM.
Unfortunately, typically only one realization of the real trace
is available. To circumvent this setback, we partition the real
pAug trace into 15 subtraces each of length 2packets and
assume that each subtrace is an independent realization of the

(a)

(b)

Fig. 11. Here, we partition thepAugtrace into 15 subtraces of equal number
of packets and compare their queuing behavior with that of 15 synthesized
traces of the same length. In (a), observe that the real subtraces have a wide
variation in tail queue behavior. In (b), observe that the synthesized traces
display a similar variation in tail queue behavior.

underlying real process. We compare the queuing performance
of thesepAug subtraces against 15 synthetic traces obtained
from the MWM in Fig. 11. Note the similarly widely varying
performance of both the real and synthetic traces. This result
indicates that we should expect such variations and should
be cautious drawing conclusions from the average tail queue
behavior.

We next compare the queuing performance of the entire
pAug trace with that of 20 traces of approximately the same
length (10 points) generated using theMWM (see Fig. 12).
The simulated traces in Fig. 12(a) exhibit a wide variation in
tail queue behavior. The results of the previous experiment
indicate that this is to be expected. We also observe that the
average tail queue behavior of the simulated traces matches
that of the real trace surprisingly well [see Fig. 12(b)]. How-
ever, as the previous experiment suggests, the real data cannot
be expected to always exhibit the same queuing behavior as
the average of several simulated traces.

In summary, these queuing experiments demonstrate that
our MWM synthesized traffic traces not only match real
traffic in terms of its various statistical properties but also
in its queuing behavior.
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(a)

(b)

Fig. 12. Comparison of the queuing behavior ofpAug with 20 full-size
synthesized traces. Displayed are the tail probabilities of buffer occupancy
versus buffer size. In (a), observe the variability of the queue performance of
the synthesized traces. In (b), observe that the average queue performance of
simulated traces and that of the real trace match closely.

C. Physical Interpretation

We have argued for the use of the MWM for synthe-
sizing network traffic in terms of statistical properties (see
Sections VII-A and B). The quality of the matching challenges
the current understanding of networking and performance
analysis by suggesting that some of the mechanisms shaping
the traffic flow might carry an inherent multiplicative structure.
Our motivation for providing a possible explanation for the
presence of multiplicative mechanisms is twofold. First, we
hope that multiplicative models will inspire research in net-
working and trust that they will lead to a deeper understanding
of the forces shaping traffic characteristics. Promising steps in
this direction have already been made in [20], [33], and [38].
Second, such an explanation will further support the use of
the MWM network traffic synthesizer.

It is generally agreed that today’s network traffic is created
by a large number of independent individual sources. A simple
but powerful model assumes that these sources switch between
two states, the “ON” state in which they produce traffic at
constant rate and the “OFF” state in which they are silent.
Aggregating these traffic loads yields the total traffic load
observed at, say, a gateway. With this model, heavy-tailed

ON periods lead to LRD similar to that observed in actual
traffic. Convincing modeling results have made a strong case
for this point of view [74], [75]. However, ON/OFF models
are accurate only in the limit oflarge time scales(seconds and
longer), and they do not account for the actual queuing and
multiplexing occurring in the network.

A complete description of data network traffic requires
understanding of its dynamic nature over not just large but
alsosmall time scales(hundreds of milliseconds and shorter).
The flow of packets over fine time scales is shaped mainly by
the protocols and end-to-end congestion control mechanisms
(e.g., TCP) that regulate the complex interactions between the
different connections on a network. Indeed, it is not hard to see
that buffering and multiplexing can create bursts, for instance,
when packets arrive at a server at a moderate rate, rest queued
up, and then race off at the service rate. Since the traffic rate
is strictly positive, this kind of short-term volatility (spiky
non-Gaussian behavior) cannot come from an additive process.

The MWM matches this small-scale behavior of traffic.
Rather than modeling the traffic rate as an additive superposi-
tion of components, we model it as a multiplicative partitioning
of the rate of traffic flow. The coarse scaling coefficient
provides the mean traffic rate (or equivalently its inverse, the
mean interarrival time) and the multiplications by at
each scale [cf. (25)] provide perturbations in the arrival rates
due to the effects of network phenomena at different time
scales, such as speed ups and delays due to traffic protocols,
interference from competing traffic, and the like.

When trained on real network data, the behavior of the mul-
tipliers changes with scale, with extremely low variance
at coarse scales and high variance at fine scales. Amazingly,
this is consistent with both the small-scale behavior of actual
traffic and the large-scale properties of the ON/OFF model.
At fine scales, as we have already seen in Sections V-B and
VII-A, multiplicative schemes with large variances produce
bursts like those in real data (recall Fig. 2). At coarse scales,
the scaling coefficients (which correspond to the arrival times
of large amounts of traffic) involve only a handful of low-
variance multipliers . From (25) we can write, for exam-
ple, at the third-coarsest scale

(70)

Thus for a fixed at the coarsest scale, to a first-order
approximation, the MWM isadditive at the coarse scales
provided the random variables are small in amplitude.
Moreover, the are approximatelyGaussianfor these low-
variance (high-) symmetric multipliers [48]. Hence, coarse-
resolution MWM outputs will exhibit an additive, Gaussian-
like behavior consistent with that of the previously justified
ON/OFF models and notions of client behavior as a superpo-
sition of sources.

Of course, this is not a rigorous physical development of
how and why this multiplicative procedure takes place in
reality. However, our preliminary results are promising and
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suggest where to look for multiplicative cascades: on small
time scales, most likely in the TCP flow-control layer.

VIII. C ONCLUSION

The multiplicative wavelet model (MWM) combines the
power of multifractals with the efficiency of the wavelet
transform in a flexible framework natural for characteriz-
ing and synthesizing positive LRD data. As our numerical
experiments have shown, the MWM is particularly suited
to the analysis and synthesis of network traffic loads. In
addition, the MWM could find application in areas as diverse
as financial time-series characterization, geophysics [using
two-dimensional (2-D) and three-dimensional (3-D) wavelets
and quadtrees and octtrees], and texture modeling. Several
extensions to the model hold promise.

1) A parametric characterization of the wavelet-domain
energy decay (rather than the current empirical variance
measurements) would yield a more parsimonious and
robust model.

2) The choice of -distributed wavelet multipliers is
not essential. As illustrated by our preliminary work with
point mass distributions, we can use distributions with
more parameters to match both wavelet energy decay
and the scaling coefficient moments.

3) To model correlations in the wavelet-domain, we can
introduce dependencies between the wavelet multipliers
(for example, in their signs).

4) Instead of tackling the increments process directly, we
could use the MWM as a model for an underlying
Poisson intensity process (analogous to the work of
[44]). This could be useful for fitting network traffic
packets- or bytes-per-time, which are discrete-valued
LRD processes.

5) Insights from the multifractal theory can be leveraged
into more general (e.g., stationary and nondyadic) mul-
tiplicative constructions.

Clearly, we have not exhausted the possibilities of multiplica-
tive multiscale modeling.

APPENDIX A
KEY CONCEPTS OFMULTIFRACTAL ANALYSIS

In this section, we will make rigorous the points left vague
in Section VI.

A. Introduction

The erratic behavior of a continuous process at a
given time can be characterized to a first approximation by
comparison with an algebraic function. Thedegree of local
Hölder regularity is the best (largest) such that there is
a polynomial such that for
sufficiently close to . If is a constant, i.e., ,
as is the case with cascades, then

(71)

Fortunately, we can replace the supremum by
for processes with positive increments. Furthermore,

using the notation of (22), i.e.,

(72)

we can then simplify by noting that

provided is chosen such that
. In summary12

(73)

Traditional multifractal analysis(MFA) of multiplicative
cascades aims to describe the singularity structure of processes
through the simpler but more restrictive13 exponent from
(43).

As mentioned earlier, for fBm we find for all
almost surely; this process has a degenerate multifractal

structure. For the binomial measure, on the other hand,
and will depend crucially—and discontinuously—on.
To convince yourself, recall the iterative process of Section V-
A and descend first down in the cascade to a pointby
following always the smaller of the two multipliers. Then
descend by following always the larger one. The decay rate
of the increment of (38), i.e., , will differ drastically
in the two cases.

For a measure constructed using a cascade, i.e., , the
range of will always be a positive interval containing the
value one. Values smaller than one correspond to points
where is not differentiable. If , on the other hand,
then , i.e., behaves at like the function at

. A typical range of for a real-world signal might
be or .

The MFA structure can be given either in geometrical or
statistical terms. Here, we will be mainly interested in the
statistical description.

Before going into details let us note a simple fact about
the occurrence of for the deterministic binomial . In
this special case, all multipliers (see Section V-A and
Section A of Appendix B) are deterministic, i.e., we assume
that there are two fixed numbers and that add to 1 and
that almost surely. Referring to Fig. 5 a step in
the iterative construction amounts now to splitting the area of
a region in the fixed proportions “the -th part on the left,
the -th part on the right.”

being deterministic, we consider nowto be random
in order to apply a limiting theorem from probability theory.

12For general processes this does not hold. A multifractal analysis (MFA)
with this simplified version will result in a different description of the
singularity behavior of the process that can, nevertheless, provide useful
information [32], [70]. If a process has both positive and negative increments,
then the continuous-time supremum in the original version ofHt (71)
cannot be estimated numerically. In this case, the wavelet modulus maxima
method provides arguably the most accurate information on local H¨older
regularity [76]. Adapted to detecting singularities of oscillating functions, on
the other hand, wavelets have a disadvantage in the MFA of positive increment
processes: they are not efficient for detecting large values of� that correspond
to more regular parts in the process. This is why we restrict the discussion to
positive increment processes and the simplified version ofHt.

13As we note later, replacingH(t) by �(t) does not change the outcome
for cascades.
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Recall that (22) uses the binary digits for [cf. (72)].
Choosing these digits to be 0 or 1 with equal probability
amounts to picking the point randomly with a uniform
distribution. The LLN then implies that for almost all

(74)

hence

(75)

Note that this limiting value is strictly larger than 1 unless
. Consequently, the deterministic binomial

measure has zero derivative at almost all points. This brings
home a point made in Section V-B: the distribution

associated with the binomial measure
has no density, for if it had one it would have to equal zero.
Again in other words, we cannot write as ,
since the latter is zero for all.

Usually, one is happy with an “almost sure” result such as
(74). Here, we would like to ask two additional questions:
(1) can there be points with converging to a number
different from (75), and (2) if so, what can we say about
such points ? Indeed, we find immediately that at we
have . Actually, we will find the same limit at
all dyadic points , since their dyadic expansion shows only
finitely many 1’s. This certainly justifies our quest.

B. The Multifractal Spectra

1) Hausdorff Spectrum : Ideally, we would like to
quantify the values and frequencies of limiting . In other
words, we are interested in the “sizes” of the sets

(76)

This is the geometrical approach to MFA. For fBm, replacing
by the more appropriate is either the whole

line (if ) or empty. Consequently, fBm is said to be
“monofractal”, since it has only one fractal scaling exponent.
The concatenation of fbm-s with Hurst exponent
in the interval would form a process with

.
For more general processes, the setsare highly interwo-

ven and each of them may lie dense on the line. Consequently,
the right notion of “size” is that of the fractal Hausdorff di-
mension, which leads us to defining theHausdorff multifractal
spectrum

(77)

Unfortunately, Hausdorff dimensions are impossible to calcu-
late numerically in any real-world situation, and we have to
rely on the multifractal formalism (coming up next) (100) and
(104) to estimate under certain assumptions.

For a definition of fractal dimensions, see [29], [32], or [35].
Here, we only mention that is a positive real number,
and the larger it is the “larger” the set. We explain this
notion of “largeness” by comparing a plane and a line. Though
a plane and a line have integer dimensions, our methods can be

generalized to broken, or fractal dimensions. First, note that a
randomly selectedprobeline in space will most likely intersect
a given plane, but not a given line. For random fractals this
generalizes to: a randomprobe fractal will intersect a second
given fractal only if their fractal dimensions add up at least to
the dimension of the embedding space. Second, a plane has
more degrees of freedom than a line, i.e., a square can be
segmented into pieces of size , an interval only into

. A fractal will ideally partition into pieces of size
where is its fractal dimension.
2) Large Deviation Spectrum : In practice, measure-

ment of the “burstiness” of a process has to rely on numerically
more accessible methods and notions than. Enter the
statistical description of multifractal structure. To this end we
consider a histogram of the ’s taken at some finite level

. [Recall (74) for a formula of for the deterministic
binomial measure.] The histogram will show a nontrivial
distribution of values that increasingly concentrates around
the expected value (75) due to the LLN: values other than the
expected one must occur less and less often.

It is here that LDP’s [58], [59] turn out to be invaluable. As
a generalization of the Chernoff–Cramer bound [77, Theorem
9.3], which we present below, LDP’s suggest that probabilities
of rare events decay exponentially fast. For a sequence of iid
random variables with and ,
set . Then, we find for all that

(78)

Here we have used the Tschebischev inequality and in the last
step the iid property. It follows that

(79)

Theorems on LDP’s generalize such results to arbitrary se-
quences and show when the bound is sharp in the limit

[59]. For our purposes, we set

(80)

yielding as desired. In the special case of the
random binomial or MWM, can indeed be written as a
sum as above with [cf. (38) and (74)].

It is important not to confuse the randomness relevant for
the LDP with the randomness in. Here, we explicitly fix
one realization (or path) of . Then, we consider the location
, encoded by , as the only randomness relevant for the

LDP. Since can take only different values that we
assume to be equally likely, probabilities inare calculated by
simple counting.14 As we have just learned, we can expect an
exponential decay of “rare event probabilities” such as (79).

14To avoid confusion, we will writePrt and IEt to designate randomness
with respect to the positiont andPr! andIE! to designate randomness with
respect to the processY .
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In other words there is reason to hope that the limiting “rate
function” we introduced in (46) and calledcoarse-grained
multifractal spectrumwill exist:

(81)

with

(82)

(83)

(The factor is added for convenience.) This rate function
is defined (provided the limit exists) for every path of

and is, hence, random, i.e., a function of.
The counting in (83) relates to the notion of dimension: if

, then all or at least a considerable part of the ’s
are approximatively equal to. More precisely, .
Such is the case for fBm, with almost surely (see [32]).
Furthermore, if a certain constant fraction of ’s equal ,
we have almost surely, as is the case for the
concatenation of fBm’s described above (see also [70]).

Only if certain values of are considerably more spurious
than others will we observe . To draw again an
analogy, let us assume for a moment thatis a vector in
3-D space. The maximum of in this case will be at the
expected value with . If the points where is
approximately equal to a given build a surface (spurious in
3-D space), then . If they fill a curve only, then

. So, there is hope that relates to .
Indeed it can be shown that [29], [32]

(84)

for every path.
3) Legendre Transform:In large deviations, the transform

that appears on the right side of (79) plays an important rôle.
Let be any function and define itsLegendre transform

by

(85)

Let us assume first that is concave at , by which we
mean that there is a linear function such that

with equality in (cf. Fig. 6). This situation is
particularly well suited for the Legendre transform and allows
us to compute . Note that there might be several
meeting the requirements. We claim that . But
this follows from the fact that
for all with equality at . Moreover, we actually found
that

(86)

There is some general wisdom to this: given, the Legendre
transform finds the best linear functionof slope that lies
above the function . The intercept of with the ordinate axis
is .

If we assume now that is concave and in addition
differentiable at , then there can be only one linear function

with . We find the value of at
to be [cf. (51)]

(87)

For example, the function is concave
in all points, but it is not differentiable at . Its Legendre
transform is easily computed: for we may
choose and obtain by (86). For
other we find by applying the definition.
Remarkably, the Legendre transform of gives back.
Indeed, .
More generally, we will establish that equals ,
for every concave function.

To prove this, let us show first that is a concave function
provided is. Indeed, for all and
by the definition of . Now let us fix , say, at . Then,

is a linear function that is larger than
and we have, in the notation of (86), .

We conclude that is concave in . Moreover, we see that
(still by the definition of ), with equality

at . But this means nothing more than .
Finally, it is not difficult to see that there is an (which
may lie at ) as in (86) for every with .
Consequently, is concave everywhere.

We continue by noting that is alwaysa concave function.
The reason is simple: there is a concave functionsuch that
its graph is the concave hull of the graph of. Since and
have the same Legendre transform, i.e.,, the claim holds.
However, being concave, the above argument shows that
applying the Legendre transform to will bring us back to

, which is in general different from. In summary:

Lemma 4: The Legendre transform of any function is
concave. Moreover, .

Since concave functions are necessarily continuous and
almost everywhere differentiable, we might wonder what the
edges of correspond to. As the example
above shows, points of linearity of(respectively if is not
concave), correspond to points of nondifferentiability of
and vice versa. While this situation holds quite generally, it
is instructive to verify it assuming that is and strictly
concave ( ) at : Using the implicit function
theorem, we find indeed that is then differentiable at

with .
4) Legendre Spectrum : The spectrum , though nu-

merically accessible, is hard to estimate directly on real-world
data, in particular because of the double limit in (81). Here, the
Legendre transform in combination with (79) proves useful.
Due to the simple distribution of as used in the LDP, the
moment generating function reduces to a sample
moment. Thus let us set

(88)

where , i.e.,

(89)
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Depending on the context, is called thepartition function
or the free energy[15], [78], [79]. Again, we have added a
factor for convenience.

A closer look at (48) reveals that it actually shows that
. As a matter of fact, it is proven in [32] and [55]

that

Lemma 5: For every path of

(90)

As an immediate consequence, the function is concave
and thus continuous and almost everywhere differentiable.

It is instructive to see how the quick and dirty argument (48)
can be strengthened to yield a lower bound on . Again, our
reasoning can be turned into an actual proof [32]. This time,
we will collect the with approximately equal to some
given value, say , for varying . Assuming that the range of

is bounded, we can set . Using (81)
and observing that may be positive or negative, we obtain

(91)

This shows that , and since
and can be made arbitrarily small the argument is
complete.15

The partition function is clearly easier to estimate than
, and it depends in a more regular manner on the data since

it involves averages. Consequently, we introduce theLegendre
multifractal spectrum

(92)

Recall (87) for the computation of . Unfortunately, may
contain less information than since the Legendre back-
transform yields only

(93)

where is the concave hull of . Strictly speaking, we
have to establish that the limit actually exists before making
such a statement. A simple application of the LDP Theorem of
Gärtner–Ellis [59] makes this rigorous under somewhat more
restrictive assumptions (see the following theorem which is
proven in [32] and [55]). Alternatively, we could replace the

in the definitions of and by the mathematically
more technical as it is done in [32] and [55].

15The argument is not rigorous, since� and" are entangled, i.e.," appears
in j�n

k
� l"j � "=2 twice, once as the approximate location of� and once

as the error made in this approximation.

Theorem 6: Assume that exists and is differentiable
for all real . Then, the double limit exists for all ,
and, moreover

(94)

For fBm we obtain the degenerate case of a concave
partition function: as we will see in an
instant (98). It is consistent with taking only one value

. For the concatenation of fBm’s as above we
find , which is again consistent with

[70]. Truly concave behavior of , on the
other hand, is found with real data traffic. As a consequence,
there is an entire range of values present, not just a few.
In [80] we display estimations of for fBm obtained by
numerical simulations. Due to errors, the Legendre transforms
cannot perfectly match the predicted spectrum consisting of
only the points and . The accuracy achieved
is nevertheless convincing.

5) Deterministic Envelopes of Spectra:Often, we would
like to use an analytical approach in order to gain intuition
into or an estimate of what can be expected to look like on
a typical path of . To this end, we consider nowas well as

to be random simultaneously as we apply the LDP. Fubini
leads to the “deterministic partition function” [cf. (47)]

(95)

(96)

It is not hard to show that

Lemma 7 ([32]): For any random process we have, with
probability one,

for all with (97)

This is actually enough to determine for fBm. Indeed,
since is a concave function with , Lemma
7 implies that with probability one

fBm: for all (98)

Proof: Let us consider first any with finite . Given
choose such that for all
. Then, since for positive

(99)

by the definition of . This allows us to conclude that
almost surely , hence

. This is trivial if . It is clear
that this estimate holds with probability one simultaneously
for all and some countable, dense set of
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values with . The fact that is always continuous
completes the argument.

Corollary 8: With probability one, for all

(100)

Equality holds for cascades at certain values ofas the
following version of Theorem 11 states:

Theorem 9 (Multifractal Formalism for the MWM):
Consider the MWM as given in (25) or (38), with multipliers

identically distributed within scale and independent
along lines of descendants [cf. (40)]. Assume furthermore
that the (or equivalently the ) converge
in distribution as . Then, with probability one we
have that

(101)

for any countable set of ’s with . Moreover, since
and are continuous, they must be equal on the entire

interval .
Remark: It can be shown that all spectra remain unchanged

if is replaced by [32].
6) Multifractals and Besov Spaces:Besov spaces are also

useful for analyzing the regularity of functions, especially
since an elegant description of these regularity spaces in terms
of wavelet coefficients has become available. In [81] it is
shown that the norm of the Besov space of a process
with wavelet coefficients is equivalent to

(102)

Roughly speaking, this norm measures the smoothness of order
in , where is an additional parameter for making finer

distinctions in smoothness.
Multifractal analysis (using wavelet coefficients) can be

viewed as determining in which Besov spaces the analyzed
process lies. Using a convenient wavelet, define as in

but with (see (55)) replacing . Then, we find
easily that the norm of a path of the process is finite
if and infinite if .

For (102) to hold, must be smaller than the regularityof
the wavelet, i.e., we need vanishing moments as well as
continuous derivatives. Given this, Besov norms do not depend
on the choice of the wavelet basis. Since the multifractal
analysis using wavelets determines the Besov spaces that
contain the signal, we conclude that will not depend
on the choice of the wavelet, provided the above regularity
conditions are met.

For an MWM signal with identically distributed
multipliers, we can say more. It can be shown [32] that
the wavelet coefficients of for any -supported
mother wavelet are distributed as
with independent of and distributed as .
So, it follows that (56) holds also in this setting with
given by (65) (see [51] for a similar result on deterministic
cascades). Choosing a compactly supported wavelet with

enough regularity we find, using Lemma 7, that an MWM
signal with identically distributed multipliers is in

for all almost surely.

C. Interpretation of Multifractal Spectra

We collect here as a summary a few basic properties
of multifractal spectra that follow directly from the above
definitions and theorems. Here, is an arbitrary increasing
process.

differentiable at with derivative zero.
In the case of a cascade, the plot Fig. 5
is a graph of the approximative derivative
of , i.e.,

, at resolution near .
These are points where is singular and
has “instant growth”: The plot Fig. 5 will
show height

at resolution near .
This means that at almost all points

. Recall that for increasing
processes such as the binomial distribution
function .
This says that for a significant number of

we see increments of
the size .
The chance to encounter an interval

with is
significantly smaller than finding
. These chances are and

, respectively. Both are very
small regardless, unless .

-shape of If this is the case, then the multifractal for-
malism holds, i.e., . This is true
for the MWM and binomial measures. It
may fail, however, e.g., for superpositions
of MWM’s with different spectra [55].

APPENDIX B
PROOF OF THEMULTIFRACTAL FORMALISM FOR MWM

Here, we outline the proof of themultifractal formalism
(Theorem 9) for the MWM model. We will consider a slightly
more general setting, i.e., we assume only that there are
random variables and such that
almost surely, and that is identically distributed to
for all and . This corresponds to choosing identically

distributed as . With this, we leave the original
setting where must be symmetric. We do so in order
to first study the deterministic case and acquaint ourselves
with the methods. In the deterministic case, the requirement
of symmetry would force all to be zero.

A closer look at (64) yields immediately:

Lemma 10: Consider an MWM as given in (25) or (38)
with multipliers identically distributed within scale and
independent along lines of descendants (cf. (40) and (63)), but
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not necessarily symmetric. Then

(103)

provided the limit exists. We set if
for large .

We aim to establish the following.

Theorem 11:Let the assumptions of Lemma 10 be in force.
In addition, assume that the multipliers converge in a
very weak sense: we require the limit (103) to exist for all.
Then, for any with

(104)

almost surely. For any other , the set is empty and
almost surely.

With (100), we only need to show that .
We will start by giving the basic argument for a deterministic
binomial cascade and show first how to generalize this result
to a cascade with multipliers whose distributions vary with
scale, but converge as . Then, we will outline the
method of Falconer [24] that generalizes the basic argument
to the random case and explain how to adapt it to the case
of variable multipliers. As will be apparent, we only need
convergence of the multipliers in a mean sense, as in (103).
However, our generalization applies to arbitrary “statistically
self-similar” measures as introduced in [24], provided we have
convergence in distribution.

A. Deterministic Cascade

In this section, we will assume that the binomial measure
(recall Section V-A) was constructed via a deterministic

cascade, i.e., there are two positive numbersand with
and for all almost

surely.
Consider a more careful look into the large deviation result

for this case. The LLN, as we have seen in (74), tells us that
for Lebesgue, almost all.

In other words, is a set of positive length. Therefore

(105)

This implies with (100) that the peaks of the histograms (82)
will be close to . To obtain information about other
and other parts of the histograms, we need to have a way of
choosing intervals (or points) where the “unusual” happens,
i.e., where is “far” from [cf. (43) and (74)].

This we will achieve through a “change of probability”,
meaning that the pointsare chosen randomly according to a
law that insures the convergence of toward some value

. This distribution is defined in the same way asbut
with probabilities and . Note that

due to (103), i.e., .
The key observation is that

is the -probability that a -random point lies in the
interval . [Recall that

from (22).] In other words, for any the -
probability to observe the dyadic digit is . Applying
now the LLN to yields

(106)

In other words, for the points picked randomly with distri-
bution , the converge (almost surely) to ,
thus these points all lie in

(107)

To determine the dimension of let us note that for the
same points in we have

(108)

using . This result is helpful in two ways. First,
it gives an intuitive proof of the theorem, or at least one for

. Indeed, the following very rough estimation
(which can be made precise along the lines of [29, p. 137])
yields the number of intervals that have . These
intervals are the ones contributing the bulk probability to.
Using (108)

(109)

Thus the number of such intervals is approximately ;
in other words .

Second, (108) allows us the estimate
using [35, prop. 4.9]. Intuitively, we can think of as
generalizing -dimensional volume, since it scales in the right
way: if a subset of is shrunk by a factor then its

-measure multiplies by . If was an integer this
would be exactly the definition of-dimensional volume. Now
a planar object in space has infinite 1-D volume (length),
zero 3-D volume, but finite positive 2-D volume (area); its
dimension is two after all. Generalizing, we say that has
at least dimension since is positive, i.e.,

. A complete argument is given in [23]
and [55].

B. Deterministic Cascade with Variable Multipliers

Let us now generalize slightly by allowing the almost
sure multipliers to depend on scale: for
all almost surely, where . Let us assume,
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however, that the converge, say to . Then, using (103)

(110)

and we obtain the same formula as in the previous section.
Applying now the Strong LLN to the same auxiliary mea-

sures as before we find

(111)

for almost all points. But

(112)

where we obtain -almost surely, exactly as
before. In summary, we have again .

C. Random Cascades

Let us turn finally to the case of random multipliers. For a
start, we assume the same distribution on all scales, i.e., all

are distributed as some , where
almost surely.
Such cascades have been termed “conservative” by Man-

delbrot [53] due to the conservation of mass in every step.
Subsequent mathematical studies on cascades considered the
case of independent with [22]. These
results have been generalized to conservative cascades [54]
and [52], and to more general invariant measures [24]–[26].

Here, we present the argument of Falconer [24]. Essentially,
there are two difficulties to deal with. First, the auxiliary
measures are now random, and we have to ensure their
existence. Second, as the multipliers for each realization will
have different values from scale to scale (though drawn
randomly with equal distribution), not even the strong LLN
helps here and we have to prove directly.

To guarantee the convergence of the construction of, we
use a martingale argument. Let

(113)

Since the are distributed as we have

, which we abbreviate by . Thereby,

is chosen such that . We define as

(114)

Now keeping fixed, we write as a union of smaller
dyadic intervals , where and where runs

over , we obtain

(115)

This shows that forms a martingale and thus
converges. The limit is denoted by and defines a true
measure as we let and vary.

In our situation, all are equal to since the
distributions of the multipliers do not depend on scale. How-
ever, as presented here, it becomes clear that the martingale
construction holds also for variable multipliers. Furthermore, it
is indeed easy to see that under the assumption of Theorem 11,
the converge to . This knowledge is enough to generalize
the proof of [24] to our case.

Falconer’s proof applies to general random measures that
are statistically self-similar [24], i.e., where the multipliers
of “mass” as well as “geometry” are random. It is notable
that the generalization indicated above works also in this case,
i.e., when the distributions are allowed to depend on scale.
However, a slightly stronger assumption has to be imposed: we
require that these multipliers converge in distribution. In the
case of a binomial cascade, the geometry is deterministic by
definition. This is why the weaker condition (103) is enough
here.

Finally, for simplicity we have not bothered with the fact
that [24] assumes that the multipliers are bounded away from
zero. In order to make the proof complete for arbitrary MWM
processes, where the multipliers may be arbitrarily small, the
more involved approach of [56] needs to be taken. This is,
however, certainly beyond the scope of this paper.
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