
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 4, MAY 2004 767

A Multilayer IP Security Protocol for TCP
Performance Enhancement in Wireless Networks

Yongguang Zhang, Member, IEEE

Abstract—Transmission control protocol (TCP) performance
enhancement proxy (PEP) mechanisms have been proposed, and
in some cases widely deployed, to improve TCP performance
in all-Internet protocol (IP) wireless networks. However, this
technique is conflicted with IP-security (IPsec)—a standard IP
security protocol that will make inroad into wireless networks.
This paper analyzes the fundamental problem behind this conflict
and develops a solution called multilayer IP-security (ML-IPsec).
The basic principle is to use a multilayer protection model and a
fine grain access control to make IP security protocols compatible
with TCP PEP. It allows wireless network operators or service
providers to grant base stations or wireless routers limited
and controllable access to the TCP headers for performance
enhancement purposes. Through careful design, implementation,
and evaluation, we show that we can easily add ML-IPsec to
existing IPsec software and the overhead is low. We conclude that
ML-IPsec can help wireless networks provide both security and
performance.

Index Terms—IP-security (IPsec) protocol, network security,
transmission control protocol (TCP) performance enhancement
proxy (PEP), wireless networks.

I. INTRODUCTION

T RANSMISSION control protocol (TCP) is the stan-
dard transport protocol for all-IP wireless networks,

including third-generation/fourth-generation (3G/4G) cellular
networks, satellite networks, wireless PAN, and mobile ad-hoc
networks. However, it is well understood that standard TCP
(i.e., TCP-Reno [1]) does not achieve optimal performance
when operated over all these wireless networks [2]–[5]. This
is because many such networks possess certain characteristics
that are “unfriendly” to TCP, such as noncongestion losses [2],
[6]–[8], long delays [3], [9], variable bandwidth [4], [10], [11],
and dynamic changing topology [5]. Transport-aware link layer
mechanisms are often necessary to correct these problems. For
example, TCP snooping can drastically improve TCP perfor-
mance over a lossy wireless link if the base station can inspect
every TCP packets and deliberately delay or drop certain ones
[7], [8]. Other similar techniques like indirect connections and
explict notifications also provide improvements in wireless
networks [6], [8], [12]. Furthermore, many satellite networks
have deployed TCP spoofing and booster mecahnisms to
reduce the impact of latency [9], [13]–[15]. Finally, the TCP

Manuscript received February 10, 2003; revised September 26, 2003.
The author is with HRL Laboratories, LLC., Malibu, CA 90265 USA (e-mail:

ygz@hrl.com).
Digital Object Identifier 10.1109/JSAC.2004.825993

performance over a wireless ad-hoc network can be enhanced
if intermediate nodes can send explicit link failure notifications
to the TCP sender [5], [16].

Collectively, these performance enhancement mechanisms
are called TCP performance enhancing proxy (PEP) [17]. It
refers to the category of techniques that intermediate nodes
in the network interact with the TCP layer and influence its
end-to-end behavior.

Take TCP snooping [7], [8], for example, the wireless base
station inspects each TCP packet in transit and matches the TCP
data packet in one direction with the TCP acknowledgments in
the other direction. If packet losses are detected, the base station
will retransmit the lost segments and suppress the “loss signals”
(such as three-duplicated-acks) from reaching back to the TCP
sender. Studies have shown that this improves the performance
significantly [8].

Likewise in satellite networks, a PEP agent is installed at the
satellite uplink gateway between the Internet and the satellite
network. The agent inspects every TCP packets between these
two networks. For data packets, the PEP agent generates and
sends back “premature” acknowledgments to the TCP senders,
without waiting for the data segments to be actually delivered
and acknowledged by their intended receivers. These premature
acknowledgments are specially formatted to be indistinguish-
able from the real acknowledgments—except that they come
sooner—so as to shorten the perceived round-trip delay. Studies
and practices have shown that this technique plays a critical role
in the performance of satellite networks [9], [14], [18]–[20]. Be-
cause it is nonintrusive and immediately deployable, TCP PEP
has been widely deployed in today’s satellite networks and con-
sidered as the industry’s best practice.

However, TCP PEP is conflicted with IPsec, an upcoming
standard for secure communications in the Internet. Since IPsec
applications and IPsec-enabled hosts are increasingly popular
in the Internet, it is inevitable that IPsec will be used in all-IP
wireless networks. As we will explain in Section II, if IPsec is
used, TCP PEP will not function and as a result the performance
of the wireless networks will degrade.

In this research, we first analyze the relationship between
TCP PEP and IPsec and point out that IPsec’s end-to-end
protection model is unsuitable for many advanced networking
paradigms that have been developed lately. We further develop
a multilayer protection model for IPsec that can be integrated
with TCP PEP. Through implementation and performance
evaluation, we show that this is a viable solution for providing
both security and performance in wireless networks.

0733-8716/04$20.00 © 2004 IEEE

768 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 4, MAY 2004

II. ANALYSIS OF THE IMPLICATION OF IPSEC

IN WIRELESS NETWORKS

A. IPsec and End-to-End Security Protection Model

IPsec is a standard mechanism for providing secure commu-
nications over the public Internet [21]. The fundamental concept
of IPsec is as follows. Before an IP datagram is sent to the un-
trustworthy Internet, it is encrypted and/or signed using an IPsec
protocol. When it reaches the destination side, the datagram is
decrypted and/or verified. There are two IPsec protocols: au-
thentication header (AH) [22] for integrity but without confiden-
tiality, and encapsulating security payload (ESP) [23] for confi-
dentiality with optional integrity and authentication. There are
also two modes of use: transport mode for protecting upper layer
protocols and tunnel mode for protecting the entire datagram.

The granularity of security protection in IPsec is at the data-
gram level. IPsec treats everything in an IP datagram after the IP
header as one integrity unit. Usually, an IP datagram has three
consecutive parts: the IP header (for routing purpose only), and
the upper layer protocol headers (e.g., the TCP header), and the
user data (e.g., TCP data). In transport mode, an IPsec header
(AH or ESP) is inserted after the IP header and before the upper
layer protocol header to protect the upper layer protocols and
user data. In tunnel mode, the entire IP datagram is encapsu-
lated in a new IPsec packet (a new IP header followed by an AH
or ESP header). In either mode, the upper layer protocol headers
and data in an IP datagram are protected as one indivisible unit.

The keys used in IPsec encryption and authentication are
shared only by the sender-side and receiver-side security
gateways. All other nodes in the public Internet, whether they
are legitimate routers or malicious eavesdroppers, see only
the IP header and will not be able to decrypt the content, nor
can they tamper it without being detected. Traditionally, the
intermediate routers do only one thing–forwarding packets
based on the IP header (mainly the destination address field);
IPsec’s “end-to-end” protection model suits well in this lay-
ering paradigm.

B. Conflicts Between IPsec and TCP PEP

Unfortunately, IPsec is conflicted with TCP PEP. TCP PEP
operates on two pieces of state information stored in the headers
of a TCP packet. They are TCP flow identification and sequence
numbers within the flow. TCP flow identification is used to seg-
regate TCP sessions for each TCP packet. It consists of source
and destination IP addresses (both stored in IP header), as well
as source and destination port numbers (both stored in TCP
header). The sequence numbers are used to match acknowledg-
ments with the data segments. This number is stored in TCP
header. Without these two pieces of information, TCP PEP will
not function.

When a TCP session is transported by an IPsec ESP protocol,
the TCP header is encrypted inside the ESP header. It is, thus,
impossible for an intermediate gateway outside sender or re-
ceiver’s security enclaves to analyze an IPsec header to extract
TCP flow identification and sequence number. This will, in-
evitably, break the TCP PEP mechanisms. The PEP agent cannot
obtain the information needed to generate acknowledgments or
to retransmit data segments.

IPsec AH protocol also presents a problem for TCP PEP,
which often modifies the TCP acknowledgment (ACK) stream
in order to influence the TCP behavior. The authentication pro-
tection in AH does not allow this mode of operation.

In a wireless network, if IPsec is deployed end-to-end be-
tween the Internet server and the user host and if the TCP ses-
sions are protected in this IPsec, the TCP PEP mechanism will
not be able to provide performance enhancement. The perfor-
mance of the wireless network will suffer.

C. Fundamental Limitations of End-to-End Protection

The implication of IPsec is more than TCP PEP and more
than wireless networks. Fundamentally, IPsec’s “end-to-end”
protection model and its strict layering principle are unsuitable
for an emerging class of new networking services and applica-
tions. Unlike in the traditional minimalistic Internet, interme-
diate routers begin to play more and more active roles. They
often rely on some information about the IP datagram payload,
such as certain upper layer protocol header fields, to make intel-
ligent routing decisions. In other words, routers can participate
in a layer above IP. In addition to the “transport-aware link layer
mechanisms” we discussed earlier, other examples of such ser-
vices and applications are as follows.

• Traffic Engineering. The flow information in IPv4 is en-
coded in both the IP header and the upper-layer protocol
headers, such as TCP or UDP port numbers. Therefore,
any mechanism that discriminates between flows inside
the network (generally called flow classification) will
need to access the upper-layer protocol headers. If this is
done inside the network (as opposite to classification at
end-points), it may potentially conflict with IPsec. Flow
classification is essential in providing rich classes of
services and quality-of-service (QoS) support. These in-
clude flow-based and class-based queueing [24], random
early detection (RED) [25], router-based congestion
control and policing [26], integrated services [resource
reservation protocol (RSVP)] and differentiated services
(diffserv) [multiprotocol label switching (MPLS)], etc.

• Traffic Analysis. Legitimate network engineers and ad-
ministrators often need the ability to monitor and ana-
lyze traffic from a network to perform variety of tasks
like load/traffic control, capacity planning, diagnosis, in-
trusion detections, and firewalls. These tasks often require
the ability to access upper-layer protocol headers within
packets, while the advocated proliferation of IPsec encryp-
tion can prevent such analysis [27], or limit its granularity
(for example, individual nodes or flows are inseparable
in a IPsec tunnel between two gateways). The fact that
such analysis is both necessary and essential means that
we should find a way of accommodating both needs.

• Application-Layer Proxies/Agents. Some Internet routers
can provide application-layer services for performance
gains. For example, an intermediate router can become a
transparent web proxy when it snoops through the TCP
and then HTTP header of an IP datagram to determine the
web page request, and serves it with the web page from
the local cache. It is transparent to end-users but boosts

ZHANG: MULTILAYER IP SECURITY PROTOCOL FOR TCP PERFORMANCE ENHANCEMENT IN WIRELESS NETWORKS 769

the responsiveness because the delivery paths for web
request and data between the intermediate router and the
web site server are eliminated.

• Active Networks. One step further, the active network
architecture is a new networking paradigm in which the
routers perform customized computation on the data
flowing through them. Conceptually speaking, a single
IP datagram can carry not only upper-layer protocol
headers and user data, but also “code”—a set of exe-
cutable instructions to be interpreted by the intermediate
routers, for describing, provisioning, or tailoring network
resources and services, and to achieve the delivery and
management requirements. Obviously, the “code” portion
of the IP datagram cannot be protected “end-to-end”
under IPsec.

All these mechanisms rely on intermediate network nodes to
perform “intelligent operations” based on the information en-
coded in the IP datagram payload. Although many view them
as violations of the layering principle, many do have practical
values in real world despite such concerns. However, IPsec ad-
vocates end-to-end security that prevents such access. This fun-
damental conflict makes it a very difficult problem to provide
both security and extensibility, in one unified platform.

D. Approaches

The goal of this research is to develop a solution to resolve
the conflicts between IPsec and TCP PEP. We first study several
other approaches that address this problem.

1) Replacing IPsec with a transport-layer security mecha-
nism. This approach is to use a transport-layer security
mechanism as an alternative to IPsec to provide security
services. The transport-layer mechanism, such as secure
sockets layer (SSL) or transport layer security (TLS) [28],
operates above TCP and works well with TCP PEP: it en-
crypts the TCP data while leaving the TCP header in un-
encrypted and unauthenticated form so that intermediate
nodes can make use of the TCP state information encoded
in the TCP header. In fact, many Internet applications al-
ready implement security with SSL or TLS, such as most
web browsers (using HTTPS protocol) and mail programs
(using SIMAP and SPOP). However, letting the entire
TCP header appear in clear text exposes several vulner-
abilities of the TCP session to a variety of TCP protocol
attacks (in particular traffic analysis), because the identity
of sender and receiver are now visible without confiden-
tiality protection. Further, SSL/TLS works only on TCP,
and not on user datagram protocol (UDP), thus, the range
of applications is smaller than IPsec.

2) Tunneling one security protocol within another. Alterna-
tively, it is possible to tunnel SSL/TLS inside an IPsec
ESP–letting SSL/TLS protect the TCP data and IPsec pro-
tect the TCP header. However, there is a problem here too
because IPsec encrypts both TCP header and TCP pay-
load (SSL/TLS-protected data) as a whole. Thus, the en-
cryption/authentication/decryption has to be done twice
on the TCP data part. The intermediate router, for ex-
ample, must decrypt the entire packet to access just the

Fig. 1. Realm of trust in a wireless network.

TCP header information. This is obviously an unneces-
sary waste of resources.

3) Using a transport-friendly ESP format. The trans-
port-friendly ESP (TF-ESP) protocol format proposed by
Bellovin of AT&T Research [29] modifies the original
ESP protocol to include limited TCP state information,
such as flow identifications and sequence numbers, in a
disclosure header outside the encryption scope (but au-
thenticated). This approach will work well for some TCP
PEP mechanisms such as TCP snooping for wireless net-
works [8], but it does not suite for TCP spoofing because
a write access is needed. To be able to support premature
ACK, the TCP state information needs to be placed
outside the authentication scope as well. Without proper
integrity protection, this can be dangerous. Further, the
unencrypted TCP state information is made available
universally, including to untrustworthy nodes, which
creates vulnerability for possible attacks. In addition,
TF-ESP is not flexible enough to support all upper-layer
protocols.

4) Splitting IPsec into Two Segments. Consider a typical ter-
restrial wireless network and a typical satellite network
in Fig. 1. Each network has three entities: the user (end
host), the gateway, and the server (end host), and two seg-
ments in the communication path: the wireless network
between the user and the gateway, and the public Internet
between gateway and the server. The wireless network
segment is operated and managed by a network operator.
If the users can trust this entity to provide proper security,
it can put the PEP agent (at the Gateway) within its realm
of trust. For example, the user can use the link-layer se-
curity mechanisms (such as cellular or satellite channel
encryption) to send datagram over the wireless link, and
use IPsec between the gateway and the server. In ad-
dition, it can use another IPsec between user and the
gateway for additional protection over the wireless link.
Obviously, this approach requires a total trust to the net-
work operator.

Since all the above approaches have their limitations, we thus
propose a fifth approach–to develop a multilayer security pro-
tection scheme for IPsec. The idea is to divide the IP datagram
into several parts and apply different forms of protection to dif-
ferent parts. For example, the TCP payload part can be protected

770 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 4, MAY 2004

Fig. 2. Multilayer protection model for TCP.

between two end points while the TCP/IP header part can be
protected but accessible to two end points plus certain routers in
the network. It allows TCP PEP to coexist with IPsec, and pro-
vides both performance improvement and security protection to
wireless networks. The rest of this paper will describe the prin-
ciple, the design, and an evaluation of this approach.

III. PRINCIPLE OF MULTILAYER SECURITY

PROTECTION

Our approach is called multilayer IP-security (ML-IPsec).
It uses a multilayer protection model to replace the single
end-to-end model. Unlike IPsec where the scope of encryption
and authentication apply to the entire IP datagram payload
(sometimes IP header as well), our scheme divides the IP
datagram into zones. It applies different protection schemes
to different zones. Each zone has its own sets of security
associations, its own set of private keys (secrets) that are not
shared with other zones, and its own sets of access control rules
(defining which nodes in the network have access to the zone).

When ML-IPsec protects a traffic stream from its source to its
destination, it will first rearrange the IP datagram into zones and
apply cryptographic protections. When the ML-IPsec protected
datagram flows through an authorized intermediate gateway, a
certain part of the datagram may be decrypted and/or modified
and reencrypted, but the other parts will not be compromised.
When the packet reaches its destination, ML-IPsec will be able
to reconstruct the entire datagram. ML-IPsec defines a complex
security relationship that involves both the sender and the re-
ceiver of a security service, but also selected intermediate nodes
along the delivery path.

For example, a TCP flow that desires link-layer support
from the network can divide the IP datagram payload into two
zones: TCP header and TCP data. The TCP data part can use
an end-to-end protection with keys shared only between the
source and the destination (hosts or security gateways). The
TCP header part can use a separate protection scheme with keys
shared among the source, the destination, and certain trusted
intermediate node (see Fig. 2). This way, no one in the public
Internet other than the source, the destination and the trusted

intermediate nodes has access to TCP header, and no one other
than source and destination (not even the trusted intermediate
node) has access to TCP data.

This scheme in effect provides a finer-grain access control to
the IP datagram. Since ML-IPsec allows network operators and
service providers to grant intermediate nodes limited access to
IP datagram contents (such as TCP header), such access must
be granted in a secure and controllable way. The identity of the
intermediate nodes must be authenticated (using an out-of-band
mechanism such as a public-key infrastructure) to prevent any
man-in-the-middle attack. After authentication, keys or shared
secrets corresponding to the authorized IP datagram zones must
be distributed to the intermediate nodes, also using out-of-band
mechanisms like Internet key exchange (IKE) [30].

IV. ML-IPSEC DESIGN DETAILS

The architecture of ML-IPsec embraces the notion of zones,
a new type of security association, the new AH and ESP header
formats, and the inbound/outbound processing of ML-IPsec
protocol packets. Their designs follow these two objectives:
First, ML-IPsec should be fully compatible with the original
IPsec in both protocol formats and processing software. Second,
ML-IPsec should be based on the data structures and building
blocks of IPsec, so that it can be easily added to an existing
IPsec implementation. The purpose of these requirements is
to reduce the deployment barrier: wherever IPsec can be used,
ML-IPsec is also applicable.

A. Zones

A zone is any portion of IP datagram under the same security
protection scheme. The granularity of a zone is 1 octet. The
entire IP datagram is covered by zones except the IP header
in the transport modes. Zones cannot overlap. Using the same
TCP example, the portion of the IP datagram that contains TCP
header (21st to 40th octet) is zone 1, and the TCP data portion
(41st and above octet) is zone 2 (assuming transport mode and
no TCP options).

A zone need not be a continuous block in an IP datagram,
but each continuous block is called a subzone. A zone map is a

ZHANG: MULTILAYER IP SECURITY PROTOCOL FOR TCP PERFORMANCE ENHANCEMENT IN WIRELESS NETWORKS 771

Fig. 3. Zone map sample.

mapping relationship from octets of the IP datagram to the as-
sociated zones for each octet. Fig. 3 shows a zone map example.

The zone map is a constant in a security relationship. That
is, the zone boundaries in each IP datagram must remain fixed
in the lifetime of the security association; otherwise, it will be
extremely difficult to do zone-by-zone decryption and authenti-
cation. Since IP datagrams are variable in length, the zone that
covers the last part of the datagram, usually the user data, should
also be variable in size. Zone 3 in Fig. 3 is an example. It is also
possible, theoretically, to define a phantom zone that does not
correspond to any byte in an IP datagram.

B. Composite Security Association (SA)

1) Security Association (SA) and Composite SA: SA [21] is
a key IPsec concept to define a simple security relationship from
the sender to the receiver that affords the protection service.
ML-IPsec, however, requires a much more complex security re-
lationship to include sender and receiver, as well as the selected
intermediate nodes. Since the security service is zone-by-zone,
conceptually, we can use an individual security relationship to
cover each zone, and then build a composite relationship to
cover the entire IP datagram. Mapping this idea to the basic SA
concept, ML-IPsec defines a new type of SA called composite
SA (CSA). CSA is a collection of SAs that collectively afford a
multilayer security protection for the traffic stream.

A CSA has two elements. The first element is a zone map
to specify the coverage of each zone in an IP datagram. The
zone map must be consistent in all nodes involved in the same
ML-IPsec relationship. The second element in a CSA is a zone
list–a list of SAs, one for every zone. In IPsec, SA contains
a set of IPsec operational parameters including cryptographic
algorithm, keys, lifetime, etc. However, some of the fields are
used differently in ML-IPsec. The following fields, for example,
are applicable only on the corresponding zone of the SA:

• lifetime of this SA;
• AH authentication algorithm, keys, etc;
• ESP encryption algorithm, keys, IV mode, IV, etc;
• ESP authentication algorithm, keys, etc.

The other fields have no meanings on the zone level. There-
fore, with the exception of a designated SA in the zone list, the
following fields are not used in other zonal SAs:

• sequence number counter;
• sequence counter overflow;
• anti-replay window;
• IPsec protocol mode;
• path MTU.

The designated SA is a special SA in the zone list, usually the
first SA in the list. It takes responsibility to maintain parameters

for the IP datagram layer and to “represent” the CSA in security
processing. Thus, the designated SA does operate on the above
fields as defined in the original IPsec.

2) Access Control in a CSA: A CSA involves the sender,
receiver, and all the authorized intermediate nodes that col-
lectively provide a multilayer security protection for a traffic
stream. Therefore, an instance of CSA must be created in each
of these nodes before the ML-IPsec service can commence. It
will have these features.

• The zone map must be distributed and remain the same for
all nodes.

• Each CSA instance must have a designated SA and the
choice of designated SA must be consistent across all
nodes.

• Because the designated SA is responsible for the integrity
of the IPsec header (with fields like SPI and sequence
number), all nodes must be able to process this SA.

Nevertheless, the zone list need not be the same for all nodes.
In principle, each zonal SA independently determines the access
list for that zone and not all nodes will have access to all zones.
If some node does not have access to a zone, the corresponding
zonal SA in the zone list will be null. For a particular zonal SA,
an instance must be created in each authorized node as a step in
CSA creation. By determining which zonal SA is to be created
in which node, CSA enforces a multilayer access control for an
IP traffic stream.

Since the designated SA must be consistent across all nodes
involved in a CSA, they should all have access to the corre-
sponding zone. For convenience, we call this zone for which the
designated SA is chosen the designated zone. The requirement
that all nodes must have access to one common zone is very
natural in most applications; the designated zone is usually the
first zone in the list, containing the IP header plus certain upper
protocol headers. In rare cases where the zones accessible by in-
termediate nodes are disjoint, we must define a phantom zone of
zero size and make it the designated zone. We can make an SA
for this zone and use it as the designated SA. This nonetheless
introduces extra overhead because the protocol needs to accom-
modate one more SA.

3) TCP Example: Here, is an example to illustrate the con-
cept of CSA. It is a traffic flow from sender (the source or the
outbound IPsec gateway) to receiver (the destination or the in-
bound IPsec gateway), passing through gateway (an interme-
diate node, e.g., PEP agent). We further assume that the desired
security service is ESP transport mode. The contents of the cor-
responding CSA in sender, receiver, and gateway are illustrated
in Fig. 4.

C. Protocol Headers

The same security protocol formats, AH and ESP, are used
in ML-IPsec. Both AH and ESP have transport mode or tunnel
mode, as indicated by the “protocol mode” field of the desig-
nated SA. Fig. 5 describes the format for both headers used in
ML-IPsec.

The protocol header format for AH in ML-IPsec is almost
identical to the original IPsec AH [22], except that the authenti-
cation data section in AH is further subdivided into zones. The

772 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 4, MAY 2004

Fig. 4. Elements of each CSA in sender, receiver, and gateway in a TCP example.

Fig. 5. ML-IPsec protocol header format.

authentication data field is a variable-length field that contains
several integrity check values (ICVs) for this packet. The total
length of this field is controlled by payload len. The size of each
ICV is determined by the authentication algorithm used in each
zonal SA, but must be an integral multiple of 32 bits. The bound-
aries of these zonal authentication data sections can be derived
from the CSA.

ML-IPsec is perhaps more useful in ESP, where the IP data-
gram can be encrypted using different keys in different SAs.
The ML-IPsec ESP header format follows the principle in IPsec

ESP, but unlike IPsec ESP, the payload data field in ML-IPsec
ESP is broken into pieces, one for each zone. The payload data
for each zone, together with padding, padding length, and next
header field (only in the designated zone), are collectively re-
ferred to as the ciphertext block for the zone. The size of each
ciphertext block can be determined by the CSA, since all zones
except the last one are fixed in size.

Similar to ML-IPsec AH, the optional authentication data
field in ESP is also variable in length and contains several
ICVs for this packet. The size of each ICV is determined by the

ZHANG: MULTILAYER IP SECURITY PROTOCOL FOR TCP PERFORMANCE ENHANCEMENT IN WIRELESS NETWORKS 773

Fig. 6. Examples of outbound ML-IPsec processing.

Fig. 7. Examples of inbound ML-IPsec processing.

Fig. 8. Examples of partial in–out ML-IPsec processing.

authentication algorithm used in each zonal SA, but must be
an integral multiple of 32 bits. The boundaries of these zonal
authentication data sections can be derived from the CSA.

D. Inbound and Outbound Processing in ML-IPsec

The inbound and outbound processing of an IP datagram in
an IPsec gateway is illustrated through a two-zone example in
Figs. 6–8

1) ICV Calculation and Verification: The AH ICV calcula-
tion in ML-IPsec is rather different from the original IPsec. For
the designated zone, the ICV is computed over the following:

• IP header fields that are immutable in transit;
• the AH header, including next header, payload len, re-

served, spi, sequence number, and the authentication data
(which is set to zero for this computation), and the optional
explicit padding bytes if any;

• all octets in the designated zone.
For other nondesignated zones, the ICV is computed only

over the octets of the zone.
The ICV verification during the inbound processing of an

ML-IPsec datagram is also done zone-by-zone. A zone is au-
thenticated only if the corresponding zonal SA is nonnull. The
ICVs are calculated in the same way as described above, and the
values are then matched against the ICVs stored in the Authen-
tication Data.

2) Zone-by-Zone Encryption: On outbound processing, the
sender takes the following steps in packet encryption.

• Zone-Wise Encapsulation: For each zone, all octets of all
subzones are concatenated (in the order they appear in
a datagram) and then encapsulated into the ESP payload
data field for the corresponding zone.

• Padding: The sender adds any necessary padding to each
zone’s payload data field, to meet the encryption algo-
rithm’s block size requirement if any, and to align it on
a 4-B boundary according to the ML-IPsec ESP format.

• Encryption: The sender then encrypts the resulting plain-
text (payload data, padding, pad length, and next header)
using the key, the encryption algorithm, and the algorithm
mode indicated by the zonal SA and cryptographic syn-
chronization data (if any).

The inbound processing (Fig. 7) is almost a simple reverse
of the outbound processing—plaintext bytes will be restored to
their original positions by the zone map.

3) Partial In–Out Processing at Intermediate Routers: In an
intermediate node, a packet will go through partial inbound pro-
cessing and then outbound processing (Fig. 8). If the router
function (e.g., TCP PEP) operates on the partially constructed
IP datagram and modifies the packet, the outbound processing
must redo authentication and/or encryption for that zone, and
replace the corresponding ICV and/or payload data field before
forwarding to the next hop.

V. PERFORMANCE EVALUATION

We have implemented ML-IPsec and evaluated its perfor-
mance. We first analyze the bandwidth overhead incurred in
ML-IPsec and compare it with the original IPsec protocol. Then,
we further study the system complexity through an actual imple-
mentation in Linux. Finally, we measure the performance of this
implementation.

A. Bandwidth Overhead Analysis

The extra overhead introduced by the multilayer protection
model includes IPsec datagram size and processing load. The
datagram size in a two-zone ML-IPsec is likely to increase when

774 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 4, MAY 2004

TABLE I
PACKET LENGTH COMPARISON (BYTES)

TABLE II
PACKET LENGTH OVERHEAD (BYTES)

we do authentication or encryption as two separate plaintext
blocks instead of one in the original IPsec. For example, the
concatenated ciphertext from two individually encrypted plain-
texts might be larger than the single ciphertext of the concate-
nated plaintext, due to the synchronization data (such as an ini-
tialization vector in some encryption algorithm) and separate
padding. The authentication data field is also bigger. For ex-
ample, if HMAC-MD5–96 is used, the ICV is a fixed size of
12 B. If the CSA has two zones, the new IPsec datagram will
increase by 12 B compared with the original IPsec one. To un-
derstand the increase in packet size caused by ML-IPsec, we
conduct protocol analysis on TCP applications.

The datagram used in the analysis is a TCP datagram, with
20-B IP header, 20-B TCP header, no IP options, and no
TCP options. For ML-IPsec, we assume the TCP datagram
is divided into two zones, one for TCP/IP headers, and the
other for the TCP payload. We calculate the overhead for
both AH and ESP protocols (with authentication) and for both
transport and tunnel mode. We analyze both ML-IPsec and
IPsec for comparison purposes. In all the cases, we assume use
of the HMAC-MD5–96 algorithm for authentication and the
3DES-CBC algorithm for encryption.

We have analyzed the overhead for all eight cases (AH versus
ESP, transport mode versus tunnel mode, and IPsec versus
ML-IPsec). Due to space limitations, we will not enumerate the
calculation in detail. We only summarize the results in Tables I
and II. The variable denotes the length of the TCP payload in
the original IP datagram.

While the use of IPsec to protect IP datagrams adds an over-
head ranging from 24 to 57 B, the new ML-IPsec scheme adds
only an additional 12 B to the AH protocol and a maximum
20 B to the ESP protocol. Assuming an average IP datagram
of 536 B, that is only a 2%–3% increase. One way to further
reduce the overhead increase is to use a “weaker” authentica-
tion algorithm for the “less important” field. For example, a
4-B HMAC-MD5–32 ICV may be sufficient for the TCP header
zone, instead of the 12-B HMAC-MD5–96 ICV in the original
IPsec. This saves 8 B for each ML-IPsec packet and brings the
overhead down to the 1%–2% range.

TABLE III
ML-IPSEC SOURCE CODE SIZE

B. Implementation Complexity

One major concern for ML-IPsec is the complexity it adds on
top of IPsec. In particular, the CSA design is very complex in
contrast to the existing SA management model. To fully under-
stand the complexity issue and to validate our design, we have
implemented the system and studied its performance.

Our first prototype implementation of ML-IPsec is done in
year 2000. It is based on Linux FreeS/WAN version 1.1 and
Linux kernel version 2.2.12. FreeS/WAN (www.freeswan.org)
is a publicly available implementation of IPsec. Our implemen-
tation modifies the FreeS/WAN code to add ML-IPsec capabil-
ities. The detail of this implementation can be found in [31].

We have hypothesized that ML-IPsec should be easy to im-
plement on top of an existing IPsec system (provided that source
code and documentation are available). This is because we have
designed ML-IPsec to closely follow IPsec. Many of the data
structures in ML-IPsec reuse the same from IPsec, such as the
SA objects. Majority of the protocol operations in ML-IPsec,
including all cryptographic operations, are pointers to the pro-
cedures in IPsec.

Indeed, our experience has verified this hypothesis. Our first
prototype implementation took about 6 man months. A signifi-
cant portion of the time was spent on understanding the source
code of FreeS/WAN, which was a fairly complex system (30 000
lines of code).

Table III lists the statistics about the source code size in this
implementation. The entire FreeS/WAN source code tree is
divided into four parts (subtrees). In each part, we count the
size (in terms of kilobyte) and the lines of code in the original
FreeS/WAN and after our modification. The major change is at
klips (Kernel IPsec Support), the Linux kernel code that imple-
ments IPsec functions. In total, we have added approximately
7% to the source code (both in bytes and in lines of code).

C. Experimental Measurements

We further conduct an experimental measurement to study the
performance of ML-IPsec. While we have given an analytical
calculation on overhead earlier, this experiment is to measure
the actual implementation in a running system.

We design the experiments to compare the performance of the
following network configurations.

• IP: running standard Linux with standard IP, without
FreeS/WAN. This is to provide a baseline case where no
security is provided.

ZHANG: MULTILAYER IP SECURITY PROTOCOL FOR TCP PERFORMANCE ENHANCEMENT IN WIRELESS NETWORKS 775

Fig. 9. Experiment 1: Processing delay.

• IPsec: running Linux with original FreeS/WAN, using
ESP with authentication mode. This is to provide a
baseline case where security is enabled.

• ML-IPsec (one-zone): Running the modified FreeS/WAN
and configuring ML-IPsec to have one single zone for the
entire IP packet. Since the one-zone configuration has the
same protection model as IPsec, this can reveal the over-
head contributed to the ML-IPsec protocol format and pro-
cessing.

• ML-IPsec (two-zone): running the modified FreeS/WAN
with two-zone configuration for TCP PEP. This is our
target configuration that can support TCP PEP.

We conduct three sets of experiments to compare the fol-
lowing: the processing delay (to send/receive a packet), the CPU
load, and the protocol format overhead. Figs. 9–11 illustrate the
measurement results and the corresponding experiment setups
(top subfigures). Each data point is the average of a hundred re-
peat runs. We compare under both transport and tunnel modes.
For experiments 2 and 3, we also vary the packet size between
two values: 1500 and 284 B.

Experiment 1 (Fig. 9) studies the per-packet processing delay,
measured by the round-trip time of a 40-B ping packet. First,
IPsec incurs more than twice the processing delay compared
with IP, due to the security operations. On top of that, ML-IPsec
(1-zone) incurs approximate 10% processing time. This is the
overhead of ML-IPsec to process the extra protocol fields and
data structures (like CSA). The processing time in the two-zone
TCP PEP case is approximate 30% more, due to the fact that it
requires two passes of encryption/authentication operations for
each packet.

Experiment 2 (Fig. 10) studies the CPU load, measured by
the network throughput. Here, the application (packet gener-
ator) sends data packets as fast as it can, and the host CPU is
much slower (600 MHz Pentium) than the network (100 Mb/s).
As a result, the network is never loaded and the CPU is the bot-
tleneck. Hence, the network throughput is a direct measurement
of the CPU load in sending/receiving the data packets: the lower
the throughput, the higher the CPU load is. The result shows that
ML-IPsec incurs between 8%–18% extra load over IPsec.

Experiment 3 (Fig. 11) studies the protocol format overhead,
again measured by the network throughput. This time, we use a

Fig. 10. Experiment 2: Comparing CPU overhead.

Fig. 11. Experiment 3: Bandwidth overhead.

slower network (10 Mb/s) so that the bandwidth is now the bot-
tleneck. A lower throughput implies higher protocol overhead.
The result shows that ML-IPsec incurs a 2%–7% overhead,
which is consistent with the calculation earlier (Section V-A).

VI. CONCLUSION

The end-to-end network security mechanisms such as IPsec
and the rich network services such as TCP PEP for wireless
networks are two fundamentally conflicting mechanisms. On
the one hand, end-to-end security advocates the use of cryp-
tography at the network layer to protect the payload over the
untrustworthy Internet. On the other hand, certain network ser-
vices rely on intermediate nodes to perform “intelligent opera-
tions” based on the packet data type–the information encoded
in a higher protocol layer. It is the need to find the right balance
between the two mechanisms and to achieve the goals of both,
that makes for a difficult engineering problem.

Our attempt to solve the problem is based on the layering
architecture for network security protocols. The approach
presented in this paper may already have the right mix to
provide both security and extensibility in one unified platform.
Certainly, we have shown that through protocol design and
system implementation ML-IPsec can easily be added to an

776 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 4, MAY 2004

existing IPsec system and that its overhead is low. ML-IPsec
has achieved the goal of granting trusted intermediate routers a
secure, controlled, and limited access to selected portions of IP
datagrams, while preserving the end-to-end security protection
to user data. Currently, ML-IPsec approach is being adopted in
several all-IP satellite networks [32], [33].

Our plan for future work includes an extension of IKE to sup-
port ML-IPsec. IKE is the key distribution protocol for IPsec,
but we did not use it here because our current implementation
uses manual keying only. It will be very important for ML-IPsec
to be able to utilize automatic keying because it uses more keys,
involves intermediate nodes, and requires a more complicated
configuration than the original IPsec. The technical challenge
will be finding the efficient mechanism needed for multiparty
key distributions.

ACKNOWLEDGMENT

The author would like to thank the staff and intern students
at HRL who have contributed to this project. In particular, he
would like to acknowledge B. Singh who finished the first
prototype implementation in 1999–2000. The author would
also like to thank the following students who have interned
with us and helped the project: I. Zohar, Stanford Univer-
sity (1998), P. Kumar Gonugunta, UIUC (1999), A. Shah,
Stanford University (1999), S. Shah, University of Illinois at
Urbana–Champaign (UIUC) (2001), and Venkatakrishnan VN,
Stony Brook University of New York (SUNY)-Stony Brook
(2001). In addition, we have all benefited from the e-mail
discussions with participants in the IETF IPSEC working group
and TF-ESP BOF.

REFERENCES

[1] W. Stevens, “TCP slow start, congestion avoidance, fast retransmit, and
fast recovery algorithms,” IETF, RFC 2001, 1997.

[2] R. Caceres and L. Iftode, “Improving the performance of reliable
transport protocols in mobile computing environments,” IEEE J. Select.
Areas Commun., vol. 13, pp. 850–857, June 1994.

[3] C. Partridge and T. Shepard, “TCP performance over satellite links,”
IEEE Network, vol. 11, pp. 44–49, Sept. 1997.

[4] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP
Westwood: Bandwidth estimation for enhanced transport over wireless
links,” in Proc. 7th Annu. Int. Conf. Mobile Computing Networking (Mo-
biCom’01), 2001, pp. 287–297.

[5] G. Holland and N. Vaidya, “Analysis of TCP performance over mobile
ad hoc networks,” in Proc. 5th ACM Int. Conf. Mobile Computing Net-
working (MobiCom’99), Aug. 1999, pp. 219–230.

[6] A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for mobile hosts,”
in Proc. 15th Int. Conf. Distributed Computing Systems (ICDCS), May
1995, pp. 136–143.

[7] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving
TCP/IP performance over wireless networks,” in Proc. 1st Annu. Int.
Conf. Mobile Computing Networking (MobiCom’95), 1995, pp. 2–11.

[8] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, “A compar-
ison of mechanism for improving TCP performance over wireless links,”
IEEE/ACM Trans. Networking, pp. 756–769, Dec. 1997.

[9] T. Henderson and R. Katz, “Transport protocols for Internet-compat-
ible satellite networks,” IEEE J. Select. Areas Commun., vol. 17, pp.
326–344, Feb. 1999.

[10] D. Dutta and Y. Zhang, “An active proxy based architecture for
TCP in heterogeneous variable bandwidth networks,” in Proc. IEEE
Global Telecommunications Conf. (GLOBECOM’01), Nov. 2001, pp.
2316–2320.

[11] , “An early bandwidth notification (EBN) architecture for dynamic
bandwidth environments,” in Proc. IEEE Int. Conf. Communications
(ICC’02), Apr. 2002, pp. 2602–2606.

[12] B. Bakshi, P. Krishna, N. H. Vaidya, and D. K. Pradhan, “Improving
performance of TCP over wireless networks,” in Proc. 17th Int. Conf.
Distributed Computing Systems (ICDCS-17), May 1997, pp. 365–373.

[13] A. D. Falk, “System design for a hybrid network data communications
terminal using asymmetric TCP/IP to support internet applications,”
Master’s thesis, Univ. Maryland, College Park, MD, 1994.

[14] V. Arora, N. Suphasindhu, J. Baras, and D. Dillon, “Effective extensions
of Internet in hybrid satellite-terrestrial networks,” Univ. Maryland, Col-
lege Park, MD, Tech. Rep. CSHCN 96–2, 1996.

[15] D. C. Feldmeier, A. J. McAuley, J. M. Smith, D. Bakin, W. S. Marcus,
and T. Raleigh, “Protocol boosters,” IEEE J. Select. Areas Commun.,
vol. 16, pp. 437–444, Apr. 1998.

[16] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A feed-
back-based scheme for improving TCP performance in ad hoc wir eless
networks,” IEEE Pers. Commun. Mag., vol. 8, pp. 34–39, Feb. 2001.

[17] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby,
“Performance enhancing proxies intended to mitigate link-related
degradations,” IETF, RFC 3135, 2001.

[18] V. Bharadwaj, “Improving TCP performance over high-bandwidth geo-
stationary satellite links,” Univ. Maryland, College Park, MD, Tech.
Rep. ISR-MS-99–12, 1999.

[19] J. Ishac and M. Allman, “On the performance of TCP spoofing in
satellite networks,” in Proc. IEEE MILCOM’01 Conf., Oct. 2001, pp.
700–704.

[20] N. Ehsan, M. Liu, and R. Ragland, “Evaluation of performance
enhancing proxies in Internet over satellite,” in Wiley Int. J. Commun.
Syst., vol. 16, Aug. 2003, pp. 513–534.

[21] S. Kent and R. Atkinson, “Security architecture for the Internet pro-
tocol,” IETF, RFC 2401, 1998.

[22] , “IP authentication header,” IETF, RFC 2402, 1998.
[23] , “IP encapsulating security payload (ESP),” IETF, RFC 2406,

1998.
[24] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S.

Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakr-
ishnan, S. Shenker, J. Wroclawski, and L. Zhang, “Recommendations on
queue management and congestion avoidance,” IETF, RFC 2309, 1998.

[25] S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,” IEEE/ACM Trans. Networking, vol. 1, pp. 397–413,
Aug. 1993.

[26] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion con-
trol in the Internet,” IEEE/ACM Trans. Networking, vol. 7, pp. 458–472,
Aug. 1999.

[27] S. McCreary and K. C. Claffy, “Trends in wide area IP traffic pat-
terns: A view from ames Internet exchange,” presented at the ITC
Specialist Seminar, Monterey, CA, Sept. 2000, [Online]. Available:
http://www.caida.org/outreach/papers/2000/AIX0005/.

[28] E. Rescorla, SSL and TLS: Designing and Building Secure Sys-
tems. Reading, MA: Addison-Wesley, 2001.

[29] S. Bellovin, “Transport-friendly ESP (or layer violations for fun and
profit),” presented at the Panel Talk 1999 Network Distributed System
Security Symp. (NDSS’99), San Diego, CA, Feb. 1999. [Online]. Avail-
able: http://www.research.att.com/~smb/talks/tfesp-ndss/index.htm.

[30] D. Harkins and D. Carrel, “The Internet key exchange (IKE),” IETF,
RFC 2409, 1998.

[31] Y. Zhang and B. Singh, “A multi-layer IPsec protocol,” in Proc. Usenix
Security Symp., Aug. 2000, pp. 213–228.

[32] M. Annoni, G. Boiero, N. Salis, H. S. Cruickshank, M. P. Howarth, and
Z. Sun, “Interworking between multi-layer IPSEC and Secure multicast
services over GEO satellites,” Eur. Cooperation in the Field of Sci. Tech.
Res., Tech. Rep. COST 272 TD-02–016, 2002.

[33] M. Annoni, G. Boiero, and N. Salis, “Security issues in the BRAHMS
system,” in Proc. Ist Mobile Wireless Telecommunications Summit 2002,
June 2002.

Yongguang Zhang (M’94) received the Ph.D. degree
in computer sciences from Purdue University, West
Lafayette, IN.

He is currently a Senior Research Scientist with
HRL Laboratories, LLC, Malibu, CA. His main re-
search interests include mobile networking, security,
and systems. He was also an Adjunct Assistant Pro-
fessor in the Department of Computer Sciences at the
University of Texas, Austin, from 2001 to 2003.

