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Abstract

Drug development for neglected diseases has been historically hampered due to lack of

market incentives. The advent of public domain resources containing chemical information

from high throughput screenings is changing the landscape of drug discovery for these dis-

eases. In this work we took advantage of data from extensively studied organisms like

human, mouse, E. coli and yeast, among others, to develop a novel integrative network

model to prioritize and identify candidate drug targets in neglected pathogen proteomes,

and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive

compounds) data as a multilayer weighted network graph that takes advantage of bioactiv-

ity data across 221 species, chemical similarities between 1.7 105 compounds and several

functional relations among 1.67 105 proteins. These relations comprised orthology, sharing

of protein domains, and shared participation in defined biochemical pathways. We show-

case the application of this network graph to the problem of prioritization of new candidate

targets, based on the information available in the graph for known compound-target associ-

ations. We validated this strategy by performing a cross validation procedure for known

mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic

alignment-based approaches. Moreover, our model provides additional flexibility as two dif-

ferent network definitions could be considered, finding in both cases qualitatively different

but sensible candidate targets. We also showcase the application of the network to suggest

targets for orphan compounds that are active against Plasmodium falciparum in high-

throughput screens. In this case our approach provided a reduced prioritization list of target

proteins for the query molecules and showed the ability to propose new testable hypotheses

for each compound. Moreover, we found that some predictions highlighted by our network

model were supported by independent experimental validations as found post-facto in the

literature.
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Author Summary

Neglected tropical diseases are human infectious diseases that are often associated with

poverty. Historically, lack of interest from the pharmaceutical industry resulted in the lack

of good drugs to combat the majority of the pathogens that cause these diseases. Recently,

the availability of open chemical information has increased with the advent of public

domain chemical resources and the release of data from high throughput screening assays.

Our aim in this work was to make use of data from extensively studied organisms like

human, mouse, E. coli and yeast, among others, to prioritize and identify candidate drug

targets in neglected pathogen proteomes, and drug-like bioactive molecules to foster drug

development against neglected diseases. Our approach to the problem relied on applying

bioinformatics and computational biology strategies to model large datasets spanning

complete proteomes and extensive chemical information from publicly available sources.

As a result, we were able to prioritize drug targets and identify potential targets for orphan

bioactive drugs.

Introduction

Neglected tropical diseases (NTDs) devastate the lives of approximately 1 billion people, with a

further 1 billion at risk [1–3]. These diseases mainly affect those who live in poverty in Africa,

Asia and the Americas. Current treatments for these diseases present several issues and limita-

tions such as cost, difficulties in administration, poor safety profiles, lack of efficacy, and

increasing drug resistance, among others [4]. Furthermore, there has been limited commercial

interest in developing improved therapeutics, mostly because of the costly and risky nature of

the drug discovery process [5,6] and the expected low return of investment when dealing with

poor patient populations [7]. As a consequence, only ~1% of all new drugs that reached the

market in recent years were for neglected diseases [1,4].

The situation for human diseases that affect the developed world is radically different. In

this case, many important contributions to drug discovery are made every year from academic

and government laboratories, leading to the approval of ~20 new drugs per year on average [8].

As part of this process of drug discovery, we accumulate information about many bioactive

compounds (their activities, targets and mechanisms of action), which can be used in reposi-

tioning strategies.

Drug repositioning (or repurposing, or reprofiling) is the process of finding new indica-

tions for existing drugs [9]. The benefits of this approach are many, the main being the

lower costs of development [5,9–11]. A number of success stories help support the case for

these type of approaches. Two of the best known examples are sildenafil (Viagra), which was

repositioned from a common hypertension drug to a therapy for erectile dysfunction [11]

and thalidomide, repurposed to treat multiple myeloma and leprosy complications [12].

Because of the enormous cost savings associated with repositioning an approved drug, this

strategy is particularly attractive for NTDs. For these, there are also a number of successful

repositioning stories: eflornithine, which was developed as an anticancer compound is being

used to treat African trypanosomiasis (sleeping sickness), whereas pentamidine, amphother-

icin B (originally an antifungal drug) and miltefosine were all repositioned from other indi-

cations for the chemotherapy of leishmaniasis (other examples were discussed recently, see

[13,14]).

Target prioritization, and drug repositioning are particularly amenable to the use of compu-

tational data mining techniques, which offer high-level integration of available knowledge [15].
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These strategies take advantage of bio- and chemoinformatic tools to make full use of known

targets, drugs, and disease biomarkers or pathways, which in turn lead to a faster computer-to-

bench or computer-to-clinic studies. Exploring a large pharmacological space in this way has

led to novel insights on the targets and modes of action of existing drugs [16–24]. Unfortu-

nately, these and other integrative mining strategies were focused in attacking the problem

from the point of view of diseases of the developed world. Fortunately it is relatively straight-

forward to use a number of inference strategies to map informative associations to other spe-

cies. Kruger and coworkers recently showed that ligand binding to> 150 human proteins is

mostly conserved across mammalian orthologs, therefore providing support for this type of

inferences [25].

It is also worthwhile mentioning that particularly in the case of neglected diseases, drug

repositioning need not be taken in a strict sense to include only drugs approved for clinical use

in humans. Widening the criteria to reposition drugs for veterinary use, or further, any bioac-

tive compound (hits/leads) may significantly increase the chances of success by helping to

guide efforts in academia and pharma. These will ultimately feed the pipeline of drug discovery

for these important diseases.

After completion of a number of key pathogen genome projects, we developed a database

resource to help prioritize candidate targets for drug discovery in NTDs [26,27]. Initially,

target prioritizations were based on gene and protein features, with limited use of information

on availability of bioactive compounds to guide these prioritizations. Since then we have

integrated information on a large number of bioactive compounds into the TDRtargets.org

database [28]. These were derived from public domain resources, and from a number of high-

throughput screenings of an unusual scale for NTDs [29–31]. This has brought the current

status of chemogenomics data integration in NTDs to a stage where large scale data mining

exercises are now feasible.

Complex networks can efficiently describe pairwise similarity relations between drugs and

between proteins. Under this paradigm non-trivial interconnectivity patterns can be mined to

uncover hidden organization principles, or to identify unnoticed relevant entities and/or novel

putative drug-target associations [18,23,32–40]. In this work we addressed the construction of

a multilayer network of protein targets (gene products), chemical compounds, and their rela-

tions, in order to guide drug discovery efforts. Because we focused on tropical diseases, we were

interested in leveraging the information contained in the network (mostly derived from well-

studied organisms) to direct the selection of targets and compounds for further experimenta-

tion in these neglected pathogens. In this context we tackled two well differentiated problems.

First, we analyzed the prioritization of targets for drug discovery in the absence or scarcity of

bioactivity data for an organism of interest. For a selected pathogen (a query species), we took

advantage of chemogenomics and bioactivity data available in the network, to get a global pri-

oritized list of promising targets. In a second analysis, we used the information embedded in

the network to suggest candidate targets for orphan compounds, i.e. chemicals that have been

shown to be active in whole-cell or whole-organism screenings but whose targets are currently

unknown. In this case, we aimed to obtain reduced prioritization lists of target proteins for the

query molecule.

Methods

Data sources

All target data used in this work was obtained from the TDR Targets database [26,28], which

includes complete genomes from a number of pathogens causing neglected tropical diseases, as

well as model organisms: Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi,
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Leishmania major,Mycobacterium tuberculosis, Brugia malayi, Schistosoma mansoni, Toxo-

plasma gondii, Plasmodium vivax, Leishmania braziliensis, Leishmania infantum, Leishmania

mexicana. In addition we integrated data from complete genomes from non-pathogen organ-

isms: vertebrates (human, mouse), plantae (Arabidopsis thaliana, Oryza sativa), invertebrates

(Drosophila melanogaster), and nematodes (Caenorhabditis elegans), fungi (Saccharomyces cer-

evisiae), and bacteria (Escherichia coli). Pfam domain annotations for all targets were obtained

from the InterPro database resource, using interproscan [41]. Metabolic pathway, and EC

number annotations for all targets were obtained from the KEGG database resource [42].

Orthology relationships between targets were obtained from the OrthoMCL database [43] or

calculated by mapping proteins against OrthoMCL ortholog groups using BLASTP [44]. As a

result we had our proteins mapped to 69,926 ortholog groups (a singleton is considered also as

a separate ortholog group of size = 1). Information on chemical compounds (structures, bioac-

tivity information) was obtained from the ChEMBL database [45]. This information was com-

plemented by manually curated data from the TDR Targets database on compounds active

against pathogens (see below).

Defining relationships between chemical compounds

We estimated chemical similarity between molecules by performing an all vs all fingerprint-

based similarity analysis using checkmol [46]. The algorithm for fingerprint generation has

been described [46], but briefly, for each molecule the molecular graph is disassembled into

all possible linear fragments with a length ranging from 3 to 8 atoms. Strings representing

atom types as well as bond types of these linear fragments are then passed to two indepen-

dent hash functions in order to compute two pseudo-random numbers in the range 1–512,

which are used to set two positions in the 512-bit binary fingerprint. For similarity search

operations, the hash-based fingerprint of the query structure was used to compute the Tani-

moto similarity coefficient (Tc) [47] for each pairwise combination of query/candidate

hash-based fingerprints. Because pairs of molecules with low Tc values have insubstantial

chemical similarity, for the Drug-network layer we only considered similarity relationships

with Tc values�0.8 as these are expected to be both significant in statistical terms [48] and

in terms of their expected biological activity [49]. As a result we retained about 44.4 106

informative pairwise relations and used the corresponding Tc values to weight the corre-

sponding links.

In addition, for each bioactive molecule d 2 VD, we identified exact substructure relation-

ships using matchmol. These substructure relationships, unlike other similarity measurements,

were asymmetrical (a 2D/graph representation of a molecule was completely included within

another one, but not viceversa). We filtered out substructure relationships for very small mole-

cules as these were more likely to be contained within larger and more complex molecules

rather unspecifically without a strict correlation with expected targets or modes of action. After

analyzing the distribution of molecular weight and number of parental structures of each com-

pound (parental molecules are those that contain a compound as part of its structure) we fil-

tered out edges involving molecules with low molecular weight (MW< 150) and large number

of parental structures (Nparents>100). We found that the adopted molecular weight threshold

appeared as a reasonable and conservative maximal bound for filtering out highly promiscuous

structures (i.e. molecules included in more than 100 parental compounds). For larger molecu-

lar weights the number of affected molecules would have been much more sensitive to the

adopted threshold level (see S3 Fig).

Taking into account Tanimoto similarities and substructure relationships, we set up the

drug layer graph GD(VD = {d1,. . .,dM}, E = {cij}i,j = 1. . .M). We considered weighted inter-
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compounds edges cij 2 R(0+) defined as:

cij ¼ maxfTCðdi; djÞ
� IðTCðdi; djÞ � 0:80Þ ; 0:8�Iðdi � djÞg ð1Þ

where I(x) is an index function that equals 1 if its argument is a true proposition and 0 other-

wise, and di� dj means that di is an exact substructure of dj. In words, each substructure edge

received a weight value of 0.8, and each valid Tanimoto edge (Tc� 0.8) was weighted consider-

ing the corresponding Tc value. The overall chemical similarity information between a pair of

compounds was then integrated into a single link taking into account the maximal available

weight that could be established between them.

Defining relationships between protein targets and chemical compounds

Links between compounds and proteins were derived from bioactivity information, obtained

from different sources (ChEMBL, PubChem, TDR Targets), as well as a focused manual cura-

tion of the literature performed for this work. Due to the great diversity of assays and forms of

reporting bioactivity values, we selected a number of assays for which we have the greatest

amount of data, and we defined a cutoff value for each bioactivity type, in order to classify the

compound as active or inactive (Table 1). The bioactivity classes that were taken into account

represent 95% of the total bioactivities in our dataset. In the case of orphan compounds that

are active against P. falciparum (see Results) bioactive molecules correspond to the assays

detailed in the Table 2.

Relevance score of affiliation-type nodes

For the i-th affiliation-type node, fi 2 VF (which represents a shared functional relation among

proteins, such as an ortholog group, a Pfam domain, or a defined biochemical pathway, we

defined a Relevance Score, RSi, as a proxy of its informative relevance with regard to drug-target

predictions tasks. To this end, we performed an overrepresentation test (Fisher exact test) to

quantify the overrepresentation in each affiliation category of druggable proteins, where the

criteria for druggability are the cutoffs described in Table 1. Taking into account the

Table 1. Bioactivity types and activity cutoffs. The table lists the TDR Targets bioactivity types considered (as reported by paper authors or as imported
by curators of the corresponding sources, the number of targets, compounds, and assays (bioactivity data points) in each case. The last two columns show
the number of assays in which molecules were classified as active, and the corresponding cutoff value used in this classification. Pf = Plasmodium falciparum;
DHOD = Dihydroorotate dehydrogenase; FP-2 = falcipain-2.

Dataset / Bioactivity Compounds Targets Assays Active Cutoff

Homozygous knockout 95 3542 889,407 65,148 P value < 0.01

Heterozygous knockout 247 5857 3,572,775 154,535 P value < 0.01

Various bioactivities 142 24 397 148 < = 2 μM; > = 80%

Pf DHOD EC50 172 1 172 2 < = 2 μM

Pf FP-2 EC50 172 1 172 0 < = 2 μM

I50 2,240 97 3,502 1,145 < = 2 μM

IC50 152,722 2,238 297,136 184,866 < = 2 μM

Inhibition 29,604 1,404 55,659 9,350 > = 80%

Kd 3,034 440 5,697 3,923 < = 2 μM

Activity 5,898 654 12,804 3,751 > = 80%

Ki 77,368 1,519 181,578 134,904 < = 2 μM

EC50 16,221 528 30,089 20,961 < = 2 μM

ED50 1,550 117 2,361 1,240 < = 2 μM

Efficacy 2,748 102 5,346 1,900 > = 80%

doi:10.1371/journal.pntd.0004300.t001
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corresponding Fisher test p-value, pv
i, we defined the attribute node’s relevance score as

RSi ¼ �log
10
ðpv

iÞ ð2Þ

Bipartite network projection and prioritization algorithms

The protein and affiliation node layers defined a bipartite graph which can be represented by

an adjacency matrixMbip 2 Rnp�nf :

M
bip
ij ¼

1 if protein i is annotated to category fj

0 otherwise
ð3Þ

(

We projected this bipartite network into a mono-partite graph, the Projected Protein Layer

(PP-layer), where protein nodes were connected through weighted links if they share common

affiliation nodes. The corresponding adjacency matrixMPP 2 Rnp�np was defined as

MPP ¼ Mbip S ðMbipÞ
T

ð4Þ

where S 2 Rnf�nf was a diagonal scoring matrix for affiliation nodes. We considered two alter-

native definitions for the scoring matrix S. In the first case, S = Sr, diagonal elements were

defined as

Sr ii ¼ f ðRSiÞ ¼

1 if RSi � quantileðRS ; 0:8Þ

RSi
maxfRSig

� �a

otherwise
ð5Þ

8

>

<

>

:

where α was a tunable parameter that was set by maximizing the performance of recovering

known druggable targets in cross validation exercises (see below)

For the second alternative, in view of the broad degree distribution observed for affiliation

nodes, we also considered an extra factor that relativized the score of large categories. In this

Table 2. Bioactivity types derived from high-throughput screenings against Plasmodium falciparum. Sources are GSK TCAMS: GlaxoSmithKline
Tres Cantos Antimalarial Screening [29]; Novartis-GNF: Novartis-GNF Malaria Box dataset [50]; and SJCRH: Saint Jude Children's Research Hospital [30].

Bioactivity type / Assay Compounds Bioactivities Positive Cutoff Source

% growth inhibition Pf 3D7 at 2 μM 13,469 13,519 13,484 > = 80% GSK TCAMS

% growth inhibition Pf Dd2 at 2 μM 13,469 13,519 5,061 > = 80% GSK TCAMS

EC50 Pf 3D7 5,387 5,497 4,523 2 μM Novartis-GNF

EC50 Pf W2 5,375 5,485 4,804 2 μM Novartis-GNF

EC50 Pf 3D7 172 172 152 2 μM SJCRH

EC50 Pf V1/S 172 172 141 2 μM SJCRH

EC50 Pf 3D7, SYBR green 1,524 1,536 496 2 μM SJCRH

% growth inhibition at 7 μM 1,524 3,072 2,475 > = 80% SJCRH

EC50 PfK1, by SYBR green 1,524 1,536 488 2 μM SJCRH

EC50 PfD10_yDHOD 172 172 136 2 μM SJCRH

EC50 PfDd2 172 172 158 2 μM SJCRH

EC50 PfK1 172 172 153 2 μM SJCRH

EC50 PfSB-A6 172 172 129 2 μM SJCRH

EC50 PfW2 172 172 116 2 μM SJCRH

doi:10.1371/journal.pntd.0004300.t002
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case diagonal elements of S = Sr were defined as

Srkii ¼ f ðRSiÞ ¼

1

ki
if RSi � quantileðRS ; 0:8Þ

1

ki

RSi
maxfRSig

� �a

otherwise

ð6Þ

8

>

>

>

<

>

>

>

:

where ki is the degree of the i-th affiliation node, and α was a tunable parameter (see below).

Both scoring matrices, Sr and Srk, led to different projected PP-layers and induced two alter-

native two-layered weighted graphs G'(V = {VD, VP}, E = {EDD, EDP, EPP}), namely G
0

r and G
0

rk.

These graphs were used to address different prioritization tasks throughout this manuscript. In

either case the free parameter α was set by maximizing the performance of recovering drug-

gable targets.

Voting scheme prioritization

Let’s consider a weighted graph G = G(V = {ni}i = 1. . .N`, E = {eij}i,j = 1. . .N), where eij 2 R
0þ are

weighted edges, and a vertex seed set S = {s1,. . .,sk}. The voting scheme assigns to each node ni
not included in the seed set a prioritization score, PS, according to the following expression:

PSi ¼
X

j¼1...k

wjeji ð7Þ

where wj is a real number that serves to weight the contribution of seed sj, and eji the weight

value of the link joining nodes nj and ni. When we prioritized targets from a query proteome

Q, we set wj = 18j (i.e. we considered uniform and equally weighted seeds). On the other hand,

when we prioritized candidate targets for an orphan compound dk, we set wj according to the

similarity between dk, and its direct neighbor drugs which reported bioactivities against protein

sj:

wj ¼
X

i:di2NðdkÞ

ckie
DP
ij ð8Þ

where cki is the weight of the edge between dk and di molecules introduced in Eq [1], eij
DP is 1 if

there was a bioactivity link between drug di and protein pj (and 0 otherwise) and N(dk) the set

of direct neighbors of drug dk.

Parameter settings

The PP-layer results from a projection of a bipartite network graph. The procedure used for

this projection is dependent on the single parameter α (see Eqs 2 and 3). In order to analyze

the effect of α on the ability to recover known targets from an entire genome, we calculated

ROC curves, and compared the partial AUC-0.1 for different α values following a tenfold cross

validation procedure. The results are summarized in S4 Fig It can be noticed that the predictive

performance remained near maximal, without significant variations, for a broad range of the

parameter space, α 2 [0.2, 1], suggesting that the method is robust to different α selections.

From this point forward, we considered α = 0.6, the midpoint in this interval. An important

remark is that α = 0 - which corresponds to disregarding the relevance score in the definition

of the S matrix (see Eqs 4 and 5)—had a significantly lower performance than the α = 0.6 case

(pv < 10−24, Wilcoxon test).

Network-Based Drug Discovery for Neglected Diseases
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Results

Multilayer network construction

We integrated genomic, biochemical and medicinal chemistry data from several public domain

resources (see Methods). These data is available from the TDR Targets database and includes

genome data from pathogen and model organisms. As a starting point we considered sequence

information from ~ 1.7 105 proteins derived from 37 complete genomes (S1 Table) and from

known druggable targets from other 184 species. We also considered a number of affiliation-

type features for these proteins, which would allow us to establish relations between proteins,

like sharing of protein domains, clustering in the same ortholog groups and participation in

the same metabolic pathways. These features were selected because they provide complemen-

tary information on the similarity of these proteins, from the point of view of drug discovery,

and because they can be easily computed for whole genomes. In addition, we considered struc-

tural information from ~1.5 106 bioactive compounds, and their associated bioactivity data

against pathogen and non-pathogen organisms, obtained from open chemical databases and

high throughput screenings [29–31,45,51].

In order to organize and provide a global description of the available heterogeneous data,

we considered a multipartite, multilayered network graph G(V = {VD,VP,VF}, E = {EDD, EDP,

EPF}). In this network three types of vertices VD,VP,VF represented bioactive compounds, pro-

teins, and functional affiliation entities, respectively. Relationships between pairs of com-

pounds, between compounds and known protein targets, and between proteins and functional

affiliation classes where represented by the corresponding edges EDD, EDP, EPF. Fig 1A depicts a

Fig 1. Schematic representation of data and workflow. a)Multilayer representation of drug-target data. First layer (bottom) contains drugs as nodes and
chemical similarity relations as edges. Second layer contains proteins as nodes. Links between these two layers represent known and significant bioactivity
of a compound against a defined protein target. The top layer contains functional annotation-type objects as nodes (Pfam domains, green circles; Ortholog
groups, orange diamonds; and metabolic pathways, yellow stars). Links between the second and third layers represent affiliations of proteins to each of these
annotation classes. For clarituy, the representation shows a partial view of the whole network corresponding to objects and connections related to the
example shown in Fig 5. b) Bipartite projection of the two upper layers, into a protein-protein monopartite network after weighting of informative affiliations as
described in the main text.

doi:10.1371/journal.pntd.0004300.g001
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graphical representation of this network, where three layers, each including a different type of

vertex can be recognized.

The first layer contained chemical compounds as nodes (VD = {d1,d2,. . .}). Weighted pair-

wise links between compounds (EDD) were established if they were chemically similar based on

their 2D representations. More specifically, we connected two compounds if the Tanimoto

similarity coefficient of their 2D fingerprints was>0.8 (which is a very conservative similarity

cutoff [48]), or if a compound was an exact substructure of the other. In this case the direction-

ality of the relationship was preserved (see Methods for details).

Nodes in the second layer (VP = {p1,p2,. . .}) represented proteins from 221 pathogen and

non-pathogen (model) organisms. Complete proteome coverage in the network was available

for 37 species representing a wide phylogenetic range (S1 Table). No connections were initially

established between nodes in this layer. Instead, we considered a third layer in which nodes

(VF = {f1,f2,. . .}) represented functional affiliation-type entities as nodes. These entities were

Pfam domains [52], ortholog groups [53,54] and metabolic pathways [42]. We established

links (EPF edges) between layer-2 nodes (proteins) and layer-3 nodes (functional affiliation-type

entities) based on current predictions derived from standard sequence analysis pipelines and

annotation (see Methods). Lastly, we have used bioactivity data information to establish links

(EDP edges) between protein targets (layer-2) and chemical compounds (layer-1). These links

were established after manual curation of the textual description of the assays, targets, and mea-

sured activities. Because bioactivities integrated into the TDR Targets resource contained also neg-

ative evidence (inactive compounds at relevant concentrations against a particular target), a

significant amount of manual curation of these data was required for construction of the network.

Therefore, EDP edges in the final network graph represented sensible bioactivity information avail-

able for each protein target (bioactivity thresholds and criteria are described inMethods). A sum-

mary of the information and entities included in the network is available in Table 3.

Once the data was integrated in our network model, we proceeded to identify informative

functional affiliation-type annotations that were relevant for drug discovery. Therefore, in the

Table 3. Composition of the Multilayer Network. G0 and G1 are the network graphs before and after apply-
ing the filtering criteria, respectively. The table lists the numbers of nodes in the three network layers (see Fig
1), and the edges connecting nodes within and across layers (see main text).

Multilayer Network Composition

Graph Nodes G0 G1

VD (bioactive compounds) 1,488,034 1,487,919

VP (proteins) 385,711 167,815

VF: All nodes 58,102 5,186

VF: Pfam domains 7,156 2,252

VF: Ortholog groups 50,779 2,789

VF: Metabolic Pathways 167 145

Graph Edges G0 G1

EDP (bioactivity links) 4,167,518 325.843

EDD: All edges 170,272,699 67,629,415

EDD: Similarity 44,403,424 44,402,716

EDD: Substructure 125,869,275 26,714,379

EPF: All edges 738,682 718,277

EPF: Pfam domains 333,188 331,928

EPF: Ortholog groups 325,017 305,872

EPF: Metabolic Pathways 80,477 77,389

doi:10.1371/journal.pntd.0004300.t003
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next step, we discarded 52,916 VF nodes that were not linked to at least one druggable protein

in our dataset (in this context “druggable” was defined operationally as a protein with at least

one link to a compound in layer-1). The final resultant network comprises 2,252 informative

affiliations to Pfam domains, 2,789 affiliations to ortholog groups, and 145 affiliations to meta-

bolic pathways.

The second and third layers of the network defined, on their own, an affiliation or member-

ship network, which is a special type of bipartite network [55,56]. An important feature of this

kind of networks is that the inter-layer connectivity pattern can be used to infer intra-layer

associations for each layer, via projection procedures [56]. In our case, adjacent links of shared

functional affiliation nodes, VF, were used to define weighted links, EPP, between protein

nodes, VP. These inferred edges condensed similarity information at the level of the biological

and functional concepts contained in layer-3.

We have implemented two projection methodologies. In the first case we took into account

a relevance score, RS, for each affiliation node based on the statistical significance level of the

over-representation of associated druggable proteins as obtained through a Fisher’s exact test

(see Methods, an example is provided in Table 4). For the second alternative, in view of the

broad degree distribution observed for affiliation nodes (see S1 Fig), we also considered an

extra factor that relativized the score of large categories (see Methods for technical details). The

rationale of this correction is to down-weight the contribution of very promiscuous annotation

nodes (e.g. highly frequent protein domains such as the ATP-binding cassette, present in many

functionally-unrelated protein families and orthologs). Although their presence helps to

increase the connectivity of the protein network, it also skews the protein prioritization scoring

and, as a general rule, favors specific kind of proteins towards the first places in the resulting

rankings (see below).

Taking into account either projection methodology, layer-2 and layer-3 could be collapsed

into a single protein-projected directed and weighted layer (PP-layer, see Fig 1B). The PP-layer

along with the original drug-layer (D-layer), defined a new graph1)1) G'(V = {VD, VP},

E = {EDD, EDP, EPP}) that allowed us to propagate drug-target information to address different

drug-discovery problems as described below in the next sections. When necessary, we will note

the resulting graphs as G
0

r (projection using affiliation node’s relevance scores) or G
0

rk (projec-

tion using relevance scores and penalizing high degree affiliation nodes) when the first and sec-

ond projection methodologies were used, respectively.

Table 4. Weighting the functional affiliations of proteins based on their association to bioactive com-
pounds. The table lists two examples of affiliation-type entities (Pfam domains), and their respective contin-
gency tables used to evaluate the significance of association of proteins containing these Pfam domains to
bioactive compounds, using Fischer’s exact test. Calculation of P-values was done for all affiliation-type enti-
ties in the network (Pfam domains, Ortholog groups, and metabolic pathways) using this methodology.
Scores used to weight network edges were derived directly from P-values using a simple transformation (see
Methods).

Example 1. Affiliation entity: Pfam domain PF02931: Neurotransmitter-gated ion-channel ligand
binding domain (P-value: 4.33 10−67)

Linked to active compounds Not linked to active compounds

Proteins affiliated to this entity 96 (25.9%) 275 (74.1%)

All other proteins 5,955 (1.80%) 325,453 (98.20%)

Example 2. Affiliation entity: Pfam domain PF08441: Integrin alpha (P-value: 0.09)

Linked to active compounds Not linked to active compounds

Proteins affiliated to this entity 5 (8.5%) 54 (91.5%)

All other proteins 6,046 (1.82%) 325,674 (98.18%)

doi:10.1371/journal.pntd.0004300.t004
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Target prioritization strategies

In this section we considered the problem of prioritizing targets from a query proteome Q for

which compound bioactivity data is scarce or lacking altogether, as this is frequently the case

for pathogens causing neglected tropical diseases. In this strategy we aimed to take advantage

of the information contained in the network for other organisms to guide the prioritization of

targets in our query species. The rationale of the approach relies on the assumption that rele-

vant drug-target associations from other organisms, in concert with similarity relations

between proteins (embedded in the G’ network as EDP and EPP edges respectively) could be

used to propagate meaningful associations through the network and therefore suggest novel

drug connections for proteins in Q.

To prioritize targets, we devised the following algorithm. First we identified the set of drug-

gable targets in the PP-layer of network G’. These were protein nodes that were connected to at

least one compound via an EDP edge (e.g. protein cal.575054in Fig 1A). In the next step, these

nodes were used as seeds for a neighbor voting scheme algorithm (VS) implemented over the

PP-layer. As a result of this voting procedure, proteins in Q will receive a score which essen-

tially is the weighted sum of all the EPP direct links to seed nodes (i.e. known targets). See Meth-

ods for further details.

In order to illustrate the performance of this strategy we considered two query species Q

each of which have known druggable targets: a mammalian proteome (Q =M.musculus, often

used as a model for human drug development), and a proteome from a protozoan parasite

(Q = T. cruzi, Chagas Disease). We deliberately chose a data-rich and a data-poor organism for

this exercise to showcase the performance of the approach under these two contrasting situa-

tions. Whereas 8,429 EDP edges involving 280 VP nodes were present forM.musculus, only 319

EDP edges were adjacent to 19 T. cruzi protein nodes.

The validation proceeds in each case by removing from the graph G, all EDP bioactivity

edges involving proteins of Q before projecting layer-3 into layer-2 and weighting EPP edges. In

this way, we ensured that no information extracted from the query organism was employed to

build the two-layer G’ network used to prioritize targets in Q. After weighting and projecting

the modified network graph, we assessed the performance of the prioritization strategy using

Receiver Operating Characteristic (ROC) curves.

Fig 2 depicts ROC curves for predicted drug-target associations considering G’rk (black) and

G’r (orange) forM.musculus (solid line) and T. cruzi (dashed line). Table 5 summarizes the

performance of the prioritization procedures reporting the normalized AUC-0.1 values (see

inset in Fig 2). The performance of a third prioritization strategy was also reported in the table

for the sake of comparison. In this case, we considered a straightforward approach based on

calculation of plain sequence similarity between druggable nodes in layer-2 against proteins in

Q. For this purpose we used the FASTA sequence-alignment tool [57], which produces longer

alignments than BLAST (as it does not split the region of similarity into high-scoring-pairs as

BLAST does).

The high performance of our network model at the task of recovering the known targets in

each organism reflects the fact that data from close relatives of both organisms are contributing

substantially to the connectivity of these nodes in the network graph. As an example there are

60,540 EDP edges connecting 455 VP nodes in the case of rat data, whereas there are 43,325 EDP
edges connecting 3,567 VP nodes for other protozoan and bacterial targets.

For both organisms, prioritizations based on the G’rk network model presented the best per-

formance. Down-weighting the relevance score of affiliation nodes by their degree provided a

significant improvement, as prioritizations considering G’r resulted in much poorer perfor-

mances, especially for the T. cruzi case. Noticeably, the origin of the performance discrepancies

Network-Based Drug Discovery for Neglected Diseases
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between both network-based approaches were related to a strong correlation between prioriti-

zation scores in the G’r network and the strength (a connectivity topological feature) of Vp

nodes. This finding makes evident that G’r prioritizations were a priori biased towards specific

protein classes, i.e. those associated to high-strength Vp nodes (see Supplementary S1 Text).

It is worth mentioning that despite its simplicity, the voting scheme (VS) adopted for these

network-based prioritization strategies has already proved to be competitive relative to more

sophisticated algorithms in many scenarios, with the additional benefit of being extremely fast

[59]. We verified that this was also the case in the context of our prioritization problem. In par-

ticular, we considered a prioritization strategy based on a network flow analogy (functional

flowmethodology) [60] and verified that it gave similar or inferior performance than VS (see

S2 Table).

Finally, we compared the top ranked targets according to the network-based VS voting algo-

rithm and the FASTA methodologies to see if the information provided by these alternative

prioritization procedures were correlated. We considered the top 1% proteins ranked by the

analyzed methodologies in each species (top 136 and 66 targets forM.musculus, and T. cruzi,

respectively) (see S2 Fig). Even though we found statistically significant overlaps between G’rk
and FASTA predictions (Fisher Exact Test, p = 9.45 10−28 and p = 2.79 10−2 forM.musculus,

Fig 2. Cross validation procedure of the network-based target prioritization strategy. Receiver
Operating Characteristic (ROC) curves for the recovery of Trypanosoma cruzi (TCR, solid black line) and
Mus musculus (MMU, dashed yellow line) targets. 19 targets out of 6591 proteins and 280 targets out of
13575 proteins were considered for TCR and MMU respectively.

doi:10.1371/journal.pntd.0004300.g002

Table 5. Performance of the network at the task of prioritizing targets (cross-validation). AUC-0.1 nor-
malized scores (McClish Correction [58]) for different prioritization strategies based on voting algorithm over
G’r andG’rk (Network Model) and a sequence similarity (alignment-based) methodology (FASTA). The statis-
tical significance of the difference betweenG’rk and FASTA AUC-01 values were evaluated through a 2,000
sample bootstrapping test and it is shown in brackets.

Organism Network Model FASTA

G’r G’rk

Mus musculus 0.64 0.72 (2.8 10−6) 0.64

Trypanosoma cruzi 0.52 0.81 (8.1 10−2) 0.72

doi:10.1371/journal.pntd.0004300.t005
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and T. cruzi, respectively) most of these were specific to the considered prioritization strategy.

This finding revealed that even if the two kinds of affiliation-type entities with the largest net-

work coverage (i.e. orthology groups and Pfam domains) involved some sort of sequence simi-

larity idea, the network based predictions were non-trivial from this point of view. Overall,

these results also suggested that by considering different types of information in the network,

we might gain alternative and complementary insights about potential targets for a query

species.

Prioritizing targets in kinetoplastid parasites

The most relevant and promising application of this kind of approach, is to prioritize new

putative targets as interesting cases of study. To this end, we performed the procedure

described above, hence taking advantage of the information contained in the network for

known druggable targets across all species and analyzed the top ranked proteins for three kine-

toplastids: Trypanosoma cruzi (TCR), Trypanosoma brucei (TBR) and Leishmania major

(LMA) (the TriTryps [61]). The top 10 proteins resulting from this prioritization exercise are

shown in the S3 Table. A detailed analysis of the candidate targets prioritized is not within the

scope of this work. However, it is worth mentioning the finding of a number of interesting tar-

gets that have been already characterized in these parasites.

Prioritization over G
0

r
(Non-normalized prioritization)

As shown in S3 Table, the majority of the proteins obtained at the top of the ranking using this

kind of prioritization method were mostly protein kinases, one of the largest known protein

superfamilies [62]. Apart from also being a rich source of highly druggable targets, from the

point of view of the network this is a protein class with strong ties (abundant or heavy edges)

between family members (both because of orthology and shared Pfam domains), and with

abundant bioactivity links (EDP edges) due to the recognized target promiscuity of kinase

inhibitors [63].

The first protein in the ranking obtained for Trypanosoma cruzi was demonstrated to inter-

act with and phosphorylate several parasite proteins [64], including some of the trans-sialidase

family [65]. Transfection with a construct containing PKI (inhibitor of PKA) kills epimasti-

gotes (genetic experiment), whereas treatment with the isoquinolinesulfonamide compound

H89, a PKA inhibitor, killed 98% of the parasites within 48 hs (pharmacologic experiment)

[64]. The 5th and 6th proteins obtained in the L.major and T. cruzi lists respectively is a casein

kinase I isoform 2. This protein has been proven to be a target for 4 inhibitors in L.major [66].

These compounds also inhibited the growth of cultured L.major promastigotes and T. brucei

trypomastigotes. In another work, the L.major protein was found to be inhibited by three

2,3-diarylimidazo[1,2-a]pyridines [67]. This target was also studied in T. cruzi, where it was

found to bind the compound purvalanol B [68,69]. Finally, the T. cruzi protein obtained in

10th place of the ranked list, TcMAPK2, has been studied and characterized. Interestingly, this

MAP kinase could not be inhibited by the mammalian ERK2 inhibitor FR180204, raising the

possibility of a differential inhibition profile, which would open the door to the development of

selective inhibitors of the trypanosome vs mammalian proteins [70].

Prioritization over G
0

rk
(Degree-penalized normalization)

As shown in S3 Table, this kind of prioritization results in a more heterogeneous collection of

protein classes at the top of the ranking.
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The first protein in the prioritized list of T. brucei (listed 6th for T. cruzi) is an inositol

1,4,5-trisphosphate receptor. Inositol triphosphate receptors are intracellular calcium release

channels that play a key role in Ca2+ signaling in cells [71]. Recent work in T. brucei and T.

cruzi show that this target is essential for growth and establishment of infection [72,73]. The

3rd protein in the prioritized list of T. cruzi is a phosphatidyl inositol 3-kinase (PI3K). This

protein has orthologs in several species and has 4 paralogs in humans. The PI3Ks can be

divided into 3 classes (I-III). The protein prioritized by our method is a class I PI3K [74]. These

enzymes are inhibited at nanomolar concentrations by wortmannin, which binds to the con-

served ATP binding site of PI3Ks, suggesting that the drug could be active against all three

PI3K classes. The PI3K pathway is also being investigated as target for intervention in cancer

[74,75]. Given that our method identifies these proteins as potential target in parasites, this

could present an opportunity to test promising molecules found in cancer research on the para-

sites. In T. cruzi the treatment with wortmannin, a PI3K inhibitor, prevented the entry of para-

sites to the cells [76,77]. A class III PI3K was recently characterized in this parasite and shown

to be inhibited by wortmannin and LY294000 [78]. Another protein that appeared prioritized

in our list (6th for L.major, 9th for T. cruzi) is the carbamoyl-phosphate synthetase II (CPSII), a

key regulatory enzyme of the de novo pyrimidine synthesis. This enzyme, which generates car-

bamoyl-phosphate from L-glutamine, bicarbonate, and two ATP molecules, is the first in the

6-enzyme cascade that catalyzes the formation of uridine 5'-monophosphate. In a recent study,

a CPSII knock out strain of T. cruzi displayed significantly reduced growth (in epimastigotes)

[79]. Also, in fibroblast infection assays with metacyclic trypomastigotes, a smaller number of

intracellular amastigotes were found in the case of infection with KO parasites. These results

indicate that the de novo pyrimidine biosynthesis pathway and in particular this enzyme could

be important targets to block parasite replication [79].

Another target suggested by this method is a lanosterol 14α demethylase (CYP51, 3rdin L.

major, 5thin T. brucei). This finding represents a special case that serves both to validate the

strategy and to highlight a number of gaps in the data curation process (see also Discussion).

CYP51 enzymes belong to an ortholog group that contains 72 sequences, including human and

trypanosomatid sequences. This protein is a cytochrome P450 that in fungi and kinetoplastid

protozoa catalyzes a key biochemical step in the ergosterol biosynthesis pathway [80]. The

enzyme is a known validated target for chemotherapy against T. cruzi. However, a careful anal-

ysis of the prioritized lists revealed a clear gap in the availability of curated bioactivity data: the

T. cruzi enzyme was the only trypanosomatid ortholog in the network that was linked to bioac-

tivity data (and therefore our algorithm considered it as a seed target, and accordingly, the T.

cruzi enzyme was not present in the final prioritized list). But a number of studies have already

reported on the inhibition of the T. brucei and Leishmania enzymes with CYP51 inhibitors

[81–83]. However, these data were not present in the TDR Targets and/or ChEMBL releases

used to build the network. Therefore, these targets have been prioritized under the assumption

that no bioactivity information was available. In this case, the target suggestions made by the

network only served to identify these gaps, because the experimental work required to validate

these targets and their inhibitors was already present in the literature.

Proposing candidate targets for orphan compounds: Strategy

In drug discovery it is often the case that high-throughput phenotypic screenings are con-

ducted on whole organisms or whole cells in culture. This is a good strategy to filter large

libraries and identify reasonable "hit" compounds. However, to develop these compounds fur-

ther it would be advantageous to know the target(s) of the compound, to gain an understanding

of the mechanism of action of the drug.

Network-Based Drug Discovery for Neglected Diseases
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In this part of the work we took advantage of the information contained in the constructed

network to obtain candidate targets for a given orphan compound, defined as a node in the D-

layer of our network with no links to the PP-layer. We assume that these compounds have

been selected based on one of the case scenarios described above (i.e. from high-throughput

phenotypic screenings). Such compounds (here referred to as “orphan molecules”m) have no

links to the PP-layer but have bioactivities that meet the different specified cutoffs in Table 2 In

these cases, we are interested in getting a prioritized list of putative targets for each orphan

moleculem. For this, we only report here results obtained considering the G’rk network-based

strategy, as the already observed bias for the G’r network-model affects the sensitivity of the

corresponding prioritization results as shown in previous sections.

We first proceeded by identifying the chemical similarity neighborhood ofm, CSN(m), tak-

ing into account molecules directly linked tom through Edd edges. Next, we considered the set

of target proteins in the PP-layer that were associated to the CSN(m) through bioactivity anno-

tations. These protein nodes were used as seeds for the prioritization procedure described in

the previous sections. Each seed protein, sj, was associated to an initial score, wj (see Eq(7)) pro-

portional to the overall chemical similarity reported between CSN(m) and the considered

orphan compound of interestm (see Methods).

To validate this strategy, bioactive molecules with known targets were artificially

“orphaned” by removing the bioactivity links that associated these drugs with their cognate tar-

gets. We considered a random set of 1,000 molecules (out of ~105) with exactly one known pro-

tein target in our dataset, and assessed our ability to recover these targets in the prioritized lists

after removing the corresponding bioactivity links.

Under this cross-validation exercise, we first proceeded to analyze the global sensitivity of

our recovery strategy. For each artificially orphaned drugm, we computed both a global rank-

ing, rG, of putative target proteins from all available organisms in the network, and a species-

specific ranking list, rSS, where the prioritized proteins come only from a single organism (in

this case the source of the original target).

The plot in Fig 3A shows, for different thresholds l of the global rankings rG, the number of

recovered targets, ρ(rG), and the corresponding recovery rate, λ(rG), defined as the ratio

between the incremental gain in ρ, per ranking interval (i.e. lðrG ¼ lÞ ¼ DrðrGÞ=DrGjrG¼l . In

addition we found it useful to consider a third-order spline approximation, ~lðrGÞ to smooth

out rapid fluctuations of λ(rG).

As can be appreciated in Fig 3, the recovery rate of the original target for each compound,

~lðrGÞ
~lðrGÞ, rapidly drops converging to an asymptotic value near zero. This suggests that

increasing the number of prioritized targets (e.g. the prioritization list length) above a given

global ranking position gives on average no significant increment in the number of original tar-

gets recovered. We estimated the asymptotic recovery rate level, λ1, as the mean ~l value

obtained disregarding the first 50 ranking positions, and estimated the corresponding noise

level, σ, as the variance of the corresponding ~l values. Taking into account these quantities, we

further defined an optimal list length l ¼ r�G for which the recovery rate was significantly higher

than the asymptotic value:

r�G ¼ max
l�½1;1000�

f~lðlÞ � l1 þ 3sg ð9Þ

This parameter serves to identify a global ranking range (i.e. the r�G-top ranked molecules)

where reasonable predictions can be anticipated, in the sense that a high rate of success is

expected to occur. In our cross-validation study we found that r�G = 38. Considering this

threshold level, the sought target proteins were globally ranked before r�G for ~70% of the
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1,000 tested molecules. Fig 3B shows how these 703 targets were ranked according to the corre-

sponding species-specific ranking lists (rSS). We observed that 70% of these predicted target

proteins appeared at the top three positions of the corresponding rSS ranking, and ~97% were

ranked within the top 10 suggested targets. On the other hand, we observed that top-ranked

target proteins for 297 out of the 1,000 tested molecules were globally ranked after the r�G posi-

tion. For these cases we assumed that the information embedded in the network was not

enough to successfully recover the original targets, as even the best predictions for the corre-

sponding organism laid on a twilight-zone of the algorithm suggestions given the adopted

threshold level. The considered threshold of 3σ, although arbitrary, represented a sensible

value because, as shown in Fig 3B, the corresponding global ranking threshold, r�is found

within a sharp change of regime (i.e. an elbow) of the recovery rate curve.

In summary, our methodology was able to retrieve the correct association within experi-

mentally affordable prioritization lists for 70% of the artificially ‘orphaned’ compounds. Note-

worthy, we also introduced a metric based on the performance of recovery tasks of artificially

orphaned compounds, to recognize problematic species-specific prioritization scenarios.

Finally, we found it informative to analyze the way in which we were able to recover the

original target in this exercise. As shown in Fig 4 there are essentially two ways in which we can

guess the target of an orphan compound. The first is through a very short path in the network

(leftmost panel in Fig 4A), that directly connects the orphan compound with a bioactive com-

pound that is in turn linked to the original (artificially orphaned) target. This was the case for

478 (68%) of the 703 recovered targets. However, in 225 cases (32%) the recovered target

lacked direct bioactivity links to molecules that were neighbors of the orphan compound in the

D-layer graph. In these cases, the corresponding target could not have been recommended

without the adopted network approach (rightmost panel in Fig 4). These results thus show that

the network contains redundant information that can still suggest the correct targets, with high

Fig 3. Performance at the task of recovery of the correct target for artificially orphaned compounds. A:Number of recovered proteins, ρ(rG) (left scale,
blue line), and protein recovery rate λ(rG) (right scale, orange dashed line) as a function of global ranking threshold values, rG. The horizontal black dashed
line represents 3 standard deviations (3σ) above the mean asymptotic noise level (see text). B: Distribution of species-specific ranking positions, rss, for the
703 recovered true-targets which presented global ranking values lower than r*G = 38 estimated in panel A. Cumulative fraction of recovered targets is
shown above bars.

doi:10.1371/journal.pntd.0004300.g003
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specificity in the absence of direct bioactivity links. This performance suggests that our network

model can be useful as an aid to propose experimental studies on orphan compounds.

Proposing candidate targets for orphan compounds: Application to
Plasmodium falciparum

As a case study, we used the network to infer targets for compounds which presented signifi-

cant activity against Plasmodium falciparum, but that did not appear listed in target-based

assays in our dataset. There were 19,124 compounds derived from a number of recent high-

throughput screenings against P. falciparum [29–31]. From this dataset, 9300 molecules were

amenable to our prioritization methodology, as they had at least one neighbor drug presenting

bioactivity on at least one protein target. Using the strategy described in the previous section,

we were able to suggest candidate targets for 176 of these compounds when r�G = 38 (see S4

Table).

Fig 4. Inference of targets of orphaned compounds. a, top: Schematic view of two different ways in which
the algorithm can find the correct target for artificially orphaned compounds. O = orphan compound;
D = bioactive drug/compound which is a first neighbor of O in the D-layer; To, known target of the artificially
orphaned compound O; Td, known target of compound D. Arrows represent significant similarity relationships
between compounds or significant bioactivity links between a target and a compound. Dashed lines
connecting compounds and targets represent the original EDP edges that were removed for the cross-
validation procedure. a, left: direct inference, compound D has a bioactivity link to To (special case, To = Td).
a, right: indirect inference, compound D lacks bioactivity links against To, but a high-scoring path connects Td

to To in the projected PP-layer. b, bottom: boxplots showing the distribution of the position of To targets in the
rankings for 703 orphaned compounds. b, left: boxplot for cases that fell in the direct inference class (478
compounds). b, right: boxplot for cases in the indirect inference class (225 compounds).

doi:10.1371/journal.pntd.0004300.g004
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One example of this drug-target prediction is shown in Fig 5. The orphan compound shown

in the figure (a benzothiazoline) was found to be active against P. falciparum strain W2. How-

ever its mechanism of action is currently unknown. In our network, the connectivity map of

this compound, leads to the N-tetradecanoyltransferase of C. albicans. This enzyme catalyzes

the N-myristoylation of proteins, in which a myristate molecule (14-C saturated fatty acid) is

added to the N-terminus of a glycine residue in specific target proteins [84,85]. We validated

our prediction by doing a posteriori analysis of the literature. First, several studies show that

this protein is indeed a promising target for development of new antimalarials [86–88]. Fur-

thermore, a number of benzothiazole compounds have already been tested against the Plasmo-

dium enzyme [88]. Interestingly, none of the compounds reported in these papers were part of

our dataset, and therefore were not included in our network model (see Discussion on data

curation gaps below). Therefore, though similar, both the orphan compound, and the com-

pound that has been shown to inhibit the C. albicans enzyme are different compounds.

Another interesting case is shown in Fig 6. In this case the orphan compound (TDR Targets

ID 599594) [29] was shown to be active at 2 μM against the wild-type P. falciparum strain 3D7

and the multidrug-resistant strain Dd2 (100% and 97% growth inhibition, respectively). In our

network model this compound is connected with other active compounds, with varying levels

of similarity, as shown in the figure. All these compounds are hydroxamic acid derivatives,

some of which are known to inhibit bacterial peptide deformylases [89]. The most frequently

used inhibitor of peptide deformylases, actinonin, was also shown to be active against P. falcip-

arum [90], as well as other hydroxamates [91]. Although it remains to be seen if these orphan

compounds are active against this enzyme, or if they hit other cellular targets (compounds con-

taining the hydroxamic acid moiety often possess a wide spectrum of biological activities [92]),

this example serves to highlight the types of target/chemical hypotheses that our network

Fig 5. Suggesting targets for orphan compounds: example 1, N-myristoyltransferase. The compound shown in the upper panel (TDR Targets ID
606689, ChEMBL ID 688510) is an orphan compound (no known target) that was shown to be active against P. falciparum. A similar compound (Tanimoto
similarity coefficient = 0.804), shown at the right, is active against a glycylpeptide N-tetradecanoyltransferase of Candida albicans [78] which belongs to the
same ortholog group, and shares 2 Pfam domains with the P. falciparum N-myristoyltransferase (PlasmoDB ID PF14_0127).

doi:10.1371/journal.pntd.0004300.g005
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model generates. As mentioned above, the best candidate target from P. falciparum for this

orphan compound was ranked in the prediction zone, under 3σ (r�G < 38).

Other orphan compounds with antimalarial activity (Fig 7) were connected in our network

model to a Plasmodium falciparumM1 alanyl aminopeptidase (PfA-M1). This enzyme has

been shown to be an essential hemoglobinase, catalyzing the final stages of hemoglobin break-

down within intra-erythrocytic parasites [93,94]. A number of inhibitors have been described

for PfA-M1 [95–98], and some of these have been shown to control both laboratory and

murine models of malaria [97]. In our network model, some of these inhibitors are part of the

Fig 6. Suggesting targets for orphan compounds: example 2, peptide deformylase. Following the strategy described in the text, and visualized in Figs 4
and 5, based on the functional affiliations of the chemical similarity neighborhood of orphan compound 599594 (TDR Targets ID), the target of this compound
is proposed to be a peptide deformylase.

doi:10.1371/journal.pntd.0004300.g006
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chemical similarity neighborhood of a series of structurally related orphans (shown in the

figure).

Five orphan compounds (Fig 8) where proposed to act through the enoyl-acyl carrier reduc-

tase (FabI). This enzyme is involved in fatty acids biosynthesis type II, a pathway that is essen-

tial for correct liver stage parasites development [99]. FabI has been validated as drug target for

antibacterials and antimalarials, such as triclosan, a drug that inhibits this enzyme in several

species, including E. coli,M. tuberculosis, S. aureus and P. falciparum [100,101]. Several other

compounds have been tested recently as potential inhibitors of this target in P. falciparum

[99,102–104] and in other parasites [105]; however the suggestions made by our network

model constitute novel hypotheses.

In some other cases, the compounds had proposed targets that, to our knowledge, have not

yet been characterized experimentally as potential drug targets in P. falciparum. This is the case

of a putative 3-demethylubiquinone-9 3-methyltransferase (PF3D7_0724300), a putative

3-oxo-5-alpha-steroid 4-dehydrogenase (PF3D7_1135900), and a putative polyprenol reduc-

tase (DFG-like protein, PF3D7_1455900) [106]. An exception is perhaps the putative glycerol-

3-phosphate acyltransferase (LPAAT, PF3D7_1444300), an ortholog of which was recently val-

idated as an essential gene for blood stage replication in a murine Malaria model [107]. The

bioactive orphan compounds shown in S4 Table therefore can serve as potential starting points

to explore the chemical space around these targets.

Fig 7. Suggesting targets for orphan compounds: alanyl aminopeptidase. A series of 13 structurally
related orphan compounds (EC50 values range = 0.03–0.74 uM against P. falciparum, data from [50],
available at TDR Targets) are connected in our network model to the PfA-M1 Plasmodium enzyme. In the
figure we show the Markush structure for the series, and the corresponding R-groups and their database IDs.
We also show one representative of other active similar compounds (see [95]) with activity against defined
targets in the network.

doi:10.1371/journal.pntd.0004300.g007
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Discussion

In this work we show a novel multilayer network strategy that addresses a number of important

problems in the field of drug discovery as applied to neglected tropical diseases. First, we show

how the information integrated in a multilayer network containing complete proteomes from

pathogen and non-pathogen organisms allow the identification of relevant candidate drug tar-

gets, even in the presence of scarce target inhibition data for the pathogen of interest. This is

particularly important in this field as this provides a mean to leverage data from other, more

studied organisms to guide drug repositioning exercises for diseases that usually lack experi-

mental, high-volume, chemogenomic datasets.

On different prioritization strategies

We and others have previously devised a number of target-centric prioritization strategies that

were focused on target features with only minor integration of chemical information

[26,27,108,109]. In these prioritizations, targets were assigned scores based on a priori defined

sets of criteria by different users and different ad-hoc scoring systems for target features. In

contrast, in this work we show how the availability of target-drug associations in our network

model (EDP edges, derived from curated bioactivity assays) can be used to guide the scoring of

Fig 8. Suggesting targets for orphan compounds: enoyl-acyl carrier protein reductase. Two groups of orphan compounds (panels A, B) with
structurally different scaffolds are linked to inhibition of enoyl-acyl carrier protein reductases.

doi:10.1371/journal.pntd.0004300.g008
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targets (weighting of graph edges) through a simple statistical assessment of enrichment of

seed proteins (known targets of bioactive compounds) for functional annotation classes (target

features), followed by prioritization of first-neighbors using a voting algorithm. As a result, we

are now able to prioritize targets without resorting to ad-hoc hypotheses about desirable or

undesirable target features.

The network model (when normalized affiliation relevance scores were considered) showed

an increased performance when compared to a simple (naïve) sequence similarity search

against known druggable targets, (Table 5).

Moreover, our methodology provides additional flexibility as two different graphs, G’r and

G’rk, can be derived from the original network to perform prioritization tasks. Differences in

the respective ranking lists could be understood in terms of the observed prioritization depen-

dency on the strength of target nodes in the G’r graph. The strength of a node in a weighted

graph takes into account not only its degree (i.e. the number of connections to other adjacent

nodes) but also the weighted values of these connections. As discussed in detail in Supp. Text

S1, prioritizations based on uncorrected scores (G’r network) were a priori heavily driven by

strong nodes. A bias towards these high-strength nodes may not be necessarily bad, as the

strength reflects embedded information on functional categories enriched in links to active

compounds (initial score or weight of a seed node. In the particular case of prioritizations

derived from the G’r graph, the high enrichment in targets from the highly druggable protein

kinase superfamily may be a desirable outcome. In spite of this, host toxicity and inhibitor pro-

miscuity are potential concerns in this case, as this is the largest family of druggable targets that

binds to a common substrate (ATP) with numerous examples of inhibitors targeting several

kinases at low micromolar concentrations [63].

Additionally, when considering the prospects of testing the compounds associated with

these targets in whole-cell assays against other organisms, it is worth considering that perhaps

because of this demonstrated promiscuity, there have been many cases of success in the identi-

fication of non-kinase targets of kinase inhibitors [110–114]. This provides a counter example

of the utility of these highly biased G’r prioritizations.

Finally, as shown in S2 Fig, there is a negligible overlap between the sets of recovered targets

following each strategy. This result highlights the complementarity nature of the different

explored prioritization methodologies suggesting that by considering different types of infor-

mation, we might gain alternative and complementary insights about potential targets for a

query species.

On finding targets for orphan compounds

Prediction of candidate targets for orphan compounds is not straightforward. Several

approaches rely on chemical similarity to relate ligands to candidate targets [17,18]. However,

this type of similarity-based strategies can only provide starting points that should be further

validated experimentally. It is well known that only a fraction of chemically similar compounds

(Tanimoto coefficient> 0.85) are active against the same given target [49]. Furthermore, some

compounds are able to modulate several targets [115,116], introducing another layer of com-

plexity. In our case we have taken advantage of the integrated data to connect protein targets to

bioactive compounds that lack target-based assay information. Inspired by how medicinal

chemists search for putative targets, we have done this by essentially prioritizing targets that

are connected to the “chemical similarity neighborhood” of orphan compounds. However we

believe our approach improves over current methods for deorphanizing compounds by i)

doing this in an automated and unified way (e.g. applying the same rules and parameters for all

compounds) at a large scale; and ii) introducing a different approach when identifying
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candidate pathogen targets by using a combined metric that results from the projection of 3

functional features instead of solely relying on sequence similarity (e.g. as in the FASTA

approach we performed for comparative purposes). Moreover we have introduced a data-

driven methodology to identify a priori reliable species-specific rankings, given observed global

ranks of protein targets along the entire network. Some of the connections highlighted by our

model were supported by independent experimental validations as found post-facto in the liter-

ature. However, further experimentation should be carried out to test the activities of other

orphan compounds (and their analogs). In this context it is appropriate to bear in mind the

high attrition rate that is usually associated with confirmatory assays, even when performing

these on the very same pathogen species [117].

The utility of this approach lies not only in the search for new chemical leads for drug dis-

covery, but also to identify and map tool/probe compounds [118,119]. Although good drugs

and good tool compounds must meet different criteria [118,119], we argue that particularly for

neglected tropical diseases, integrative approaches that help leverage any available chemical

information for advancing basic research would also have an impact in the long term in the

drug discovery process. In this sense, by providing connections between orphan bioactive com-

pounds and putative targets, our network model has the ability to propose new testable

hypotheses.

Problems and caveats identified revolve around data curation

As part of this work we have identified some significant gaps in the curation of bioactive com-

pounds. When looking for recent reports that could serve as a post-facto validation of our find-

ings, we noticed a number of publications with relevant information but that pre-dated the

initial data gathering exercise for this paper (see Results). These represent a set of papers that

passed unnoticed to a number of curation efforts. One example is the paper by Bowyer et al

published in 2007 in which the authors show that a number of benzothiazoles were active

against P. falciparum NMT [88]. Because these compounds were not present in our data

sources, they were not included in our network model. Luckily for us, they could be used to

independently validate the proposed target for one of our orphan compounds (see Fig 5). How-

ever, and perhaps more importantly, this case also helps to raise awareness of the ever impor-

tant problem of manual curation of data present in the literature.

Construction of our network model also required some manual curation, which represents

a huge bottleneck in terms of time invested at this task. The single most laborious step in our

approach has been the manual curation required to classify compounds into active vs inactive.

This was necessary because bioactivity databases such as ChEMBL include negative data as

well (e.g. curated data for all assayed compounds). However, upon detailed scrutiny, the dispa-

rate ways and units in which bioactivities are reported (IC50s, EC50s, Kis, %inhibition, etc.)

demanded a serious and very time consuming curation effort. This is the main reason limiting

the number of links between the D-layer and the PP-layer in our network model. Adding more

proteomes (and calculating their annotation-type affiliations), or more compounds (and calcu-

lating their substructure and similarity relationships), is just a matter of throwing more compu-

tational resources at the problem. However, increasing the number of links between targets

and compounds still requires a heavy investment in data curation.

Another critical issue in our network model that was directly related to this data curation

gap was the definition of active vs inactive compounds in cases where the activity of a com-

pound was reported as a relative measure (e.g. a percentage) of a defined outcome. We have

decided to use 80% activity as a cutoff (see Methods), but we are aware of many examples in

the TDR Targets and ChEMBL databases where activity>80% is due to compounds tested at
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concentrations that exceed reasonable or physiological concentrations. But because this infor-

mation is present in the textual descriptions of the assays (and not as part of a separately query-

able field), either a big investment in manual curation or in the use of natural language

processing of these data is required to further extract and correct for these cases. During data

curation we accepted all compounds with>80% activity, in whatever assay was performed,

and we only checked the concentrations of the inhibitors used in a case by case basis for the

examples shown in the figures.

Future prospects

The network model developed in this work can certainly be expanded further, connecting

more targets from other proteomes of interest, and connecting more compounds. We have

already identified recent datasets listing bioactivities of new and existing compounds (DNDi

Chagas and Human African Trypanosomiasis screenings, GSK TCAMS Tuberculosis and Cha-

gas HTS, among others). These are already in the public domain [45,120]. We are also working

to expand the TDR Targets resource to include more pathogen genomes, including a number

of helminths causing important human diseases, such as Echinococcus spp. (Hydatid disease)

[121], Loa loa (loiasis) [122], Fasciola hepatica [123], and other protozoan pathogens such as

Trichomonas vaginalis [124] and Giardia [125,126]. This would allow scientists interested in

these pathogens to take advantage of the integrated chemogenomics datasets in the network to

prioritize candidate targets and compounds for these diseases.

Finally, although theoretically the model can also be expanded to include other types of affil-

iation-type annotations, or relations, these would have to be amenable to obtain from scalable

computational analyses, in order to avoid the curation bottleneck. For example, one of the

most valuable query types supported by TDR Targets is based on integration of phenotypic

annotations (e.g. ‘is the target essential for the cell?’). These functional genomics data are mostly

derived from genome-wide experiments (knockouts or knockdowns). However, it takes a sus-

tained curation effort to identify, and integrate these data for all the genomes of interest.

Conclusion

Our network model provides a way to query large chemogenomics datasets by integrating data

from both phenotypic and target-based screening strategies. As a result, we enable a cohesive

view of these different approaches to drug discovery. Once built, the network can sustain fast

queries on these diverse data types and a simple rationalized navigation through the connected

drug-target space.

Supporting Information

S1 Fig. Degree distribution for affiliation nodes. The plot shows the distribution of the num-

ber of associated proteins to a given affiliation node.

(TIFF)

S2 Fig. Overlap between top-ranked targets according to different prioritization criteria.

Overlap between top ranked proteins (1%) according to G’r, G’rk and FASTA (naïve, sequence

similarity only) strategies is shown using Venn diagrams for two genomes:M.musculus, and T.

cruzi.

(TIFF)

S3 Fig. Filtering substructure relationships for promiscuous molecules. The plot shows the

number of compounds involved in substructure similarity relationships that can be filtered out

as a function of molecule size (MW) for different promiscuity threshold levels (different
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curves). PS = parental structures (those that contain a compound as part of its structure).

(PDF)

S4 Fig. Performance dependence of cross-validation experiments on the free parameter α.

The figure shows the performance of 10-fold cross-validation target prioritization exercises in

which all target-compound bioactivity links were removed for two query species (T. cruzi and

M.musculus). Network projections were calculated using different values of the free parameter

α. Overall we observed that differences in AUC-0.1 values were within 5% of tolerance.

(TIFF)

S1 Table. List of organisms with complete genomes included in our network model.We list

the name of the organism and a brief summary of the taxonomic classification or grouping for

each species.

(PDF)

S2 Table. Comparison between proposed prioritization network methods. Voting Scheme

(VS) and Functional Flow (FF) network prioritization strategies were compared in terms of its

AUC-0.1 performance (normalized scores were reported by using McClish Correction [56]). In

spite of the more sophisticated procedure, FF performance did not improve the VS simpler per-

formance. In the table we also show AUC-0.1 values corresponding to alternative versions of

our affiliation network in which we removed one type of functional affiliation in each case.

S = score used to weight EPF edges in the network (see main text); K = degree of each VP node;

S/K = normalized score over the degree. In both cases, S/K network outperform performances.

(PDF)

S3 Table. Top kinetoplastid proteins ranked in a network-based prioritization. Targets

were prioritized using either non-normalized scores (Sheet "NN Prioritization"), or after apply-

ing a degree-normalizing scoring function (Sheet "DN Prioritization"). Three rankings are

shown in a single table in each spreadsheet (T. cruzi, L. major, T. brucei). The first column

therefore shows the corresponding position of the target in each ranking. For simplicity, the

affiliation of targets to metabolic pathways is summarized in an EC number. Ortholog groups

(OG) are OrthoMCL IDs, Target IDs are either from TriTrypDB (prioritized targets) or

ChEMBL (druggable homologs). For clarity, a single representative druggable homolog is

shown. In the non-normalized prioritization, because the list is composed mostly exclusively

by protein kinases, two additional columns are used to provide information on their classifica-

tion, according to Bahia et al. [71].

(XLSX)

S4 Table. Complete list of putative targets for orphan compounds that are bioactive against

P. falciparum.

(XLSX)

S1 Text. Relevance scoring scheme and predictive power.We analyzed in detail the discrep-

ancies among G’rk and G’r based prioritizations. We showed how the performance discrepancy

happened to be related to a strong correlation that existed between G’r -prioritization scores

and network´s connectivity topological features.

(PDF)
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