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Abstract. In the resolution of certain image deblurring problems with given boundary con-
ditions we obtain two-level structured linear systems. In the case of shift-invariant point spread
function with Dirichlet (zero) boundary conditions, the blurring matrices are block Toeplitz matrices
with Toeplitz blocks. If the periodic boundary conditions are used, then the involved structures
become block-circulant-circulant-blocks. Furthermore Gaussian-like point spread functions usually
lead to numerically banded matrices which are ill-conditioned since they are associated to generating
functions that vanish in a neighborhood of (π, π). We solve such systems by applying a multigrid
method. The proposed technique shows an optimality property, i.e., its cost is of O(N) arithmetic
operations (like matrix-vector product), where N is the size of the linear system. In the case of
images affected by noise we use two Tikhonov regularization techniques to reduce the noise effects.

Key words. Point spread function (PSF); Toeplitz and circulant matrices; ill-conditioning;
multigrid methods; Tikhonov and Riley regularization.

1. INTRODUCTION. Basically, image deblurring problems lead to the reso-
lution of a minimization problem. If g denotes the observed image, the original image
f can be resumed by solving the minimum least square problem

min
f∈RN

∥∥∥B̃f − g
∥∥∥

2
, (1.1)

where the rectangular matrix B̃ denotes the blurring operator, coming from the
discretization of the Point Spread Function (PSF). In this work we consider shift-
invariant PSF like Gaussian function endowed with a numerical support which is
much smaller than the size of the image and rapidly decreasing to zero. The forma-
tion of the blurred image g needs of data outside the area spanned by f , hence we need
to introduce certain assumptions on the unknown boundary data of f called boundary
conditions (BCs), which lead to a square system Bf = g. Clearly B depends on the
choice of the BCs.

In literature [3] Dirichlet boundary conditions (D-BCs) and periodic BCs (P-BCs)
are widely used. With the D-BCs a null (black) border is added outside the edges of
the observed image (they are well suited in astronomical image processing). In this
case, since the PSF is shift-invariant, the matrix B = Tn1, n2(z) is a block Toeplitz
matrix with Toeplitz blocks (BTTB), possibly banded at each level if the PSF shows
compact support or numerically banded in the general case. The symbol Tn1, n2(z)
denotes a n1 × n1 blocks Toeplitz matrix with n2 × n2 Toeplitz blocks, which can be
explicitly represented as

Tn1, n2(z) =




A0 A−1 . . . A1−n2

A1
. . . . . .

...
...

. . . . . . A−1

An1−1 . . . A1 A0




, (1.2)
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Aj =




aj,0 aj,−1 . . . aj,1−n2

aj,1
. . . . . .

...
...

. . . . . . aj,−1

aj,n2−1 . . . aj,1 aj,0




for j = 1 − n1, . . . , n1 − 1 and such that the values aj,k are the Fourier coefficients
of the bivariate generating function z: aj,k = 1

4π2

∫
Ω

z(x, y)e−i(jx+ky)dxdy, i2 = 1,
Ω = [−π, π]× [−π, π]. If the function z is real and even with respect to both its vari-
ables, then Tn1, n2 is doubly symmetric, i.e. block symmetric with symmetric blocks.
With P-BCs the image is periodically extended outside the edges. Therefore, the
matrix B becomes block circulant with circulant blocks (BCCB). If Fn denotes the
Fourier matrix of dimension n, a circulant matrix Cn(f) can be factorized as Cn(f) =
FnDn(f)FH

n , where Dn(f) = diag0≤j≤n−1(f(xj)) with xj = 2πj/n. Consequently
Cn(f) can be diagonalized using fast Fourier transforms, with O(n log(n)) complex
operations also in the banded case. Furthermore, denoting with aj the Fourier co-

efficient of f , Cn(f) can be also expressed as
∑bn

2 c
j=−bn−1

2 c ajZ
j
n, where (Zn)s,t =

δ(t − s + 1) mod n and δ is the Kronecker delta (δ(α) = 1 if α = 0 and δ(α) = 0
elsewhere).
Recently, new types of BCs, namely Neumann and anti-reflective BCs, have been pro-
posed [19, 15]. They provide a better reconstruction than the previous popular BCs
and a lower computational cost based on discrete cosine or sine transforms.

We underline that image deconvolution leads to very large linear systems. There-
fore it is desirable to solve them using iterative methods, e.g. Conjugate Gradient
(CG), even suitably preconditioned. In this paper we propose a new approach, based
on a multigrid method (MGM) for algebraic problems defined in [1]. In this last
work is proven its optimality for monodimensional algebra matrices like circulant and
tau (matrices diagonalized by sine transform), while its optimality for Toeplitz ma-
trices is experimentally observed. In [2] the previous theoretical results are extended
to the multidimensional case. These works take origin from two previous papers by
Fiorentino and Serra Capizzano [11, 12] which led to several generalization for mul-
tilevel Toeplitz matrices, see e.g. [13, 8, 9]. For instance the MGM proposed in [9]
considers generating functions with zeros of order almost two and it is proved to give
a level-independent convergence rate. We remark that in the case of zeros of order
almost two our MGM is very the same of those proposed in [9], hence our MGM
can be considered an extension of this proposal and more in general of that in [12].
Furthermore, in [6] a Two-Grid method is proposed for the algebra of matrices di-
agonalized by cosine transforms. Therefore, even if in this paper we consider only
D-BCs and P-BCs, a similar strategy can be applied to Neumann and anti-reflective
BCs. We stress that the considered MGM is useful for speeding up the convergence of
virtually any classic iterative method used as smoother requiring low computational
costs.

We briefly discuss the computational cost in the resolution of linear systems aris-
ing in image deconvolution with different BCs. The experimental PSFs are usually
generated from a ill-conditioned bivariate trigonometric polynomial whose largest de-
gree is much lower than n1 and n2. Therefore the corresponding matrices are ill-
conditioned and (doubly) banded, i.e. banded at the block level with banded blocks
and the matrix-vector product requires O(N) operations where N = n1n2. The in-
version of BTTB is known to be very expensive, e.g. the fast direct solvers requires

2



O(N2) operations [14], while, concerning the iterative solvers, the most popular pre-
conditioning strategies are far from being optimal in the polynomially ill-conditioned
case [18]. The discrete Fourier, cosine, and sine transforms require O(N log(N)) com-
plex or real operations also in the banded case (divide and conquer algorithms not
based on Fourier/trigonometric transforms can be applied in linear time for (banded)
matrix algebra linear systems but not for multilevel (banded) Toeplitz systems). The
MGM that we propose in this paper is optimal also with polynomial ill-conditioned
linear systems, furthermore in the banded case it requires only O(N) operations (see
[1, 2]) even in the difficult two-level Toeplitz case.

In a wide range of applications g and B are both corrupted by noise and conse-
quently the reconstruction of the original image f is a very difficult task since this kind
of problems is ill-posed. In this case we need to adopt a regularization technique in
order to reduce the noise effects, such as the popular Tikhonov regularization method
[21].

In this work we use the Tikhonov technique for P-BCs and we customize it for D-
BCs. Since the Tikhonov regularization needs the resolution of the normal equation,
with D-BCs we define a method for approximate the coefficient matrix T 2

n1, n2
(f)+µIN

of the normal equation, by using Tn1, n2(f
2 + µ). Another regularization strategy was

proposed by Riley [16]. This approach is suitable only for symmetric and positive
definite system matrices K, where it is not necessary to use normal equations and we
solve a slightly different minimization problem. In practice the regularization reduces
the noise, while the MGM solves the regularized linear system with a linear cost of
O(N) arithmetic operations.

The outline of the paper is the following. In section 2 we introduce the MGM
for the solution of linear systems with coefficient matrix BCCB and BTTB and we
show its optimality. In section 3 we explain, also numerically, that our MGM is
not a regularizer for blurred image affected by noise, while in section 4 we propose
the Tikhonov and the Riley regularization techniques. In section 5 we report some
numerical experiments and comparisons with others MGM proposed in literature for
the considered kind of problems. Finally, in section 6 we draw some conclusions.

2. MGM FOR MULTILEVEL STRUCTURED MATRICES. Before de-
scribing the MGM used in this paper, we must introduce the τ matrix algebra [4], i.e.
the space of matrices diagonalized by the discrete sine transform of type I (DST I).
This is essential since the MGM for BTTB is defined extending the one defined for τ
matrices. Later we define an MGM for τ and circulant matrices and as last step we
generalize it to BTTB using a remarkable relationship between these two classes of
matrices.

2.1. The τ algebra (DST I). Let Qn be the n dimensional DST I with entries

[Qn]i,j =

√
2

n + 1
sin

(
jiπ

n + 1

)
, i, j = 1, . . . , n. (2.1)

It is known that the matrix Qn is orthogonal and symmetric, i.e., Qn = QT
n and

Q2
n = I. Moreover, for any n-dimensional vector v, the matrix vector multiplication

Qnv can be computed in O(n log n) real operations by fast sine transforms. Let τn =
{QnDnQn : Dn = diagj=1,...,n(λj)}, any An ∈ τn can be expressed as An = q(Hn),
where Hn = Tn(2 cos(x)) and q is a cosine polynomial of degree at most n − 1. It
follows that the eigenvalues λj for j = 1, . . . , n have the form λj = z( jπ

n+1 ), where
z(x) is a cosine polynomial, thus An ∈ τn is denoted by An = τn(z). If aj = a−j
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denotes the j-th Fourier coefficients of z then the following relationship between τn

and Toeplitz matrices of the same dimension holds τn(z) is equal to

Tn(z)−Hn(z) =




a0 a1 · · · an−1

a1
. . . . . .

...
...

. . . . . . a1

an−1 · · · a1 a0



−




a2 · · · an−1 0 0
... . .. 0

an−1 an−1

0 . ..
...

0 0 an−1 · · · a2




. (2.2)

We stress that when z(x) is real, even and of finite order b, the Hankel matrix Hn(z) is
a negligible spectral correction of Tn(z) with non zero element in north-west and south-
east corners. This is the case that occurs in some signal deconvolution applications,
where moreover we can assume that z vanishes in a neighborhood of π and is strictly
positive elsewhere.

Concerning the bidimensional case (e.g. images), we first mention that τ algebra
has a natural version τn1, n2 = {(Qn1⊗Qn2)DN (Qn1⊗Qn2) : DN = diagj=1,...,N (λj),
N = n1n2}, where Qn1 and Qn2 are one-level DST I transforms defined as in (2.1).
Moreover, in perfect analogy with the τ class in one dimension, we have that An1, n2 ∈
τn1, n2 if and only if An1, n2 = τn1, n2(z) can be (uniquely) written as τn1, n2(z) =
Tn1, n2(z) −Hn1, n2(z) that is analogous to equation (2.2) where each element is one-
level τ matrix. As in one dimension, matrix operations such as inversion, product,
computation of the spectrum and so on can all be done by using a constant number
of two-level sine transforms of type I and hence the resulting cost is O(N log N).
When z(x, y) is a polynomial, the matrix-vector product requires O(N) arithmetic
operations.

2.2. The MGM for τ and circulant matrices. For the sake of simplicity, in
this subsection we assume n1 = n2 = n reserving the subscript for the levels of the
multigrid, but also in general (n1 6= n2) everything works unchanged. Let A ∈ CN×N

be a Hermitian positive definite matrix, b ∈ CN , m be integer with 0 < m < N .
Fix integers n0 = n > n1 > n2 > · · · > nm > 0, Ni = n2

i for i = 0, . . . , m, take
Pi ∈ CNi+1×Ni full-rank matrices and consider a class Si of iterative methods for
Ni-dimensional linear systems. The related multigrid method produces the sequence
{x(k)}k∈N according to the rule x(k+1) = MGM(0,x(k),b), with MGM recursively
defined as follows:

x(out)
i := MGM(i,x(in)

i ,bi)

If (i = m) Then Solve(Amx(out)
m = bm)

Else 1 ri := bi −Aix
(in)
i

2 bi+1 := Piri

3 Ai+1 := PiAi(Pi)
H

4 yi+1 := MGM(i + 1,0ni+1 ,bi+1)
5 x(int)

i := x(in)
i + (Pi)

Hyi+1

6 x(out)
i := Sν

i

(
x(int)

i

)

(2.3)

Step 1 calculates the residue of the proposed solution; steps 2, 3, 4 and 5 define the
recursive Coarse Grid Correction (CGC) by projection (2) of the residual, sub-grid
correction (3, 4) and interpolation (5), while step 6 performs some (ν) iterations of a
“post-smoother”. In the definition of a MGM it is fundamental that the CGC leads to
a good approximation of the error in the subspace where the smoother is ineffective.
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The MGM has essentially two degrees of indetermination for i = 0, . . . , m − 1:
the Si (smoothers) and the Pi (projectors). The choice of the projectors Pi, and
the calculation of the matrices Ai is performed before the beginning of the MGM
procedure (pre-computing phase) with a logarithmic cost in the dimension N . The
MGM defined in (2.3) is the simplest multigrid scheme with only one recursive call
also known in literature as V -cycle.

We analyze a special instance of the MGM algorithm (2.3) for τ or circulant
two-level matrices, studied in [1]. We define R = {τ, C} in order to describe both
τ and circulant matrices, hence Rni, ni

will be τni, ni
in the τ case and Cni, ni

in the
circulant case. In our MGM the smoother is the relaxed Richardson iteration, namely
Si = INi − ωiAi (ωi is relaxing parameter that will be fixed later). The projector is
defined as Pi = Ui · Rni, ni

(pi) where pi is a real bivariate polynomial which will be
defined in (2.4) and (2.5), while Ui : Rni, ni

→ Rni+1, ni+1 is the cutting operator. The
Ui is defined as Ki ⊗Ki with Ki one-level cutting matrix defined as

τ circulant

Ki ∈ Rni+1×ni

2
664

0 1 0
0 1 0

... ... ...

0 1 0

3
775

2
664

1 0
0 1 0

... ...

0 1 0

3
775

.

For the circulant algebra at each step we halve the size ni+1 = ni

2 starting with
n0 = 2k0 , k0 ∈ N, while for the τ algebra ni+1 = ni−1

2 and n0 = 2k0 − 1.
If the coefficient matrix is Ai = Rni,ni(zi) with zi having a unique zero at w0 =

(x0, y0) of order 2q, the matrix Rni,ni(pi) is chosen with pi such that for w = (x, y)

lim sup
w→w0

∣∣∣∣
pi(ŵ)
zi(w)

∣∣∣∣ < +∞, ŵ ∈ M(w), i = 0, . . . , m− 1, (2.4)

where

0 <
∑

ŵ∈M(w)∪{w}
p2

i (ŵ), i = 0, . . . , m− 1, (2.5)

with M(w) = {(π + x, y), (x, π + y), (π + x, π + y)} being the set of the “mirror
points” of w (see e.g. [12]).

We stress as the cutting matrix Ui preserves the matrix structure at each level,
while Rni,ni(pi) selects the subspace where the smoother is ineffective. In this way,
using a Galerkin strategy to compute the matrices at each level, we obtain an MGM
according the Ruge-Stüben theory [17]. Furthermore, our MGM is optimal according
to the following proposition.

Proposition 2.1 ([2]). Let A0 = Rn0,n0(z0) with z0 being nonnegative, if for
every i = 0, . . . ,m− 1

(i) the post-smoother is Si = INi − ωiAi, where 0 < ωi ≤ 2/‖zi‖∞,
(ii) the projector Pi = UiRni,ni(pi) is such that pi satisfies the conditions (2.4)

and (2.5),
then Ai = Rni,ni(zi) with zi being nonnegative and the MGM defined in (2.3) is
optimal.

The generating functions zi are computed as zi+1 =
1
4

∑

ŵ∈M(w)∪{w}
p2

i zi(ŵ), i =

0, . . . , m − 1, while the zero wi moves into wi+1 = 2wi(mod 2π), i = 0, . . . ,m − 1,
5



0-pre 1-pre (Rich) 1-pre (Rich)
n× n 1-post (Rich) 1-post (Rich) 1-post (CG)

32× 32 266 90 47
64× 64 262 90 49

128× 128 264 89 47
256× 256 267 88 47

Table 2.1
Circulant case: Number of iterations with MGM for the solution of Cn,n(z)x = b with z(x, y) =

(2 + cos(x) + cos(y))3 and x a random vector. The smoothers are Richardson (Rich) and CG. With
s-pre (post) are denoted s iterations of pre-smoother (post-smoother).

maintaining the same order at each recursion level (see [12]). In [2] is proved that the
optimal choice for ωi, which leads to the most relevant error reduction, is 1/‖zi‖∞,
i = 0, . . . , m− 1.

In the deblurring problems considered in this work, the generating function z0 is
well approximated by a non negative even trigonometric polynomial that vanishes in
(π, π) with order 2q. Therefore, in this case, at the second level the zero moves in the
origin and it remains in the origin for each following level; hence, the sequence p(q) of
projector’s generating functions defined as

{p(q)}i =
{

(2− 2 cos(x))q(2− 2 cos(y))q, i = 0,
(2 + 2 cos(x))q(2 + 2 cos(y))q, i = 1, . . . , m− 1,

(2.6)

satisfies the conditions (2.4) and (2.5) and Proposition 2.1 holds.
Usually in a multigrid algorithm also a pre-smoother is used (in algorithm (2.3)

only a post-smoother is used in step 6) applied to x(in)
i before step 1. Clearly, if we

add a pre-smoother or we increase the number of smoothing iterations, then the con-
vergence rate of the MGM can only increase. Furthermore, different iterative methods
like Richardson, Jacobi, Gauss-Seidel and others have similar spectral behavior. To
make MGM work, a bad projector has to be cured by a stronger smoother or vice
versa. According to the multi-iterative strategy (see [1] for a recent discussion on this
topic), if we use Richardson both for the pre-smoother that for the post-smoother,
the two relaxation parameters are chosen as ω

(pre)
i = 1/‖zi‖∞ and ω

(post)
i = 2ω

(pre)
i .

Moreover if the pre-smoother or the post-smoother is a stationary iterative method,
then the remaining smoother can be also a non-stationary method like CG, in the
worst case it does not improve the convergence speed and for the optimality the other
classic smoother is sufficient. However, in Table 2.1, we can see as the use of the CG
can lead to a faster MGM. In the related example we consider the generating function
z(x, y) = (2+cos(x)+ cos(y))3 which will be the “kernel” of the PSF proposed in the
following sections, it has only one zero in (π, π) of order 6, hence, according to (2.6),
the sequence of projector’s generating functions p(3) leads to an optimal MGM.

From Table 2.1 the optimality of our MGM in the Circulant case is numerically
evident, a constant number of iterations is required for the convergence, but analo-
gous results hold in the τ case as well. The procedures are implemented in Fortran
90 using double precision, x(0) is the null vector and the MGM was stopped when∥∥r(k)

∥∥ / ‖g‖ < 10−5, with r(k) being the residual to the k-th iteration. The problem
is solved directly on a grid of size 8× 8.

The structure of the cutting matrix Ui implies that the bandwidth along each
direction is about halved at each recursion level and tends to double the bandwidth
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of the projector (all projectors at each level have the same bandwidth). In this way
the recursive algorithm is well defined and the number of the nonzero coefficients
is smaller than the matrix dimensions. Moreover the number m of recursion levels
is lesser than min(log2(n1), log2(n2)). It follows that, since the computational cost
at each level is about the same of the smoother, with the proposed smoothers and
band matrices, the computational cost of one MGM (V -cycle) iteration is of O(N)
arithmetic operations. For more details see [1, 2].

2.3. The MGM for BTTB matrices. We generalize the MGM previously
defined for the two-level τ algebra to the two-level Toeplitz class using the two-level
generalization of the relation (2.2), which characterizes any Toeplitz matrix as its
natural τ preconditioner plus an Hankel correction.

In the 1D case, it is possible to preserve the exact Toeplitz structure at each level
without cutting much information defining the projector as Pi = Ki{t}Tni

(pi), where
t is defined as the degree of p0 minus 1 (we stress that the degree of pi is constant
with respect to i) and Ki{t} =

[
0 t

ni+1−t | Kni−2t
ni+1−t | 0 t

ni+1−t

] ∈ R(ni+1−t)×ni , with
0β

α ∈ Rα×β the null matrix and Kni−2t
ni+1−t ∈ R(ni+1−t)×(ni−2t) is the usual cutting

matrix where we put in evidence the dimensions instead of the recursion levels. To
apply the MGM recursively, we must start from dimension n0 = 2k0 − 1− 2t, k0 ∈ N,
hence the dimension of problem at each sublevel is ni = 2k0−i − 1 − 2t. The matrix
Ki{t} is the cutting matrix that preserves the Toeplitzness at each level cutting the
less information as possible.

Analogously, in the 2D case, pi is a suitable bivariate nonnegative polynomial of
partial degrees tj + 1, with j = 1, 2. Let Ui{t} = Ki{t1} ⊗ Ki{t2}, we define Pi =
Ui{t}Tni,ni(pi). Therefore, the two-level Toeplitz matrix at the multigrid recursion
level i + 1 is Tni+1,ni+1(zi+1) = PiTni,ni(zi)(Pi)H ∈ RNi+1×Ni+1 for i = 0, . . . ,m− 1,
where ni+1 is defined as in the one-level case.

Despite of its simplicity, the proposed technique is very effective since the number
of elements that we neglect is reasonably low. In the two-dimensional case the size
of the information that we lose is proportional to n, but also in this case the MGM
maintains an optimal behavior as stressed by the following example. We consider
the same generating function z(x, y) = (2 + cos(x) + cos(y))3 of the Table 2.1, which
vanishes in (π, π) with order six. In [1] is experimentally shown that condition (2.4) is
rather strict and that for zeros of order six it is sufficient that the generating function
of the projector vanishes with order four. Therefore, in order to cut less elements
and avoid computationally expensive projectors, we take the sequence of projector’s
generating functions p(2) instead of p(3) required by the Proposition 2.1 and hence
t1 = t2 = 1. The problem is solved directly on a grid of size (7 − 2t1) × (7 − 2t2),
t1 = t2 = 1. From Table 2.2 the number of iterations, that the MGM requires
to converge, reduces increasing the size of the problems. This stems from the fact
that increasing n the percentage of the elements that we neglect, that are about 4n,
decreases respect to the algebraic size of the problem, which is n2 × n2.

Finally, we remark that this MGM for two-level Toeplitz matrices can be consid-
ered an extension of that proposed in [9]. Indeed, in the case where z0 vanishes only in
(π, π) or in (0, 0) with order almost two, in [9] is proved that the proposed MGM has
a level-independent convergence and besides it is exactly the same here defined in the
case of the sequence p(1). Furthermore, in this work we consider generating functions
having zeros with order 2q also greater than two, then we define the choice of the
sequence p(q) according to the τ algebra case while the cutting matrix is modified in
order to maintain the two-level Toeplitz structure at each recursion level. In Table 2.2
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p(2), ξ = 2 p(1), ξ = 0
n× n 1-pre (Rich) 1-pre (Rich) 1-pre (Rich)

1-post (Rich) 1-post (CG) 1-post (CG)
(31− ξ)× (31− ξ) 171 94 111
(63− ξ)× (63− ξ) 167 90 129

(127− ξ)× (127− ξ) 157 80 135
(255− ξ)× (255− ξ) 132 75 144

Table 2.2
Toeplitz case: Number of iterations with MGM for the solution of Tn,n(z)x = b with z(x, y) =

(2 + cos(x) + cos(y))3 and x a random vector. The smoothers are Richardson (Rich) and CG. With
s-pre (post) are denoted s iterations of pre-smoother (post-smoother).

we can see that for this example p(1) is less powerful than p(2) and it is not sufficient
to obtain an optimal MGM.

3. THE (OPTIMAL) MGM IS NOT A REGULARIZER. For the P-BCs
the proposed MGM is effective in the nonsymmetric case as well, while for D-BCs,
since all τ matrices are symmetric, it works only for symmetric PSF. For non symmet-
ric blurring functions, let s be the quadrantally symmetric blurring function given by
si,j = (zi,j + zi,−j + z−i,j + z−i,−j)/4, then Tn1, n2(s) can be a good preconditioner for
Tn1, n2(z). This strategy has a “structural” interpretation since the blurring function
z is replaced by its symmetrization s and if z is close to symmetric then z− s is small
and, by linearity, Tn1, n2(z)−Tn1, n2(s) is small in norm: consequently it is reasonable
to expect that the preconditioner Tn1, n2(s) should lead to good results.

In the following tests we will use a PSF such that the resulting blur operator
is a band approximation of the classical Gaussian blur whose Fourier coefficients
are positive, symmetric and decay exponentially and whose generating function is
close to zero in a neighborhood of (π, π) and is positive elsewhere. We define it
by the “kernel” F (x, y) = (2 + cos(x) + cos(y))3, that vanishes with order six in
(π, π) and is positive elsewhere. The blur effect is increased multiplying F (x, y) by a
ψ(x, y) > 0 obtaining a PSF with a larger support. In this way the generating function
of PSF is z(x, y) = F (x, y)ψ(x, y)/c, where c is a constant that is chosen equal to the
sum of the Fourier coefficients of F (x, y)ψ(x, y) like that ‖An1, n2(z)‖∞ = 1 with
A ∈ {T, C} and the PSF calculates a weighted average of the nearest pixels (see
Fig. 3.1). This is a good approximation of an experimental Gaussian with a compact
support. Furthermore, since this paper is a preliminary work where we apply the
MGM proposed to image deconvolution problems, we use a polynomial and not a
Gaussian blur in order to satisfy exactly the conditions 2.4 and 2.5 which lead to
optimality. The Gaussian blur, like other types of BCs, will be subject of future work.
We stress that however the conditioning number of An1, n2(z) is O(min(n1, n2)6) (see
[5]), then the resulting sequence is highly ill-conditioned.

If the observed image is affected by noise then the latter is amplified in the
resolution of the linear system and the deconvolved image is much different from the
original. According to Section 1 and to the theory of Toeplitz matrices (see e.g. [21]),
if z(π, π) = 0 for i sufficiently large the eigenvalue λi of An1, n2(z) approaches zero
and is associated to a highly oscillating eigenvector (high frequency). It follows that
the inversion of a small λi amplifies the noise coefficients and the deconvolved image
is corrupted; indeed a small percentage of noise can produce sensible variations in the
deconvolved image.
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PSF.
Original image

(size 300× 300).

Blurred and noised image
(inner part 256× 256).

Fig. 3.1. PSF and sequence images of “satellite”.

In our tests we add a 2% of noise to the blurred image b adding to it n = 2‖b‖2‖c‖2 c,
where c = rand(N, 1) in Matlab notation is a vector of N random components with
uniform distribution, i.e. g = b+n. Since we can not expect to obtain in the solution
more than two digits of precision, the MGM is stopped when

∥∥r(k)
∥∥ / ‖g‖ < 10−4 with

r(k) being the residual to the k-th iteration. In the MGM we perform two iterations of
the pre-smoother that is relaxed Richardson with ωi = 1/ ‖z‖∞ and two iterations of
the post-smoother that is CG without preconditioning. At each level we increase by
one the number of smoother’s iterations which does not increase the computational
cost, see [2]. In Fig. 3.1 we can see the original image (the “satellite”1 [15]) and its
blurred and noised version used in the experiments. The original image of size 300 by
300 pixels has a black border greater than the support of the PSF. Therefore all the
different kinds of boundary conditions are equivalent from a modelistic viewpoint. In
this way the results are independent of border perturbations and we can focus on the
properties of the solver (our MGM).

Several iterative methods like Richardson and CG without preconditioning have
regularization properties: the error first decreases, reaches a minimum value and
after increases. The error shows this behavior since these iterative methods first solve
the problem in the low frequencies subspace where there is not the noise and after
in the high frequencies subspace (where the noise lives). In Table 3.1 we can see
that with our MGM and P-BCs the relative error norm increases already at the first

1developed at the US Air Force Phillips Laboratory, Lasers and Imagine Directorate, Kirtland
Air Force Base, New Mexico
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#(Iter.) 1 30 60 85
‖error‖2 1.876715E+06 2.702400E+06 2.702924E+06 2.702967E+06

Table 3.1
Relative error in ‖ · ‖2 for the deconvolution with P-BCs without regularization.

iteration tending to a steady value; the same result holds for D-BCs as well. Therefore,
the described MGM does not have any regularization properties like Richardson and
CG. Its optimality prevents it to be a good regularizer since at each iteration it
approximates the error in the whole frequency space and not only in a subspace:
therefore it is disturbed by noise at each iteration. In fact at the first level the coarse
grid correction projects the problem in the subspace generated by the high frequencies
and solves it also in the components corrupted by noise. In the literature a few
techniques are proposed to solve this problem, some of which are also independent
of the method used to solve the linear system. The probably most known technique,
that we will use in the next section, was defined by Tikhonov in [20].

However, thanks to the previous observations, with different choice of the projec-
tor it is possible to define iterative multigrid regularizing methods, like Landweber
and CG for normal equations, that filters the noise at each level and that does not re-
quire any Tikhonov regularization (see [10] where a blending of a geometric multigrid
and a specialized V -cycle for structured matrices is used for regularizing purposes).

4. REGULARIZATION STRATEGIES.

4.1. Tikhonov regularization. The regularization technique proposed by
Tikhonov is based on the idea of reconstructing an image like the original and at
the same time to control the noise effects. The minimum problem (1.1), now is refor-
mulated as

min
f∈RN

{∥∥∥B̃f − g
∥∥∥

2

2
+ µ ‖f‖22

}
. (4.1)

If µ = 0 then the solution of (4.1) is also solution of (1.1), but it is distorted by
noise. Increasing µ we increase the weight of the part that takes under control the
noise effects (‖f‖22), but the solution calculated is a little different from the solution
of (1.1), i.e. the computed image is a little bit modified to reduce the noise effects.
Therefore, the parameter µ is a weight which allows one to increase or decrease the
noise distortion and the quality of the image. It follows that the choice of µ is crucial
to obtain a deblurred image as close as possible to the true image. There exist
many techniques to define the optimal value of µ and they are related to a theory
independent of the method used to solve the linear system: thus in this paper the
value of µ is determined experimentally like the value that minimizes the relative error
2-norm, i.e.

∥∥f − f (k)
∥∥

2
/ ‖f‖2.

The minimization problem (4.1) can be reformulated with BCs and normal equa-
tions as

(BT B + µI)f = BT g, (4.2)

where I is the identity matrix with the same dimensions of B. The numerical solution
of (4.2) has the main disadvantage that the conditioning number doubles when µ ≈ 0.
Furthermore, for D-BCs the matrix BT B is no longer a BTTB (for P-BCs we do not
have this problem thanks to the matrix algebra structure of BCCB).
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In the case of D-BCs, we propose a technique that allows to approximate the
solution f of (4.2) solving a linear system with coefficient matrix BTTB. It is based
on the same idea that in Subsection 2.3 was used to define a projector which preserves
the toeplitzness of the coefficient matrix at each multigrid level. For the sake of
notational simplicity, we first consider the 1D case (Toeplitz matrix) which can be
easily extended to the 2D case using tensor arguments. Let

(Tn(z)Tn(z) + µIn)fn = Tn(z)gn (4.3)

be the linear system that we have to solve. Since Tn(z) is symmetric, Tn(z)2 is
symmetric but it is not Toeplitz unless Tn(z) is a diagonal matrix. If the bandwidth
of Tn(z) is 2b + 1 then Tn(z)2 = Tn(z2) + Hn(z2), where Hn(z2) has first and last
2b nonzero rows and columns. Cutting the matrix Hn(z2) we obtain a system with a
solution “near” fn but with Toeplitz coefficient matrix:

Tn(z2 + µ)f̃n = Tn(z)gn, (4.4)

where the smaller b the more f̃n is near to fn. Since in the problems considered
in this paper b is small, solving the system (4.4) we do not lose much information.
The coefficient matrix is band Toeplitz positive-definite thus it is possible to use our
MGM with good results as stressed in the experimentation of Section 5. However, we
can obtain a fast solver, possibly improving the quality of the deblurred image, also
solving the linear system (4.3) with CG and using the MGM applied to the linear
system (4.4) as preconditioner.

In the 2D case we apply the same strategy along each dimension. Therefore, for
both P-BCs and D-BCs, we solve the linear system

An1, n2(z
2 + µ)f = An1, n2(z)g. (4.5)

4.2. Riley regularization. We have assumed that z(x, y) is real, even in both
variables and nonnegative, hence An1, n2(z) is positive definite. It follows that our
MGM can be applied without passing to the normal equations and we can apply a
regularization technique firstly formulated by Riley in 1955 [16]. With the appropriate
BCs, instead of solving the linear system (4.2) we solve (B + θI)f = g, which is
equivalent to

min
f∈RN

{∥∥∥B
1
2 f −B− 1

2 g
∥∥∥

2

2
+ θ ‖f‖22

}
. (4.6)

The considered technique can be applied also under weaker assumptions: experi-
mentally, it is observed that the Riley method works in the case where B is only
numerically positive definite i.e. when B shows few negative eigenvalues very small
in modulus.

We stress that the factor B− 1
2 g can cause a little amplification of the noise as is

also verified experimentally in the next section. Usually we have θ > µ. From (4.6)
it follows that, with the considered BCs, we solve

An1, n2(z + θ)f = g. (4.7)

5. NUMERICAL EXPERIMENTS. In this section we use the two tech-
niques presented in the previous sections to deblur the “satellite” image with a noise
of 2% (see Fig. 3.1).
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Tikhonov with µopt

error norm = 0.1578
Riley with θopt

error norm = 0.1948

Fig. 5.1. Deblurred image with P-BCs.

Tikhonov with µopt

error norm = 0.1579
Riley with θopt

error norm = 0.1957

Fig. 5.2. Deblurred image with D-BCs.

For the Tikhonov method, we solve the linear system (4.5), where the parameter
µopt is chosen as the value that minimizes the 2-norm of the relative error. In the
same way, for the Riley method, we solve the system (4.7) with θopt. We observe that
θopt > µopt, probably because we have to reduce the noise amplification deriving from
B− 1

2 g. Therefore, the linear system obtained with Riley is better conditioned than
with Tikhonov and the MGM converges with a less number of iterations. On the other
hand, the factor B− 1

2 in the minimization problem (4.6) amplifies a little the noise and
the image deblurred with Tikhonov is slightly better than the one with Riley. Indeed,
using P-BCs, the relative deconvolution error in 2-norm with Tikhonov is 0.1578 while
with Riley is 0.1948; the computed images are shown in Fig. 5.1. With D-BCs we
obtain similar result with about the same number of iterations (see Fig. 5.2). Indeed
the relative deconvolution error in 2-norm with Riley is 0.1957 while with Tikhonov,
using the approximation technique presented in Section 4, it is 0.1579. Since the
original image has a black border grater than the support of the PSF, both the two
types of BCs are equivalent and it is natural to obtain similar results. Moreover,
this shows that the “cutting” technique proposed in Section 4 for BTTB matrices is
effective also in the 2D case where the rank correction is proportional to n.

At the end (Table 5.1) we compare the proposed MGM (p(2)) with the MGM
proposed in [9] (p(1)) and the classic MGM (linear interpolation) used for image
deconvolution in recent papers [7, 13]. However in the latter two works the linear
interpolation is applied to a PSF that is related to the dense Gaussian kernel that it not
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θ 10−2 10−3 10−4 10−5

p(2) 15 49 73 73
p(1) 15 55 103 233

linear interpolator 15 45 286 > 1000
Table 5.1

Number of iterations for the deconvolution of satellite with P-BCs using Riley regularization.

considered in this paper. For dense Gaussian kernel, there is no generating function
in the usual sense, or the generating function has a zero of infinite order at [π, π].
Furthermore in [7, 13] the authors used as smoother the CG with preconditioning
where the preconditioner is the cosine or circulant optimal preconditioner. Here we
use simpler smoothers, and we see as our projector works much better than the linear
interpolation when the relaxation parameter decreases. Furthermore, using PCG as
smoother and our projector we can improve the convergence behavior. In Table 5.1
the number of iterations is reported for decreasing values of θ, for the three different
multigrid methods using Riley regularization (also used in [7, 13]) and P-BCs. We
stress as with our MGM the number of iterations tends to a constant value while with
the other methods it sensibly increases.

6. CONCLUSION. In this paper we have considered the deconvolution of
blurred and noised images with shift-invariant PSF having a small support using
Dirichlet or periodic BCs. The proposed MGM can be used to solve rapidly (opti-
mally) the linear system, but it does not have any regularization property in itself.
Therefore, when the images are distorted by noise, it is necessary to use classic regu-
larization techniques like Tikhonov. However, with a different choice of the projectors
it is possible to obtain a MGM which is a regularizing method instead of a fast solver
combined with the Tikhonov regularization (see [10]). A work to be done in the fu-
ture is to analyze the behavior of our MGM with more “complicated” PSF and more
powerful BCs (Neumann and anti-reflective).
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