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A MULTIGRID CONTINUATION METHOD FOR ELLIPTIC
PROBLEMS WITH FOLDS*

JOHN H. BOLSTADt AND HERBERT B. KELLER}

Abstract. We introduce a new multigrid continuation method for computing solutions of nonlinear
elliptic eigenvalue problems which contain limit points (also called turning points or folds). Our method
combines the frozen tau technique of Brandt with pseudo-arc length continuation and correction of the
parameter on the coarsest grid. This produces considerable storage savings over direct continuation methods,
as well as better initial coarse grid approximations, and avoids complicated algorithms for determining the
parameter on finer grids. We provide numerical results for second, fourth and sixth order approximations
to the two-parameter, two-dimensional stationary reaction-diffusion problem:

Au+ A exp(u/(1+ au)) =0.

For the higher order interpolations we use bicubic and biquintic splines. The convergence rate is observed
to be independent of the occurrence of limit points.
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frozen tau method, tau extrapolation, deferred correction, defect correction
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1. Introduction. Many problems of computational interest can be viewed in the
general form:

(1.1) G(u,A) =0,

where X is some Banach space, ue€ X, A € R”, and G: XxR” - X. Of course u
represents a ‘“‘solution” field (e.g., flow field, displacements, etc.), and A is a real vector
of physical parameters (e.g., Reynolds number, load, etc.). It is required to find the
solution for some A -intervals (or some A-arcs), that is, a path (or manifold) of solutions:
(u(A), A). We consider problems of the form (1.1) which are nonlinear elliptic eigen-
value problems.

A common feature on solution paths of such problems is the frequent occurrence
of limit points (also called turning points or folds). Figure 1 illustrates two limit points
in the (A, ||#|| ) plane for two different families of numerical solutions. The limit points
are at A = A, and A.. A limit point P° = (u° A°) is defined as a solution of (1.1) for
which the Fréchet derivative G of G with respect to u evaluated at P° satisfies:

a) G is singular;

b) G 2 R(GY).

The limit point or fold is said to be simple if in addition:

¢) dim N(G%) = codim R(G?) = 1.

Here N and R denote null space and range, respectively. In the rest of this paper,
when we refer to limit points, we shall mean simple limit points.

Pseudo-arc-length continuation methods (Keller [19], [20]) have been used suc-
cessfully for computing limit points and bifurcation points of nonlinear elliptic eigen-
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value problems (e.g., Meyer-Spasche and Keller [24], Schreiber and Keller [32]).
However, the size of problems that can be solved by these methods is limited principally
by the storage required for the Jacobian G,, as well as the time required for the direct
factorization of these Jacobians. For these reasons it is natural to consider multigrid
methods, which, for a grid with N? mesh points, require O(N?) storage and approxi-
mately O(N?) arithmetic operations to solve to the accuracy of the truncation error.
Straightforward implementations of multigrid methods work well for nonlinear
elliptic eigenvalue problems, but they fail near singular points. One type of difficulty
near a limit point has been noted by several workers (e.g., Chan and Keller [9], Meis,
Lehmann and Michael [23]). Assume that the solution branches on coarse and fine
grids look like those in Fig. 1, say I'; and I',,, respectively. Suppose we use “natural
continuation” with A as parameter on the coarse grid, and use the full approximation
scheme (FAS) full multigrid algorithm while keeping A fixed. Assume we start at A,
on the coarse grid, and wish to compute the fine grid solution at the limit point A .
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As we approach the coarse grid limit point A, there is a drastic slowing in the rate of
convergence of the multigrid method, followed by divergence at A.. The divergence
occurs first on the coarsest grid. (Although Chan and Keller [9] used the Cycle C
“Correction Scheme” multigrid algorithm, we found the same results when we used
the FAS full accommodative multigrid algorithm.) For points A, > A there is no coarse
grid solution, so we will not be able to approach A, without some remedy, such as
deleting coarse grid(s).

Another (less well-known) type of difficulty occurs when the coarse and fine grid
solution paths in Fig. 1 are interchanged. If we approach the fine grid limit point A,
in the direction of increasing A, the multigrid method converges, but the solution is
not very accurate. However, if we do not know the location of A, in advance, we will
try to compute solutions for A, with A, << A, < A.. For these A, no fine grid solution
exists. In practice, for A, not “sufficiently close” to A, the residuals of the fine grid
solution cannot be reduced below a certain level, i.e., we encounter divergence on the
fine grid.

Both configurations occur in practice, even using different approximations on the
same problem. See §6, Table 1.

One remedy for the first type of difficulty was suggested by Chan and Keller [9].
They approximated the eigenfunction of the discrete differential operator that was
causing the divergence, and then altered the interpolation operator and skipped a grid
to prevent divergence.

All other methods do not fix the parameter A during the multigrid iterations, i.e.,
they use different parameters A* on different grid levels k. One class of methods has
been suggested by several authors, e.g., Meis, Lehmann and Michael [23], Stiiben and
Trottenberg [35]. Consider the model problem (1.2). In addition to the usual difference
approximations, they impose an additional constraint on the finest grid, say:

uM(P)=u™(1/2,1/2) = ||u™| & = constant,

where u at the center point is specified but A remains unknown. This amounts to
switching the role of unknown u™ (P) and parameter A™. This parameter switching
is one of the earliest techniques for treating limit points for single grid methods (see,
e.g., Abbott [1]).

More specifically, Stiiben and Trottenberg suggest modifying the multigrid smooth-
ing step at one level as follows:

(a) Apply one (nonlinear) smoothing (relaxation) step to the actual approximation

u*, including the prescribed value at P.

(b) Multiply the relaxed approximation by a factor such that the constraint is
satisfied afterwards.

(c) Compute a new value of A* for this level by using the difference equations
together with a one~dimensional rootfinder (e.g., using a suitable average over
all the equations).

Of course, this procedure will produce different A* at different grid levels if the
constraint has the same value on all levels. At convergence, however, the parameters
A* will be (approximately) the same if the FAS multigrid algorithm is used.

An objection to this procedure is, of course, its lack of generality. In more
complicated problems (e.g., Lentini and Keller [22]) there is no clear “natural”
parameter which can be used to eliminate limit points. Rheinboldt [29] circumvents
this problem for single grid algorithms by treating the parameter as an additional
unknown, and at each step appropriately selecting one of the unknowns as the
continuation parameter.
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A second class of methods has been proposed by Hackbusch [17], and by Bank
and Chan [2]. Assume we are given the solution structure of Fig. 1. Having found a
coarse grid solution point Q = (u,A) € R’*! on T, these workers suggest finding a
corresponding fine grid point on the line orthogonal (in the space R’*") to the coarse
grid curve passing through Q. The projection of this orthogonal onto the A—|u||
plane is shown in Fig. 1. Furthermore, Bank and Chan use additional diagonal shifts
of Jacobians to assure that all matrices have the same number of negative eigenvalues.
A third method, the generalized inverse iteration method, has been proposed in
Mittlemann [25], and Mittlemann and Weber [26]. Their method determines the
parameter A* on each grid as a generalized Rayleigh quotient.

Instead of using different parameter values on different grids, our method changes
the structure of the solutions on different grids, by using the frozen tau technique of
Brandt [7], [8]. In Fig. 1, our method in effect “moves” the coarse grid curve so that
locally it is very close to the fine grid curve. Then the parameters A needed on different
grids are very near to each other, so we may use the same A on all grids, and change
A (using pseudo-arc-length continuation) only on the coarsest grid. The multigrid and
continuation methods interact through the full approximation scheme (eq. (3.3)). A
special procedure (eq. (4.7)) produces accurate initial approximations.

Since we use the frozen tau method, the coarse grid equations produce approxima-
tions which, in general, more closely approximate the fine grid solutions than the
solutions of the unmodified coarse grid equations. This is an advantage when computing
problems with multiple solutions. Together with Mittlemann’s method, our method is
robust in the sense that the same algorithm can be used for both regular points and
limit points, without significant loss of efficiency. That is, we need not detect the
presence of limit points and try to switch algorithms. Our method requires a Jacobian
only on the coarsest grid, so it is well-suited to large problems, especially those obtained
from discretizing coupled systems of partial differential equations on fine grids [24],
[31]. Finally, in our numerical results we observed that the rate of convergence (i.e.,
the rate of decrease of residual norms) did not degrade near limit points.

Throughout this paper we consider the following model problem, which will be
used to illustrate the methods and to furnish numerical examples.

A two-dimensional stationary reaction-diffusion problem is formulated as:

(1.2a) Lu(A, @) =Au+ rexp(u/(1+ au)) =0 inQ,

(1.2b) u=0 ong.
We take Q) = the unit square: [0, 1]%[0, 1]. In the notation of (1.1), A = (A, a).

The solution of this problem has interesting geometric features (see Fig. 2). There
exists a critical value of a, say a”, for which: i) u(-, A, @) has two simple (quadratic)
limit points in A for fixed a < a; ii) u(-, A, ) has no limit points for fixed a > a”;
iii) u(-, A, «") has one (cubic) limit point. In case i), in a sufficiently small neighborhood
of each limit point P;, the solution curve lies on one side of the (vertical) tangent line
at P;, while in case iii) the solution curve lies on both sides of the tangent line at the
limit point. See Spence and Werner [34] for a discussion of methods to compute a".

In § 2 of this paper we review arc-length continuation methods. Section 3 summar-
izes the accommodative FAS full multigrid algorithm for a fixed parameter value. In
§4 we review the frozen tau algorithm and then describe our method. We also describe
implementation details such as the use of high order splines for interpolation. An
outline of a convergence proof, which is based on methods of Hackbusch [16], [17]
is given in § 5. In § 6 we give numerical results for second, fourth and sixth order
approximations to our model problem (1.2).
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FIG. 2. Solution curves of reaction-diffusion equation (1.2) for various values of parameter a.

2. Continuation methods. In this section we briefly review continuation methods
for computing a family or path of solutions of (1.1), without using multigrid methods.

2.1. Newton’s method. Given a value of A and an initial guess u’ of the solution
u(A), we perform the following steps repeatedly until ||du’|| < & is satisfied:

(2.1) G, (u' N)éu' = —G(u')r),
(2.2) u'tl = u' + sul.
This procedure will generally converge quadratically when it does converge. However,

as is well known, it can fail to converge when the initial guess is not sufficiently close
to a solution, or if a solution does not exist for the given A value.

2.2. Natural continuation. To overcome the former difficulty, we can start at a
known solution (u, Ay) on the solution path and use it as an initial guess for a
Newton-type iteration to find the solution for a neighboring point on the solution path
with A close to A,. The procedure is then repeated. We can improve on this by computing
the derivative u, at a known solution and use it to get a better initial guess for the
next value of A in a predictor-corrector fashion. We call this a natural continuation
procedure because it corresponds to parametrizing the solution path by A, the naturally
occurring parameter. A specific form of this is the well-known:

Euler- Newton continuation procedure. Given a known solution (u,, Ao), compute
the solutions at nearby values of A as follows:

1. First compute the derivative u, at (u,, A,) from

Guu)‘ = '—G,\.
2. Perform an Euler predictor step:

1’ = uy+ u, (A — Ag).
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3. Use u° as initial guess in Newton’s method. Repeat
G, ('™ —u') = -G, 1),
until convergence.

4. Use (u(A), A) as the new (ug, Ay) and go to Step 1.

Unfortunately, this procedure needs some modification in order to handle general
nonlinear systems because of the possibility of nonunique solutions. The nonuniqueness
usually manifests itself in the form of existence of “‘singular” points where the Jacobian,
G, is singular. The most common (i.e., generic) singular point is a simple limit point.
(Another type of singular point, a bifurcation point, at which G, € R(G,,), will not
be considered in this paper.) A natural continuation procedure will encounter two
difficulties at limit points. First, since G, is singular at these points, Newton’s method
(unaltered) will at best be linearly convergent, making it much more costly to compute
the solution. Second, and more serious, the Euler-Newton procedure may lead us to

a value of A (such as A, for the coarse grid in Fig. 1) for which no nearby solution
exists, and the iterations will generally fail to converge.

2.3. Pseudo-arc-length continuation. In the pseudo-arc-length approach (Keller
[19]), these difficulties are overcome by not parametrizing the solution u by A. Instead,
we parametrize the solution branches using a pseudo-arc-length parameter s, and
specify how far along the current solution branch we want to try to march in s. This
requires us to add an “‘arc-length” equation to our system of equations.

To be more specific, we let s be the arc-length-like parameter, and treat u(s) and
A(s) as functions of 5. We then replace the Euler-Newton continuation procedure by
the following:

Pseudo-arc-length Euler- Newton continuation procedure [19]: Assume given a
solution (u(se), A(so)).
1. Compute a tangent

(o, }\0) = (u(so), ).\(So))

to the solution branch (where the dots denote differentiation with respect to s)
satisfying:

2.3) Giio+ 4G, =0,
(2.4) 4>+ AP -1=0.

Equation (2.3) is obtained by differentiating (1.1) with respect to s, and (2.4) is
an arc-length condition. The norm | -| is a discrete vector norm which approximates
the continuous L, norm for integrals. For example, in m dimensions,

lull® = p™ % uf,
1

where u; are the vector components. The equations (2.3)-(2.4) are easily solved [20]
as follows.

First solve the system of linear equations
(2.5a) Gu(b = _G/\;
then determine 1(s,) and A(so) by
(2.5b) Ao =£(1+ o> 7V2
(2.50) 110 = A0¢
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Here the sign in (2.5b) determines the direction in which we traverse the solution path.
If two solutions (u_;, A_;) and (u,, A,) have been computed, then we choose the sign

such that:
(thg, g — U_1) + Ao(Ao— A_y) > 0,

and the continuation proceeds in the direction from (u_,, A_,) to (u,, Ao). Here (,) is
an inner product which induces the norm in (2.4).

2. Select a step size s — so. (See § 4.5.) Then take an Euler step of length s — s,
along the tangent:

(2.6a) u® = uy+ (5 — 8o,
(2.6b) A% = Ao+ (5 = 5o)Ao

In general (u° A°) will not be a solution of (1.1).
3. We now use the pseudo-arc-length condition to return to the solution branch.
We require our new solution point to satisfy the equations

(2.7) G(u(s), A(s)) =0,
(2.8a) N(u(s), A(s),s) =0,
where

(2.8b) N(u(s), A(s), s) = (tho, (u(5) — u(50)) + Ao(A(s) = A(s0)) = (s — 50) = 0.

Equation (2.8) is a linearization of the arc-length condition (2.4) and is used because
it contains (u(s), A(s)) and not (1(s), A(s)). Equation (2.8) forces the new solution to
lie on a hyperplane perpendicular to the tangent vector to the solution curve at s,
and at a distance |s — s,| from it." We solve the coupled system (2.7)-(2.8) for u(s)
and A(s) by using Newton’s method with initial guess (u° A°). This requires solving
the following system at each iteration:

su'l_[G. G\][aw']_ [G
(2.9) A[,;Ai]=[zv,, NA][SA‘]"_[N]'

The quantities G, N and their derivatives are all evaluated at (u'(s), A'(s)).

It can be shown [19] that at simple limit points, the linear system in (2.9) is
nonsingular, and so Newton’s method for the coupled system (2.7)-(2.8) is well-defined.
Hence simple limit points present no computational problems and even quadratic
convergence is achievable.

In order to solve the linear system in (2.9) by direct or iterative methods, several
approaches are possible. One way is to perform Gaussian elimination on the inflated
matrix A, with some form of pivoting to ensure stability. But this approach completely
ignores the sparse structure which is usually found in the Jacobian G, arising from
discretizations of nonlinear elliptic eigenvalue problems. In order to take advantage

of the structure in the Jacobian, Keller [19], [21] used the following bordering
algorithm:

Solve

(2.10) G,y = G,

! Another choice is: N = ||u — ug|> + |A = Ag|* — |s — 5| = 0. This forces the solution to lie on a sphere
of radius |s — s,| about the previous solution.
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and

(2.11) G.z=-G

Set

(2.12) 8x = (N+ Niz)/(N, - Nly),
(2.13) du =z + Ay.

Now only systems with the coefficient matrix G, have to be solved, so structures in
G, can be exploited. Moreover, only one factorization of G, is needed. It has been
shown (Szeto [34]), and observed in practice, that even when G, becomes singular,
this bordering algorithm produces iterates that converge quadratically at simple limit
points. Some loss in accuracy (cancellation errors in (2.13)) are to be expected, however
[21]. We discuss this further in § 4.5.

But, as mentioned before, a major disadvantage of these continuation methods
for many problems is the need to store and factor large Jacobians, G,,. For that reason
we consider multigrid methods.

3. Multigrid methods. In this section we shall give a brief description of the
multigrid method we use for a fixed value of the parameter vector A. It is assumed (in
this section only) that (u, A) is not a limit point (or bifurcation point). In the next
section we shall give modifications necessary for continuation. For a survey and more
complete description of multigrid methods, see Brandt [5], Brandt and Dinar [6],
Brandt {8], Stiiben and Trottenberg [35], and other papers in the latter volume. We
use accommodative, full multigrid with the full approximation scheme (FAS). Unlike
Chan and Keller [9] we do not use the “Cycle C” algorithm.

We consider an elliptic partial differential equation defined on a region Q with
boundary 9€):

LU=F on(},
(3.1)

U=0 onod.
(If U or F depend on a parameter A, fix the parameter.) Then we construct a hierarchy
of grids Q', Q% - - -, QM all approximating the domain {, with corresponding mesh
sizes h, > h,> -+ - > hy,. The discrete approximation on grid Q* is written as

L*U*(x) = F* onQk

(3.2)
U=0 onaQk

where Q" approximates the boundary Q. We wish to solve this discrete problem on
the finest grid, Q™.

Figure 3, adapted from [6], gives a flow chart of the FAS full multigrid (FMG)
algorithm. In the FAS method, each U* is an approximation to the exact solution U.
The FAS method (as opposed to the correction scheme) is particularly suited to the
solution of nonlinear problems. When properly employed, it eliminates the need for
large Jacobians.

The FMG method can be divided into two phases: the “initialization” phase, in
which we start with a solution obtained in some manner on the coarsest grid Q', and
“bootstrap” our way up to a first approximation u™, on the finest grid Q™. (For
continuation problems it is important to have good first approximations on Q™.) The
second phase improves the first approximation on grid Q™. This phase is common to
all multigrid algorithms. In the flow chart, these phases are combined by replacing the
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F1G. 3. Accommodative FAS full multigrid algorithm. The notation is explained in the text.

maximum level M with a level I, which denotes the highest grid level seen up to this
time. The index [ increases from 1 to M in phase one, and is fixed at M in phase two.

It is somewhat more natural to view the FMG method recursively; such a formula-
tion is given in Hackbusch [16].

We now explain the quantities in the flow chart. The current grid level is denoted
by k. In the FAS multigrid method, equations (3.2) are solved only at the highest
current level L The current approximation to U’ at this level is denoted by u’. In the
process, eq. (3.2) on coarser grids ( k < I) are modified by changing their right-hand
sides. The modified right-hand sides of the kth level equations are given by

(33) £ = LR + T (! = L,

and depend on u**', the current approximation on the next finer level. The solutions
to these modified equations are denoted by U¥, and their computed approximations
by u*. Thus, the FAS multigrid method attempts to solve the equations

(3.4) L¥O* = f*
at each level k < [, not (3.2).
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The order of accuracy of the difference approximation is p. The norm of the
dynamic residual on level k is

ex = |f* = L'u¥|,

and its tolerance is £,. The interpolation operator I%_, interpolates corrections from
a “coarse” grid to the next finer grid. The interpolation operator II}_, interpolates
solutions from a coarse grid to the next finer grid; it is used only i in phase one, and
frequently must be of higher order than I%_,. The operators I, and ik k+1 are projection
operators from a “fine” grid to the next coarser grid. The former projects residuals
and the latter projects approximate solutions.

The parameter n controls switching to a coarser grid. When the norm e, of the
residual for this iteration of the relaxation process on grid k exceeds 7 times the
corresponding residual norm &, of the preceding iteration (i.e., the convergence rate
becomes too slow), we switch to grid k—1. The parameter § controls the accuracy with
which we solve the equations on grid k~1 before using the result to correct the solution
on grid k. The use of n and 6 characterizes an accommodative multigrid algorithm,
where the number of relaxation sweeps on a grid is determined dynamically by the
progress of the iterations. This is in contrast to fixed algorithms, which perform a fixed
number of relaxation sweeps on grid k before going to grid k—1, and then a fixed
number of sweeps after returning to grid k. Accommodative methods are more robust,
especially for nonlinear problems.

On the coarsest grid we do not use a relaxation method. On the upper branches
of multiple solutions (Figs. 1 and 2) the matrix G, becomes indefinite. This leads to
divergence on the coarsest grid if a standard relaxation method is used ([9], [35]).
Hence we use the full Newton method on the coarse grid. In § 4.2 we will see further
reasons for using Newton’s method here.

We defer until § 4.5 further details of our multigrid implementation.

4. Description of the algorithm. In this section we describe our algorithm. This
description will involve Brandt’s frozen tau method, and some modifications to the
methods described in §2 and 3. Our goals in designing a continuation method are to

do as much as possible on the coarse grid, and to avoid the need for large order
Jacobians.

4.1. The frozen tau technique. We first describe the “dual view” (Brandt [8], Stiiben
and Trottenberg [35]) of the multigrid algorithm, and the relative truncation error.
The local truncation error of the kth level approximation is

% = [*(f*U) - F* = L*(I*U) - I*(LU),

where I projects continuous solutions onto the kth grid, and I* (possibly different
from I k) does the same for right-hand sides. This is obtained by substituting the
solution U of the differential equation into the difference equations (3.2).

To estimate 7%, we replace U by the * ‘converged” approx1mate solution u™
k < m = M, and replace the projections I* and I i by IX and I f,,, respectively. We
then obtain the ( m, k)-relative truncation error, or fine-to-coarse defect correction

(4.1) = LE(T%u™) = 1%(L™u™),
where

k _ 7k k+1 m—1
Im’*Ik+1Ik+2 eIy s
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and similarly for i k. Using (3.4) with k = m, this can be rewritten
(42) LE(Teu™) = 15 ™ + 7%,

The relative truncation error is related to the local truncation error by
=gk —m 1=k<m=M,

where ~ indicates equality of the leading terms in an asymptotic expansion in powers
of h,. (Here we have assumed that the global error can be expanded in a power series
in h; whose coeflicients are independent of k.)

This leads to the ““dual” interpretation of the multigrid method. Instead of
regarding the coarse grid as a device for accelerating convergence of the fine grid
equations, we can view the fine grid as a device for calculating the correction 7, to
the coarse grid equations. In other words, if grid k is a coarsening of grid M, and if
i %, is the straight injection operator, then 7%, is that quantity which has to be added
to a (modified) right-hand side, I, f™ = I%,F™, to obtain values of the fine grid
solution u™ by solving the coarse grid equations. That is, at convergence, the coarse
grid solutions are simply projections of the finest grid solution. This would not be true
in general, if one solved problems (3.2) independently, without FAS.

We now present a modified version of Brandt’s [7], [8] frozen tau technique for
continuation. Suppose we have computed a multigrid solution for parameter A, by the
method of § 3, and we wish to compute an FAS full multigrid solution at the ‘““nearby”
parameter A ;. Assume we have an initial approximation to the solution on the coarsest
grid at A,. We can make the coarse grid solution equation “appear” like the (as yet
unknown) fine grid solution at A, as follows.

We first determine the relative truncation errors 7hs(Ao), k=1,2,+ -+, M—1. If

F* =0, as in our model problem (1.2), 7% is, at convergence, simply the modified
right-hand side f*. Otherwise, from (3.3) and induction, 7%, is given by
(4.3) o =1 = Iaf™.
Before the computation even begins at A, we add 7%(A,) to the right sides of the A,
equations, for k=1,2,---, M—1. If A, is close to A, this makes the coarse grid
equations at A, locally look like the fine grid “corrected” equations (4.2) with m = M.
The effect in Fig. 1 is approximately and locally to shift the coarsest grid curve (and
all “intermediate” grid curves) close to the fine grid curve. Away from the point where
we are computing, the curves corresponding to different grids are not necessarily close
to each other.

Of course, this procedure initially ignores the error in 74(A,) due to the change
in A. However, the error so produced will not depend on the high-frequency com-
ponents, but only on the changes in those components from their values at Ao. Normally
these changes are small compared with the components themselves [7], [8]. Further-
more, the Ti;(A,) terms are implicitly improved by the multigrid iterations at A, as
will be explained in §4.3. More accuracy could be obtained initially by extrapolation
in A using, say, Th(Ao) and 7%(Ao — 1) to better approximate 7 (A,).

4.2. Combining multigrid and continuation methods. Despite this improvement, it
is clear that we still must vary A, during the multigrid iteration. As we observed in
§ 1, many workers use different values of A on different grids. But our shifting of the
coarse grid curves allows us to use a very simple algorithm for changing A ,. We propose
correcting A, during the multigrid iteration only on the coarsest grid.
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We need a method to produce a first approximation u' on the coarsest grid at A,
and values u' and A, for the coarsest-grid correction at A,. The pseudo-arc-length
continuation method of § 2 will supply both, while being insensitive to limit points.
This method interacts with the FAS-FMG algorithm in a natural manner, through the
right-hand sides of the coarsest grid equations.

We will now change our notation slightly, and refer to the old and new parameters
as A(so) and A(s,), not Ay and A,. The old parameter A(s,) is fixed. We allow A(s,)
to vary, but it will be the same on all s,-grids.

4.3. Algorithm for continuing through limit points. We now summarize the steps
of our multigrid continuation algorithm. Then we will explain each of these steps. This
algorithm will follow solution curves as they pass through limit points, but in general
none of the computed solution points will coincide with any limit point. We will show
how to accurately locate limit points in the next subsection.

1. Assume given an initial parameter value A4, and an initial coarse grid approxi-
mation u' to a solution of (1.1) which is not “too close” to a limit point. Let s, = 0
and define A(so) = Ay, u'(s,) = u'.

2. Use Newton’s method (2.1)-(2.2) to obtain an improved solution on the coarsest
grid. Note A, is kept fixed.

3. Perform the accommodative FAS full multigrid algorithm, as described in § 3
and Fig. 3. Use a method such as Gauss-Seidel-Newton to relax (smooth) on grids
2,3, -, M, and use Newton’s method (2.1)-(2.2) to solve on the coarsest grid. The
parameter A, is still fixed.

4. When the multigrid algorithm has converged, project the solution from the
finest grid to all coarser grids,

(4.4) ub(sq) = Ik, u**(so), k=M—-1,M=2,---,1.
5. If F* # 0, determine the relative truncation errors 74,(so). First compute
= =T, k=1,2,-, M1,

and overwrite on f*. Then compute
Tl;l=T£+l+I£+lT’It;ls k=M—2aM_—3a'."1a

and overwrite on f*.

6. Choose a step length As. (See §4.5.) Let s; = 5o+ As.

7. Apply the frozen tau technique by adding 75s(so) to the right sides f*(s,) =
F*(s,) of the grid equations (3.4) at levels k = 1,2,..., M—1.

8. Perform the Euler step (2.5)-(2.6) to obtain a first approximation ( u'(s;), A(s,))
on the coarsest grid at s,.

9. Use the pseudo-arc-length Newton method (2.10)-(2.13) to improve this
approximation on the coarsest grid. The “right-hand side” term F'(s,) in

(4.5) G(u'(s1), A(sy)) = L'(sy)u'(sy) — F'(sy),
which appears in (2.9) or (2.11), was replaced in step 7 by
(4.6) f1(s1) = F'(s1) + 7m(80).

10. Perform the multigrid iteration to obtain A(s;) and u™(s,). This is the same
as step 3, except: (a) The right sides F* will have already been modified by step 7,
(b) Initial approximations u* on grids 2,3, -+, M are obtained by a method to be
described; (c) We use the pseudo-arc-length Newton method (2.10)-(2.13) to correct
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on the coarsest grid. The right side F'(s;) will have been replaced by the usual FAS
right-hand side in (3.3). We obtain not only a new u'(s,), but also a new A(s,).

This procedure yields the solution for two parameter values s,, s;. To compute
the solution at further values s,, 53, - *, repeat steps 4 to 10, but replace s; by s,44.
In practice we reuse the storage for s;_; when we start computing at s;,,. Thus only
two sets of grids are needed, each set consisting of values of u and f on all levels.
Hence the total storage is approximately eight times the number of grid points in Q",
times the number of differential equations, plus a small amount for one coarsest-grid
Jacobian.

We will now expand on some of these steps.

In steps 2 and 3 we fix A because we do not have past information to enable us
to use pseudo-arc-length continuation. Step 4, projection onto coarser grids, is not
strictly necessary, since before it is applied, the FAS method ensures that u'(s,) is
approximately equal to the right-hand side of (4.4).

Step S can be omitted when there are no inhomogeneous terms in the differential
equations (e.g., problem (1.2)). Then step 7 can be slightly simplified by copying 73,(s,)
to the right sides of the s,-grids rather than adding.

For the Euler step 8 and the Newton steps 2 and 9 we must calculate the Jacobian
G, but this is on the coarsest grid, so there is no storage problem.

Just as in the ordinary pseudo-arc-length method, the Newton step 9 brings us
back to the solution curve. Since we have added 7},(s,) to the right side of the coarse
grid equation, we are brought back (approximately) to the finest grid curve, rather
than the coarse grid curve at s,.

During the multigrid iterations at the new parameter s,, we return to the coarsest
grid for corrections. Just before doing so, we replace the right-hand-side term f*(s,)
of (4.6) by a new f'(s,), as prescribed by the FAS-multigrid method in (3.3). We then
use pseudo-arc-length continuation (2.10)-(2.13) to obtain a new A(s,) and u'(s,).
The new A(s,) is used on all finer grid levels until the next coarsest-grid correction.

At first glance it appears that A,, since it is changed only on the coarsest grid,
incorporates information only from the coarsest grid and the frozen tau term 7h(s,).
But as the full multigrid iteration at s, progresses, A, actually incorporates information
about all other grids and all other terms 74;(s,), 1 < k < M — 1, as well. For example,
when the finest grid seen so far at s, is 2 (i.e., I =2 in Fig. 3), the coarsest-grid
correction involves f2(s,), by (3.3). But f(s,) has incorporated the term 75,(s,). Thus
the new A, will also incorporate this term. Meanwhile, the 74,(s,) are in effect being
replaced by “new” 1%,(s,). When the iteration at s, returns to the coarsest grid for the
first time in phase 2 (i.e., when k =1 for the first time after [ = M in Fig. 3), the
751(s0) in effect will have been completely replaced by new and better 75,(s,). This
implicit updating of the frozen tau terms is a consequence of eq. (3.3) and step 7 of
our algorithm as stated. No further computations beyond steps 1-10 are required. The
frozen tau terms are explicitly formed only in Step 5.

To obtain initial approximations u“(s,) for grids other than the coarsest, Brandt
[8] and Hackbusch [17] suggest starting with the old (s,) solution at the same level,
and correcting it by the difference between the old and new solutions at the next
coarser level:

(4.7) u¥(s;) = u(so) + Iy (u*7'(51) — u*7(s0)),

where II is the high-order interpolation described in § 3.2. We found that this works
well, and it makes possible the error analysis in § 5.
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4.4, Locating limit points. The algorithm of the last subsection gave a method for
continuing through limit points. In this section we describe how to accurately locate
limit points.

If the Jacobian G, is available on the finest grid, then Keller [20] suggests locating
zeros of AM(s). (Here the superscript M means that the the derivative is computed
on the finest grid.) If we are performing pseudo-arc-length continuation on a single
grid (i.e., M = 1), then this derivative is free, since we solve equations (2.5) (with
superscripts M added) anyway. But if M > 1 then AM(s) requires the Jacobian on the
finest grid, which we wish to avoid.

A first approach is to use our algorithm of the preceding subsection, and compute
the root of Al(s) on the coarse grid where this derivative is computed anyway.
Unfortunately, this does not work very well. Although this derivative does become
small in the neighborhood of a limit point P = (1™ (s*), A(s¥)), it has so far been too
inaccurate in locating P to many decimal places. For example, we used the method
of Keller [20] for problem (1.2) with @ = 0 on a single grid O™, M = 1. We located
a turning point P by finding s* for which AM(s*)=~107'%2. We then repeated the
calculation with multigrid (using a method about to be described), in which the finest
grid O™ had the same mesh size as before. We found a limit point P, which was
extremely close to P (i.e., the parameters A agreed to more than 12 digits). But at P
we had only A'(s)=~1072.

The next approach is to try to imitate the frozen tau method. To do this we would
need to replace

G(“M(So), A(s50) =0
by

(4.8) G(ul(so), A(so0)) + ’T}W(UM(SO), A(s0)) = 0.

Recall that we obtain (2.3) by differentiating (1.1) with respect to s. If we differentiate
(4.8) in the same way, we obtain derivatives of  with respect to A and u. The former
could be approximated by difference quotients, but it is difficult to find the Jacobian
(Th). without knowing the explicit form of 7.

Our approach, then is to use a derivative-free method. The algorithm proceeds in
two parts. We first apply the method of the preceding section to obtain points P,, P,
lying on a solution curve and on either side of the limit point. Then we restart at one
of the points, say P, = (u™(s;), A(s;)), and use As = s — s, as the independent variable
in a one-dimensional derivative-free optimizer to find an extremum of A(s). Each
“outer” iteration of the optimizer requires a complete multigrid solution (™ (s), A(s))
on the finest grid (‘“inner iteration”) with As chosen by the optimizer.

We chose the optimizer FMIN, written by R. Brent and appearing in Forsythe,
Malcolm and Moler [14]. FMIN uses a combination of golden section search and
successive parabolic interpolation. Typically about twelve outer iterations are required
to locate the limit point to machine precision.

The only disadvantage of this method (compared with that of Keller [20]) is that
it cannot locate limit points which are also infiection points (e.g., on the curve in Fig.
2 for @ = ). However, such points are very rare.

4.5. Implementation details. In this subsection we illustrate our algorithm by
applying it to the model reaction-diffusion problem (1.2). In contrast to the description
of the previous subsections, most of these implementation details (difference approxi-
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mations, smoothing algorithm, etc.) are problem-dependent. They are included to fully
characterize the numerical results of § 6.

For simplicity, we consider a square region. This is not, however, a restriction on
our method. Removing this restriction would only change some of the implementation
details, especially the interpolations. Similarly, our method is not restricted to Dirichlet
conditions on 4(}.

Let N, > 0 be the number of coarse grid intervals, and h, = 1/ N, be the mesh
size on the coarsest grid. The finer mesh sizes are given by letting N, = 2N;_,, and
hi=he_1/2, k=2,3,--+, M Grid QF is then defined as

(4‘9) Qk = {(x:c’ y]k)' x;( = ihka y]k =jhk, ls.] = 0’ 1’ Y Nk}a

for k =1,2,- -, M. We let U} be an approximation to the exact solution U(x¥, y,'-‘),
and u§ be the approximation to U :j computed by the FAS method. We shall omit the
superscript k on U, x, and y whenever possible. For our Dirichlet problem, the difference
equations, the right-hand sides F* = 0 and f*, and the residuals f* — L*u* are defined
only on interior grid points, i.e., those for which neither i nor j is 0 or N,. Naturally,
we set the discrete solution to zero at the boundary points.

We use several difference approximations. The second-order approximation to
(1.2) is obtained by replacing the Laplacian A by the usual five-point approximation Aj:

Since this approximation is relatively inaccurate, we also consider two fourth order
approximations, both obtained from Collatz’s Mehrstellen Verfahren. The local trunca-
tion error for the nine-point approximation to the Laplacian is

(4.11) AU — (AU) = h’A(AU)/12 + O(h*).

We use the differential equation (1.2) to replace (AU) on both left and right sides of
(4.11). Then we replace the remaining A operator on the right side by the 5-point
operator A}, to obtain the O(h*) accurate approximation:

(4.12) AU+ A(I + (h*/12)A%) exp(U /(1 + aUy)) = 0.

The second fourth order approximation proceeds as before, up to the last step.
But we do not replace the outer A operator on the right side of (4.11) by A3. Instead
we analytically differentiate. In addition to the obvious terms Au, we obtain terms in
U? and U3}. We now replace AU by the five-point operator, and U, and U, by centered
differences Dy, U and D,, U, respectively. The result is another O(h*) approximation:

(4.13) AU + xexp(U/B)[1+ h*(B*ALU + (1 — 2aB8)(D3, U + D3, U))/128%] = 0.

Here we have defined 8 = 1 + aU; and we have omitted subscripts i, j and superscript
k on U. This more complicated approximation is less accurate in practice than (4.12),
although both are fourth order.
We can obtain a sixth-order accurate approximation to (1.2) by applying tau
extrapolation [6] to approximation (4.11). We will discuss this in the next subsection.
We now discuss the smoothing (relaxation) method. On the kth grid Q* we must
solve J = (N — 1) nonlinear equations, say:

(4'14) gj(ulauZ:”'auJ)=0’ j=1’2’.”,‘,,

in J unknowns.
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On all but the coarsest grid, we use a .method called Gauss-Seidel-Newton by
Ortega and Rheinboldt [28]. In the jth equation (4.14) we fix all but the jth variable
u;, and apply Newton’s method to that equation. In the process, we must replace the
“old” iterates u}” by new ones u{'*" in all equations (4.14) as soon as they are available.
Were it not for this updating, this method would be equivalent to replacing the full
Jacobian for the system (4.14) by its diagonal.

More specifically, the new approximation u{*" to the jth unknown is given by

u = uf? ~ g,(u)/ (og,/ou) ("),
where we have set

j,i i+1 i+1 i+1 i i
u]l - (u(ll )’ u(21 )a Y u§'l—l )’ u;'l)’ Y u.(ll))'

Together with the full approximation scheme, this method avoids using large Jacobians.
Of course, this smoothing algorithm does not work in all problems, see [8].

We used “checkerboard” (or red/black) ordering of the unknowns for relaxation.
For the second order approximation, we first relax all the points (x;, y;) with i+ j
even, then all the points with i + j odd. Foerster, Stiiben and Trottenberg [13] have
shown that this method speeds up the rate of convergence by a factor of two for
Poisson’s equation with Gauss-Seidel smoothing, compared with lexicographic order-
ing.

For the nine-point approximations, we replaced the two colors (red and black)
with four colors [15], [35]. Consider a “fundamental square” with corners P; = (x;, y;),
i or j =1 or 2. Each corner is given a different color. Then the colors are extended to
the whole grid by periodicity: P; has the same color as P, if and only if i = I mod
2 and j = m mod 2. For one iteration we relax all points with the color of P,,, then
P,,, P;,, and P,,. Computations by Stiiben and Trottenberg [35] have shown that, for
Poisson’s equation, this ordering produces better smoothing properties than any other
commonly used smoothing method for the fourth order Mehrstellen Verfahren approxi-
mation.

For the projection operator i x.+1 on approximate solutions we use simple injection:

ul < i, ukly = ukl.
For the projection operator I5,, on residuals we use full weighting, given in stencil
form as

1

(4.15) It = e

S

2 1
4 2
2 1/in

For the second order approximation, it is sufficient to use bilinear interpolation
I%_, for corrections. This is easy to program. For the interpolation operator IIj_, of
solutions used in phase 1, it is necessary to use bicubic interpolation. We also used
bicubic interpolation for both interpolation operators in conjunction with our fourth-
order approximations, as did Schaffer [30]. Our sixth-order approximation requires
biquintic interpolation for II.

When the region () is, in some coordinate system, equal to the cross product of
intervals, we can easily implement these high-order interpolations. We used de Boor’s
[4] program SPLI2D, which computes the tensor product of one-dimensional splines,
using not-a-knot end conditions. It is sufficient to use SPLI2D with bicubic and biquintic
interpolation. We placed the knots at the points x; or y;. However, bicubic (biquintic)
splines require the number of intervals N, on the coarsest grid to be at least 3 (5).
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Since we wished to use coarse grids that were as small as possible, we also used SPLI2D
with biquadratic and biquartic interpolation for the cases N, = 2 and N, = 4, respec-
tively. This requires us to place the knots midway between the points x; or y;, as well
as at the endpoints 0 or 1. Further details are in de Boor [4].

For our second and fourth order approximations we chose N, =4, but N, =3
also proved acceptable in our computations. Some workers (e.g., [35]) have used
N, = 2 (one interior grid point) on Poisson’s equation. We found that this produced
very sensitive behavior, even divergence, near limit points of problem (1.2). For our
sixth order approximation (to be described shortly) we found that using N; < 5 caused
aslowdown in the rate of convergence, since the interpolation is not sufficiently accurate
on the coarsest grid. Therefore we used N, = 8 for comparison with other results.

The spline interpolations are relatively expensive compared to the cost of the
relaxation sweeps. But the cost of the former is still linear in the number of grid points,
since SPLI2D exploits the band structure of one-dimensional spline interpolation.
Fortunately the number of relaxation sweeps is about three times the number of
interpolations. The second order method requires only M — 1 bicubic interpolations.
The rest are bilinear.

In the use of Newton’s method for continuation, it is customary (e.g., [24], [32])
to economize in the computation of the Jacobian G,. This is done by not always
recomputing it after computing a new iterate u'”. In contrast, our computation of the
Jacobian on the coarsest grid is so cheap that we recompute it after every iteration.

For the convergence tolerance &, on the coarsest grid, we solve to nearly machine
accuracy, say

i — will + (A — A < 15e([ui]l + A1),

where i denotes the iteration number, £ is machine epsilon (the smallest positive
number for which 1® ¢ # 1), and | || is the Euclidean norm.

The storage required for the Jacobian is small. Typically N, = 4, so we need store
only a 9 by 9 Jacobian. We used the banded solver DGBCO, DGBSL (with pivoting)
in LINPACK [12] for our computations.

Our step-size control is based on the convergence behavior of Newton’s method
on the coarsest grid. (See Rheinboldt [29] for another algorithm.) We choose an initial
step size 5, — 5o based on our knowledge of the problem. To determine all other step
sizes s; — 5;_1, i > 1, we first take a trial Euler step from s,_, to s;, using as trial step
size the old step size s,_; — 5;_,. We then count the number of (pseudo-arc) Newton
iterations performed on the coarsest grid until the first switch to the next finer grid. If
the residual norms of the iterates do not decrease, or if more than six iterations are
required, we multiply the trial step size by one-third and restart at s,_,. If five or six
iterations are performed, we accept the trial step. If three or fewer (resp. four) iterations
are required, we complete this step, and set the trial steplength s, — s, to two (resp.
1.5) times our currrent steplength. (These figures for the number of Newton iterates
depend slightly on the machine precision.)

This strategy can also be used for single-grid methods. Its advantage here is the
low cost of the coarse grid operations, which simultaneously approximate the fine grid
equations because of the frozen tau term. This step control is not used when locating
limit points, as in the previous subsection, since the root-finder supplies the step
control.

For the parameters n and & which control switching between grids we used 6 = 0.3,
n = 0.25.
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An objection is raised by T. F. Chan [10] to our use of the bordering algorithm
(2.10)-(2.13). Keller [21] shows that, in the absence of roundoff error, this procedure
is valid in the neighborhood of limit points. Chan asks if this is also true in the presence
of roundoff error. To resolve this question, R. Schreiber [33] suggested replacing the
bordering algorithm (on the coarsest grid) by a full matrix solver for the system (2.9).
This solver takes no advantage of the the structure of the matrix A in (2.9), but this
imposes only a small storage penalty. We obtained exactly the same results as before.

4.6. Tau extrapolation. We now explain how tau extrapolation [6] is implemented
to increase the order of accuracy of the approximation to problem (1.2) from four to
six. We do not implement this exactly as in [6], and we do not claim that our method
is optimal.

We retain phase one of the FMG algorithm (before the finest grid is reached)
unaltered; that is, we do not apply tau extrapolation in phase one. (The frozen tau
technique has in effect already produced an extrapolation here.) Upon reaching phase
two, we smooth on the finest grid as before, until the convergence slows. This is the
last time smoothing is done on the finest grid. Throughout we use sixth order interpola-
tions I%™", so the order of the interpolation error is the same as the order of the
truncation error.

When the algorithm switches from the finest grid M to grid M — 1, we form the
right-hand side f™ ! as in (3.3). Then we modify it by forming

(4.16) new © (1=27)7[fM = I FM+ I F™,

with p = 4. (Note F™ = 0 for problem (1.2)). The expression in square brackets is, by
(4.3), the relative truncation error 7 . Multiplying it by the factor in parenthesis
produces the local truncation error 7', to leading order terms. Therefore, solving
LMy M1 = 7 broduces an O(h®) approximation on grid M — 1. The right-hand
sides of all coarser grids M~2, M3, - - -, 2,1 are modified as in (3.3) but not as in
(4.16). Finally, our sixth order interpolation of the correction u™ — u™ ! produces a
sixth order approximation on grid M.

During the rest of phase two of the multigrid algorithm, we do not smooth on
the finest grid. That would only force the finest grid solution to satisfy the original
(fourth order) equations.

Of course, tau extrapolation is the same as applying deferred correction once.
However, we need not explicitly compute the leading terms of the local truncation
error, nor form large order Jacobians.

After completing this paper we learned of the work of Schaffer [31], which extends
the tau extrapolation method as follows. The procedure given above requires a minimum
of two grids and applies deferred correction once. Schaffer extends this to iterated
deferred corrections. For example, to attain O(h®) accuracy with an O(h*) basic scheme
requires a minimum of three grids. Clearly this method will require less work to obtain
the same O(h®) accuracy than Richardson extrapolation. Schaffer gives numerical
results only for linear problems, but we believe that his method could be extended to
our problem if more accurate interpolations are used. As he points out, the second-

order-accurate projection operator (4.15) still suffices, due to a fortunate cancellation
of errors.

5. Convergence. In this section we outline a local convergence proof for our
algorithm. Further details will appear elsewhere. Our analysis is based on the techniques
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of Hackbusch [16], [17]. We assume the reader is familiar with these papers, and use
the notation in them with only slight changes.

Throughout we assume that all functions are as smooth as necessary. We shall
also ignore round-off errors since they are dominated by truncation errors.

Let us first recall the linear theory for a fixed parameter A. Hackbusch shows that
the interpolation, projection and smoothing operators satisfy a ‘“‘smoothing property”
and an “approximation property”. The analysis proceeds stepwise from two levels to
full multigrid.

The two-level multigrid method has iteration matrix

MY = S%(I, — I% Lt I L) Sy,

where I is the identity matrix on level k and S, is the smoothing iteration matrix on
level k. Under appropriate assumptions he then shows that the norm of the two-level
matrix is less than one. The iteration matrix M}, for the “cycle C”” multigrid algorithm
(which starts with an approximation on the finest level) is then found to be a perturba-
tion of the two-grid iteration matrix. By recursion Hackbusch shows that this matrix
has norm less than one. It is characteristic of the multigrid method that this bound is
independent of the grid level k. Finally, an inductive proof can be given to show that
the full multigrid method will produce approximations u™ on the finest level whose
“iteration error” (the difference between u™ and the solution U™ of the discretized
equations) is bounded by the local truncation error.

Hackbusch provides a convergence proof in the nonlinear case (with fixed A),
but not for the FMG full approximation scheme. Instead he proves convergence for
what he calls the “multigrid method of the second kind”. To do this, he proves a
contraction property which corresponds to the boundedness of the norm of M}, by a
quantity less than one in the linear case.

Let ¢, (uf, f*) be a nonlinear iteration function (the multigrid algorithm) on level
k which produces a new iterate u},, from old iterates u} and right hand side f*. For
uj'-‘ in a sufficiently small neighborhood of the solution U* of the difference equation
(3.2), he requires

(5.1) lufs = Ul = plluf - U*|,

with p <1, k=1,2,---, M. Again p is independent of the level k.

The contraction property (5.1) is appropriate for “phase one” of the full multigrid
algorithm (§ 3) when a first approximation on the finest level is being obtained. After
that, for the full approximation scheme a more appropriate contraction property is

lufe, = IN(UM)| = p |luf — I(UM)|,

where 0 < p’ < 1. For k = M this is identical to (5.1); for other k it can be deduced
from (5.1). From this we can show the convergence of the FAS multigrid method for
fixed A, provided the initial guesses are sufficiently close to the solution U™,

Now we discuss the differences between our approach to the continuation problem
and that of Hackbusch. First, we parametrize our solutions in terms of pseudo-arc-length
instead of the natural parameter A. That is, given differential equation (1.1), we
parametrize a solution branch as in §4.3 by choosing pseudo-arc-length points
S0, 81, 82, * * +, and letting the exact solution path

(5.2) (U(s), A(s)),
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and approximate solutions
(5.3) (U (), A(s)), k=1,2,-++, M,

depend on the pseudo-arc-length parameter s. Assume that the solution path (5.2)
encounters no bifurcation points and only simple limit points, and that the starting
point s, is such that path (5.2) at sq is not “too close” to a limit point. Then the results
of Keller [18] and Decker and Keller [11] show that the Jacobian G, at s,, and the
augmented Jacobian matrices (2.9) at s = s, 5,, - * +, are nonsingular in suitable neigh-
borhoods of the exact solution (5.2). Hence our method will not have any difficulties
at limit points.

Our analysis proceeds in three steps. We examine the multigrid convergence at
5o, where A, is fixed. Then we examine the errors in the initial approximations at s,.
Finally we obtain bounds on the errors in the multigrid method at s,, where A varies.
For all other intervals [s,, s;,,] we repeat the last two steps.

The proef of convergence at s, was already mentioned above in the FAS
modification of Hackbusch’s proof. The result is that

”uM(So) - UM(SO)" = C\hYy,

where C, is a constant independent of the the level k and of the mesh spacing, and
p is the order of accuracy of the difference approximation.

For step two we estimate the error in the initial approximations at s, . Hackbusch
[17] analyzed both the starting procedure (4.7) and the frozen tau method when A is
the parameter. Since he did not combine the two methods, he concluded that the frozen
tau method was unsatisfactory since it did not produce sufficiently accurate initial
approximations. By combining his results, and the results of Decker and Keller [11]
for Newton’s method, we can show that the initial approximations (u*(s;,,), A(si41))
have truncation error O[(s;,; — 5;)h%].

For step three we must analyze the multigrid convergence at s,, when both u and
A vary. Let the composite vector @i be the vector u* with A appended. For our
composite vector we can prove a contraction property by induction on grid levels. For
k =1 this is certainly true since we use only Newton’s method. The most difficult case
is k = 2. All other levels introduce no more difficulties than the case of fixed A. This
is because the coarse grid correction for two levels k—1 and k (k =3 ) involves no
change in A. The result is that

1™ (s,) = OM(s)| = Ca(s1 — so) s,

where again C, is independent of the level and mesh spacing.

The main difficulty in these arguments is assuring that the result of each step of
the algorithm lies in a sufficiently small neighborhood for the iteration of the next step
to be well defined. Hackbusch has proven many of these results.

6. Numerical results. In this section we present results of our computations of the
limit point locations for two different parameter values a in problem (1.2). We have
also used this method in more realistic problems, e.g., the Taylor vortex problem [3].
The smoothing algorithm we used for that problem is alternating zebra [35], a variant
of alternating line (or block) Gauss-Seidel-Newton [28, p. 225, eq. (39)1.

We first computed the location of the limit point for a = 0 (see Fig. 2). This is a
good test problem because the very accurate results of Meis, Lehmann and Michael
[23] can be used for comparison. Meis, Lehmann and Michael computed solution
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points using the method described in §1, with second order approximation (4.10). They
obtained three points on the solution curve near the limit point, then fitted a parabola
to these points to find the location of the limit point. These calculations were done on
each of a sequence of grids whose smallest mesh size was h = 1/4,1/8,---,1/128.
Repeated Richardson extrapolation (up to O(h®)) was then used to better approximate
the location of the limit point of problem (1.2) with @ = 0. The location thus obtained
is:

Ao =6.808124,  ||u(Ae)lloo = [|Uerllw = 1.39166.

The maximum of u always occurs at the center (x, y) = (1/2,1/2) of Q.

We used our methods on essentially the same grids: the second-order scheme
(4.10), the fourth order schemes (4.12) and (4.13), and a sixth order-scheme obtained
by applying tau extrapolation to (4.12). We show the results in Table 1. The number
of intervals on the finest mesh is N,,; hence the smallest mesh size is Ay, = 1/ Ny,
For each method, the values labelled co were obtained by repeated Richardson extrapo-
lation to O(h®). Thus, the extrapolated values for the second (respectively fourth,
sixth)-order method were obtained by three (resp. two, one) Richardson extrapolations
from the four (resp. three, two) values immediately above. Each column was calculated
independently of the others, so these results serve as a severe check on each other. To
our knowledge, the existence of asymptotic expansions for the global error (i.e., the
validity of Richardson extrapolation) for this problem has not been proved, but these
computational results provide almost certain evidence that one exists for each scheme.

From Table 1 we observe, as expected, that the sixth-order scheme is much more
accurate than the fourth-order or the second-order schemes. More striking is the
relationship between limit point locations on different grids. Our results show that the
limit points on coarser grids may lie on either side of the limit point of the finest grid,
depending on the approximation chosen. In fact, the value of A at the limit point
increases monotonically (with decreasing grid size) for schemes (4.10) and (4.12), and
decreases for the others. The maximum solution value ||| . increases for all approxi-
mations except the fourth-order scheme (4.13). Clearly, our method does not depend
on the orientation of limit points on different grids, except for starting points. Thus,
if we use the second-order scheme with M =2, h, = 1/16, and h, = 1/32, then we
must not use A = 6.804, for example, as a starting point.

We give the results for ||u|. to fewer digits than those for A, because of the
geometry of the limit point. Locally, the solution curve in the A —||uj . plane is a
quadratic in the neighborhood of a limit point (u*, A *), that is, | u — u*| = O(J]A — A*|"/?)
(see, e.g., Moore and Spence [27]). Thus A™* can be known (at best) to the machine
precision, but |[u*||. can be known only to the square root of the machine precision.
Our computer (VAX 11/750) has about 17 decimal digits of precision. Thus we seem
to obtain 7 correct decimal digits of [ju|| and about 10 correct digits of A,.

The second order results and the extrapolated results agree with those in [23] to
the seven and six digits they gave for A, and |Ju| -, respectively. The fourth order
results (4.12) for N = 16 agree with those of [27] to the 11 digits they gave for A. For
|| tcell o Our eight-digit results agree with the first eight of their eleven digits.

Tables 2 and 3 show results similar to those of Table 1, but for the case a = 0.2
in problem (1.2). Here there are two limit points. For the upper limit point we can
partially compare our results with those of Mittlemann [25] for N, = 32. He used
second-order approximation (4.10) with his generalized inverse iteration multigrid
method [25], [26], and gave results to four digits. Rather than locate the upper limit
point, he showed successive values of the parameter A on the solution path near this
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TABLE 1

Location of limit point of (1.2) with a = 0.

Order and Scheme

Ny 2 (4.10) 4 (4.12) 4 (4.13) 6 [extrap. (4.12)]
16 6.80217409563 6.80808657467 6.80830691585 6.80812517811
32 6.80665272920 6.80812207169 6.80813582072 6.80812443571

Aer 64 6.80775749456 6.80812427588 6.80812513486 6.80812442280

128 6.80803275282 6.80812441342 6.80812446710 6.80812442259
00 6.80812442263 6.80812442259 6.80812442258 6.80812442259
16 1.3888573 1.3916567 1.3917381 1.3916593
32 1.3909601 1.3916609 1.3916661 1.3916612

llutlleo 64 1.3914859 1.3916612 1.3916615 1.3916612
128 1.3916174 1.3916612 1.3916612 1.3916612
e ¢] 1.3916612 1.3916612 1.3916612 1.3916612
TABLE 2
Location of lower limit point of (1.2) with a = 0.2.
Order
Ny 2 4(4.12) 6
16 9.12131236518 9.13630924484 9.13638435052
32 9.13263701343 9.13637838604 9.13638298751
)tlcr 64 9.13544784102 9.13638268079 9.13638296698
128 9.13614927051 9.13638294880 9.13638296666
o 9.13638296666 9.13638296667 9.13638296666
16 2.8756967 2.8857321 2.8858002
32 2.8832818 2.8857962 2.8858004
fletfloo 64 2.8851712 2.8858001 2.8858004
128 2.8856430 2.8858003 2.8858004
00 2.8858003 2.8858003 2.8858004
TABLE 3
Location of upper limit point of (1.2) with a = 0.2.
Order
Ny 2 4 (4.12) 6
16 7.08025536111 7.10152536891 7.10195697086
32 7.09656018055 7.10187720721 7.10190065819
AL 64 7.10056845538 7.10189761734 7.10189897803
128 7.10156658312 7.10189886674 7.10189894998
© 7.10189894893 7.10189894958 7.10189894953
16 18.207497 18.195894 18.192661
32 18.195850 18.192933 18.193740
[l fleo 64 18.193507 18.192778 18.192767
128 18.192951 18.192768 18.192768
o 18.192768 18.192767 18.192768

point. These values of A, in increasing order of ||u||., are 7.103, 7.097, 7.096, 7.098,
7.104. Our value of A" for N, =32 in the first column of Table 3 agrees well with
these. Unfortunately, he did not supply values of ||| .
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Our starting guess for the solution values in Tables 1 and 2 was zero. For Table
3 our starting guess was u = 12 in the interior of the coarse grid, and u = 0 on the
boundary. Of course, we obtained the same results by starting on the lower branch
and continuing to the upper limit point.

In all cases we iterate the multigrid algorithm until two successive solutions are
sufficiently close:

lurfs — ul | < e flui].

Here the subscript denotes the iteration number and € is a small number related to
the machine precision. Normally we would iterate only until the norm of the residual
is less than the norm of the relative truncation error 7 '. But we wished to ensure
that the “convergence error’” was much less than the truncation error so that we could
perform Richardson extrapolation.

The work required to reduce the I, norm of the residuals by a factor of 107** was
never more than 35 work units, and usually about 25 units (after the first step s,). A
work unit (following Brandt) is the work required to relax all the grid points once on
the finest grid. It does not include the work required for interpolations or projections.
The work required to reduce the residuals to the level of the truncation error was 4-10
work units after the first step, depending on the length of the step s; — 5;_,. Computing
one solution of problem (1.2) on a 129 by 129 grid (N s = 128) took approximately
20 minutes on a DEC VAX 11/750. This reduced the I, norm of the residuals by a
factor of 1072, (This machine is about 70% of the speed of a VAX 11/780.) We know
from § 2 that the pseudo-arc-length Newton method eliminates slow convergence or
divergence near limit points when used with a “single grid” method. Similarly, it is
experimentally observed that our method eliminates convergence difficulties with the
multigrid method at simple limit points. This is confirmed by the experimental observa-
tion that the multigrid convergence rate is the same near limit points as away from them.
An exception to this observation occurs at the starting point sy, where we cannot use
the pseudo-arc-length procedure during the multigrid iteration. If this point is too
close to the limit point, the rate of convergence will of course be slow, but only at s,.
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