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A Multilevel Analysis of School Examination Results 

HARVEY GOLDSTEIN, JON RASBASH, MIN YANG, GEOFFREY 
WOODHOUSE, HUIQI PAN, DESMOND NUTTALL & SALLY THOMAS 

ABSTRACT Data on examination results from inner London schools are analysed in 
relation to intake achievement, pupil gender and school type. The examination achieve- 
ment, averaged over subjects, is studied as is achievement in the separate subjects of 
mathematics and English. Multilevel models are fitted, so that the variation between 
schools can be studied. It is shown that confidence intervals for school 'residuals' or 
'eflects' are wide, so that few schools can be separated reliably. In particular, no fine rank 
ordering of schools legitimately can be produced. A bivariate model for mathematics and 
English examination achievement scores is fitted. The student level variance for both 
subjects is shown to increase from the lowest to the highest intake achievement group, with 
moderately high correlation between the subjects. The paper discusses the implications of 
these findings for the publication of 'league tables' of school examination and test scores. 

INTRODUCTION 

There is now a considerable literature on methods for comparing schools and other 
institutions on the basis of the achievement of their students. The important paper of 
Aitkin and Longford (1986) established that the minimal requirement for valid institu- 
tional comparisons was an analysis based upon individual level data which adjusted for 
intake differences and used efficient techniques of multilevel modelling. In that paper 
and the discussion on it, several outstanding problems were raised. The purely techni- 
cal problems of carrying out the estimation for large data sets have been solved fairly 
effectively by the development of computer programs, summarised in Kreft et al. 
(1990). The remaining problems are concerned with the existence of suitable measure- 
ments which can be used to adjust for intake, and any other relevant differences, the 
multivariate nature of school outcomes, and the kinds of interpretations which can be 
made of results. The present paper addresses these latter issues. Specifically it looks at 
two measures of intake achievement for each school in the study, and examines the 
interpretational issue by studying the dimensionality of school differences. 

DATA 

The data are examination results from 5748 students in 66 schools in six Inner London 
Education Authorities. These students had data on their General Certificate of Sec- 
ondary Examination (GCSE) grades in mathematics and English, together with a total 
score for all the subjects taken in that examination. A description of the types of data 
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TABLEI .  Mean  scores by intake categories 

Mathematics English Total % 

VR group 1 0.75 0.80 0.81 24 
VR group 2 - 0.07 - 0.07 -0.07 56 
VR group 3 - 0.75 -0.80 - 0.81 20 
Total 0.00 0.00 0.00 100 
Corm with LRT 0.51 0.58 0.58 

and the scoring system used is given in Nuttall et al. (1989). For mathematics and 
English, a scale ranging from 0 (no grade awarded) to 7 (grade A) was used in the 
analysis and, for the total score, the scale ranged from 0 to 70. These students also had 
scores on a common reading test taken when they were 11 years old-the London 
Reading Test (LRT) (Levy & Goldstein, 1984) and were graded also into three 
categories on the basis of a verbal reasoning (VR) test at 11 years (Nuttall et al., 1989). 
Table I shows the standardised mean scores on the three outcome measures by verbal 
reasoning group and the correlations with the standardised reading test score. All three 
scores are scaled to have mean zero and standard deviation 1. The pattern is similar for 
all three response variables. 

The original number of students on whom some examination data had been obtained 
was 8857 in 74 schools. Students were omitted from the analysis if they did not have 
both intake measures. Where students did not take an examination they are given a 
score of 0, the same as if they obtained an ungraded result. The exclusion of these 
students resulted in a sample with a higher total examination score, 23.7 as opposed to 
20.0. This differential loss of students with lower examination achievements needs to 
be borne in mind when interpreting the results, and is a persistent problem with data 
of this kind. 

Two separate models have been fitted to the data. The first analyses the total 
examination score and the second is a bivariate analysis of the English and mathematics 
scores. All the response variables have been transformed using normal scoring to 
conform as closely as possible to multivariate normality. 

TOTAL EXAMINATION SCORE 

The explanatory variables used in this analysis were as follows: standardised London 
reading test (LRT); verbal reasoning category; gender; school gender (mixed, girls, 
boys); school religious denomination (State, Church of England, Roman Catholic, 
other). Formally, the model is written as follows 

where i refers to student and j refers to school. Throughout this equation the subscript 
0 refers to the constant term ( = l), the subscript 1 to LRT and 2 to the dummy variable 
for VR group 1. Subscripts 3-5 refer to the square of LRT, the dummy variable for 
verbal reasoning group 2, and the dummy variable for gender. The subscripts 6-10 refer 
to the five school level defined variables listed in Table I1 under the heading 'fixed part'. 
The first summation refers to the explanatory variables defined at the student level, the 
second to those defined at the school level, the third to the random part of the model 
defining variation at the school level, that is level 2, and the fourth summation defines 
the random variation at the student level, that is level 1. We also have, at level 2, 
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TABLE11. Analysis of total examination score 

Fixed Part Estimate SE 

Intercept 
LRT 
LRT2 
VR 1 -VR3 
VR2-VR3 
Girls-boys 
Girls-mixed school 
Boys-mixed school 
CE-State school 
RC-State school 
Other-State school 

Cov. matrix 
Random- (corms) 
between schools: Intercept LRT VR1 (VR3,VR2) 

Intercept 0.055 
LRT 0.012 (0.75) 0.0046 
VR1 (VR3,VR2) 0.013 (0.40) 0.009 (0.97) 0.019 

Random-
between students Intercept LRT 

Intercept 
LRT 

The level 1 (between students) variance is thus a linear function of LRT score, 
given by: variance = 0.55 + 0.092 LRT.See Goldstein (1987) for a discussion of 
modelling level 1 variation. Likelihood ratio test statistics for: (a) Level 1, LRT 
(covariance) x2,= 66.0, P <  0.001. (b) Level 2, VRl (VR2,VR3) variances and 
covariance xZ3= 11.0, P =  0.012. (c) Level 2, LRT variance xZ3= 24.7, 
P <  0.001. 

The level 1 contribution to the variance is 

That is, a quadratic function of x and the individual level variances and covariance in 
this expression do not have separate interpretations. On the other hand, since the x,, are 
defined at level 1, the level 2 variances and covariances are interpreted directly as 
between-school variances and covariances for the relevant coefficients. 

Several exploratory models were fitted and the above table gives estimates for the 
model found to give the most satisfactory fit. 

In the fixed part of the model Table I1 shows the average effects of the explanatory 
factors fitted jointly. The effect of school gender is small and the differences are about 
the same order of magnitude as the estimated standard errors. There seems to be a 
small advantage for those attending Roman Catholic schools. Girls do better than boys, 
and as expected there are large differences between those in the different verbal 
reasoning categories and there is a strong quadratic relationship with LRT. Turning to 
the between school variation, we see that the relationship between examination score 
and LRT varies, as does the difference between verbal reasoning categories 1 and 3, 
with high positive correlations. At the student level the variance increases with increas- 
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FIG.1. Total examination score residuals. 

ing LRT score, so that the estimated variance for an LRT score of - 2 is 0.37 and for 
one of + 2 is 0.73. The proper specification of the level one variance is important in 
order to increase precision and to enable complex variation to be fitted at level 2 and 
above. 

School Residuals 

In model (1) the level 2 residuals have a distribution over schools and having fitted the 
model we can estimate these residuals. These are obtained by estimating the regression 
model with the (unknown) residuals as responses. The resulting estimates are often 
known as 'shrunken' estimates since, like all regression predictions they have smaller 
variances than that of the true values, in this case: 

T o  illustrate the implications of the model, we form particular extreme combinations of 
the school residuals. For each school we have a value of uhland we form, using the 
sample estimates, the two combinations 

that is, first the estimated school 'effect' for a student with an LRT score of - 2, the 
approximate lower 2.5th percentile, and in verbal reasoning group 2 or 3, and second 
the estimated 'effect' for a student at the approximate upper 2.5th percentile and in 
verbal reasoning group 1. These are plotted against each other in Fig. 1. 

As pointed out above, there is a positive correlation between the school 'effects' for 
the low and high achievers on intake. Nevertheless, there are some schools with below 
average values for the low achievers which have above average values for the high 
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School 

FIG.2. Total examination score residuals-confidence intervals. 

achievers, and vice versa. This emphasises the point that schools appear to be differen- 
tially effective for different kinds of students. 

Because the residuals are estimated, they have a sampling variation, and this enables 
us to construct confidence intervals for them. In Fig. 2 are shown approximate 95% 
confidence intervals for estimate of the intercept residual, that is the school 'effect' 
estimated at the mean LRT score for those in verbal reasoning groups 2 and 3. It 
should be noted that these intervals are calculated separately for each residual, and are 
based upon the estimated standard error which in general will be an underestimate of 
the true standard error. For comparing any two particular schools, the usual 
significance test and confidence interval procedures can be used. As can be seen, there 
is a very considerable overlap of intervals, which suggests that it is not possible 
statistically to discriminate easily between schools. In particular, there are no natural 
division points in the sequence of estimates which would allow us to classify schools 
into homogeneous subgroups. This has important implications for the use of such 
estimates, as will be discussed later. 

JOINT ANALYSIS 

We now turn to the analysis of the English and mathematics examination scores. We 
have chosen these because, in principle, these examinations are taken by all students. 
It would be possible to carry out a joint analysis of these two scores together with the 
total score on the other subjects, but for simplicity of interpretation we shall restrict 
ourselves to just the two. Also for simplicity, we use only the student level variables as 
explanatory variables, and at the between-school level we use only the intercept and 
LRT coefficient as random variables. 

We specify a multivariate model by treating the multiple variates within each student 
as the level 1 classification. In this case, therefore, there are two level 1 units within 
each student (level 2) with schools at level 3. Further details of the model formulation 
for multivariate data can be found in Goldstein (1987). In the fixed part of this model 
we see from Table I11 that the average difference between girls and boys is 0.1 units in 
favour of the boys for mathematics and 0.23 units in favour of the girls for English. For 
LRT and verbal reasoning categories, there is little difference between the relationships 
for maths and English. In the random part of the model the LRT coefficients for 
English and maths do not vary greatly. The standard deviation for maths is 0.006 units 
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TABLE 111. Joint analysis of English and mathematics examination scores 

Fixed Part Estimate SE 

Intercept (Maths) 
Intercept (English) 
LRT (Maths) 
LRT (English) 
LRT2 (Maths) 
LRT2 (English) 
VR1-VR3 (Maths) 
VR1-VR3 (English) 
VR2-VR3 (Maths) 
VR2-VR3 (English) 
Girls-boys (Maths) 
Girls-boys (English) 

Random- LRT 
between schools Int. (Maths) Int. (English) LRT (Maths) (English) 

Int. (Maths) 0.037 
Int. (English) 0.012 (0.09) 0.046 
LRT (Maths) 0.0006 (0.49) 0.0004 (0.30) 0.00004 
LRT (Eng) 0.0003 (0.51) 0.00006 (0.09) 0.000006 (0.32) 0.000009 

Random-
between students Maths English 

(a) VR1 
Maths 0.63 
English 0.44 (0.73) 0.58 
(b) VR2 
Maths 0.52 
English 0.43 (0.83) 0.52 
(b) VR3 
Maths 0.28 
English 0.16 (0.53) 0.32 

while that for English is only 0.003. While schools differ in terms of overall maths and 
English performance, at least for English, there is little differential effect according to 
LRT at intake. The intercepts for maths and English have a small correlation (0.09), 
and there is only a moderate correlation for the intercepts and LRT coefficients for both 
maths and English. 

At the student level it is clear that the between-students variation decreases from VR1 
to VR3 category students. This is similar to the finding in the analysis of total score, 
where the lower achieving intake students (based on LRT) had smaller variance. We 
have used verbal reasoning category in this analysis because the results are more clear 
cut than they are when LRT is used as in the analysis of total score. If a model is fitted 
with just a variance term for mathematics and English and a covariance term at level 
1, the effect is to increase the standard errors for both the fixed part of the model and 
the level 2 random parameters by up to 20%. The estimates of the coefficients and 
parameters themselves do not change appreciably, but the decrease in precision 
emphasises the importance of accurate level 1 modelling. 
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FIG.3. Intercept residuals. 

School Residuals 

T o  illustrate the relationship among the school level residuals or 'effects', Fig. 3 plots 
the residual estimates for the two intercepts, that is at the mean LRT score. Fig. 3 
shows that there is little relationship between English and maths performance. The 
school with the greatest English residual is only average for maths and one of the 
schools with high maths residual has a low value for English. This relationship is for 
those students with average LRT scores. Since the LRT coefficients vary across 
schools, the relationship between maths and English residuals will also vary with the 
LRT score. 

DISCUSSION 

The principal aim of this analysis has been to show how differences between schools in 
examination results vary by intake achievement and by curriculum subject considered. 
In addition, the paper explores the extent to which schools can be compared based on 
residual estimates of 'effectiveness'. 

It is clear that there is no single dimension along which schools differ. The ordering 
of school effects depends on the intake achievements of students as well as the 
curriculum subject being examined. It is also clear that the uncertainty attached to 
individual school estimates, at least based upon a single year's data, is such that fine 
distinctions and detailed rank orderings are statistically invalid. This has important 
implications for published 'league tables' whether or not these are adjusted for intake 
achievement and whether or not multilevel modelling has been used. Nevertheless, a 
study of residuals differentiated by intake achievement and by subject, can suffice as a 
screening device and as feedback to individual schools about potential problems. 

An important feature of the present analysis is the modelling of the between-student, 
level 1, variation. There is an association between the between-student variance and the 
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intake achievement score, with increasing variation as the intake achievement increases. 
This is of substantive interest and it is also important to incorporate it in the model 
since it helps to ensure that the overall model is correctly specified and will generally 
improve the precision of the remaining parameters. Furthermore the proper 
specification of the level 1 variance structure is often necessary to ensure that non-zero 
estimates of higher level variance structures can be obtained. 

In the present analysis no account has been taken of possible unreliability in the LRT 
score or the VR band allocation. If the reliability is low the estimates may be seriously 
biased and this issue is explored in a separate paper (Yang et al., 1993). The LRT score 
has a quoted reliability of 0.95 which is high enough to avoid serious bias (Levy & 
Goldstein, 1984). Gray et al. (1990) found little evidence for random slopes in their 
own LEA data sets. One explanation may lie in the use of different intake achievement 
measures, and another explanation may be that Inner London schools are more 
heterogeneous than those within other LEAS. Further research is needed to clarify this 
issue. 

The use of verbal reasoning and reading achievement measures to adjust for intake 
is not entirely satisfactory. Ideally, when total examination score is used as the response, 
initial achievement measures should cover the full range of school subjects taken in the 
examination. When either mathematics or English is the response, a basic requirement 
is for the intake achievements to cover these subject domains. This raises the important 
issue of a common definition of these across ages. It is clear, however, that at least in 
the case of mathematics, neither the verbal reasoning nor the reading measure satisfy 
this requirement. Thus the mathematics results may be expected to underestimate the 
amount of variation explained. 
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