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A multilayer multimodal detection 
and prediction model based 
on explainable artificial intelligence 
for Alzheimer’s disease
Shaker El‑Sappagh1,2*, Jose M. Alonso3, S. M. Riazul Islam4, Ahmad M. Sultan5 & 
Kyung Sup Kwak6*

Alzheimer’s disease (AD) is the most common type of dementia. Its diagnosis and progression 
detection have been intensively studied. Nevertheless, research studies often have little effect on 
clinical practice mainly due to the following reasons: (1) Most studies depend mainly on a single 
modality, especially neuroimaging; (2) diagnosis and progression detection are usually studied 
separately as two independent problems; and (3) current studies concentrate mainly on optimizing 
the performance of complex machine learning models, while disregarding their explainability. As a 
result, physicians struggle to interpret these models, and feel it is hard to trust them. In this paper, we 
carefully develop an accurate and interpretable AD diagnosis and progression detection model. This 
model provides physicians with accurate decisions along with a set of explanations for every decision. 
Specifically, the model integrates 11 modalities of 1048 subjects from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) real‑world dataset: 294 cognitively normal, 254 stable mild cognitive 
impairment (MCI), 232 progressive MCI, and 268 AD. It is actually a two‑layer model with random 
forest (RF) as classifier algorithm. In the first layer, the model carries out a multi‑class classification for 
the early diagnosis of AD patients. In the second layer, the model applies binary classification to detect 
possible MCI‑to‑AD progression within three years from a baseline diagnosis. The performance of 
the model is optimized with key markers selected from a large set of biological and clinical measures. 
Regarding explainability, we provide, for each layer, global and instance‑based explanations of the 
RF classifier by using the SHapley Additive exPlanations (SHAP) feature attribution framework. In 
addition, we implement 22 explainers based on decision trees and fuzzy rule‑based systems to provide 
complementary justifications for every RF decision in each layer. Furthermore, these explanations are 
represented in natural language form to help physicians understand the predictions. The designed 
model achieves a cross‑validation accuracy of 93.95% and an F1‑score of 93.94% in the first layer, 
while it achieves a cross‑validation accuracy of 87.08% and an F1‑Score of 87.09% in the second 
layer. The resulting system is not only accurate, but also trustworthy, accountable, and medically 
applicable, thanks to the provided explanations which are broadly consistent with each other and 
with the AD medical literature. The proposed system can help to enhance the clinical understanding 
of AD diagnosis and progression processes by providing detailed insights into the effect of different 
modalities on the disease risk.
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Abbreviations
AD  Alzheimer’s disease
ADAS-Cog  Features of the Alzheimer’s diseases assessment scale-cognitive
ADNI  Alzheimer’s Disease Neuroimaging Initiative
APOE  Apolipoprotein E
AUC   Area under the ROC curve
AV45  Average AV45 SUVR of frontal
CDSS  Clinical decision support system
CNN  Convolutional neural network
CFA  Cognitive and functional assessments
CS  Cognitive scores
CDRSB  Clinical dementia rating sum of boxes
CDGLOBAL  Global CDR
DL  Deep learning
DT  Decision tree
DARPA  Defense Advanced Research Projects Agency
FRBS  Fuzzy rule-based system
FAQ  Functional assessment questionnaire
GB  Gradient boosting
GDT  Geriatric depression scale
GDPR  General data protection regulation
HCI  Hypometabolic convergence index
ICV  Intracranial volume
KNN  K nearest neighbor
MRI  Magnetic resonance imaging
ML  Machine learning
MCI  Mild cognitive impairment
MCA  Multiclass classi�cation accuracy
MMSE  Mini-Mental State Examination
MoCA  Montreal cognitive assessment
MH  Medical history
NPISCORE  Neuropsychiatric inventory questionnaire score
NB  Neuropsychological battery
NB  Naïve Bayes
pMCI  Progressive MCI
PTAU   Phosphorylated TAU 
PET  Positron emission tomography
PCA  Principal component analysis
RF  Random forest
RFE  Recursive feature elimination
RAVLT  Rey Auditory Verbal Learning Test
SHAP  SHapley Additive exPlanations
sMCI  Stable MCI
SVM  Support vector machine
SNOMED CT  Systematized Nomenclature of Medicine-Clinical Terms
XAI  Explainable arti�cial intelligence

Alzheimer’s disease (AD) is a chronic neurodegenerative disease. �is irreversible disorder is characterized by 
abnormal accumulation of amyloid plaques and neuro�brillary tangles in the brain, resulting in progressive 
decline in memory, thinking and language skills, along with behavioral changes. With increased human life 
expectancy, 11 million to 16 million elderly people are likely to su�er from AD by  20501. As far as we know, 
there is no e�ective recovery for this disease. However, early detection is of fundamental importance for timely 
treatment and progression  delay2–4. Furthermore, prediction of the probable progression of the disease from mild 
cognitive impairment (MCI) to AD is of critical  importance5,6. MCI is considered an intermediate stage between 
age-associated cognitive impairment and AD. For e�ective treatment, it is therefore essential to detect patients 
with MCI at high risk of progression to  AD7. As a result, AD diagnosis and progression detection are multistage 
in nature. First, physicians determine the category of the patient (MCI or AD). Second, they deeply investigate 
patient biomarkers to determine progression status to AD from MCI. Most studies in the literature focus either 
on AD  diagnosis1,8–12 or MCI progression, i.e., progressive MCI (pMCI) versus stable MCI (sMCI)13–15. Even if 
it is highly desirable to deal simultaneously with AD diagnosis and MCI progression, this task is extremely hard 
mainly due to the multimodality nature that also jeopardizes explainability.

AD symptomatology is multimodal in  nature4,16 correlated with cognitive scores, neuropathology vital signs, 
symptoms, demographics, medical history, neuropsychological battery, lab tests, etc. Complementary information 
exists among the modalities, which can be exploited to build powerful  classi�ers17. �erefore, medically intuitive 
AD detection methods should not rely only on measurements of a unique domain, such as physiological or behav-
ioral symptoms. Alberdi et al.1 surveyed the AD diagnosis studies based on multimodal data. �e combination of 
multimodalities facilitates the detection of subtle changes in all modalities from the very beginning, which results 
in reliable diagnoses. Once in the hands of an expert, it is still a challenge to correctly diagnose AD. Usually, 
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medical experts are not able to manually analyze all of these vast and diverse biomarkers, and recognize the 
so-small behavioral shi�s in AD patients until it is too  late18. AD could be diagnosed a�er two years of memory 
 problems19. �ere is an emerging need for advanced AD detection and prediction models that can serve as a 
helping hand for medical practitioners to diagnose or detect the disease earlier and more  accurately5,19,20. �ese 
models can be used to build the inference engines of an AD clinical decision support system (CDSS). However, 
as far as we know there is no CDSS for AD diagnosis and progression detection ready to use at primary care. 
In this context, two lines of research have been conducted to address the previous challenges: (1) deep learning 
(DL) techniques which are able to automatically learn complex, non-linear data transformations that optimize 
performance  metrics21–23; and (2) regular machine learning (ML) techniques, especially support vector machine 
(SVM) and random forest (RF)7,24–28.

Unfortunately, all these previous studies focused mainly on improving the system performance while neglect-
ing interpretability issues. Accordingly, although these studies achieved tremendous advances in prediction, they 
are not expected to be acceptable in the medical environment. �ere exists a signi�cant gap between academic 
research outcomes and their e�ective utilization in medical practice due to several  reasons20. �e entire patient 
medical history must be considered to achieve intuitive, stable, and robust  decisions20. Most DL-based methods 
only concentrate on analysis of neuroimaging, i.e., Magnetic Resonance Imaging (MRI) and Positron Emission 
Tomography (PET). Nevertheless, Oxtoby and  Alexander29 asserted that neuroimaging is not su�cient for AD 
diagnosis and studying its progression. Furthermore, it is frequently the case that physicians do not rely on the 
latest technical approaches and methodologies (e.g., DL and RF), despite their high  accuracy18, because complex 
model performance and explainability are in apparent con�ict- i.e., the search for a good performance-explaina-
bility trade-o� is required. Most of these approaches and schemes are inherently opaque, not understandable, and 
unable to easily answer the following straightforward questions. Why/how has it reached a speci�c decision, and 
why/how is it medically  relevant30? �e patterns learned from datasets by using complex ML algorithms do not 
necessarily carry correct and comprehensible knowledge. �us, medical experts do not trust decisions provided 
by black-box models without comprehensive and easy-to-understand  explanations31. For these reasons, the ML 
techniques employed in the clinical domain normally do not consider sophisticated models, resorting instead 
to simpler and interpretable (e.g., linear) models at the expense of  accuracy32. Many studies have tried to open 
the black box of complex models and provide an explanation of their decisions, either by understanding how 
the models work or by explaining their  decisions33. �is new trend is called accountable, transparent, actionable, 
or explainable Arti�cial Intelligence (AI), or just XAI for short. Explainability is the ability of ML algorithms to 
(mathematically) explain or justify their results using terms which are understandable to humans.

A CDSS should be based only on ML models that provide a balance between accuracy and explainability. 
�ese models are expected to provide su�cient information about the relationship between input features and 
predictions, and to allow users to answer questions like the following. Which features are the key players in the 
prediction of interest? Why am I deemed as normal/MCI/AD in the medical diagnosis? For these reasons, the 
second line of research introduced above (i.e., a CDSS based on regular ML techniques) seems more intuitive 
and medically acceptable. Regular ML techniques involving linear models and rule-induction algorithms (e.g., 
a decision tree  [DT]34 or a fuzzy rule-based system  [FRBS]35,36) are usually preferred when the priority is to 
generate explainable  models18,37–39. Unfortunately, these models are not always accurate  enough40. One solution 
is to use an accurate algorithm as an oracle for the classi�cation purpose, and a collection of carefully designed 
interpretable models (which behave as digital twins of the oracle, i.e., they imitate the classi�cation behavior of 
the oracle) as candidates to generate explanations of the output provided by the  oracle41. �e other solution is to 
open the black box and collect the explanations from the opaque model itself. For example, some studies have 
extracted interpretable rules from black-box models such as neural networks and  SVMs42,43. In the case of RF, 
 Brieman44 asserted that it is an A + predictor for performance, but rates an F on interpretability. More recently, 
some authors have shown how the behavior of RF can be interpreted to some  degree31,45. �ere exists no study 
in the literature, which use the RF algorithm in the core of an explainable CDSS system for AD diagnoses and 
progression detection.

Despite the current research e�ort, AD detection and progression prediction are still openly challenging prob-
lems, due to the limited accuracy and limited explainability of existing solutions. �e medical domain requires 
both accurate and explainable AI models. In this paper, we therefore develop a new RF-based explainable AD 
detection and progression prediction model. Our contributions are as follows:

1. We demonstrate how to retain interpretability, even when a complex ensemble model like RF is used. �e 
objective of this approach is two-fold: (1) To illustrate the development and validation process of a two-layer 
computational framework for diagnosing AD patients and predicting pMCI within three years from baseline 
diagnosis; and (2) to describe how to provide detailed and multiple explanations for the ML decisions. �e 
resulting model provides physicians with a good balance between accuracy and explainability.

2. We build accurate ML ensemble classi�ers based on RF for the two layers; utilizing multimodal AD datasets 
collected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We employ a comprehensive list 
of modalities to diagnose AD and predict its progression, in agreement with a physician who was taken as 
domain expert.

3. We build 22 explainers, based on a set of interpretable ML techniques (i.e. DT and FRBS), ready to explain to 
physicians the outcome of the two-layer framework. �is reverse engineering method is called a black-box 
outcome  explanation33. All explainers’ decisions compatible with RF decisions are used to provide physicians 
with a pool of plausible explanations. In analogy with a panel of experts who may have di�erent experience 
and background, each explanation comes from a di�erent explainer which pays attention to the most relevant 
features for di�erent modalities, and comes along with information about the reliability of the explainer in 
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terms of its accuracy. �e consistency and coherence of such explanations are validated by domain experts 
and ranked according to their explainability-accuracy trade-o�. Moreover, they are mapped to a human-
friendly language for easy understanding.

4. We provide physicians with some insights into driving factors of our prediction model from multiple points 
of view including natural language, visualization, and feature importance based on SHapley Additive exPla-
nations (SHAP).

�e rest of this paper is organized as follows. Section 2 presents and discusses the main reported results. Sec-
tion 3 introduces the datasets used and goes in depth with technical details of the proposed method. Section 4 
concludes the paper.

Results and discussion
Identification of informative AD features. To reduce computational complexity that comes with the 
high dimensionality nature of the ADNI, we selected the most relevant feature set using automatic feature selec-
tion strategy. For each layer, the full dataset is strati�ed and randomly divided into a model development set [ S1 ] 
and a testing set [ S2 ]. S1 and S2 are �ltered to create the best feature sets MS1 and MS2 , respectively (see the Fea-
ture Selection and Modeling Approach Section; in Material and Methods). �e new sets are used to tune, train, 
and tests the utilized ML models. Training and tuning of ML models is done with cross-validation over MS1 
while MS2 is reserved to provide readers with �nal test evaluation, mainly regarding some illustrative examples 
of the explainability of the proposed framework.

Figure 1A shows the performance of di�erent subset sizes assessed with RF-RFE (A.1), SVM-RFE (A.2), and 
GB-RFE (A.3) for the �rst layer. For di�erent combinations of features, the accuracy from RF, SVM, and GB was 
measured, and the subset of features with the best performance was detained. As summarized in Table 1, for 
RF-RFE, we obtained a combination of 28 features [cognitive scores (8), genetics (5), lab tests (1), demographics 
(3), MRI (2), neuropsychological battery (6), and PET (3)] to attain the highest predictive accuracy of 94.4% 
(see Supplementary File [part 2], Table T1). Because the optimal subset of features derived using the RFE-RF 
approach yields the maximum accuracy, we utilized it for training the classi�cation model. �ese features form 

Figure 1.  Selected features for both layers based on three di�erent techniques of SVM, RF, and GB. �e �rst 
row is for the �rst layer, and the second row is for the second layer.

Table 1.  Performance of the RFE for the two layers.

Layer Model No. of features Accuracy (%)

First Layer

RF-RFE 28 94.40

SVM-RFE 12 92.40

GB-RFE 14 92.60

Second Layer

RF-RFE 36 86.80

SVM-RFE 17 82.60

GB-RFE 39 86.00
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about 15% of the whole feature set. Inspired  by20, the features selected with RF-RFE are clustered into six modal-
ity kinds: (1) cognitive scores (CS) [eight features]; (2) neuropsychological battery (NB) [six features]; (3) MRI 
[two features], (4) PET [three features], (5) genetics [�ve features], and (6) medical history (MH) (lab test and 
demographics) [four features]. It is worth noting that the selected features based on RF-RFE are the most discri-
minant and informative features for the current classi�cation problem (P < 0.05, Kruskal–Wallis test). �e list of 
non-selected features does not add discriminative values with RFE; however, as asserted by our domain experts, 
many of these neglected features could provide additional knowledge to understand the made decisions (i.e., 
they include critical values for model’s explainability in accordance with physicians’ intuition and background). 
�e di�erent modalities were screened to investigate whether a cost-e�ective and non-invasive subset of features 
have a higher discriminative power than the whole dataset. 

Figure 1B shows the performance of di�erent subset sizes assessed with RF-RFE (B.1), SVM-RFE (B.2), and 
GB-RFE (B.3) for the second layer. �e accuracy of RF, SVM, and GB was calculated for di�erent combina-
tions of features, and the subset of features with the best performance was taken. Similar to the First Layer, the 
RFE algorithm attained a higher performance when combined with RF than GB and SVM. With RF-RFE (see 
Table 1), the combination of 36 features [cognitive scores (7), genetics (5), lab tests (6), demographics (1), MRI 
(5), neuropsychological battery (7), PET (3), and vital signs (2)] achieves the highest predictive accuracy at 86.8%. 
Accordingly, we used the RF-RFE feature set for training the classi�cation model. �ese features formed about 
19% of the total feature set, (see Supplementary File [part 2], Table T1). Furthermore, we grouped this list of 
features into �ve modality types: (1) cognitive and functional assessments (CFA) (CS and NB), (2) MRI, (3) PET, 
(4) genetics, and (5) MH (lab tests, age, and vital signs). As with the First Layer, we analyzed the performance of 
di�erent RF classi�ers constructed using each modality (as well as their combinations).

First layer: early AD detection performance. �e First Layer in the framework is responsible for 
detecting AD patients from CN and MCI patients. To determine the smallest number of features that produces 
the most accurate results, we performed a set of experiments using di�erent combination of modalities. Table 2 
shows the performance obtained for the multiclass classi�cation problem (i.e., CN, MCI, and AD) by using the 
whole training dataset and di�erent combinations of six selected modalities (CS, NB, MRI, PET, MH, and genet-
ics) and RF classi�er (see the Random Forest for Classi�cation Section). �e models’ performance has been eval-
uated using the area under the receiver operating characteristic curve (AUC), precision, recall, accuracy (AC), 
and F1-score (F1) metrics (see the Model Performance Evaluation Metrics; in Material and methods). When the 

Table 2.  Random Forest performance validation for detecting AD patients based on tenfold cross-validation. 
MCA: multiclass classi�cation accuracy, MCF: multiclass F1 score; Asterisk ( *): is the subset of features with 
the best predictive performance; italic text is the best of single and pairs of modalities.

Modalities

Precision (%) Recall (%)

MCA (%) MCF (%)CN MCI AD CN MCI AD

All modalities 98.83 ± 1.33 90.91 ± 2.55 92.41 ± 1.99 96.21 ± 1.11 95.45 ± 2.00 86.61 ± 2.10 93.42 ± 2.73 93.39 ± 2.19

CS 99.60 ± 0.17 89.76 ± 1.99 88.51 ± 1.04 93.94 ± 0.18 93.64 ± 1.08 87.03 ± 2.09 92.00 ± 2.26 92.08 ± 2.00

NB 84.86 ± 1.32 74.11 ± 2.06 77.93 ± 2.00 80.68 ± 1.09 80.68 ± 1.92 69.46 ± 2.01 77.83 ± 2.33 77.94 ± 2.10

MRI 45.19 ± 2.46 47.16 ± 4.34 48.99 ± 3.01 46.21 ± 2.41 50.91 ± 3.99 40.59 ± 3.31 46.99 ± 4.01 46.50 ± 3.91

PET 61.59 ± 1.89 65.06 ± 2.22 70.35 ± 3.03 70.45 ± 1.40 61.36 ± 3.50 66.53 ± 2.87 65.23 ± 2.98 65.89 ± 2.11

Genetics 61.28 ± 2.60 58.82 ± 3.33 54.90 ± 2.42 68.94 ± 2.00 59.09 ± 3.91 46.86 ± 2.00 58.75 ± 3.11 58.31 ± 2.89

MH 46.60 ± 1.42 50.08 ± 2.91 29.29 ± 1.67 36.36 ± 1.79 67.95 ± 3.82 17.15 ± 1.77 46.22 ± 2.99 41.22 ± 3.00

CS + NB 99.22 ± 1.09 90.65 ± 2.06 90.79 ± 0.90 95.83 ± 1.11 94.77 ± 2.31 86.61 ± 2.90 93.00 ± 2.61 92.97 ± 2.25

CS + MRI 99.20 ± 2.11 89.42 ± 3.62 89.57 ± 2.39 93.94 ± 2.70 94.09 ± 3.59 86.19 ± 3.20 92.05 ± 3.99 92.06 ± 4.01

CS + PET 99.20 ± 2.01 89.25 ± 2.99 89.87 ± 2.51 94.32 ± 2.22 94.32 ± 3.87 85.36 ± 2.91 92.05 ± 3.33 92.05 ± 3.41

CS + Genetics 99.20 ± 1.99 89.01 ± 2.53 89.08 ± 2.33 93.94 ± 1.83 93.86 ± 3.01 85.36 ± 2.43 91.73 ± 2.91 91.74 ± 3.08

CS + MH 98.43 ± 1.55 89.15 ± 4.01 89.04 ± 1.92 94.70 ± 1.77 93.41 ± 4.31 84.94 ± 3.91 91.62 ± 4.00 91.61 ± 3.81

CS + NB + MRI 99.22 ± 2.05 90.87 ± 3.91 91.19 ± 2.71 96.21 ± 2.09 95.00 ± 3.61 86.61 ± 2.99 93.21 ± 3.40 93.18 ± 3.47

CS + NB + PET 99.22 ± 1.99 91.45 ± 2.06 90.83 ± 2.90 96.97 ± 1.78 94.77 ± 3.01 87.03 ± 2.72 93.42 ± 2.97 93.38 ± 2.61

CS + NB + Genet-
ics*

99.22 ± 1.01 91.72 ± 2.01 92.54 ± 0.91 96.21 ± 1.00 95.68 ± 2.00 88.28 ± 1.81 93.95 ± 2.30 93.94 ± 2.07

CS + NB + MH 99.22 ± 2.01 91.50 ± 3.87 92.07 ± 2.33 96.59 ± 2.33 95.45 ± 4.10 87.45 ± 3.83 93.74 ± 4.00 93.71 ± 3.61

CS + NB + Genet-
ics + MRI 99.22 ± 2.30 91.50 ± 4.10 92.11 ± 2.97 96.21 ± 2.22 95.45 ± 4.20 87.87 ± 4.86 93.74 ± 4.01 93.72 ± 4.44

CS + NB + Genet-
ics + PET 99.61 ± 2.03 90.46 ± 2.06 90.27 ± 3.04 96.59 ± 1.83 94.77 ± 3.31 85.36 ± 2.77 92.89 ± 2.99 92.84 ± 3.20

CS + NB + Genet-
ics + MH 99.22 ± 2.22 91.34 ± 4.39 92.83 ± 2.31 96.97 ± 2.40 95.91 ± 4.90 86.61 ± 3.09 93.85 ± 4.30 93.81 ± 4.06

CS + NB + Genet-
ics + MH + MRI 99.22 ± 2.30 90.93 ± 4.55 92.41 ± 3.60 96.21 ± 2.32 95.68 ± 4.24 86.61 ± 3.95 93.53 ± 4.32 93.51 ± 3.97

CS + NB + Genet-
ics + MH + PET 98.84 ± 1.89 91.29 ± 3.41 92.04 ± 2.87 96.59 ± 2.00 95.23 ± 3.05 87.03 ± 2.78 93.53 ± 3.11 93.50 ± 3.01
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whole feature set is used, the model has a multiclass classi�cation accuracy (MCA) of 93.42 ± 2.73% based on 
tenfold CV. We can see that the CS modality has the highest accuracy (MCA = 92.00 ± 2.26%), compared to other 
single modalities. As a result, the CS modality was combined with other modalities to test the improvement in 
the model performance. Please note that, although adding more features could increase the model’s con�dence, 
it also adds additional noises. �e two-modality combination CS + NB improved the CS accuracy by about 1%, 
i.e., MCA = 93.00 ± 2.61%. We notice that the standard deviation of the combined CS + NB data slightly increased 
compared to the CS dataset alone, but still it is less than the standard deviation of the models based on the whole 
dataset. A�er integration of the CS + NB modality with the other types of data, the genetics data improved 
the accuracy of the system to 93.95 ± 2.30%. We discover that the RF shows more con�dence based on the 
CS + NB + Genetics dataset than CS + NB dataset. �is is because its performance has lower standard deviation. 
�e resulting modality of CS + NB + Genetics was tested by combining it with MRI, PET, and MH. However, the 
performance was not enhanced, and the models become noisier. As a result, the combination of CS, NB, and 
Genetics was selected as the one producing the best performance.

�e next step is to show the generalization capability of the proposed model. As shown in Table 3, we observe 
the same trend already shown in Table 2. Once again, the combination of NB, CS, and Genetics again achieved 
the best performance.

Second layer: AD progression prediction performance. �e Second Layer in our framework opti-
mizes a binary classi�cation problem to predict the progression to AD within three years from baseline (i.e., sMCI 
versus pMCI). �is classi�er is �rst validated using tenfold CV on the MS1 dataset. As shown in Table 4 with 
bold typeface, the best performance of this model was observed for the combined CFA, PET, Genetics, and MRI 
data, i.e. Precision = 88.07 ± 0.70%, Recall = 86.08 ± 1.30%, Accuracy = 87.09 ± 0.80%, F1-score = 87.08 ± 0.90%, 
and AUC = 87.08 ± 0.80%. In addition, this model achieved the lowest variance in performance compared to all 
models based on other combinations and the whole feature space. Regarding single modalities, CFA achieves 
the best performance (see Table 4). In addition, cognitive scores and neuropsychological battery are usually 
considered in clinical practice. Models built using either MH or PET alone achieved the worst performance and 
were noisy. Based on the results from single modalities, we combined the best CFA model with each of the other 
modalities to see if the performance may be improved or not.

�e addition of PET data improves the predictive performance of our model because PET data provide 
complementary information about disease progression. �e combination of CFA and PET modalities achieves 
the best performance compared to combinations of other pairs of modalities. However, the resulting model is 
less con�dent compared to the model based on CFA alone. �is is probably because the PET modality added 
noise to the combined set. In addition, the CFA + PET modality achieved the smallest variance compared to 
other two modalities combinations. To check for possible improvement in model performance, the CFA + PET 
feature set was combined with each of the MRI, Genetics, and MH modalities. �e multimodality of CFA, PET, 

Table 3.  Random Forest performance testing for detecting AD patients ( MS2 test dataset;10% of the original 
data). MCA: multiclass classi�cation accuracy, MCF: multiclass F1 score; Asterisk ( *): is the subset of features 
with the best predictive performance; italic text is the best of single and pairs of modalities.

Modalities

Precision (%) Recall (%)

MCA (%) MCF (%)CN MCI AD CN MCI AD

All modalities 100.0 86.54 96.30 86.67 97.83 89.66 92.38 92.81

CS 100.0 71.43 93.75 86.61 97.83 51.72 81.90 83.29

NB 85.29 81.63 95.45 96.60 86.96 72.41 85.71 86.39

MRI 50.31 48.28 72.22 40.01 91.30 44.83 52.38 42.61

PET 50.00 55.22 73.53 36.67 80.43 86.21 60.95 58.66

Genetics 66.67 49.28 40.21 80.00 73.91 35.33 55.24 44.09

MH 33.33 52.54 38.46 36.67 67.39 17.24 44.76 40.93

NB + CS 100.0 84.91 96.15 86.67 97.83 86.21 91.43 91.93

NB + MRI 73.68 79.55 95.65 93.33 76.09 75.86 80.95 82.36

NB + PET 86.21 75.93 95.45 83.33 89.13 72.41 82.86 83.69

NB + Genetics 87.50 83.67 95.83 93.33 89.13 79.31 87.62 88.12

NB + MH 87.50 77.36 95.00 93.33 89.13 65.52 83.81 84.59

NB + CS + MRI 100.0 83.64 100.0 86.67 100.0 82.76 91.43 92.12

NB + CS + PET 100.0 82.14 100.0 86.67 100.0 79.31 90.48 91.27

NB + CS + Genetics* 100.0 86.79 100.0 86.67 100.0 89.66 93.33 93.82

NB + CS + MH 100.0 86.54 96.30 86.67 97.83 89.66 92.38 92.81

NB + CS + Genetics + MRI 100.0 85.19 100.0 86.67 100.0 86.21 92.38 92.97

NB + CS + Genetics + PET 100.0 85.19 100.0 86.67 100.0 86.21 92.38 92.97

NB + CS + Genetics + MH 100.0 86.79 100.0 86.67 100.0 89.66 93.33 93.82

NB + CS + Genetics + MH + MRI 100.0 86.54 96.30 86.67 97.83 89.66 92.38 92.81

NB + CS + Genetics + MH + PET 96.15 84.62 96.30 83.33 95.65 89.66 90.48 90.93
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and Genetics enhances the performance of progression prediction by about 2%, compared to the combined CFA 
and PET modality. In addition, the resulting model is more stable compared to the CFA + PET-based model. �is 
is in accordance with the fact that medically, Amyloid β, PTAU, and TAU are critical biomarkers to monitor the 
progression of  AD46–51. Finally, we check the e�ect of combining MRI and MH with the rest of the modalities 
(CFA, PET, and Genetics). Again, integrating MRI brain volume features (including the hippocampus, ICV, and 
others) improves the model accuracy by about 1%. MRI volume features provide vital information for e�ective 
prediction of AD progression. According to our domain experts, we believe this is medically promising because 
it is critical to integrate MRI features in order to measure possible AD progression. With the unseen data in MS2 
we verify the good generalization of the generated models that we already observed with tenfold CV (see Table 5).

Comparison with other classifiers. Recently, Travers et  al.21 provided a comprehensive survey of DL 
techniques in biology and medicine. In this context, Choi and  Jin22 utilized a convolutional neural network 
(CNN) to detect pMCI cases based on positron emission tomography (PET) images. Spasov et al.23 proposed 
a multimodal DL classi�cation model for AD progression detection based on the late fusion of magnetic reso-
nance imaging (MRI), demographic, neuropsychological, and apolipoprotein E (APOE) e4 genetic data.

Table 4.  Random Forest performance validation for predicting whether MCI subjects will progress to AD or 
not (tenfold cross-validation; Second Layer). BA: Balanced accuracy. Asterisk ( *): is the subset of features with 
the best predictive performance. Performance: Mean ± standard deviation.

Modalities used Precision (%) Recall (%) Accuracy (%) F1-score (%) AUC 

All 87.12 ± 1.52 81.31 ± 2.00 84.18 ± 1.77 83.21 ± 2.43 84.17 ± 1.99

CFA 82.14 ± 1.40 84.19 ± 1.90 82.16 ± 1.60 83.15 ± 1.50 82.15 ± 1.50

MRI 75.23 ± 1.88 72.25 ± 1.59 71.18 ± 2.01 72.17 ± 1.92 71.18 ± 1.89

PET 68.22 ± 2.22 68.53 ± 1.98 68.25 ± 1.99 66.39 ± 1.99 68.24 ± 2.01

Genetics 73.11 ± 1.73 68.36 ± 1.72 70.14 ± 1.79 69.24 ± 1.89 70.13 ± 1.80

MH 58.16 ± 4.60 52.22 ± 4.90 55.15 ± 3.73 54.19 ± 3.76 55.15 ± 3.76

CFA + MRI 83.11 ± 2.31 84.22 ± 2.20 83.14 ± 2.51 83.15 ± 2.26 83.14 ± 2.22

CFA + PET 85.17 ± 1.70 84.29 ± 2.90 84.19 ± 1.90 84.21 ± 2.10 84.19 ± 1.90

CFA + Genetics 82.14 ± 1.91 81.27 ± 1.98 81.16 ± 1.93 81.17 ± 1.96 81.16 ± 1.95

CFA + MH 84.16 ± 3.77 82.23 ± 4.60 82.17 ± 3.80 83.18 ± 3.33 82.17 ± 3.80

CFA + PET + MRI 86.09 ± 2.10 84.23 ± 2.30 84.11 ± 2.15 85.14 ± 2.22 85.11 ± 2.15

CFA + PET + Genetics 90.11 ± 1.50 83.21 ± 2.21 86.08 ± 1.04 85.11 ± 2.00 86.08 ± 1.05

CFA + PET + MH 86.09 ± 3.45 84.17 ± 4.20 84.08 ± 3.71 85.09 ± 4.01 84.08 ± 3.72

CFA + PET + Genetics + MRI* 88.07 ± 0.70 86.13 ± 1.30 87.08 ± 0.80 87.09 ± 0.90 87.08 ± 0.80

CFA + PET + Genetics + MH 86.09 ± 3.51 86.13 ± 4.70 86.08 ± 3.32 86.08 ± 3.99 86.08 ± 3.36

Table 5.  Random Forest performance measures for AD progression prediction of MCI subjects based on CFA, 
MRI, PET, genetics, and MH modalities ( MS2 test dataset; Second Layer). Asterisk ( *): is the subset of features 
with the best predictive performance.

Modalities used Precision (%) Recall (%) Accuracy (%) F1-score (%) AUC 

All 87.50 87.50 87.76 87.75 0.953

CFA 91.30 87.50 89.80 89.81 0.926

MRI 56.67 70.83 59.18 59.66 0.691

PET 72.73 66.67 71.43 71.44 0.812

Genetics 76.00 79.17 77.55 77.58 0.787

MH 57.14 50.00 57.14 57.07 0.562

CFA + MRI 90.91 83.33 87.76 87.86 0.903

CFA + PET 95.45 87.50 91.84 91.95 0.955

CFA + genetics 84.00 87.50 85.71 85.75 0.926

CFA + MH 91.30 87.50 89.80 89.81 0.918

CFA + PET + MRI 88.00 91.67 89.80 89.83 0.949

CFA + PET + genetics 91.67 91.67 91.85 91.83 0.956

CFA + PET + MH 87.50 87.50 87.76 87.75 0.943

CFA + PET + genetics + MRI* 91.70 91.70 91.86 91.84 0.963

CFA + PET + genetics + MH 87.50 87.50 87.76 87.75 0.948
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In addition, many AD studies have considered a single modality, especially MRI, to make a binary classi�ca-
tion of sMCI versus  pMCI52,53. Li et al.54 used �ve cognitive scores with a Cox linear regression model to build 
two prognostic models of AD. Moradi et al.27 achieved an area under the curve (AUC) of 0.77 in discriminating 
pMCI from sMCI based on RF and MRI data only; a�er fusing MRI features with baseline cognitive scores and 
age, they achieved an AUC of 0.90 for the same problem. Jin et al.55 used a Bayesian network to analyze multi-
modal data from ADNI data including demographics, MRI, PET, neuropsychometrics tests, and genotypes. It 
is worth noting that  RF56,57 is an ensemble classi�er that can provide more accurate predictions than other ML 
techniques. Fernandez-Delgado et al.40 evaluated 179 classi�ers using di�erent UCI datasets, and concluded 
that RF outperforms other classi�ers, including SVMs and neural networks. RF works well with a mixture of 
quantitative and categorical features, and unlike SVM, it handles multiclass problems natively. RF is able to 
learn wide datasets with a very large number of features, compared to the number of cases. RF has been used 
intensively in the AD  domain26,57,58. For example, Ramírez et al.58 proposed an ML model to predict MCI from 
normal patients. �is model is based on feature standardization, analysis of variance feature selection, partial 
least squares feature dimension reduction, and an ensemble of one vs. rest RF classi�ers. �e model achieved 
accuracy of 56.25% based on MRI data.

To verify the goodness and robustness of our approach in each layer, we compared the performance of the 
RF models with other predictive models, namely the SVM, KNN, Naïve Bayes (NB), and DT models. For each 
layer, we use the selected features of RFE. For each selected algorithm, we tuned its hyperparameters the same 
way we tuned the RF algorithm. �e results of the best performing parameters are shown in Tables 6 and 7. 
Our proposal outperforms the rest of classi�ers. It is worth noting that we did not compare our model with the 
arti�cial neural network approach because they achieved really bad performance in preliminary experiments, 
mainly due to the small size of the used datasets. In other words, our data is not big enough for training and 
testing the state-of-the-art DL architectures.

Models explainability. Explainability based on random forest internal logic. Based on SHAP explainers, 
we calculate feature contributions of RF models (see the Explainability Capabilities Section; in Material and 
methods). Figure S1 in Supplementary File (part 2) shows this rank for each class in each layer. �e most in-
�uential feature for the First Layer is CDRSB followed by MMSE, and the lowest feature is TRABSCOR_PartB-
TimeToComplete from the neuropsychological battery group (see Supplementary File [part 2], Table T2). For 
the Second Layer, FAQ plays the main role followed by ADNI_MEM, and Trail4Total has the lowest impact (see 
Supplementary File [part 2], Table T2). According to our domain experts, it is medically intuitive for cognitive 
scores to play the main role in detecting AD patients. However, for progression detection, we can see that Hip-
pocampus and MidTerp volumes from MRI images also play signi�cant role, in addition to FDG and SROI from 
PET images. Table 8 summarizes the sensitivity of the explainer to the di�erent feature values for both layers. For 
further details about these features and terminologies, readers are invited to see the Supplementary File (part 2) 
and ADNI at http://adni.loni.usc.edu.

Explainability of the behavior of individual features. �e global feature importance gives an abstract view about 
the role of each feature, but we cannot know the direction of these e�ects. For example, we cannot know if a 

Table 6.  Comparison of di�erent classi�ers ( MS2 test dataset; First Layer). MCA: multiclass classi�cation 
accuracy, MCF: multiclass F1 score; Asterisk ( *): is the model with the best predictive performance.

Classi�er

Precision (%) Recall (%)

MCA (%) MCF (%)CN MCI AD CN MCI AD

SVM 100.0 91.43 83.87 96.67 89.13 89.66 91.43 91.74

KNN 65.71 59.57 73.91 76.67 60.87 58.62 64.76 65.89

DT 100.0 86.54 96.30 86.67 97.83 89.66 92.38 92.81

NB 90.32 92.68 84.85 93.33 82.61 96.55 89.52 90.05

RF (our model)* 100.0 86.79 100.0 86.67 100.0 89.66 93.33 93.82

Table 7.  Comparison of di�erent classi�ers ( MS2 test dataset; Second Layer). Asterisk ( *): is the model with 
the best predictive performance.

Modalities used Precision Recall Accuracy F1-score AUC 

SVM 81.82 75.00 79.59 79.64 0.867

KNN 83.33 83.33 83.67 83.66 0.869

DT 85.71 75.00 81.63 81.82 0.850

NB 84.00 84.00 83.67 83.67 0.907

RF (our model)* 87.50 87.50 87.76 87.75 0.953

http://adni.loni.usc.edu
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Table 8.  Examples of the relationship between features and class prediction.

First Layer Most in�uential feature CDRSB Clinical dementia rating sum of box score

Lowest important feature TRABSCOR PartBTimeToComplete Neuropsychological battery’s TRABSCOR trail making test 
(part B—time to complete)

�e best feature for AD class MMSE Mini-Mental State Examination

�e best feature for CN and MCI classes CDRSB Clinical dementia rating sum of box score

↑ CDRSB, ↓ ADNI_MEM ↑ risk for the AD class Sensitivity of the AD class to this list of features

↓ CDRSB, ↑ ADNI_MEM, ↑ DigitalTotalScore, ↑ MOCA ↑ chance for the CN class Sensitivity of the CN class to this list of features

↓ CDRSB, ↑ FAQ,↑ MOCA, ↑ CDGLOBAL, ↓ ADNI_MEM ↓ risk for the MCI class Sensitivity of the MCI class to this list of features

Second Layer Most in�uential feature ADNI_MEM
ADNI_MEM is composite logical memory score for the8
 longitudinal changes in memory

Lowest important feature Trail4Total Neuropsychological Battery AVTOT4 feature

↑ FAQ, ↑ RAVLT_immediate ↑ chance for the sMCI class Relationship between RAVLT_immediate and sMCI class

↑ FAQ, ↑ RAVLT_immediate ↓ risk for the pMCI class Relationship between FAQ and RAVLT_immediate and pMCI 
class

↑ ADAS 13, ↑ ADNI_MEM, ↓ FDG, ↓ MOCA ↑ risk for the pMCI class Relationship between ADAS, ADNI_MEM, FDG, and MOCA 
and pMCI class

Figure 2.  SHAP summary plots for the �rst layer. �e upper le� �gure represents the CN class, the upper right 
�gure represents the MCI class, and the second row represents the AD class.
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high value for CDRSB will increase the probability of selecting the AD, MCI, or CN class. Using SHAP sum-
mary plots, we are able to analyze the behavior of our XAI framework with respect to di�erent values of features. 
Figure 2 shows the summary plots for every class in the �rst layer. Each dot represents the impact on a particular 
class of a particular feature for a given instance, and it is colored according to what magnitude of the value con-
tributes to the model impact. �e color represents the feature value (red = high, blue = low). We notice a di�erent 
order for each class.

In the First Layer, we �nd that MMSE is more signi�cant than CDRSB for the AD class, but CDRSB has the 
highest impact on the CN and MCI classes, see Table 8. �e model shows a high degree of non-linearity because 
the impacts of many features are spread across relatively wide ranges. We notice that the high values of CDRSB 
have great positive impact on the model for predicting the AD class, meaning CDRSB is a factor that increases 
AD risk. For the CN class, low values of CDRSB have extreme positive impact on the model. In contrast, high 
values of ADNI_MEM, DigitalTotalScore, and MOCA have a positive impact on predicting the CN class. For 
the MCI class, low values of CDRSB have an extreme negative impact on the model. �e CDGLOBAL feature 
is less critical than MOCA for the MCI class. However, in some cases, high values of this feature have a more 
negative impact on MCI cases than MOCA. �e same happens for FAQ, where low values have a more positive 
impact on a system decision for the MCI class than MOCA and CDGLOBAL. We noticed that AD and MCI 
classes are related to negative values of ADNI_MEM, but CN is related to positive values. In addition, by plot-
ting the impact of a feature on every sample, we can detect the impact of outliers. For example, in the case of the 
picture related to AD, although CDGLOBAL is not the most important feature globally, it is critical for a subset 
of patients. �is is indicated by the long-tailed distribution to the right. Again, the same situation applies to the 
DigitalTotalScore feature for the AD class.

In the Second Layer, although HCI is globally less signi�cant than ADNI_MEM for both sMCI and pMCI, 
in a subset of patients, this feature has more impact than ADNI_MEM, see Table 8 and Fig. 3. �e same is true 
for CDRSB in relation to MOCA for the pMCI class, and ADAS 11 in relation to CDRSB for the sMCI class. A 
feature with a longer tail to the right means it has a greater positive in�uence, and vice versa. As a result, under-
standing the detailed role of each feature alone and in combination with other features is of critical importance. 
For example, large values of RAVLT_immediate positively impact the model toward selecting the sMCI class, 
but negatively impact towards the pMCI class. FAQ is the most important feature for both classes, followed by 
ADNI_MEM, HCI, and ADAS 13. �e two classes show symmetric behaviors for all features. It is clear that low 
values of FAQ negatively a�ect the prediction of pMCI class, but they have the largest positive impact for the 
sMCI class. Large values of ADAS 13 have a higher positive impact on the model for predicting the pMCI than 
ADNI_MEM. Small values of FDG have a greater positive impact for predicting pMCI than MOCA and ADAS 
11. As a result, some features are not critical globally, but extreme values for speci�c cases have a greater impact 
in the model than the globally important features. Based on the knowledge of our domain experts, this is also 
medically intuitive, and increases the con�dence of medical experts in the behavior of our system.

Explainability of individual cases. Figure 4 shows examples of prediction for each class in the First Layer, and 
Figure S2 in Supplementary �le (part 2) shows another example from the Second Layer. In addition, the �gure 
illustrates supervised clustering of all cases according to their similarities.

Figure 3.  SHAP summary plots for the second layer. �e le� �gure shows the pMCI class, and the right �gure 
shows the sMCI class.
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Each example is a vertical line, and SHAP values for all cases are ordered by similarity. We identify some 
critical values for each cluster. Figure 4 (A) (part 1) shows a case with a probability of 75% for being AD. It 
also shows the most signi�cant feature values that have a positive impact for that class, such as MMSE = 24, 
CDRSB = 3.0, MOCA = 19.3, etc. �is is consistent with ADNI data, where the average values of all AD subjects 
are MMSE = 23.235 ± 2.015, CDRSB = 4.3 ± 1.591, and MOCA = 17.553 ± 3.377. In addition, it shows the features 
that push the classi�cation away from the AD class including DigitalTotalScore = 33, CDGLOBAL = 0, etc. �e 

Figure 4.  First layer example predictions for AD (A), CN (B), and MCI (C) and SHAP supervised clustering 
in model behavior for all cases in each class. Red indicates attributions that push the score higher, while blue 
indicates contributions that push the score lower. A few of the noticeable subgroups are annotated with the 
features that de�ne them.
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features with less impact such as TAU = 347.9, PTAU = 31.64, RAVLT immediate = 27, FAQ = 5, and Trial5Total = 7 
are represented with short arrows. Figure 4 (A) (part 2) shows the behavior of the model on all the instances, and 
the role of each feature to support (red) or not support (blue) classi�cation as AD. Di�erent clusters are de�ned 
according to the values of critical features. We �nd that when MMSE is in the interval [27, 30] and MOCA is 
in [23.62, 29], this combination has the greatest role in preventing the model from selecting the AD class (blue 
cluster). On the other hand, when CDRSB is in the range [3.5, 6.0], FAQ is in [6–17], and ADAS 13 is in [20–36], 
the model will mostly classify cases as AD (red cluster).

Figure 4 (B) (part 1) does the same thing for the CN class. �e model is 99% con�dent that the case is CN. 
Clearly de�ned clusters explain the model behavior in selecting the CN class. �e most critical factors that 
push the decision towards CN class are CDRSB = 0 and DigitalTotalScore = 50. Figure 4 (B) (part 2) shows the 
overall logic in detecting CN subjects. We observe some critical values of some clusters from this �gure. For 
example, if CDRSB = 0, FAQ = 0, DigitalTotalScore is in [31, 50], MMSE is in [27, 30], and ADAS 13 is in [1, 
15], the patient is mostly classi�ed as CN (red cluster). �is means that if MMSE is combined with both CDRSB 
and FAQ at 0, it loses a lot of its impact on AD class prediction. According to the ADNI data and our experts’ 
knowledge, these decisions are medically intuitive because the average values of critical factors for CN subjects are 
CDRSB = 0.039 ± 0.141, FAQ = 0.194 ± 0.720, and DigitalTotalScore = 48.173 ± 7.481. Figure 4 (C) (part 1) shows 
the prediction of our model for an MCI case. In general, the characteristics of MCI cases are between those of 
CN and AD classi�cations. According to the model prediction, the low value of CDRSB (1 in this current case) 
has a high positive impact on predicting MCI cases. �is subject has a negative ADNI_MEM value, which may 
have a signi�cant impact on the system’s decision. By comparing the feature values of the three cases, we can 
say that a little change in CDRSB has a great impact on performance, and this is compatible with Fig. 2. Please 
note that the combination of di�erent values of features could change the role of the related feature, as well as 
the �nal decision.

Explainability of the interaction between features. As shown in the middle of Figs. 3 and 4, many features (such 
as PTAU for AD class and ABETA for the CN and MCI classes), show a high degree of uncertainty. In addition, 
some features (such as Entorhinal and PTAU) seem to have less impact, because they are at the bottom of the list. 
However, these features may have a critical impact if they were combined with speci�c values of other features. 
To study the role of these types of features, we need to zoom in and study their behavior in combination with 
other features. Note that interaction analysis can be studied for other globally important features, as well, like 
CDRSB and FAQ.

Due to space restrictions, in Figure S3 of Supplementary File (part 2), we give a detailed example of the inter-
action impacts from one of these noisy features (e.g. PTAU) in the First Layer, and we study the impact of less 
globally critical feature (e.g., Entorhinal) in the Second Layer to highlight its role (see Fig. 2). As can be seen, the 
domain expert is able to interpret the internal behavior of the ML model and know exactly why it makes speci�c 
decisions. We notice that some features may be globally unimportant, but in some cases, they have extreme SHAP 
values, and that shows the real impact of these features. In addition, the real impact of a feature can be discovered 
by studying its interactions with other related features. Supplementary File (part 2) (Figure S4 to Figure S8) shows 
the SHAP interaction summaries for the most important features in both layers and for each class.

Explainability based on single explainers. In this section, we provide explanations of the RF model decisions 
from other explainers and based on other data types. Domain experts o�en consider these biomarkers to make 
accountable decisions. For example, the First Layer’s model does not consider MRI and PET data. Furthermore, 
the Second Layer’s model does not consider medical history. In addition, both models do not consider lab tests, 
vital signs, and physical examinations. However, all these features are considered by our explainers. It is worth 
noting that we are not interested in explaining the internal behavior of the RF model but providing physicians 
with post-hoc explanations of every decision. In the same way, how di�erent physicians may �gure out di�erent 
explanations (in terms of di�erent features) for a given output, our explainers yield complementary, consistent 
and reliable explanations.

Tables 9 and 10 summarize the quality (i.e. the performance-explainability trade-o�) of the 22 explainers (11 
DT and 11 FURIA) for each layer. Even if some of these explainers exhibit poor performance, they all exhibit 
complementary explainability because they depend on di�erent features. In practice, these explainers provide 
physicians with plausible explanations in natural language. It is worth noting that given a speci�c data instance, 
only those explainers that point out at the same output class as the RF model are taken into account when gen-
erating explanations. Moreover, physicians are provided with explanations along with information about the 
reliability of each single explainer in terms of its balance between accuracy and explainability. At the end, the 
physician makes the �nal decision on which explainers to trust or to discard likewise she may ask for alternative 
opinions of di�erent colleagues who are likely to have di�erent experience and background. As expected, DT is 
clever for some modalities, while FURIA is better for others.

We analyzed each instance in the test dataset of both layers and recorded how many explainers could predict 
the same class as their corresponding oracle (i.e. the RF model). �e test set in the First Layer was made up of 
105 instances. On average, 58.1% of the instances were managed by each single explainer. Regarding the number 
of explainers that act for each single instance, we found there were 13 (the median value) explainers considered; 
being 3 the worst case and 22 the best case. Being DT (vital signs-based) the least used explainer (34.4%) and 
FURIA (cognitive scores based) the most used explainer (92.4%). �e test set in the Second Layer was made up 
of 49 instances. On average, 63% of the instances were managed by each single explainer. Being DT (neurologi-
cal exams-based) the least used explainer (47%) and both DT and FURIA (cognitive scores-based) the most 
used explainers (78%). Regarding the number of explainers which act for each single instance, we observed that 
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Table 9.  �e performance of the explainers on di�erent modalities (First Layer). Exp. measures, explainability 
measure; NL, number of leaves; S, size of the tree; NR, number of rules; Exp. (%), the number of explained 
cases (percentage of coverage); values in bold indicate the best performance.

Explainer No. of features Model Exp. (%) Precision Recall Accuracy F1-score Exp. measures

Cognitive scores based 12
DT 96 (91.43) 0.913 0.912 0.912 0.912 NL = 29; S = 57

FURIA 97 (92.38) 0.910 0.909 0.909 0.909 NR = 17

Genetics based 5
DT 61 (58.10) 0.553 0.555 0.555 0.553 NL = 35; S = 69

FURIA 63 (60.00) 0.556 0.559 0.559 0.553 NR = 8

Lab tests based 41
DT 39 (37.14) 0.408 0.407 0.407 0.408 NL = 155; S = 309

FURIA 53 (50.48) 0.469 0.494 0.494 0.460 NR = 6

Medical history based 27
DT 83 (79.05) 0.495 0.496 0.496 0.494 NL = 173; S = 331

FURIA 67 (63.81) 0.521 0.519 0.519 0.517 NR = 10

MRI based 8
DT 64 (60.95) 0.472 0.471 0.471 0.468 NL = 58; S = 115

FURIA 51 (48.57) 0.525 0.525 0.525 0.524 NR = 5

Neurological exams based 12
DT 47 (44.76) 0.387 0.451 0.451 0.335 NL = 15; S = 29

FURIA 47 (44.76) 0.413 0.467 0.467 0.350 NR = 3

Neuropsychological battery 
based 35

DT 87 (82.86) 0.733 0.732 0.732 0.732 NL = 85; S = 169

FURIA 85 (80.95) 0.771 0.771 0.771 0.770 NR = 22

PET based 3
DT 60 (57.14) 0.614 0.612 0.612 0.610 NL = 22; S = 43

FURIA 66 (62.86) 0.621 0.618 0.618 0.616 NR = 6

Physical exams based 10
DT 48 (45.71) 0.291 0.443 0.443 0.304 NL = 13; S = 25

FURIA 49 (46.67) 0.257 0.461 0.461 0.297 NR = 5

Symptoms based 27
DT 49 (46.67) 0.425 0.449 0.449 0.383 NL = 32; S = 63

FURIA 49 (46.67) 0.430 0.446 0.446 0.389 NR = 3

Vital signs based 8
DT 36 (34.29) 0.369 0.417 0.417 0.367 NL = 79; S = 157

FURIA 45 (42.86) 0.360 0.453 0.453 0.329 NR = 2

Table 10.  �e performance of the explainers on di�erent modalities (Second Layer). Exp. measures, 
explainability measure; NL, number of leaves; S, size of the tree; NR, number of rules; Exp. (%), the number of 
explained cases (percentage of coverage); values in bold indicate the best performance.

Explainer No. of features Model Exp. (%) Precision Recall Accuracy F1-score Exp. measures

Cognitive scores based 12
DT 38 (77.55) 0.824 0.824 0.824 0.824 NL = 25; S = 49

FURIA 38 (77.55) 0.847 0.847 0.847 0.847 NR = 9

Genetics based 5
DT 32 (65.31) 0.729 0.721 0.721 0.720 NL = 7; S = 13

FURIA 33 (67.35) 0.729 0.728 0.728 0.728 NR = 5

Lab tests based 41
DT 28 (57.14) 0.528 0.526 0.526 0.526 NL = 58; S = 115

FURIA 30 (61.22) 0.574 0.574 0.574 0.574 NR = 20

Medical history based 27
DT 29 (59.18) 0.590 0.590 0.590 0.589 NL = 51; S = 95

FURIA 31 (63.27) 0.643 0.643 0.643 0.643 NR = 3

MRI based 8
DT 30 (61.22) 0.732 0.721 0.721 0.720 NL = 12; S = 23

FURIA 33 (67.35) 0.687 0.686 0.686 0.687 NR = 6

Neurological exams based 12
DT 23 (46.94) 0.492 0.515 0.515 0.429 NL = 9; S = 17

FURIA 24 (48.98) 0.457 0.497 0.497 0.417 NR = 3

Neuropsychological battery 
based 35

DT 31 (63.27) 0.693 0.693 0.693 0.693 NL = 52; S = 103

FURIA 35 (71.43) 0.764 0.762 0.762 0.762 NR = 11

PET based 3
DT 31 (63.27) 0.680 0.677 0.677 0.677 NL = 8; S = 15

FURIA 34 (69.39) 0.710 0.709 0.709 0.709 NR = 4

Physical exams based 10
DT 31 (63.27) 0.552 0.542 0.542 0.537 NL = 14; S = 27

FURIA 29 (59.18) 0.534 0.529 0.529 0.526 NR = 5

Symptoms based 27
DT 27 (55.10) 0.531 0.524 0.524 0.520 NL = 20; S = 39

FURIA 32 (65.31) 0.556 0.547 0.547 0.542 NR = 4

Vital signs based 8
DT 24 (48.98) 0.519 0.526 0.526 0.461 NL = 4; S = 7

FURIA 31 (63.27) 0.523 0.526 0.526 0.519 NR = 3
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14 (the median value) explainers are considered; being 7 the worst case and 20 the best case. All in all, we can 
conclude that even in the worst cases, we are ready to supply physicians with more than one single explanation. 
Moreover, explanations are normally rich, thanks to the fact that they involve several modalities. �is fact was 
especially well appreciated by the physicians who collaborated in our study.

Case studies for FURIA and DT explainers. �e supplementary �le (part 3) lists a group of AD cases to tests the 
system explainability. �e supplementary �le (part 2) shows the expressiveness of the generated explanations for 
three illustrative case studies (see Supplementary File [part 2], Table T3 to T7). We tested the following: (1) the 
ability of explainers to generate supplementary explanations, (2) their consistency with the generated explana-
tions from SHAP, and (3) the quality of the generated natural language explanations. In case study 1, we can 
see that generated explanations add many values to the interpretability and con�dence of the decisions made. 
First, the explainers reinforce the explanations from SHAP. Second, they increase the con�dence physicians have 
about the decision made. In case study 2, physicians can investigate all the information to understand why the 
system makes a speci�c decision. We note perfect matches among SHAP and explainers’ outputs. In case study 
3, we observe how explanations related to sMCI and pMCI are somehow in contrast (and in accordance with) 
physicians’ intuition and background.

Model strengths and limitations. �e proposed model is designed to comprehensively integrate high-�delity 
Alzheimer’s data to predict AD and detect its possible progression within three years from baseline. We dem-
onstrated the high predictive powers of the proposed models. �e First Layer model achieves the best results by 
combining the NB, CS, and Genetics modalities. �ese modalities achieved the best cross-validations results. 
On the other hand, the Second Layer model shows the highest results based on CS, NB, PET, MRI, and Genet-
ics. Both CS and NB have important roles in improving the performance of our model. Similar observations 
have been reported in the  literature20. Note that not all biomarkers of these modalities are used in the training 
process, but only the features selected by the RFE technique. Using black-box models in the medical domain is 
very dangerous and not acceptable. Our model achieves superior performance, compared to other ML models; 
in addition, it combines high-accuracy, complex models (i.e. ensemble RF) with interpretable explanations. �is 
combination allows physicians to receive the best possible predictions, and at the same time, gain insight into 
why those predictions were made. �ese actionable decisions increase the con�dence and trust in the model’s 
behavior, help to debug the model, and can work as an educational tool for inexperienced physicians. Note that 
we used the word “con�dence” to indicate that the model provided its results with small variances. In contrast, we 
used the word “trust” to indicate that our model provided interpretable and explainable results which improved 
the domain expert’s trust in the model’s decision. Moreover, when the model provided a result with high con�-
dence, it then enhanced the domain expert’s level of trust. Consequently, in our study, more con�dence resulted 
in more trust, in addition to the trust gained from explainability. �e quanti�cation of trust for deep learning 
models has been discussed  recently59. Taking this quanti�cation process into account would be an insightful 
investigation.

Training general practitioners, based on educational interventions, to recognize and manage AD has no 
signi�cant impact on clinical  practice60. A CDSS can provide another solution, but current systems are mostly 
based on a single  modality52,53, make use of binary models (e.g., CADi2)61, or are not  explainable8–15. As a result, 
current systems are rarely used routinely in AD management. We believe that a CDSS based on our comprehen-
sive, accurate, and explainable model could make a di�erence in practice. We provide explanations from di�erent 
perspectives including CS, NB, MRI, PET, Genetics, medical history, etc. In addition, we provide detailed expla-
nations based on feature contributions. We believe that these explanations provide supplementary knowledge 
for physicians to fully understand the rationale behind the decisions taken. To the best of our knowledge, this is 
the �rst study that provides such a comprehensive model and with such explainability features.

Our model has a couple of limitations worth noting. First, we only considered the baseline data for making 
decisions. Because AD is a chronic disease, a time-series data analysis would be of critical  value62,63. A future 
attempt will study the role of longitudinal data to enhance the model’s accuracy and explainability. We could 
consider some DL techniques, which are clever at handling time-series data, such as long short-term memory, 
in such a future study. Second, the ADNI collects data about the roles of a patient’s medication history and 
comorbidities on AD progression. No such research has been done previously to study these data. Another future 
enhancement could be the integration into the prediction ML model of semantic intelligence from ontologies. We 
will consider semantics from the standard ontologies (e.g. RxNorm, Systematized Nomenclature of Medicine-
Clinical Terms [SNOMED CT], etc.) to encode these data and to infer hidden knowledge about the relationships 
between drugs, diseases, and Alzheimer’s. �ird, the network science approaches have been used to characterizing 
the brain activities for AD patients to extract interconnectivity patterns of brain regions based on neuroimag-
ing  techniques64–67. Although these studies provided additional insights into AD pathophysiology, they come 
with several limitations. For example, Chen et al.,64 used a small cohort of 55 subjects for classifying subjects as 
AD vs. MCI vs. AD using the large-scale network analysis approach. �ese data have been collected at baseline 
visit only, and no longitudinal study has been performed. However, cross-sectional studies cannot dynamically 
observe changes in network patterns with disease progression. Furthermore, postmortem studies are required as 
the reference standard when validating the large-scale network methods. In addition, the study used simple linear 
regression to measure the relationship between changes in network connectivity strengths and behavioral scores. 
Wang et al.65 utilized a small dataset of 89 subjects to evaluate the impaired network functional connectivity 
with AD progression. Even though the whole brain network is complex, varied, and interrelated, this study was 
based on only �ve networks which put limitations placed on its results. �us, the entire brain network analysis 
with �nely de�ned regions is important. Also, this study is based on baseline data only. Besides, longitudinal 
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data of multiple modalities such as functional and structural MRI, PET, genetic genotype, etc. should be fused 
to follow individuals to di�erentiate all the severity levels. In future studies, one might explore these network 
science approaches and integrate them with advanced XAI and deep learning techniques. In this context, we can 
study the roles of time series data to improve the current literature. Moreover, the role of data fusion of di�erent 
modalities might be explored using di�erent ML and DL algorithms. Finally, a web based CDSS system based on 
a user-friendly interface can provide medically intuitive aids for both medical experts and general practitioners. 
Work is currently in progress to develop such a system, which will be extended to work as a pluggable component 
of the electronic health record ecosystem. �is design facilitates data entry by the physician, online training of 
the models, and automatic updates on patient status.

Material and methods
ADNI study. Data used in this work was collected from the ADNI database (adni.loni.usc.edu). Subjects have 
been enrolled from over 57 sites across the U.S. and Canada. �e study was conducted according to the Good 
Clinical Practice guidelines, the Declaration of Helsinki, US 21 CFR part 50 —Protection of Human Subjects—
and part 56—Institutional Review Boards. Subjects were willing and able to undergo test procedures, including 
neuroimaging and follow-up, and written informed consent was obtained from participants. All data are publicly 
available, at http://adni.loni.usc.edu/.

In all, 1048 subjects (54.5% male) participated in the study and were categorized into four groups based on 
the individual clinical diagnosis at baseline and future visits, as follows: (a) cognitively normal (CN): 294 subjects 
(28.1%) diagnosed as CN at baseline who remained CN at the time this manuscript is prepared. (b) sMCI: 254 
subjects (24.2%) diagnosed as MCI at all-time points. (c) pMCI: 232 subjects (22.1%) evaluated as MCI at baseline 
visit who had progressed to AD within three years. (d) AD: 268 subjects (25.6%) who had a clinical diagnosis of 
AD for all visits. Subjects showing improvement in their clinical diagnosis during follow up (i.e., those clinically 
diagnosed as MCI but reverting to CN, or those clinically diagnosed as AD but reverting to MCI or CN) were 
excluded from the study because of the potential uncertainty of clinical misdiagnosis, considering that AD is 
considered irreversible form of dementia. In addition, cases that had a direct conversion from CN to AD were 
also removed. Patients taking part in this study are anonymized and the actual list of patient IDs in our study 
can be found in Supplementary File (part 1). �e data used in this research are from the baseline visits only, no 
longitudinal data were considered.

Study cohorts. Eligible participant patients were from 55 to 91 years old, �uent in English or Spanish, and 
had at least six years of education. Participants were categorized into three groups: CN, MCI (sMCI + pMCI), or 
AD. CN individuals were free of memory complaints, had a mini-mental state examination (MMSE) score of 24 
to 30, and an average clinical dementia rating sum of boxes score (CDR-SB) of 0.04. MCI individuals had MMSE 
scores of 23 to 30, and an average CDR-SB of 1.582. MMSE and CDR-SB scores for MCI subjects were consider-
ably di�erent from CN subjects (P < 0.0001). �e ages of MCI subjects were signi�cantly di�erent from AD and 
CN subjects (P < 0.005). �e years of education for MCI subjects were signi�cantly di�erent from CN subjects 
(P < 0.01). AD patients ful�ll diagnostic criteria for probable AD as set by the National Institute of Neurological 
and Communicative Disorders and Stroke of the United States and the Alzheimer’s Disease and Related Disor-
ders  Association68, with MMSE scores of 19 to 27 and an average CDR-SB of 4.347. MMSE and CDR-SB scores 
of AD subjects were signi�cantly di�erent from CN and MCI subjects (p < 0.0001). �e ages of AD subjects were 
signi�cantly di�erent from CN subjects (P < 0.05), and the education years of AD subjects were signi�cantly dif-
ferent from CN subjects (P < 0.0001) and MCI subjects (P < 0.01). Available ADNI subjects (n = 1048) with both 
a T1-weighted MRI scan and a PET–�uorodeoxyglucose (PET-FDG) image upon preparation of this manuscript 
were used in this study. For the PET data, we collected only three PET-FDG features from Banner Alzheimer’s 
Institute (BAI)-PET Naval Medical Research Center (NMRC) summaries and University of California, Berke-
ley, FDG  analysis69. �e MRI features used in our experiments are based on the imaging data from the ADNI 
database processed by a team from UCSF, who performed cortical reconstruction and volumetric segmentations 
with the FreeSurfer version 6.0 image analysis suite (https ://surfe r.nmr.mgh.harva rd.edu/) according to the atlas 
generated by Desikan et al.70.

�e FreeSurfer so�ware version 6.0 (https ://surfe r.nmr.mgh.harva rd.edu/) was employed to automatically 
label cortical and subcortical tissue classes for the structural MRI scan of each subject, and to extract thickness 
measures of cortical regions of interest and cortical and subcortical volume measures. Based on the 312 fea-
tures collected from each MRI image, we calculated seven features including ventricles, middle temporal gyrus 
[midTemp], fusiform, entorhinal, hippocampus, and whole brain volume. �e equations used to calculate these 
features can be found in Supplementary File (part 2). Details of the analysis procedure are available at ADNI 
(http://adni.loni.usc.edu/metho ds/mri-tool/mri-analy sis/). Detailed descriptions of the ADNI subjects, image 
acquisition protocol procedures, and post-acquisition preprocessing procedures can be found at ADNI (http://
www.adni-info.org/). Demographic and clinical information of the subjects is shown in Table 11. In this study, 
we utilized multiple modalities that include the followings: (i) Cognitive scores, e.g. 12 features of the Alzhei-
mer’s diseases assessment scale–cognitive subscale (ADAS-Cog) 11, ADAS-Cog 13, global CDR (CDGLOBAL), 
CDRSB, functional assessment questionnaire (FAQ), geriatric depression scale (GDT), MMSE, Montreal cogni-
tive assessment (MoCA), and the neuropsychiatric inventory questionnaire score (NPISCORE). (ii) PET features, 
i.e. FDG, hypometabolic convergence index (HCI), and statistical region of interest [SROI]). (iii) Neuropsycho-
logical battery, i.e. 35 features of the Rey auditory verbal learning test (RAVLT), CLOCK, COPY, and AVTOT 
total scores and sub-scores. (iv) Neuropathology vital signs, i.e. seven features including body mass index (BMI), 
weight, blood pressure, etc. (v) Cerebrospinal �uid (CSF) biomarkers, i.e. TAU, phosphorylated TAU—PTAU, and 
amyloid-β peptide of 42 amino acids- Aβ1–42. (vi) Demographics, i.e. gender, age, number of years of education, 

http://adni.loni.usc.edu/
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/
http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
http://www.adni-info.org/
http://www.adni-info.org/


16

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2660  | https://doi.org/10.1038/s41598-021-82098-3

www.nature.com/scientificreports/

marital status, and ethnic and racial categories. (vii) Medical history, i.e. 22 binary features to check the patient 
and parents histories, including smoking, allergies, malignancy, gastrointestinal problems, etc. (viii) Symptoms, 
i.e. 27 binary features asking about diarrhea, dizziness, falls, etc. (ix) Lab tests, i.e. 41 blood lab tests, including 
vitamin B12, monocytes, platelets, etc. (x) Physical examinations, i.e. 10 feature asking about problems in the 
head, neck, skin, chest, etc. (xi) Neurological exams, i.e. 12 binary features from the cerebellar exam, gait, motor 
strength, sensory capabilities, etc. (xii) MRI volumetric features, i.e. volumes of ventricles, MidTemp, fusiform, 
entorhinal cortex, hippocampus, total intracranial volume (ICV), and whole brain. (xiii) Genetics, i.e. APOE4. 
To the best of our knowledge, there are no studies in the literature, which study the role of all of these biomarkers. 
More details about these features can be found in Supplementary File (part 2).

Feature selection and modeling approach. �e proposed model has two main layers. Each layer has an 
oracle classi�er based on RF and a set of 22 explainers. �e oracle is trained to be as accurate as possible based 
on the fused dataset. �e First Layer’s oracle classi�es the patient as CN, MCI, or AD based on the whole dataset. 
�e Second Layer’s oracle concentrates further on the MCI cases, �ltered from the previous layer, to predict 
their probable progression to AD within three years from baseline. As such, the Second Layer classi�es the MCI 
cases into sMCI and pMCI cases. �e development process of the proposed oracles has several major steps, as 
presented in Fig. 5. �ese steps are applied in the same order for both layers separately. First, a�er fusing the raw 
data modalities, for each layer, the full dataset is strati�ed and randomly divided into a model development set 
[ S1 ] (90%) and a testing set [ S2 ] (10%) that is utilized to evaluate and compare the generality and explainability 
of models. �is split prevents the mixing of model-selection and performance estimation, which supports the 
estimations of unbiased generalization performance from the models. Second, a feature standardization step is 
assimilated on numerical features to normalize them in the same way, which is done by standardizing the ran-
dom variables with zero mean and unitary standard deviation. Note that categorical features are excluded from 
the normalization process.

�ird, for enhanced generalization performance of the models, the S1 set is used to implement a feature selec-
tion process to identify the most relevant features. Fourth, most ML approaches tend to generate biased models 
when handling imbalanced datasets. Our Second Layer’s dataset is balanced (52.3% sMCI and 47.7% pMCI). 
However, the First Layer’s dataset is imbalanced (28.05% CN, 46.37% MCI, and 25.58% AD). �erefore, the 
synthetic minority oversampling technique (SMOTE) is used to handle the class imbalance in the S1 set of the 
First Layer by resampling the original data and creating synthetic  instances71. Fi�h, to guarantee unbiased tun-
ing of model hyperparameters, and because our datasets are relatively small, the model selection and validation 

Table 11.  Descriptive statistics from the dataset used. AD, Alzheimer’s disease; MCI, mild cognitive 
impairment; pMCI-sMCI, progressive MCI – stable MCI; CN, cognitive normal; CDR, clinical dementia 
rating; ADAS-Cog, Alzheimer’s Disease Assessment Scale–Cognitive Subscale test; RAVLT, Rey Auditory 
Verbal Learning Test; FAQ, Functional Assessment Questionnaire; MMSE, Mini–Mental State Examination; 
FDG, sum of mean glucose metabolism uptake in regions of angular, temporal, and posterior cingulate; TAU, 
CSF level of TAU; Aβ42, CSF level of amyloid β1–42 peptide; HCI, hypometabolic convergence index; AV45, 
Average AV45 SUVR of frontal, anterior cingulate, precuneus, and parietal cortex relative to the cerebellum; 
Hippo, Hippocampus; GDTOTAL, Geriatric Depression Scale. *Data are mean ± standard deviation.

CN (n = 294) sMCI (n = 254) pMCI (n = 232) AD (n = 268) Combined (n = 1048)

Gender (M/F) 140 ± 154 144/110 136/96 151 ± 117 571/477

Age (years) 74.120 ± 5.890 72.202 ± 07.553 73.771 ± 7.0840 75.241 ± 7.610 73.864 ± 07.107

Education (years) 16.405 ± 2.733 15.9530 ± 2.867 15.784 ± 2.7830 15.175 ± 2.923 15.844 ± 02.858

FAQ 0.1940 ± 0.720 01.539 ± 02.817 5.7110 ± 4.8680 13.146 ± 6.814 05.053 ± 06.754

MMSE 29.085 ± 1.143 27.941 ± 01.722 26.7590 ± 1.736 23.235 ± 2.015 26.797 ± 2.7960

MOCA 25.569 ± 1.866 23.493 ± 02.452 20.947 ± 01.908 17.553 ± 3.377 21.993 ± 3.9450

FDG 6.5690 ± 0.477 06.3820 ± 0.599 05.800 ± 00.462 5.4060 ± 0.614 6.0560 ± 0.7180

APOE4 0.2520 ± 0.472 0.4610 ± 0.6380 0.8660 ± 00.686 0.8880 ± 0.710 0.6010 ± 0.6850

CSF PTAU pg/mL 19.423 ± 6.820 25.640 ± 11.703 35.2240 ± 13.20 35.717 ± 13.11 28.5940 ± 13.29

CSF TAU pg/mL 215.07 ± 67.28 270.861 ± 106.4 352.86 ± 116.27 361.2 ± 121.41 296.46 ± 120.58

ADAS-Cog 11 05.617 ± 2.784 8.6260 ± 3.5200 13.412 ± 4.3850 19.318 ± 6.569 11.576 ± 06.970

ADAS-Cog 13 08.600 ± 4.108 13.791 ± 05.303 21.580 ± 05.841 29.706 ± 7.835 18.129 ± 10.085

RAVLT immediate 045.595 ± 9.64 37.705 ± 10.308 27.444 ± 06.510 22.466 ± 7.069 33.750 ± 12.585

RAVLT learn 06.139 ± 2.143 04.799 ± 02.403 02.853 ± 02.219 01.799 ± 1.810 3.9770 ± 02.752

RAVLT forgetting 03.582 ± 2.810 04.343 ± 02.497 05.039 ± 02.193 04.381 ± 1.783 4.2930 ± 02.420

RAVLT % forget 32.612 ± 27.53 50.000 ± 30.027 78.188 ± 27.892 88.562 ± 21.22 61.223 ± 35.098

CDR-SB 0.0390 ± 0.141 1.1970 ± 0.6390 02.004 ± 0.9980 04.347 ± 1.591 01.856 ± 01.896

GDTOTAL 0.7890 ± 1.056 1.7090 ± 01.462 01.668 ± 01.423 01.634 ± 1.454 01.423 ± 01.404

HCI 8.9500 ± 3.330 11.066 ± 04.080 15.560 ± 04.770 21.158 ± 7.384 14.048 ± 06.996

Hippo. vol.  (cm3) (/1000) 7.4520 ± 0.920 07.106 ± 01.074 06.083 ± 01.038 05.713 ± 0.995 06.621 ± 01.240
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process (i.e. hyperparameter optimization) is carried out based on the grid search and nested k-fold strati�ed 
cross-validation (CV) where k = 1072. �e entire process has two loops: an inner loop for hyperparameter tun-
ing, and an outer loop for evaluation of the model with selected parameters on unseen  data73. Model selection 
without nested CV uses the same data from parameter tuning and model evaluation, where information may leak 
into the model and over�t the data. �e leave-one-out cross-validation (LOOCV), i.e. k-fold CV where k = n72, 
assures small bias but large  variance74. �e tenfold CV provides the best trade-o� between bias and  variance75. 
Keeping the S2 set untouched helps us to verify that the generalization performance of the selected model thanks 
to tenfold CV is preserved even with unseen data. In each layer, we develop an RF classi�cation model based 
on the selected features.

RF classi�ers are used because they are accurate, and it is possible to get the feature contributions for the 
whole model (a global explanation) and calculate feature contributions for each speci�c instance (a local expla-
nation). Although SVM and DL have a huge capability to �t complex nonlinear models to the data and achieve 
high performance, the resultant models are opaque what makes hard to explain their  decisions18. We therefore 
selected RF as the oracle to classify patients in our two-layer model.

A�er building the RF oracle classi�ers, we implement two interpretable classi�ers (DT and FRBS) for each of 
the 11 modalities in each layer. �e resulting 22 classi�ers play the role of explainers to interpret the oracle deci-
sions at each layer. �us, we have 11 classi�ers as a DT, and 11 classi�ers as an FRBS. �e FRBS deals naturally 
with imprecision and  uncertainty36. Moreover, an FRBS plays an important role in the quest for  XAI76. More 
precisely, we selected the Fuzzy Unordered Rule Induction Algorithm (FURIA) [51] from among all algorithms 
available for building an FRBS. FURIA is recognized as one of the most accurate fuzzy classi�ers. In addition, 
FURIA usually yields a compact set of fuzzy IF–THEN rules. FURIA is based on the Repeated Incremental 
Pruning to Produce Error Reduction (RIPPER)  algorithm77. FURIA translates RIPPER rule antecedents into 
trapezoidal fuzzy sets. �ese antecedents are related by FURIA weighed rules, which do not necessarily include 
an antecedent for all the input attributes and can have more than one antecedent for the same attribute. Each 
FURIA rule is associated with a certainty factor, i.e. a rule weight that FURIA computes regarding the relevance 
of the rule in accordance with the training data. Given a speci�c data instance, the min–max fuzzy inference 
mechanism is applied, and the winning rule, i.e. the one with maximum �ring degree, determines the output 
class. If no rules are �red for a given data instance, then FURIA applies the so-called rule-stretching mecha-
nism, which looks for slight modi�cations in the rule base with the aim of �nding a new rule on-the-�y that is 
able to manage the given instance. Unfortunately, FURIA rules lack linguistic meaning because they have local 
semantics, i.e. the most suitable fuzzy sets are de�ned independently for each rule. �is fact may jeopardize the 
interpretability of FURIA rules.

With the aim of paving the way from interpretable to explainable classi�ers, we use  ExpliClas78. �is is a 
web service ready to provide users with multimodal (textual + graphical) explanations related to the DT and 
FURIA. As a matter of fact, ExpliClas creates a linguistic layer on top of the DT and FURIA. First, global seman-
tics (whether we consider the DT or FURIA) is set up beforehand. By default, three linguistic terms (e.g., low, 
medium, high) are de�ned for each attribute. Next, domain experts (if available) can add/remove/re�ne the 

Figure 5.  Development process for the oracle model in each layer.
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given linguistic terms to assure they are meaningful. �en, given a speci�c data instance, the actual classi�cation 
carried out by the DT or FURIA is automatically interpreted by ExpliClas with regard to the linguistic terms 
previously de�ned. In practice, both the activated branch of the DT and the winner rule of FURIA are translated 
into sequences of meaningful words (i.e., each numerical interval in the DT or fuzzy set in FURIA is verbalized 
by the closest linguistic term in ExpliClas). As a result, users are provided with an explanation in natural language 

Figure 6.  �e proposed XAI framework. A variety of data modalities are used to build the predictive model. In 
addition, a variety of explanations are built for the entire RF behavior and for each prediction. �e FreeSurfer 
version 6.0 is used (https ://surfe r.nmr.mgh.harva rd.edu/).

https://surfer.nmr.mgh.harvard.edu/
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of the output class in terms of the involved attributes. It is worth noting that we substituted the default linguistic 
terms in ExpliClas by meaningful linguistic terms in agreement with a physician in this study.

Figure 6 shows a detailed description of our proposed XAI framework. �e �rst step is preprocessing, which 
is used to prepare and improve the quality of the datasets. �is step has the following four sub-processes.

• Preparing biological modalities: For the biological MRI modality, we used ready-made extracted and pre-
processed features (http://adni.loni.usc.edu/), done by ADNI. We then used these detailed features to create 
a list of seven volumetric summary features for the most critical brain regions of interest, including the hip-
pocampus, ventricles, entorhinal, fusiform gyrus, MidTemp, whole brain, and ICV. For biological PET modal-
ity, we collected only three FDG-PET features from BAI-PET NMRC summaries and UC Berkeley-FDG 
 analysis69. For instance, to measure FDG, mean levels of glucose metabolisms are �rst recorded at di�erent 
regions of interest. �e �ve most common regions are le� and right angular gyri, posterior cingulate cortex, 
and le� and right inferior temporal gyri. �en, the summation of the mean glucose metabolisms is considered 
 FDG79. Other PET measures include the HCI to characterize in a single summary metric the extent to which 
both the magnitude and spatial extent of cerebral glucose hypometabolism in a person’s FDG-PET image 
corresponds to that in patients with probable AD  dementia80. Our prepared PET and MRI features are based 
on their popularity in studies from the literature, their availability, and their level of accuracy in our current 
medical problem (see Supplementary File [part 2] for further details).

• Multimodal fusion: �e AD environment is multimodal in nature, where multiple feature sets are combined. 
�is is called multimodal fusion, where each modality has supplementary information to support the �nal 
decision. In this context, two simple strategies are followed: late fusion and early fusion. In late fusion (i.e., 
decision-level fusion), a di�erent model is trained independently for each modality, and the individual out-
comes are merged into a �nal common decision, as seen in Fig. 7a. In the early fusion strategy (i.e., feature-
level fusion), raw features from the individual modalities are integrated to create a common feature vector. 
�e common feature vector is then used to train a classi�er as the �nal prediction model, as seen in Fig. 7b. 
Each strategy has its own advantages and disadvantages. However, late fusion is based mainly on computing 
weights associated to which classi�ers, which is not an easy process to learn and to explain. �erefore, in this 
study, we apply the early fusion strategy.

• Data standardization: A�er data splitting, each type of participating data may have a di�erent order of mag-
nitude. �ese raw data cannot be used directly to train the RF model. To ensure that every feature has the 
same level of importance, data were standardized using the z-score method (see Eq. 1). �e standardized 
data is therefore normally distributed with mean and standard deviation of 0 and 1, respectively.

where xj is the old value of feature j , zj is the normalized value, µj is the feature’s mean, and σj is the feature’s 
standard deviation. As a side e�ect, this method removes outliers.

• Handling missing values: For handling missing values, we �rst removed any feature with more than 30% of 
the values missing. �en, we use the k-nearest neighbors (KNN) algorithm to impute missing values, where 
missing values are replaced using information from neighbor subjects that have the same class. A�er �nding 
k neighbors, the imputation value is computed by averaging the values of those neighbors. In our study, the 
mixed Euclidean distance (MED) was used, and k was set to 10 empirically via experiments (for numerical 
values, the Euclidean distance was used; for categorical values, a distance of 0 was taken if both values were 
the same, otherwise the distance was set to 1). Please note that the data standardization process has been 
done before the missing values handling.
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Figure 7.  Multimodal fusion strategies: (a) late fusion, (b) early fusion.
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For the automatic feature selection, we used wrapper methods, which obtain subsets of features, and o�er 
better performance than �lter  methods20. �e commonly used classi�ers in wrapper are naïve  Bayes81,  SVM82, 
 RF83, and  AdaBoost84. Along with greedy search algorithms, these methods �nd the optimal set of features. It is 
worth noting that the well-known principal component analysis (PCA) technique cannot be used in our experi-
ments because we need to preserve meaningful medical features, and PCA produces synthetic features that are 
hard to interpret as a combination of the principal components.

Recursive feature elimination (RFE) is famous in the medical domain owing to its e�ciency in reducing 
computational  burden85. It maximizes its predictor performance through backward feature elimination as well 
as its ranking criterion. �e literature asserts that RF-RFE outperforms SVM-RFE in �nding the best subsets of 
features, and does not need any parameter regulation to o�er reasonable  outcomes86. We applied RFE with the 
strati�ed tenfold CV related to the S1 dataset. To prevent the bias introduced by randomly partitioning a dataset 
in CV, the tenfold CV procedure was repeated �ve times with di�erent data partitions. To evaluate the robust-
ness of the RF-RFE process in selecting the optimal set of features, we utilized the RFE method with RF, SVM, 
and gradient boosting (GB) classi�ers. �e initial fused feature set had 188 features combined from 11 di�erent 
modalities, including MRI, genetics, and symptoms.

�e two RF models are used as the oracle to make the �nal decisions. Of course, �nal decisions are made 
by physicians in light of the provided information (i.e., both oracle decisions, along with related explanations). 
�e 11 modalities are used separately to build classi�ers by using two interpretable ML models, i.e. DT and 
FURIA. In each layer, the resulting 22 interpretable models are used to support the oracle model by providing 
interpretations of its decisions. �e supplementary explanations extracted from di�erent modalities with dif-
ferent classi�cation algorithms are expected to enhance the medical expert’s con�dence in the oracle decisions. 
As a result, it supports the applicability of the resulting system in real medical environments. It is worth noting 
that we are not interested in explaining the internal behavior of the oracle but providing physicians with post-
hoc explanations of the decision output. Our approach is inspired in the way how di�erent experts who look 
at the same patient may �gure out di�erent explanations for a given output in terms of di�erent features (i.e., 
in accordance with their own knowledge and background). Similarly, our explainers provide physicians with 
complementary explanations, all of them consistent and reliable.

Random forest for classification. RF is an ensemble classi�er formed by a family of T decision 
trees,h(n1|θ1), . . . , h(nT |θT ) , where θi = (θi1, θi2, . . . , θ ip) is a list of p features for DT i , and ni represents the 
training instances. Each DT leads to a classi�er. Speci�cally, given data D = {(θ i , yi)}

N
i=1 , we train a family of 

classi�ers,hT . �e predictions of all individual trees are combined by using the majority-voting mechanism. 
A node is partitioned using the best possible binary split. In our case, information gain is used to de�ne the 
split point at each node, where G(S,A) = E(S) −

∑
v∈values(A)

|Sv |
|S|

E(SV ) , and E(X) = −

∑c
i=1

pilog2(pi) is the 
entropy of set X , in which pi is the probability of class i ; |Sv| is the number of cases with A = Sv , and |S| is the 
number of cases in A . Outliers are likely to be ignored by most trees, which makes RF more stable.

Another important feature of RF is its ability to measure the importance of each feature based on the Gini 
impurity index. Gini impurity is the likelihood of an incorrect classi�cation of a randomly selected case if it 
was randomly labeled according to the class distribution of the data. From intuitive perspective, Gini impu-
rity helps the algorithm to decide the optimal split from a root node, and subsequent splits. It is calculated as 
G(D) =

∑c
i=1

p(i) ∗ (1 − p(i)) , where c is the number of classes and p(i) is the relative frequency of class i in D . 
For an attribute θm , if it splits D in to D1 and D2 , then the Gini index for θm is Gθm(D) =

|D1|
|D|

G(D1) +
|D2|
|D|

G(D2), 
and the reduction in impurity is �G(θm) = G(D) − Gθm(D) . A binary DT,hT , is built from a learning sample of 
size nt drawn from D using a recursive procedure, which identi�es at each node t  the split condition st = θm < c 
that splits nt node samples into tL , and tR maximizes the decrease �i(s, t) = i(t) − pL ∗ i(tL) − pR ∗ i(tR) ; �i 
is the importance of node t  based on Gini importance; pL = ntL , and pR = ntR . For each node split, the Gini 
impurity index values for the two child nodes are less than the value for the parent node. For each variable, the 
summation of Gini impurity decreases in a dataset over all trees in the RF model and is the corresponding Gini 
importance measure for that variable. �e global importance of a feature, θm , for predicting y is calculated by 
adding up the weighted impurity decreases, p(t)�i(st , t) , for all nodes t  where θm is used, averaged over all T 
trees in the forest (see Eq. 3).

Interested readers are referred  to56 for further details about the RF algorithm. More details on the Gini vari-
able importance approach in RF can be found  in87.

Explainability capabilities. As RF is an ensemble classi�er, it is di�cult to get understandable explanation from 
this complex model. �erefore, we use a collection of simpler models, see Fig. 8, to endow RF with explainabil-
ity. Each of these models is called “an explainer.” �ese models provide complementary views and explanations 
associated to the original RF model. Because AD is a complex disease and RF is a complex model, in order to 
have a global comprehensive, consistent, and accurate picture about AD progression, several explanatory tech-
niques are  required88. Our explainer framework includes SHAP explainer, DT explainer, and fuzzy explainer. 
Each of these explainers has been carefully designed to exhibit a good balance between accuracy and explain-
ability. All explainers have been tested to verify they provide physicians with consistent and reliable explanations. 
As a result, medical expert will be more con�dent regarding the RF decisions.
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For each layer in the proposed model, we provide two types of explanation. �e �rst type gets explanations 
from the RF black-box model itself. For an RF model b and a dataset D = {θ ,Y} , function 
f : (θ → Y) × (θn × Yn) → V  takes b and D as input and returns either global or local approximations V  of 
the behavior of b, f (b,D) = v ∈ V  , where V  is the set of all possible explanations from RF. List V  includes expla-
nations regarding both global and local issues. We use Eli5 to calculate global feature importance based on the 
Gini  index89,90, i.e. we compute the level of importance for all features based on the entire set of training data 
and the RF structure. Because model b is complex, global explanations can sometimes be too approximate to be 
trustworthy. In addition, medical experts prefer individualized explanations for each speci�c patient according 
to his/her own features. �en, we need to take care of local feature contributions too. �ese explanations, with 
the contribution directions, are provided for every single patient according to his/her feature vector. We use 
SHAP tree explainer, which is called the additive feature attribution  method42,91. SHAP is based on the Shapely 
value concept from game  theory91,92. Shapely values are used to estimate the magnitude as sign of feature con-
tributions or importance. It is a theoretically justi�ed and model-agnostic approach that builds a local explanation 
model,g for the original model f  . �is model is a linear combination of binary variables g

(

x
′
)

= ∅0 +
∑M

j=1
∅jx

′

j , 

where x
′

j is a simpli�ed input that map to the original input x using the mapping function x = hx

(

x
′

)

 , x
′
∈ {0, 1}M 

is the coalition vector and the 1 means the features in the new data are the same as those of the original data (the 
instance x ), and 0 means the features in the new data are di�erent from those of the original data, M is the total 
number of features, and ∅j ∈ R is the Shapely value that measures the average feature attribution value for feature 

Figure 8.  Roles of explainers to enhance RF interpretability.
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j for instance x . SHAP try to ensure that g
(

z
′

)

≈ f (hx

(

z
′

)

) when z
′

≈ x
′

 . SHAP calculates ∅j based on the 

Shapley value from game theory (see Eq. 4)93:

where S is the subset of set of the features used in the model which have non-zero indexes in x
′

 , x
′

 is the 
vector of feature values for the instance to be explained, (|S|!(M − |S| − 1)!)/M! is a weighting factor, and 
f (S) = E[f (x)|xS] is the expected value of f  for features in subset S that are marginalized over features not 
included in subset S . SHAP values are consistent and accurate because they are calculated by averaging the 
di�erences in predictions over every possible feature ordering. In addition, the mean magnitude of the SHAP 
values can be used to estimate the global feature importance. We will compare the Gini index and SHAP-based 
methods using our datasets and trained RF classi�ers.

Because an individual decision explanation is critical in the medical domain, and because con�dence 
is very important in order to create a trustworthy model, we add another type of explainability. �e second 
type collects explanations from auxiliary or post-hoc models that try to explain RF decisions. �e explainer 
is a function f : (θm → Y) ×

(

θn×m
× Yn

)

→ (θm → Y) , which takes b , D as input and returns local 
predictor pi , i.e.pi = f (b,D) , where pi is able to mimic the behavior of b ; a local explanatory function 
εi : ((θm → Y) × (θm × Y) × θm) → ε exists, for b,pi , and θm instances are inputs; and εi returns a human 
interpretable explanation for the patient record θm , i.e.εi = f

(

b, pi , θ
m
)

= e . We implement interpretable clas-
si�ers (i.e. DT and FURIA) for each individual modality. �ese explainers create simple and easy-to-understand 
explanations from di�erent dimensions (e.g. MRI, cognitive scores, symptoms, etc.), which help to inform 
domain experts about the oracle’s decision. By using these 22 explainers, we are con�dent that each oracle’s deci-
sion will have a su�cient number of related explanations. �e most important thing regarding these 22 explainers 
is that they are not a�ected by the feature selection process, which means more features will participate in the 
explanation. In addition, the extracted formal knowledge from RF and post-hoc models is represented in natural 
language form by using ExpliClas78. Accordingly, we resolve the accuracy-explainability trade-o� by providing a 
variety of explanations, while retaining the accuracy of a complex ensemble model (i.e. RF).

Model performance evaluation metrics. To evaluate the proposed method, we used the following per-
formance metrics: �e area under the receiver operating characteristic curve (AUC), precision, recall, accuracy 
(AC), and F1-score (F1). In addition to the performance evaluation, the system maximizes the interpretability 
of the underlying models, and pays special attention to explainability, which can serve as an indispensable tool 
in the era of precision medicine. To validate the performance of the models, we report both cross-validation as 
well as test results. In each layer, we compared the performance of the best RF model with other ML models, 
including SVM, KNN, and decision tree models. �e hyperparameters of these algorithms were tuned in the 
same way as RF.

We used several libraries in the Python data science ecosystem to execute the experiments. �e scikit-learn 
0.21.2 package was used to perform feature selection and to train and evaluate all classi�ers. Eli5 0.8.2 and SHAP 
0.26.0 were used for explainability, and ExpliClas was used to provide natural language explanations from the 
22 explainers. �e naturalness and acceptability of generated explanations was validated by the physicians who 
collaborated in our study.

Concluding remarks
In this paper, we proposed a highly accurate and explainable ML model based on a RF classi�er. We have shown 
that multimodal RF classi�ers can be successfully applied to AD detection and progression prediction. We 
proved that predictions based on combined multimodalities are signi�cantly better than any single modality 
for both binary and multi-class classi�cation tasks. Based on precise selection of the most informative features 
from 11 multimodalities, the system achieved the highest accuracies. Explainability was achieved using a variety 
of techniques. First, we provided a set of explanation capabilities for the RF models based on SHAP. For each 
layer’s model, global feature importance for the whole RF model and feature contributions for each speci�c 
patient were provided. For the �rst layer, we found that MMSE was the most important feature for the AD class, 
and CDRSB was the most important predictor for CN and MCI classes. For the second layer, FAQ was the most 
important feature for both sMCI and pMCI classes. Second, we implemented 22 explainers for each layer based 
on a decision tree classi�er and a fuzzy rule-based system. Each explainer is based on a single modality. As a 
result, in each layer, each output decision comes up along with several complementary, consistent and reliable 
explanations. To validate the e�ectiveness of our model, we conducted experiments using the ADNI dataset. 
�e model achieved high performance in each layer. �e �rst layer had cross-validation accuracy of 93.95% and 
an F1-score of 93.94%, and second layer had cross-validation accuracy of 87.08% and an F1-Score of 87.09%. 
Moreover, our model exhibits a good accuracy-interpretability tradeo� because it achieved very accurate results 
as well as high level of interpretability. �e resulting two-layer model provided justi�able, medically accurate, 
and hence, actionable decisions that can enhance physician con�dence.

�e proposed ML model is accurate and explainable. However, it is worth noting that even if we achieved 
promising results from an academic point of view, we are still far from applying the model in a real-world clini-
cal scenario; what we plan to do in the future. �is is a long-term ongoing project. Currently, we are reporting 
results of the �rst stage. We have already validated our model with the ADNI dataset; what is a crucial contribu-
tion to pave the way towards the application of the model to real clinical data in primary care or general medical 
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practice. Although it is the biggest and most popular real dataset for Alzheimer’s disease, the relevance of our 
work to direct primary care is limited by the ADNI cohort. �erefore, to translate the outcomes of this study 
into full-scale clinical practice, further investigations are required to determine its performance characteristics 
by applying the model to other relevant datasets. We plan to enhance our model with the aim of achieving even 
higher performance by means of deep learning applied to longitudinal data while preserving explainability issues 
as we already did in the present manuscript.

Ethics statement. Data used in this study were obtained from the ADNI (http://adni.loni.usc.edu/). �e 
Alzheimer’s Disease Neuroimaging Initiative Data and Publications Committee (ADNI DPC) coordinates 
patient enrollment and ensures standard practice on the uses and distribution of the data as follows: �e ADNI 
data were previously collected across 50 research sites. To participate in the study, each study subject gave writ-
ten informed consent at the time of enrollment for imaging and genetic sample collection and completed ques-
tionnaires approved by each participating sites’ Institutional Review Board (IRB). All procedures performed in 
studies involving human participants were in accordance with the ethical standards of the institutional and/or 
national research committee and with the 1964 Helsinki declaration and its later amendments or comparable 
ethical standards. A complete description of ADNI and up-to-date information is available at http://adni.loni.
usc.edu/ and data access requests are to be sent to http://adni.loni.usc.edu/data-sampl es/acces s-data/. Detailed 
inclusion criteria for the diagnostic categories can be found at the ADNI website (http://adni.loni.usc.edu/metho 
ds). �e ethics committees/institutional review board that approved the ADNI study are listed within Supple-
mentary �le (part 4).

Data availability
�e data that support the �ndings of this study are openly available at the ADNI web site (http://adni.loni.usc.
edu/). In addition, the speci�c patient RIDs used in our study and the full description of used features can be 
found in the Supplementary Files.
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