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Abstract. We describe a heuristic method for drawing graphs which
uses a multilevel technique combined with a force-directed placement
algorithm. The multilevel process groups vertices to form clusters, uses
the clusters to define a new graph and is repeated until the graph size
falls below some threshold. The coarsest graph is then given an initial
layout and the layout is successively refined on all the graphs starting
with the coarsest and ending with the original. In this way the multilevel
algorithm both accelerates and gives a more global quality to the force-
directed placement. The algorithm can compute both 2 & 3 dimensional
layouts and we demonstrate it on a number of examples ranging from 500
to 225,000 vertices. It is also very fast and can compute a 2D layout of
a sparse graph in around 30 seconds for a 10,000 vertex graph to around
10 minutes for the largest graph. This is an order of magnitude faster
than recent implementations of force-directed placement algorithms.

1 Introduction

Graph drawing is a basic enabling technology which can aid the understanding
of sets of inter-related data by producing ‘nice’ layouts (a comprehensive survey
can be found in [2]). Several layout algorithms are based on physical models and
the vertices are placed so as to minimise the ‘energy’ in the physical system.
Typically such algorithms are well able to display structures and symmetries in
small graphs but can have very high runtimes.

1.1 Motivation

The motivation behind our approach to the problem arises from our work in the
field of graph partitioning. In recent years it has been recognised that an effective
way of both accelerating graph partitioning algorithms and, perhaps more im-
portantly, giving them a global perspective is to use multilevel techniques. The
idea is to match pairs of vertices to form clusters, use the clusters to define a
new graph and recursively iterate this procedure until the graph size falls below
some threshold. The coarsest graph is then partitioned (possibly with a crude al-
gorithm) and the partition is successively refined on all the graphs starting with
the coarsest and ending with the original. This sequence of contraction followed
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by repeated expansion/refinement loops is known as multilevel partitioning and
has been successfully developed as a strategy for overcoming the localised nature
of the Kernighan-Lin and other optimisation algorithms, e.g. [10]. The multile-
vel process has also recently been successfully applied to the travelling salesman
problem and appears to work (for combinatorial optimisation problems at least)
by sampling and smoothing the objective function, [15], thus imparting a more
global perspective to the optimisation.

In this paper we apply multilevel ideas to force-directed placement (FDP) al-
gorithms. In fact such ideas have been previously suggested in the graph drawing
literature and for example, Fruchterman & Reingold, [7], suggest the possible use
of ‘a multigrid technique that allows whole portions of the graph to be moved’
whilst Davidson & Harel, [1], suggest a multilevel approach to ‘expedite the SA
[simulated annealing] process’. More recently Hadany & Harel, [8], and in par-
ticular Harel & Koren, [9], have actually used multilevel ideas (or as they refer
to them, multiscale) in combination with an FDP algorithm and are able to ro-
bustly handle graphs of 3,000 vertices (although their algorithm still contains an
O(N2) component). Their approach, although derived independently (and using
a different FDP algorithm), shares many features with the algorithm outlined
here and in many ways confirms that the multilevel paradigm can be a powerful
tool for force directed placement.

A related but somewhat different idea is that of multilevel drawings, e.g.
[3,6]. Rather than using the multilevel process to create a good layout of the
original graph, a multilevel graph is created, either by natural clustering which
exists in the graph or by artificial means similar to those applied here. Each level
is drawn on a plane at a different height and the entire structure can then be
used to aid understanding of the graph at multiple abstraction levels, [5].

2 A Multilevel Algorithm for Graph Drawing

The multilevel FDP algorithm outlined here (and fully described in [14]) works
by recursively coarsening the graph until its size falls below some threshold.
The coarsest graph is then given an initial layout and the layout is successively
refined on all the graphs starting with the coarsest and ending with the original.
The algorithm does not actually operate simultaneously on multiple levels of
the graph (as, for example, a multigrid algorithm might) but instead refines the
layout at each level and then interpolates the result onto the next level down.

2.1 Contraction

Graph coarsening. Given a graph Gl(Vl, El), there are many ways to create
a coarser representation Gl+1(Vl+1, El+1) and clustering algorithms are an ac-
tive area of research within the field of graph drawing, e.g. [3,12]. Often such
clustering algorithms seek to retain the more important structural features of
the graph in order that the visualisation of each level is meaningful in itself.
However, here we are only interested in the drawing of the original graph. As
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such we seek a fast and efficient (i.e. not necessarily optimal) algorithm that
coarsens gradually (aggressive clustering may depreciate the benefits of the mul-
tilevel paradigm) and uniformly (the coarsening should not change the inherent
properties of the graph differently between different regions).

To suit these requirements we use a coarsening approach known as matching
in which vertices are matched with at most 1 neighbour so that clusters are thus
formed of at most 2 vertices. Computing a matching is equivalent to finding a
maximal independent subset of graph edges which are then collapsed to create
the coarser graph. The set is independent if no 2 edges in the set are incident
on the same vertex (so no 2 edges in the set are adjacent), and maximal if no
more edges can be added to the set without breaking the independence criterion.
Having found such a set, each selected edge is collapsed and the vertices, u1, u2 ∈
Vl say, at either end of it are merged to form a new vertex v ∈ Vl+1 with weight
|v| = |u1| + |u2|.

The problem of computing a matching of the vertices is known as the maxi-
mum cardinality matching problem. Although there are optimal algorithms to
solve this problem, they are of at least O(N2.5), e.g. [11]. Unfortunately this is
too slow for our purposes and, since it is not too important for the multilevel
process to solve the problem optimally, we use a variant of the edge contraction
heuristic proposed by Hendrickson & Leland, [10]. Their method of constructing
a matching is to create a randomly ordered list of the vertices and visit them in
turn, matching each unmatched vertex with an unmatched neighbouring vertex
(or with itself if no unmatched neighbours exist). Matched vertices are removed
from the list. If there are several unmatched neighbours the choice of which to
match with can be random, but in order to keep the coarser graphs as uniform
as possible, and after some experimentation, we choose to match with the neig-
hbouring vertex with the smallest weight (note that even if the original graph
G0 is unweighted, Gl for l > 0 will be weighted).

The initial layout. Having constructed the series of graphs until the number
of vertices in the coarsest graph is smaller than some threshold, the normal
practice of the multilevel partitioning strategy is to carry out an initial partition.
In terms of graph drawing the analogue is to compute the initial layout. However,
if the graph is coarsened down to 2 vertices (which, because of the mechanisms
of the coarsening, will be connected by a single weighted edge) we can simply
place these vertices at random with no loss of generality. Note that contraction
down to 2 vertices should always be possible provided the graph is connected,
[14].

Layout interpolation. Having refined the layout on a graph Gl, it is in-
terpolated onto its parent Gl−1. The interpolation itself is a trivial matter and
matched pair of vertices, v1, v2 ∈ Vl−1, are placed at the same position as the
cluster, v ∈ Vl, which represents them.

2.2 The Force-Directed Placement Algorithm

At each level we use a force-directed placement (FDP) or spring-embedder algo-
rithm to draw the graph, Gl, and more importantly to provide initial positions
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for the parent graph Gl−1. The original FDP concept came from a paper by
Eades, [4], and is based on the idea of replacing edges by springs. The vertices
are given initial positions, usually random, and the system is released so that
the springs move the vertices to a minimal energy state (i.e. so that the springs
are compressed or extended as little as possible).

Unfortunately these local spring forces are insufficient to globally untangle
a graph and so such algorithms also employ global repulsive forces, calculated
between every pair of vertices in the graph, and thus the system resembles an
n-body problem. Such repulsive forces between non-adjacent vertices do not
have an analogue in the spring system but are a crucial part of spring-embedder
algorithms to avoid minimal energy states in which the system is collapsed in
on itself in some manner.

The particular variant of force-directed placement that we use is based on
an algorithm by Fruchterman & Reingold (FR), [7], itself a variation of Eades’
original algorithm. From the point of view of the multilevel approach it is at-
tractive as it is an incremental scheme which iterates to convergence and which
can reuse a previously calculated initial layout. We have made a number of mo-
difications based on our experience with it and, in particular, because of the
additional problems associated with drawing very large graphs. Space precludes
a full description of the algorithm here but we describe the implementation in
full in [14]. In principle however, it should be possible to use any iterative in-
cremental algorithm for this part of the multilevel graph drawing, although in
practice different algorithms can be somewhat sensitive and require tuning.

Natural spring length, k. A crucial part of the algorithm the choice of
the natural spring length kl (the length at which a spring is neither extended
nor compressed). For the initial coarsest graph, GL, the 2 vertices are placed at
random and kL set to be the distance between them. However at the start of
the execution of the placement algorithm for graph Gl (l < L) the vertices will
all be in positions determined by the layout calculated for graph Gl+1. We must
therefore somehow set kl relative to this existing layout in order not to destroy
it. If kl is too large, then the entire graph will have to expand from its current
layout and potentially ruin any advantage gained via the multilevel process.

In fact we derive the new value for k by considering the coarsening a graph,
Gl, with well placed vertices (i.e. all vertices are approximately at a distance k
from each other) and in [14] justify our choice of kl =

√
4/7 × kl+1. Remarkably

this simple formula works very robustly over all the examples that we have tested
although we feel that this parameter could do with further investigation.

2.3 Reducing the Complexity

Unfortunately the complexity of the FR algorithm for each iteration on graph
Gl(Vl, El) is O(|Vl|2 + |El|). For the types of sparse graphs that we are interested
in, the |Vl|2 component heavily dominates this expression and we therefore use
the FR grid variant for reducing the run-times. Their motivation was that long
distance repulsive forces are sufficiently small enough to be neglected. If we
set R to be the maximum distance over which repulsive forces will act we can
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then modify the algorithm by ignoring global forces between any pair of vertices
further apart than R (and this can efficiently implemented using a superimposed
grid to avoid calculating the distance between every pair of vertices).

In the original FR algorithm the value R = 2k was used, but for the larger
graphs that we are interested in this did not prove sufficient to ‘untangle’ them
globally. Unfortunately the larger the value given to R the longer the algorithm
takes to run and so although assigning R = 20k gave better results, it did so with
a huge time penalty. Fortunately, however, the power of the multilevel paradigm
comes to our aid once again and we can make R a function of the level l. Thus
for the initial coarse graphs we can set Rl to be relatively large and achieve
some impressive untangling without too much cost (since |V | is very small for
these graphs). Meanwhile, for the final large graphs, when most of the global
untangling has already been achieved we can make Rl relatively small without
penalising the placement. In fact the first such schedule that we tried, with
Rl = 2(l+1)kl for each graph Gl, worked so well that we have not experimented
further. This also replicates the choice of R = 2k for G0 in the original FR
algorithm.

2.4 Complexity Analysis

It is not easy to derive complexity results for the algorithm but we can state
some bounds. Firstly the number of graph levels, L, is dependent on the rate of
coarsening. At best the number of vertices will be reduced by a factor of 2 at
every level (if the code succeeds in matching every vertex with another one) and
in the worst case, the code may only succeed in matching 1 vertex at every level
(e.g. if the graph is a star graph, a ‘hub’ vertex connected to every other vertex
each of which is only connected to the hub). Thus we have log2 |V | ≤ L < |V |.
This indicates that the algorithm is not well suited to drawing star type graphs
and in fact for the examples given in Section 3 the coarsening rate is close to 2.

The matching & coarsening parts of the algorithm are O(|Vl| + |El|) for
each level l but in fact the total runtime is heavily dominated by the FDP
algorithm. Using the above simplification (§2.3) of neglecting long range repulsive
forces we can see that each iteration of the FDP algorithm is bounded below by
O(|Vl|+ |El|) although with a large coefficient. In fact if the graph is very dense,
or in the worst case a complete graph, it may be that this is still O(|Vl|2 + |El|),
dependent on the relative balance of attractive & repulsive forces. However, we
suspect that no FDP algorithm is appropriate for very dense graphs (because
the minimal energy state corresponds to a tightly packed ‘blob’).

The number of FDP iterations at every level is determined by the cooling
schedule which sets ti, the temperature at each iteration, to ti = (1 − ε)ti−1.
In the experiments below (and in [14]) we use an initial temperature t0 = kl
and ε = 0.1 and the algorithm is deemed to have converged when all movement
is less than 0.001kl which means that all movement ceases at iteration i where
(1 − 0.1)i < 0.001 or in other words after 66 iterations.

In summary the total complexity at each level is close to O(|Vl| + |El|) for
sparse graphs and the runtime is heavily dominated by the FDP iterations.
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Finally consider the FDP algorithm used, without coarsening, on a given
sparse graph of size N (i.e. standard single-level placement (SLP)) and compare
it with multilevel placement (MLP) used on the same graph. Let Tp be the time
for the SLP algorithm to run on the graph and for MLP let Tc be the time
to coarsen and contract it. If we suppose that the coarsening rate is close to
2 (which is true for the examples below) then for MLP this gives us a series
of problems of size N, N/2, . . . , N/N whilst the (almost) linear complexity for
FDP gives the total runtime for MLP as Tc + Tp/N + . . . + Tp/2 + Tp. In all the
example we have tested Tc � Tp and so we can neglect it giving a total runtime
of approximately Tp/N + . . . + Tp/2 + Tp = 2Tp. In other words MLP should
take only twice as long as SLP to run (and yet in the extended example below,
§3.1, achieves far better results). In fact the final level of the MLP algorithm
is likely to already have a very good initial layout which means that it should
run even faster than SLP although this is neutralised somewhat by the fact that
the coarsening rate is normally somewhat less than 2. Nonetheless this factor
of 2 is a good ‘rule of thumb’ and note that if the chosen FDP algorithm were
O(N2) or even O(N3) then a similar analysis suggests that the MLP runtime is
substantially less than twice that of SLP.

3 Examples

We have implemented the algorithms described here within the framework of
JOSTLE, a mesh partitioning software tool developed at Greenwich. The expe-
riments were carried out on a Sun SPARC Ultra 10 with a 333 MHz CPU and
256 Mbytes of memory.

We have tested our multilevel algorithm on a number of example graphs,
including some for which we already know a good layout (although interestingly,
even the results on these graphs proved very illuminating). Most such graphs
were drawn from genuine examples of meshes from various computational me-
chanics problems. Typically in such graphs the vertices either represent mesh
nodes (the nodal graph) or mesh elements (the dual graph). However we have
also considered graphs from other non mesh-based applications.

Table 1 gives a summary of some examples showing their sizes (|V | & |E|),
the maximum, minimum & average degree of the vertices, the MLP runtime
and a short description. In all cases the MLP algorithm produced a good layout
although sometimes with a certain amount of buckling (see [14]). However for
none of these examples was the single-level FDP algorithm able to find a layout
which untangled the graph in a global sense (despite adjusting the parameters
and allowing considerably longer runtimes). For the shuttle, add32 & mesh100
graphs the layout was calculated in 3D and hence the runtime is a little higher
than a 2D layout (e.g. compare the add32 & 4970 runtimes).

The second half of the table shows the results for a series of increasingly
larger versions of the same mesh (created by adaptive mesh refinement) and
gives an indication of the scalability of the algorithm (albeit on sparse & fairly
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Table 1. A summary of the example graphs

size degree runtime
graph |V | |E| max min avg (secs.) graph type

c-fat500-10 500 46627 188 185 186.51 12.53 max clique test
516 516 729 3 1 2.83 1.14 2D dual
shuttle 2851 15093 17 3 10.59 20.05 3D nodal
add32 4960 9462 31 1 3.82 48.09 electronic circuit
4970 4970 7400 3 2 2.98 13.93 2D dual
whitaker3 9800 28989 8 3 5.92 24.10 2D nodal
finan512 74752 261120 54 2 6.99 688.46 linear programming
sierpinski10 88575 177147 4 2 4.00 217.58 2D self-similar ‘fractal’
mesh100 103081 200976 4 2 3.90 1245.43 3D dual

Laplace.0 23787 35281 3 2 2.97 64.16 2D dual
Laplace.2 40851 60753 3 2 2.97 114.84 2D dual
Laplace.5 88743 132329 3 2 2.98 247.52 2D dual
Laplace.8 185761 277510 3 2 2.99 477.36 2D dual
Laplace.9 224843 336024 3 2 2.99 598.87 2D dual

homogeneous graphs). This supports the complexity analysis in §2.4 that the
runtime is approximately linear in |V | + |E|.

3.1 An Extended Example

In this section we demonstrate in a little more detail how the multilevel place-
ment (MLP) algorithm works for the 516 graph. The algorithm first coarsens
the problem (reducing the number of vertices by a factor of around 1.8 at each
level) and constructs a series of 9 graphs of diminishing size. The initial layout
is computed by placing the 2 vertices of G9 at random and setting the natural
spring length, k, to be the distance between them. Starting from Gl = G8 the
layout is interpolated from Gl+1, by simply placing vertices at the same position
as the cluster representing them in the coarser graph, and then refined.

Figure 1(a) shows the final layout on G4 and although over 10 times smaller
than the original, the layout is already beginning to take shape. Figures 1(b)-
1(d) meanwhile illustrate the placement algorithm on G2. Figure 1(b) shows
the initial layout as calculated on G3 and with many of the vertices coincident
whilst Figure 1(c) then shows the layout after the first iteration and where
the coincident vertices have started to separate. Figure 1(d) finally shows the
layout after the placement algorithm has converged for G2. Notice an important
feature of the multilevel process, common with partitioning, that on each level
the final layout (partition), does not differ greatly from the initial one. Figure 1(e)
shows the final layout on the original graph, G0. The entire runtime of the MLP
algorithm to compute this layout was just over 1 second.

For comparison, Figure 1(f) shows the single-level FDP algorithm used on
a random initial layout. Possibly the algorithm is not well tuned for this pro-
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(a) (b) (c)

(d) (e) (f)

Fig. 1. The multilevel force directed placement illustrated for the mesh 516

blem (although the initial temperature was raised to 10k), but it is clear that,
although the micro structure has been reconstructed reasonably well, the single-
level placement has not been able to ‘untangle’ the graph in a global sense.

3.2 Example Layouts

Space precludes any extended presentation of the examples in Table 1, but Fi-
gures 2-7 show some of the highlights (see also [14]). Despite the suggestion that
the MLP algorithm is best suited to sparse graphs (§2.4), Figure 2 shows a dense
regular graph, c-fat500-10 (generated to test algorithms for the maximum cli-
que problem), and demonstrates that the layout nicely captures the symmetries.
Meanwhile Figure 3 shows the layout calculated for the 4970 graph by the MLP
algorithm where, in trying to equalise the edge lengths, the drawing has actually
revealed far more of the graph than the original layout. Figure 4 shows the 3D
layout of the shuttle graph which which reveals 3 weakly connected ‘panels’,
the existence of which is not evident in the original layout. Meanwhile Figure 5
shows the layout calculated for a large Sierpinski graph, a self-similar ‘fractal’
type structure which has large holes. Finally, in the centre-piece of [14], Figure 6
shows the layout found by the MLP algorithm of finan512, a linear programming
matrix with around 75,000 vertices. Once again this layout is highly illumina-
ting; the graph is revealed to have a fairly regular structure and consists of a
ring with 32 ‘handles’ each of which has a number of fronds protruding. Figure 7
shows a detailed view of one of these handles.

4 Summary and Further Research

We have described a multilevel algorithm for force-directed graph drawing which
coarsens the graph, refines the layout at each level and then interpolates the re-
sult onto the next level down. The algorithm is fast, e.g. about 1 second for
2D layout of a 500 vertex sparse graph and about 10 minutes for 225,000 verti-
ces. This is an order of magnitude faster than recent implementations of force-
directed placement (e.g. around 70 seconds for a 1,000 vertex graph in [13])
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Fig. 2. The layout of c-fat500-10 computed with the multilevel placement algorithm

Fig. 3. The layout of 4970 computed with the multilevel placement algorithm

and indeed it is not even clear whether current single-level algorithms can pro-
duce reasonable layout for such large graphs. As such the multilevel paradigm
broadens the scope of force-directed algorithms.
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Fig. 4. The layout of shuttle computed with the multilevel placement algorithm

Fig. 5. The layout of sierpinski10 computed with the multilevel placement algorithm
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Fig. 6. The layout of finan512 computed with the multilevel placement algorithm

Fig. 7. finan512 computed with the multilevel placement algorithm: detail of the micro
structure
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We have not particularly tried to address graphs for which the technique
might not work. It is likely that very dense graphs or even those which have a
dense substructure are never going to be good candidates for any FDP algorithm
and ours is no exception. It is also likely that graphs containing vertices of very
high degree may not particularly suit the coarsening process (see §2.4). However
we believe that the multilevel process can accelerate & enhance FDP algorithms
for a range of useful graphs and further testing on different types of graph is
an important subject for further research. We have not addressed disconnected
graphs but feel that this requires only minor modifications.
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