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(ABSTRACT) 36	

 37	

 38	

 Only a handful of multi-generational experiments in natural systems of eco-evolutionary 39	

dynamics currently exist, despite Fussmann et al.’s call for more such studies nearly a decade ago. To 40	

perform such a study, in 2008 we introduced the lizard Leiocephalus carinatus, a predator (and possible 41	

food competitor) of the lizard Anolis sagrei, to seven islands having A. sagrei, with seven unmanipulated 42	

islands having A. sagrei as controls. Almost immediately, L. carinatus, which is larger and more 43	

terrestrial than A. sagrei, caused a major habitat shift in A. sagrei away from the ground and toward 44	

higher and thinner perches; focal behavioral surveys showed that on islands where its predator was 45	

introduced, A. sagrei had less conspicuous visual displays. The expected pattern for density of A. sagrei is 46	

that it would decrease markedly at first via predation from the larger lizard, but then it would increase as 47	

the habitat shift selected for individuals better able to live in higher vegetation. Data through 2015 show 48	

this pattern, but a return to previous densities (time-by-treatment interaction) was not yet significant. A 49	

previous within-generation selection study and comparative data suggest that short legs should evolve as 50	

the lizards adapt to better maneuver on the thin perches of higher vegetation. However, no indication of 51	

the expected morphological change in limb length was present through 2015. Previous studies showed A. 52	

sagrei producing many effects on lower levels of the food web, some quite large. In this study through 53	

2012, we found significant differences only in spiders (web and ground). A possible complication is that 54	

the study site was hit by two major hurricanes in the last five years, decreasing population sizes of both 55	

lizard species and reducing the experimental perturbations. A benefit of the hurricanes, however, is that 56	

they eliminated lizards from some islands, providing the opportunity to monitor natural recolonization, 57	

the frequency of which has eco-evolutionary implications. Annual surveys of the 46 islands that lost 58	

lizards showed that recolonization is rather slow. To explore long-term patterns of morphological 59	

variation, we monitored morphology of 31 island populations for up to 19 years. Mean limb length 60	

oscillated across the 19-year period, both increasing and decreasing substantially, yet the net effect over 61	
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that period is almost no change.  In years following hurricanes, limb length increases significantly more 62	

than expected by chance.   63	

  64	
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(BODY OF TEXT) 65	

 66	

 67	

        The effect of ecological change on evolution has been a common theme for many years, but the 68	

reverse—how evolutionary dynamics affect ecological traits such as population growth rate—has only 69	

recently begun to take hold with the increasing realization that evolution can occur over ecological time 70	

scales (Schoener, 2011, 2013; DeLong et al. 2016). In 2007, Fussmann et al. surveyed the literature for 71	

examples that provided empirical support for eco-evolutionary dynamics using four criteria: (1) Does the 72	

study document population change over several generations? (2) Is there a record of genetic frequencies 73	

and their changes over time? (3) Is the mechanistic link between ecological and evolutionary dynamics 74	

plausible? (4) Is there a control? Only eight studies were found that partially supported their criteria, and 75	

none were experimental studies in the field. There have been numerous relevant studies since this survey, 76	

some of which supported one or both of the evo-to-eco and eco-to-evo links (see especially Turcotte et 77	

al., 2011 and Agrawal et al., 2013; Hendry and Kinnison 1999, Reznick and Ghalambor 2001, Hariston et 78	

al. 2005, Saccheri and Hanski 2006, Ezard et al. 2009, Coulson et al. 2011; various papers this volume, 79	

including Kindsvater and Palkovacs, Tuckett et al., Urban et al; recent partial reviews in Ellner [2013], 80	

Hiltunen et al. [2015], Schoener [2013], Schoener et al. [2014]). However, moderately long-term, 81	

substantially multi-generational experiments in natural systems of eco-evolutionary dynamics—82	

particularly how evolution affects ecology—remain elusive.  83	

         Beginning in 2008, we initiated a study in an entirely natural system, a set of small islands in the 84	

Bahamas. The current study was preceded by several other field-experimental manipulations as well as 85	

substantial observational work, providing in some cases continuous data going back to 1997. In the 86	

present study, we selected 14 islands with natural populations of the lizard Anolis sagrei and introduced 87	

the larger, mostly terrestrial lizard Leiocephalus carinatus (a known predator of smaller lizards [Schoener 88	

et al., 1982]) onto seven randomly chosen islands, leaving the other seven islands as controls. Each year, 89	

we measured properties of lizard populations—abundance, structural habitat use (perch height and 90	
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diameter), morphological traits, and various components of the lizard-topped food web. In addition to the 91	

experimental islands, we monitored food-web components on three islands with no lizards to assess the 92	

effects of lizards.  93	

        This experiment has yielded major abundance change (great decrease), habitat-use change (upward 94	

shift to narrower perches), and other behavioral change (e.g. in signaling behavior [Steinberg et al. 2014]) 95	

in A. sagrei, as well as some food-web effects. However, it has produced no significant morphological 96	

change in lizard limb length and only a suggestive change in A. sagrei abundance in the direction 97	

predicted by adaptive ecological change. A possible explanation for these so-far negative results is the 98	

severe effects of two hurricanes—Irene (2011) and Sandy (2012)—which exterminated A. sagrei on some 99	

islands while on others greatly lowered their abundance as well as that of their predator L. carinatus. We 100	

have taken advantage of these hurricanes to monitor the natural recolonization by lizards of islands from 101	

which they were exterminated. Such disturbance must have greatly affected the strength and even 102	

possibly the direction of selection, plausibly forestalling the expected morphological changes.  103	

        What follows is a progress report of ongoing efforts to understand the multifaceted nature of the eco-104	

evolutionary feedbacks in A. sagrei in response to biotic (predator additions) and abiotic (hurricanes) 105	

perturbations and the cascading impacts on the rest of our island food webs. We begin by describing the 106	

temporal progression of habitat use, density and morphology found for A. sagrei after introduction of the 107	

larger predator. We then discuss effects of the manipulation on other levels of the food web: various kinds 108	

of arthropods and plants. We summarize the data on natural colonization by A. sagrei in the wake of 109	

extinctions caused by the two hurricanes, and we explore long-term data on morphological change in the 110	

aftermath of hurricanes.  111	

EFFECT OF THE LARGER LIZARD ON HABITAT USE OF THE SUBJECT LIZARD. We 112	

predicted that the introduction of the ground-dwelling predatory lizard L. carinatus would force A. sagrei 113	

to shift its habitat use up into the vegetation, decreasing the percentage of the time it was found on the 114	

ground, increasing its average perch height and decreasing its average perch diameter. We visited each 115	

island multiple times during annual fieldwork in May and recorded structural habitat use (i.e., perch 116	
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height and diameter in cm) for every undisturbed lizard encountered.  For perch height and all other 117	

response variables, we used repeated-measures MANOVA, an alternative designation for “multivariate 118	

repeated measures”, with treatment (A. sagrei with L. carinatus introduced, A. sagrei alone) as the main 119	

between-subjects factor, time (2009-2015) as the repeated within-subjects factor, and the treatment-by-120	

time interaction. Sphericity was significant (p < 0.03) for this and all other analyses except morphology (p 121	

= 0.064); therefore the multivariate approach was used in all analyses for consistency.  The predicted 122	

shifts occurred soon after the introduction of the predatory lizard and have been maintained over the six-123	

year period (Figs. 1 & 2). Moreover, focal behavioral surveys indicate that A. sagrei has altered its 124	

behavior: on islands on which the predator was introduced, A. sagrei produces less conspicuous visual 125	

displays (Steinberg et al., 2014).  126	

 127	

EFFECT OF THE LARGER LIZARD ON DENSITIES OF THE SUBJECT LIZARD. Strauss et al. 128	

(2008) have argued that evolutionary change in the focal species may often influence effect size of 129	

treatments in ecological field experiments, given that ecological and evolutionary time can be 130	

commensurate. For a negative interaction such as predation, Strauss et al. (2008) hypothesized that the 131	

effect size should first increase as the prey is diminished by the predator, then decrease as the prey adapt, 132	

evolving morphologies and other kinds of traits more appropriate to their new situation and thereby 133	

eventually increasing the prey density. Indeed, lack of apparent change of ecological traits such as 134	

population size may reflect much ongoing evolution (Kinnison et al., 2015). Although there are various 135	

relevant field studies (e.g. Bassar et al., 2012; Harmon et al., 2009; Ingram et al., 2012; Palkovacs et al., 136	

2009; Simon et al. THIS VOLUME AND OTHERS CITED ABOVE), as well as numerous lab studies 137	

(reviewed in Hiltunen et al., 2015; Schoener, 2013; Schoener et al., 2015), to our knowledge the specific 138	

predation effect suggested in Strauss et al. (2008) is not yet demonstrated in the field.  139	

     To estimate population size of A. sagrei on entire islands (which are closed systems), we used log-140	

linear capture-recapture methods (Fienberg et al., 1999), which are promoted by an international working 141	

group including Fienberg, Buckland, Seber and Cormack (Fienberg, pers. comm.). These methods have 142	
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been described as particularly useful for modeling the capture dependencies between censuses that 143	

weather imposes on our system (Schwarz and Seber, 1999).  144	

        Introduction of the larger lizard resulted in a marked decrease in the density of A. sagrei (Fig. 3). 145	

Densities first diverge and then converge: before Hurricane Sandy (which occurred in 2012) the effect of 146	

L. carinatus on A. sagrei density was significant (2009-2012, F1,7 = 6.9, p=0.034), but not after Sandy 147	

(2013-2015, F1,7 = 1.7, p=0.236). The time-by-treatment interaction (the test for whether a return to pre-148	

experimental densities occurs, run for the entire time series) is not significant, however (2009-2015, F6,2 = 149	

5.4, p = 0.165, repeated-measures MANOVA). In view of our results on leg length, this is perhaps not 150	

surprising, as there is no significant difference in leg length through the same period of time (see below). 151	

Given the results in a previous experiment (Losos et al., 2006) in which survival selection did shift over 152	

time toward favoring shorter limbs (Fig. 4), we predict that without further severe disturbance we will 153	

eventually find a significant decrease in effect size as the lizards adapt to living in the arboreal matrix. 154	

Indeed, in a different experiment undisturbed by hurricanes (Schoener and Spiller, 1999), we found a 155	

similar reversal in effect size over the course of seven years: upon introduction of A. sagrei, plant damage 156	

first increased, then decreased back to the pre-introduction value, perhaps due to in part to adaptation by 157	

the herbivore prey.  158	

 159	

EFFECT OF THE LARGER LIZARD ON LIMB LENGTH OF THE SUBJECT LIZARD.  Both 160	

comparative and biomechanical studies make clear predictions about how A. sagrei will adapt to its use of 161	

narrower perches in the presence of L. carinatus: species that use broad surfaces, such as tree trunks or 162	

the ground, evolve long hindlegs and tails, whereas species specialized to use narrow surfaces have 163	

shorter limbs and tails. In addition, more arboreal species tend to have narrow heads and well-developed 164	

toepads. These trends have evolved independently on four Greater Antillean islands and among A. sagrei 165	

populations on islands in the Bahamas and elsewhere (Lister, 1976; Williams, 1983; Losos et al., 1994, 166	

1998; Calsbeek et al., 2006); however, whether	population-level	changes	are	the	result	of	adaptive	167	

phenotypic	plasticity	or	genetic	change	is	always	an	issue.	Although	anoles	do	exhibit	phenotypic	168	
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plasticity	in	limb	length	(Losos	et	al.,	2000;	Kolbe	and	Losos,	2005),	in	at	least	some	of	these	cases	169	

genetic	change	seems	the	more	likely	explanation	(Kolbe	et	al.,	2012).). Biomechanical models predict 170	

that lizards using narrower surfaces should evolve shorter legs, narrower heads, and larger toepads 171	

(reviewed in Losos, 2009). In accordance with these trends, our previous selection experiments revealed 172	

that once A. sagrei occupied higher and narrower vegetation on islands that had the predator introduced, 173	

selection favored shorter limb length (Fig. 4 taken from Losos et al., 2006]). 174	

       175	

      To characterize trait change, we collected, measured and returned lizards to their point of capture 176	

within 24 hours. We analyzed skeletal morphology from images collected with a field-portable, custom-177	

built, digital x-ray system (minimum image dimensions 1500 x 1900; X-ray Associates East), which we 178	

used to measure snout-vent length (SVL) and tibia length using ObjectJ 179	

(https://sils.fnwi.uva.nl/bcb/objectj/), a plug-in for ImageJ (Schneider et al., 2012).  We calculated mean 180	

relative tibia length as the residuals of the regression of log-tibia on log-SVL, separately for each sex, and 181	

then calculated a mean for islands in each year (2008-2015) with the sexes combined. Despite the strong 182	

effects of the predatory lizard on A. sagrei habitat use and density (see above), to date there is no 183	

evidence of any difference in hindlimb morphology between populations on experimental and control 184	

islands (Fig. 5).	We hypothesize that the lack of an effect may be the result of Hurricanes Irene and 185	

Sandy. Not only did A. sagrei populations greatly decrease on many islands, but the populations of the 186	

predatory lizard were reduced as well; consequently, for several years, the selective effect of the 187	

experimental treatment may have been minimized. Indeed, there is a 0.83 ordinary Pearson correlation 188	

between perch-height effect size (log treatment/control) and mean number of L. carinatus per island in a 189	

given year. We plan to continue to monitor the islands on a yearly basis: now that the islands and their 190	

populations have recovered from the hurricanes, we expect that the treatments will begin to diverge in 191	

morphology.  192	

 193	
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EFFECT OF ECO-EVOLUTIONARY CHANGE ON COMPONENTS OF THE FOOD WEB. To 194	

attempt to experimentally document evolutionary trait-mediated indirect effects (Ohgushi et al., 2013), we 195	

measured a number of food web attributes: (1) Web spiders were censused by searching the entirety of 196	

each island and recording the species identity and web height of each spider individual or fresh web 197	

observed. (2) Relative abundance of aerial arthropods was measured on 2-3 focal buttonwood shrubs (see 198	

below) on each island using sticky traps (22 x 14 cm sheets of clear plastic coated with Tangletrap® 199	

adhesive and tied to the vegetation).  On each shrub, one trap was tied in the upper vegetation (1-2 m 200	

above ground) and one was tied lower (0.2-0.5 m). After 24 hr, body length and taxon (to order or lower 201	

when possible) of each arthropod caught in each trap was recorded in the field. (3) Ground arthropods 202	

were sampled with plastic bowls filled with 500 ml of water and a trace amount of detergent.  Two bowls 203	

were placed on the ground under each focal shrub and specimens caught after 24 hr were preserved. (4) 204	

We measured leaf damage and foliage growth on 2-3 buttonwood (Conocarpus erectus) shrubs on each 205	

island from May to December as follows.  In May, on each shrub, three randomly chosen branches were 206	

tagged in the upper (1-2 m above ground) and in the lower (0.2-0.5 m) vegetation layers.  On each branch, 207	

the most distal leaves present were marked with ink.  In December, only leaves that emerged after May 208	

(those more distal than the marked ones) were collected. Sampled leaves were immediately pressed and 209	

then photographed. Total leaf and damaged areas were measured digitally from photographs using 210	

SigmaScan Pro Image Analysis System. Percent of the leaf area damaged on each shrub was computed by 211	

summing the total and damaged areas of all the leaves sampled. We categorized three difference types of 212	

damage: holes, scars and lines. Growth rate per branch was the sum of the total leaf areas that emerge 213	

from May to December.         214	

      Through 2012 only a few food-web elements showed significant changes, even though many 215	

responded in previous experiments (Schoener et al., 2002, and references therein). Web-spider density 216	

immediately increased on introduction islands and tended to remain higher than on islands with only A. 217	

sagrei present (repeated measures ANOVA: F1,13 = 6.33, p=0.026; Effect size (log ratio) = 0.24). We 218	

suggest that the positive effect of L. carinatus on web spiders was indirect: large lizards reduced the 219	
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density of the small lizard (the major web-spider predator), which increased web spiders. We found no 220	

significant difference between treatments in the height of webs above the ground (repeated measures 221	

ANOVA: F2,12 = 1.71, p=0.22). Numbers of cursorial spiders (mostly lycosids and salticids) were higher 222	

on islands with lizards absent than on islands with only A. sagrei (repeated measures ANOVA: F 1,14 = 223	

45.21, p=0.0001; Effect size = 1.26) and were higher on L. carinatus introduction islands than on islands 224	

with only A. sagrei (F 1,13 = 6.85, p=0.021; Effect size = 0.46). As for the web-spiders, we suggest that the 225	

negative effect of small lizards on cursorial spiders was direct, whereas the positive effect of large lizards 226	

was indirect. Although there was no significant overall difference among treatments in the number of 227	

springtails caught in bowls (repeated measures ANOVA: F2,13 = 1.30, p=0.31), in 2011 they were 228	

noticeably lower on introduction islands than on islands with only small lizards (ANOVA: F 1,14 = 4.90, 229	

p=0.044; Effect size = 0.35) and on no-lizard islands than on islands with only small lizards (F 1,14 = 5.55, 230	

p=0.034; Effect size = 0.61). We suggest that this pattern might be caused by a 4-level trophic cascade in 231	

which large lizards reduce small lizards, leading to an increase in cursorial spiders which decreases 232	

springtails. We expected the more arboreal arthropods to decline with the increasingly arboreal adaptation 233	

of A. sagrei and plant damage from arthropod herbivory to decrease disproportionately in the higher 234	

vegetation, but neither happened. Nor was there an effect on foliage growth. Nothing has substantially 235	

changed through 2015. Because the morphological changes are not yet in the predicted direction, it is 236	

unsurprising that most food-web expectations are unfulfilled. Hence as above, we can attribute the lack of 237	

response to effects of hurricanes: recall (see above) that Anolis sagrei populations were not only greatly 238	

decreased on many islands, but the populations of the predatory lizard were greatly reduced; 239	

consequently, for several years, the selective effect of the experimental treatment may have been 240	

minimized. 241	

 242	

EFFECT OF HURRICANES ON THE EXPERIMENTAL SYSTEM. We are currently yearly 243	

monitoring 46 islands that have had A. sagrei in the past (all were monitored for at least six years, and 244	

some for decades). Of those, 27 islands had their populations exterminated by Hurricane Sandy (as 245	
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determined in 2013 censuses). Only three of those 27 were recolonized in 2014 (although one of the no-246	

lizard control islands was colonized for the first time), and one was recolonized in 2015.  Hurricanes have 247	

had devastating effects on some islands in our experiments, but here is one benefit: by clearing all lizards 248	

from relatively large islands, for the first time we are able to measure lizard recolonization of islands of 249	

this size. Our genetic studies have allowed us to estimate rates of immigration onto already occupied 250	

islands (Kolbe et al., 2012), and from those we might have expected relatively high recolonization rates. 251	

However, the results to date do not support this expectation; recolonization rates have been very low, 252	

even for islands much larger than the local threshold area for A. sagrei (see also Schoener and Schoener, 253	

1983a,b).  254	

         Our current study is embedded in a much longer-term study. Over the past two decades, we have 255	

been tracking A. sagrei morphology in 31 populations in the same region. Some islands were part of 256	

previous experiments; some have never been included in any of our previous studies. Over this 19-year 257	

period, mean limb length has barely changed. However, this stasis is more apparent than real, as limb 258	

length has varied markedly over this period (Fig. 6). Research on Darwin’s finches has illustrated how 259	

long periods of little net evolutionary change can result from oscillating selection (Grant and Grant, 2014) 260	

-- i.e., directional selection that alternates in direction (Gibbs and Grant, 1987). The prevalence of 261	

oscillating selection is currently debated (Siepielski et al., 2009, 2013; Morrissey and Hadfield, 2012), 262	

and the extent to which long-term stasis is the result of alternating selection is unclear. Our time series 263	

suggests such a pattern: in years following hurricanes, limb length tends to increase, followed by a decline 264	

(Fig. 6): all four years after a hurricane show an increase, and three of those four are the largest increase 265	

in the time series.  A Monte Carlo simulation was performed, in which we computed 1000 random 266	

arrangements of the four hurricanes over the time series and computed as the test statistic the signed 267	

change in limb length the year before a given year.  The increase in limb length after a hurricane year is 268	

unusually large: the two-tailed P = 0.005, that is, only 0.5 percent of 1000 random arrangements of the 269	

four hurricanes over the time series give a more extreme difference in either direction than the observed. 270	

We will continue to measure morphology for lizards on these islands, as well as measure the morphology 271	
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of any newly-established populations resulting from natural colonization (including the three recent 272	

populations we have detected in the last three years). Our prediction is that limb length will decline across 273	

all populations in the absence of further hurricanes but will increase if the islands are hit by another 274	

hurricane.  275	

CONCLUSION.   We caution that the results herein represent an interim report. As described, certain 276	

results (A. sagrei habitat shifts) are exceptionally strong, certain results (A. sagrei density changes, a few 277	

food-web effects) are moderate, and certain results (A.sagrei morphological changes) show no trend so 278	

far. Hurricanes have impacted the study site greatly during the course of the experiment, and these may 279	

have slowed down some of the expected eco-evolutionary changes and food-web effects, a possibility we 280	

will hopefully be able to assess in a few years. Indeed, extreme climatic events may often reset the 281	

pathway that eco-evolutionary dynamics is following, a possibility explored further in a recent Gordon 282	

conference keynote address (T.W. Schoener, unpublished), and which is an example of context-283	

dependence as conceptualized by Tuckett et al. (THIS VOLUME). Hurricanes have not been an 284	

unmitigated negative, however: they have allowed us to gather unique data on natural recolonization rates 285	

as well as study their possible effects on morphological and other traits. Our exploratory finding that A. 286	

sagrei hindlimb length increases after the four hurricanes over the past 19 years generates the testable 287	

hypothesis that hurricanes select for longer legs, a phenomenon that we are actively investigating both 288	

empirically and theoretically. Ultimately, our goal is to tie together the effects of major disturbances, in 289	

our case hurricanes, to chronic eco-evolutionary dynamics in metacommunities.    290	

 291	
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(FIGURE CAPTIONS).  437	

 438	

Fig. 1.  Mean (±SE) perch heights of A. sagrei shift higher (F1,7 = 17.2, p = 0.004 repeated measures 439	

MANOVA; Effect size (log ratio) = 0.79) on islands after the experimental introduction of the predatory 440	

lizard L. carinatus.  Islands on which lizards were extirpated during the course of the experiment (see 441	

text) were not included in this or subsequent analyses. 442	

 443	

Fig. 2.  Mean (±SE) perch diameters of A. sagrei decrease (F1,7 = 5.3, p = 0.05 repeated measures 444	

MANOVA; Effect size (log ratio) = 1.27) on islands after the experimental introduction of the predatory 445	

lizard L. carinatus.   446	

 447	

Fig. 3.  Mean (±SE) densities of A. sagrei on islands with and without the introduced predatory lizard L. 448	

carinatus. Also included are mean (±SE) densities of L. carinatus after introduction. See text for 449	

statistical analysis. 450	

 451	

Fig, 4.  Changes in habitat use and pattern of natural selection from Losos et al. (2006). For use of the 452	

ground (top) and perch diameter (middle), data from May 2003 represents habitat use before the initiation 453	

of the experiment. All data are for individuals initially measured and marked in May 2003. Lizards grew 454	

throughout the experiment, probably explaining the increase in perch diameter on control islands (an 455	

intraspecific relationship between body size and perch diameter is well established in Anolis lizards). 456	

(bottom) Selection gradients were calculated for two time periods, May 2003 to November 2003 and 457	

November 2003 to May 2004. Selection gradients in the figure were adjusted for log-transformed island 458	

area (included in the repeated-measures analysis as a covariate) by using least squares means from the 459	

ANCOVA. Open symbols indicate control islands; filled symbols, introduction islands. Error bars ± SE.  460	

 461	
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Fig. 5.  Mean (±SE) tibia length for treatment islands with introduced L. carinatus and control islands 462	

with only A. sagrei (p = 0.53 repeated measures MANOVA). Note that this measure was taken with x-463	

rays and Figure 3’s measure was done by hand, as well as being hindlimb not tibia. The correlations 464	

between the hindlimb measures taken by hand and the tibia by x-ray are very high: males r = 0.98 (N = 465	

15), females r = 0.92 (N = 12) using data from mainland Great Abaco.  466	

 467	

Fig. 6.  Mean (±SE) relative limb length (residuals from the tibia length vs. snout-vent length regression, 468	

separate by sex) across all islands has fluctuated over the 19-year study period with little net change 469	

(year-to-year change results from within-island evolution, population extinction, and the inclusion of 470	

different islands at different points in the study; trends are similar when only the 9 islands sampled across 471	

the 19-year period are considered [results not shown]). Limb values increase after hurricanes (P=0.005, 472	

see text). 473	

 474	
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