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Abstract—We propose a composability model to ascertain that Web services can safely be combined, hence avoiding unexpected

failures at runtime. Composability is checked through a set of rules organized into four levels: syntactic, static semantic, dynamic

semantic, and qualitative levels. We introduce the concepts of composability degree and �-composability to cater for partial and total

composability. We also propose a set of algorithms for checking composability. Finally, we conduct a performance study (analytical

and experimental) of the proposed algorithms.
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1 INTRODUCTION

THEWeb has been a powerful tool to elicit connectivity to
a wealth of information that had been previously

inaccessible. However, as the number of data sources and
applications available on the Web increased tremendously,
it has become apparent that it could no longer sustain its
growth in its present form. A large proportion of today’s
data on the Web is mostly “understandable” by humans or
custom developed applications. The main impediment has
been adding semantics, hence enabling machines to “under-
stand” and automatically process the data that they merely
display at present. The Semantic Web is an emerging
paradigm shift to fulfill this goal. It is an extension of the
existing Web, in which information is given well-defined
meaning [3].

The development of concepts and techniques to support

the envisioned Semantic Web is the priority of various

research communities. Web service and ontology are two

concepts that are taking the spotlight in enabling tomor-

row’s Web (i.e., Semantic Web) [1], [12], [13]. A Web service

is as a set of related functionalities that can be program-

matically accessed through the Web. Examples of Web

services span several application domains including

e-government (e.g., e-tax preparation) and B2B E-commerce

(e.g., stock trading). An ontology is a formal and explicit

specification of a shared conceptualization [3]. Ontologies are

expected to play a central role to empower Web services

with semantics. The combination of these powerful con-

cepts (i.e., Web services and ontologies) has resulted in the

emergence of a new generation of Web services called

Semantic Web services.

The landscape created by Semantic Web services has
spurred several research issues. One important challenge is
service composition which refers to the process of combining
different Web services to provide a value-added service [18].
Service composition is emerging as the technology of choice
for building cross-enterprise applications on the Web [1],
[13]. This is mainly motivated by three factors. First,
tomorrow’s Web is expected to be highly populated with
Web services. Second, the adoption of XML-based messa-
ging over well-established protocols (e.g., HTTP) enables
communication among disparate systems. Third, the use of
a document-based messaging model in Web services caters
for loosely coupled relationships among organizations’
applications.

Web service composition involves two types of services:
simple and composite. Simple services are Internet-based
applications that do not rely on other Web services to fulfill
consumers’ requests. An example of a simpleWeb service is a
translator that accepts words in a given language (e.g.,
Chinese) and returns their translation in another language
(e.g., English). A composite service is defined as a conglom-
eration of outsourced Web services (called participants)
working in tandem to offer a value-added service. Tax

Preparator is an example of composite service used by
citizens to file their taxes. It includes several participants such
as financial services at citizens’ companies to get
W2 information, banks’ and investment companies’ services
to retrieve investment information, and electronic tax filing
services provided by state and federal revenue agencies [18].

A large body of research has recently been devoted to
Web service composition. Several techniques and proto-
types have been proposed by the research community (e.g.,
[2], [5], [10]). Standardization efforts are also under way for
supporting service composition (e.g., BPEL4WS [1], [13]).
However, these techniques, prototypes, and standards
provide little or no support for the semantics of Web
services, their messages, and interactions. Additionally,
they generally require dealing with low-level details, thus
making the service composition error-prone and time-
consuming. To illustrate the complexity of the composition
process, let us consider the example of users willing to
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translate a word from Chinese to Urdu. Assume that no
Chinese-Urdu translation service is available. One solu-
tion would be to combine two simple services WS1 ¼
Chinese-English and WS2 ¼ English-Urdu. The tasks
performed by users to compose WS1 and WS2 include the
following. They first have to determine which services are
relevant to their requests (i.e., WS1 and WS2). For that
purpose, they need to delve into a large space of
heterogeneous services. Those services are related to
different domains of interest such as insurance, translation,
and stock market. Users then should understand the exact
format, content, and semantics of messages exchanged
between WS1 and WS2. They must also “manually” specify
the way WS1’s and WS2’s messages are mapped to each
other. Finally, they should find out how WS1 and WS2 can
together define an overall business process (e.g., define the
order of messages).

As demonstrated by the previous example, service
composition involves going through several complex
stages. One important, yet tedious, stage is the composability
of interacting services. Composability refers to the process
checking whether participant services can actually work
together, hence avoiding unexpected failure at runtime. The
“manual” checking of service composability would clearly
be unrealistic on the envisioned Semantic Web. What is
needed is a framework where composability would be
checked automatically and transparently. In this paper, we
propose a composability model for semantic Web services.
Composability is checked through a set of rules organized
into four levels: syntactic, static semantic, dynamic semantic,
and qualitative levels. Each rule compares a specific pair of
attributes of interacting Web services. We also define the
notions of composability degree and �-composability to cater
for partial and total composability. We also propose a set of
algorithms for checking Web service composability. Finally,
we conduct a performance study (analytical and experi-
mental) of the proposed algorithms.

The remainder of this paper is organized as follows:
Section 2 introduces an e-government case study. Section 3
describes the proposed composability model. Section 4
presents our approach for the semantic description of Web
services. Section 5 gives details about semantic composa-
bility rules. Section 6 proposes algorithms for checking
composability and presents the analytical model. Section 7
focuses on the implementation and performance analysis of
the proposed algorithms. Section 8 gives an overview of the
related work. Section 9 provides concluding remarks.

2 CASE STUDY: E-GOVERNMENT WEB SERVICES

While our approach is generic enough to be applicable to a
wide range of applications, we use the area of e-government as
a case study. In particular, we focus on social services for
senior citizens. These services may be used “individually” or
combined together to provide value-added services. Assume
that a case worker Mary is planning to organize a visit to a
Senior Activity Center or SAC (club for senior citizens).Mary’s
request includes several subrequests (Fig. 1). Mary first
retrieves the list of citizens interested in visiting SAC (SR1).
Assume that Mary gets the names and zip codes of those
citizens instead of their full addresses. Mary then sets an

appointment to visit the SAC (SR2). Once a visit is scheduled,
she gets driving directions from each citizen’s location to the
SAC (SR3). She finally notifies each citizen about the
schedule and the driving directions to the SAC (SR4).

Each subrequest is typically performed by invoking one
or more services. The composition engine would delve into
the service space to determine participants that “best” serve
each subrequest (Fig. 1). Simple services are found relevant
to subrequests SR1, SR2, and SR4. Assume now that the
“Get Driving Directions” (SR3) returns the driving direc-
tions given a citizen’s name, zip code, and address of the
SAC. Since there is no simple service that offers such
functionality, one solution would be to compose existing
services in a way that would transparently fulfill SR3.

To execute Mary’s request, the composition engine first
needs to “understand” the semantics of existing Web
services. It should, for example, “understand” that Direc-
tion-From-Address provides “directions between two
addresses,” and, hence, cannot be used alone to perform
SR3. The composition engine finds the People-Lookup

simple service as relevant to SR3. Indeed, People-Lookup
returns citizens’ addresses, given their names and zip
codes. Hence, combining People-Lookup and Direc-

tion-From-Address, as depicted in Fig. 1, would allow
the execution of SR3. To enable such composition, the
engine checks that the way participants are composed
together is “correct.” It needs, for example, to make sure
that the format, content, and semantics of messages ex-
changed between People-Lookup and Direction-

From-Address are “compatible.” In the rest of this paper,
we propose a composability model to check the “compat-
ibility” of participant services.

3 THE WEB SERVICE COMPOSABILITY MODEL

The semantic description of Web services is an important
requirement for checking their composability. The large
scale and heterogeneity of Web services may hinder any
attempt for “understanding” their semantics and, hence,
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Fig. 1. Composability of Web services.



composing them. We define a metadata ontology, called
operation ontology, used as a template to define Web service
operations. A metadata ontology provides concepts that allow
the description of other concepts (operations in our case) [7].

3.1 Describing Web Service Operations

Each operation is an instance of the operation ontology. It is
defined by a set of nonfunctional and functional attributes.
Nonfunctional (or qualitative) attributes include a set of
metrics that measure the quality of the operation (e.g., time,
availability, and cost). Functional attributes describe syntac-
tic and semantic features of an operation. We identify three
groups of functional attributes: syntactic, static semantic, and
dynamic semantic. Syntactic attributes represent the structure
of a service operation. An example of syntactic attribute is
the list of input and output parameters that define the
operation’s messages. Semantic attributes refer to the
meaning of the operation or its messages. We consider
two kinds of semantic attributes: static and dynamic
attributes. Static semantic attributes describe features that
are not related to the execution of the operation. An
example of static attribute is the operation’s category (i.e.,
domain of interest). Dynamic semantic attributes refer to the
way and constraints under which the operation is executed.
An example of dynamic attribute is the business logic of the
operation, i.e., the results returned by the operation given
certain parameters and conditions.

The concept of vertical ontology is key for defining the
content of static semantic attributes. It captures the knowl-
edge valid for a particular domain (e.g., government,
medical) [7]. For example, NAICS can be used for the
category of an operation [1]. Service providers may adopt
different vertical ontologies to specify the content of a given
parameter. We use XML namespaces to prefix business
roles with the taxonomy according to which they are
defined [1]. The use of different ontologies to describe an
attribute requires dealing with the issue of defining
mappings between disparate ontologies. This issue is out
of the scope of this paper. However, our model can be
extended to deal with ontology mapping (e.g., by adopting
one of the techniques presented in [6]).

3.2 Composability Stack

The proposed model for composability contains rules
organized into four levels (Fig. 2). Each rule CRpq at a level
CLp (p = 0,3) compares a specific feature of services within
CLp. The first level CL0 compares syntactic attributes such
as the number of message parameters (CR00). The second
level CL1 compares static semantic attributes. We define
two groups of rules at this level. The first group compares
the static semantics of messages. The second group
compares the static semantics of operations. The third level
CL2 compares dynamic semantic attributes. The fourth
composability level CL3 focuses on quality of operation
attributes. It contains three groups of rules. The first group
compares security attributes. The second group checks
business attributes. The third group deals with runtime
attributes. Our focus in this paper is on static semantic and
dynamic semantic composability. Details about syntactic and
qualitative rules can be found in [14].

3.3 Operation Mode and States

Service composition involves the combination of several
operations that belong to the same or different Web
services. Each operation opik has an input and output
message. Input and output messages contain parameters.
The order according to which opik’s input and output
messages are sent and received defines the operation mode.
The mode indicates whether the operation initiates interac-
tions or simply replies to invocations from other services.
We define two modes: In/Out or Out/In. An In/Out
operation first receives an input message by a client,
processes it, and then returns an output message to the
client. Out/In first sends an output message to a server and
receives an input message as a result. As specified in WSDL
standard, some operations may be limited to an input or
output message (e.g., notification operation) [1], [14]. Such
operations may be considered as In/Out or Out/In opera-
tions where the input or output message is empty.

The execution of an operation opik generally goes
through four major observable states: Ready, Start, Active,
and end. We define a precedence relationship between
states, noted �!t, as follows: S1�!tS2 if S1 occurs before S2.
The execution states are totally ordered according to �!t as
follows: Ready �!t Start �!t Active �!t End. The execution
of opik is in the Ready state if the request for executing opik
has not been made yet. The Start state means that opik
execution has been initiated. opik is in the Active state if opik
has already been initiated and the corresponding request is
being processed. After processing the request, the operation
reaches the End state during which results are returned.

3.4 Horizontal and Vertical Composition

We define two ways of combining operations: horizontal and
vertical. Each composability rule may be applicable to
horizontal composition, vertical composition, or both.

Horizontal composition models a “supply chain” -like
combination of operations (Fig. 3). Let opik and opjl be two
operations that are horizontally composed. We call opik and
opjl source and target operations, respectively. opik is first
executed, followed by opjl’s execution. opik’s messages are
used to feed opjl’s input message. LetM be a set of messages
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and Inputjl the input message of opjl. We say that M feeds
Inputjl if parameters in M’s messages are used as Inputjl’s
parameters. As depicted in Fig. 3, Inik and Outik messages
feed Injl. The precedence relationships between opik’s and
opjl’s states are given below:

. Startik�!tActiveik�!tEndik;

. Endik�!tStartjl�!tActivejl�!tEndjl.

As example of the horizontal composition (case (a)),
assume that opik provides translation from Chinese to
English and opjl provides translation from English to Urdu.
The operations opik and opjl may be horizontally composed
to provide translation from Chinese to Urdu. In this case,
the output of opik (English translation) is used as input by
opjl. The second case of horizontal composition (case (b))
refers to the situation where opik outsources from another
operation (i.e., opik is vertically composed with a third
operation). opik is then horizontally composed with opjl. For
example, a government agency may have a get_direc-

tions (Out/In) operation that is executed by outsourcing
from other operations People_Lookup and Direction-

From-Address (Fig. 1). The get_directions operation
is then horizontally composed with Notify-Citizens

(In/Out operation).
Vertical Composition models the “subcontracting” of an

operation opjl by another operation opik (Fig. 3). Let us
consider the first case where opik’s mode is In/Out.
Whenever opik is invoked, it transparently sends an input
message to opjl. opjl then performs the requested function on
behalf of opik and returns an output message to opik. opik will
finally send the results to its invoker. Assume now that opik’s
mode is Out/In. opik starts its execution by invoking opjl.
After opjl terminates its execution, it sends results to opik
which receives them as an input message. The precedence
relationships between opik’s and opjl’s are given below:

. Startik�!tStartjl�!tActivejl�!tEndjl�!tEndik;

. Startik�!tActiveik�!tEndik.

An example of vertical composition is that of a personal
computers (PC) reseller offering an operation Request-

Quotes (case (c)). This operation allows customers to
request quotes. The execution of Request-Quotes re-
quires the invocation of another operation provided by a
PC manufacturer to get the latest prices. The second case of

vertical composition (case (d)) models “request-response”
interactions. For example, let us consider an operation

Get-Immunization-Centers (Out/In) provided by the

Department for the Aging. Assume that the list of
immunization centers is managed by the Health Depart-

ment. To get up-to-date information about such centers, it
would be more effective to outsource from a corresponding

operation in the Health Department (In/Out), whenever
Get-Immunization-Centers is invoked by a Depart-

ment of Aging’s officer.

3.5 Composability Degree

Composers may have different views on composability
rules. One may, for example, give higher importance to

syntactic composability while another may focus on

semantic rules. To capture this aspect, we associate a weight
Wp to each level CLp. We also define a weight Wpq for each

rule CRpq in that level. A weight is an estimate of the
significance of the corresponding level or rule from the

composer’s point of view. Composers assign a weight to
each level and rule. The higher the weight, the more

important the corresponding level or rule. Wp (� 0 and
� 1) compares CLp to the other levels in terms of their

importance. The total of weights assigned to the different

levels equals 1. Similarly, Wpq (� 0 and � 1) compares
CRpq to the other rules at level CLp. The total of weights

assigned to rules within a level equals 1. Formally, the
different weights must respect the following constraints,

where j CLp j is the number of rules at level p:

1. 8 p; q j 0 � p � 3 and 0 � q �j CLp j �1: ð0 � Wp �
1Þ ^ ð0 � Wpq � 1Þ and

2. ðP3
p¼0 Wp ¼ 1Þ ^ ð8 p :

PjCLpj�1
q¼0 Wpq ¼ 1Þ.

Due to the heterogeneity of Web services, it is not
always possible to find operations that are fully compo-

sable with source operations. Composers may, in this case,

select operations that are partially composable and then
adapt their operations based on the results returned by

the composability process. For example, the composer
may modify the data type of a parameter if it is not

compatible with the data type of the corresponding
target’s parameter. For that purpose, we introduce the

notion of composability degree.
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The degree of opik and opjl gives the ratio of composa-
bility rules that are satisfied between opik and opjl. It takes
its values from 0 to 1 (� 0 and � 1). We define a function
satisfiedpqðopik; opjlÞ that returns 1 if the rule CRpq is
satisfied between opik and opjl and 0 otherwise. To reflect
the composer’s view on each rule CRpq, we adjust the value
returned by the function satisfiedpqðopik; opjlÞ with the
weight Wpq. The degree at a given level CLp is obtained by
adding the adjusted values returned by the function satisfied
applied on each CLp’s rule. Once the degree at CLp is
computed, we adjust it with the weight Wp assigned to CLk.
As specified below, the degree of opik and opjl is obtained by
summing composability degrees at all levels CLp (p = 0,4):

Degree ðopik; opjlÞ

¼
X3

p¼0

ðWp �
XjCLpj�1

q¼0

ðWpq � satisfiedpqðopik; opjlÞÞÞ:

During a composition process, the composer assigns
weights to each level and rule by providing a vector called
level weight (LW) and matrix called rule weight (RW). The
element LWp (p = 0,3) gives the weight assigned to level
CLp. The element CWpq gives the weight assigned to rule
CRpq. If a rule CRpq is undefined, then CWpq is automati-
cally assigned the value 0. Additionally, if the weight of a
given level is equal to 0, then the weight of each rule within
that level is also equal to 0.

Based on the degree of opik and opjl, we can decide about
the composability of those operations. If degree = 0, then no
rule is satisfied and the operations are noncomposable. If
degree = 1, then all composability rules (with a positive level
and rule weight) are satisfied and the operations are fully
composable. Otherwise, a subset of rules are satisfied. In
this case, opik and opjl are partially composable.

3.6 �-Composability

Composers may have different expectations about the
composability degree of their operations. For that purpose,
they provide a composability threshold � ð0 < � � 1Þ which
gives the minimum value allowed for a composability
degree. All operations opjl so that degreeðopik; opjlÞ � � are
candidates to be composed with opik. If the threshold is
greater than degreeðopik; opjlÞ, then opik is not composable
with opjl. Based on the notions of degree and threshold, we
introduce a “relaxed” definition of composability called
�-composability. �-composability compares the composabil-
ity degree and threshold to decide whether an operation is
composable with another from the composers’ perspectives.
opik is �-composable with opjl if degreeðopik; opjlÞ � � .

The composability threshold is given by composers as
part of their profile. Composers personalize the composa-
bility checking process via their profile. They assign values
to the level weights vector (LW), rule weights matrix (RW),
and � . Other variables such as the maximum number of
target operations can also be initialized. The way users
create their profile depends on their level of expertise. We
identify three types of users: casual (i.e., with minimal
expertise), expert (i.e., with high expertise), and regular (i.e.,
with average expertise). Casual users may leave LW and RW
unassigned in their profile. The system automatically

distributes weights between levels and rules in a uniform
way. The composability threshold will also be set to 1. In
this case, full composability will be required. Expert users
are knowledgable about the meaning of all operation and
message attributes. They may customize the composability
process by assigning the desired values to LW, RW, and � . If
the degree exceeds the threshold but is not equal to 1, users
change the specification of their operations based on the
feedback returned by the system (e.g., which rules are not
satisfied) to increase the degree. The third type of users,
called regular users, includes those that have some knowl-
edge about operation and message attributes. They may
assign values to parts of LW and RW. In this case, the
system automatically distributes weights between unas-
signed levels and rules. If � was not assigned by a user, it is
automatically set to 1 by the system.

3.7 Interoperation Relationships

Executing an operation may require going through a
predefined process (called behavior) that involves the
execution of other operations. We define two types of
relationships between operations: preoperations and post
operations. These relationships may be dictated by govern-
ment regulations. For example, senior citizens must first
register with the agency via checkRegistration opera-
tion before applying for any welfare program. They may
also reflect the business logic of a Web service. For example,
senior citizens must order a meal from a participating
restaurant via the orderMeal operation before requesting
its delivery through the mealsOnWheels operation. Pre
and postoperations are defined as follows:

. Preoperations. opik is a preoperation of opjl if the
invocation of opjl is preceded by the execution of
opik (i.e., EndðopikÞ�!t ReadyðopjlÞ). An operation
may have several preoperations and be the pre-
operation of several operations. An operation is
invoked only if all its preoperations have reached
their “End” state.

. Postoperations. The execution of a given operation
may trigger the invocation of other operations called
postoperations. opik is a postoperation of opjl if the
termination of opjl precedes the invocation of opik
(i.e., EndðopjlÞ�!t ReadyðopikÞ). An operation may
have several postoperations. It may also be the
postoperation of several operations. A postoperation
enters the “Start” state if at least one of its sources is
in the “End” state.

Pre and postoperations introduce constraints that must
be considered during the composability checking process
[8]. Let us consider orderMeal and mealsOnWheels

operations defined previously. Assume that an operation
op1 is found to be vertically composable with mealOn-

Wheels (i.e., op1 can outsource from mealsOnWheels).
Since orderMeal is a preoperation of mealsOnWheels,
op1 cannot outsource from mealsOnWheels unless the
system makes sure that orderMeal or another operation
composable with orderMeal is invoked before op1. The
focus in this paper is on operations that are independent
from each other.
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4 SEMANTIC DESCRIPTION OF WEB SERVICES

In this section, we present our framework for the semantic

description of service operations. This framework is used as

a foundation for checking composability. In our approach,

operations are semantically described at two levels: static

and dynamic. The static semantics of an operation models

“noncomputational” properties of an operation, that is,

properties that are independent of the execution of the

operation. The static semantics is described at two

“granularities” : operation and messages. The dynamic

semantics of an operation models computational or execu-

tion-related features of that operation. It generally refers to

the way and constraints under which an operation is

executed.
Significant research is being devoted to the definition of

a service ontology in DAML-S [12]. The approach presented

in this section can be combined with DAML-S to provide

richer semantic features. Indeed, the static semantics in

DAML-S mostly focuses on describing operations’ features.

We define a broader view of static semantics by describing

semantics at both the operation and message levels.

Additionally, DAML-S gives little support for dynamic

semantics.

4.1 Static Semantics of Operations

The static semantics at the operation granularity is defined

by the following attributes:

. Serviceability. This attribute gives the type of assis-
tance provided by the operation. Examples of values
for this attribute are “cash” and “in-kind.” TANF
(Temporary Assistance for Needy Families) is an
example of service that provides financial support to
needy families.

. Provider and consumer types. The provider of an
operation may be governmental (“federal,” “state,”
“local,” etc.) or nongovernmental (“nonprofit” and
“business” ) agencies. For example, nursingHome
may be provided by the Department of Aging
(government) and Red Cross (nonprofit). The con-
sumer type specifies the group of citizens (e.g.,
children, pregnant women) that are eligible to the
operation’s welfare program. For example, WIC
(Women, Infant, and Children) is a program for
pregnant women, lactating mothers, and children.

. Category. The categoryCik of an operation opik
describes the area of interest of opik. It is defined
by a tuple (Domik, Synik, Specik, Overlapik). Domik

gives the area of interest of the community (e.g.,
“healthcare”). It takes its value from a vertical
ontology for domain names. Synik contains a set of
alternative domain names for Cik. For example,
“medical” is a synonym of “healthcare.” Specik is a
set of specializations of Cik’s domain. For example,
“insurance” and “children” are specializations of
“healthcare.” This means that Cik provides health
insurance services for children. Overlapik contains
the list of categories that overlap with Cik’s category.
It is used to provide a peer-to-peer topology for
connecting operations with “related” categories. We

say that categoryik overlaps with categoryjl if compos-
ing opik with opj’s is “meaningful.” By meaningful,
we mean that the composition provides a value-added
service (in terms of categories). For example, an
operation that have family as a domain may be
composed with another operation whose domain is
insurance. This would enable providing health
insurance for needy families.

. Purpose. The purpose describes the goal of the
operation. It is defined by four attributes: Func,
Syn, Spec, and Overlap. The Func describes the
business functionality offered by the operation.
Examples of functions are “eligibility,” “registra-
tion,” and “mentoring.” The Syn, Spec, and Overlap
attributes work as they do for categories. The Overlap
contains the list of purposes that are related to the
purpose of the current operation. For example, two
operations that have “eligibility” and “registration”
as respective purposes may be combined to first
check whether citizens are eligible for a given social
a program and then register them for that program.

4.2 Static Semantics of Messages

Each message within an operation is semantically described

via a message type MT . MT gives the general semantics of

the message. For example, a message may represent a

“purchase order” or an “invoice.”
Message types do not capture the semantics of para-

meters within a message. We define below a set of attributes

to model the semantics of message parameters:

. Data type. It gives the range of values that may be
assigned to the parameter. We use XML Schema’s
built-in data types as the typing system. Built-in (or
simple) types are predefined in the XML Schema
specification. They can be either primitive or derived.
Unlike primitive types, derived types are defined in
terms of other types. For example, integer is derived
from the decimal primitive type. Complex data types
can also be adopted in our model but are out of the
scope of this paper [9].

. Business role. It gives the type of information
conveyed by the message parameter. For example,
an address parameter may refer to the first (street
address and unit number) or second (city and zip
code) line of an address. Business roles take their
values from a predefined taxonomy. Every para-
meter would have a well-defined meaning according
to that taxonomy. An example of such taxonomy is
RosettaNet’s business dictionary [13]. It contains a
common vocabulary that can be used to describe
business properties.

. Unit. It refers to the measurement unit in which the
parameter’s content is provided. For example, a
weight parameter may be expressed in “Kilograms”
or “Pounds.” An eligibility period parameter may be
specified in days, weeks, or months. We use
standard measurement units (length, area, weight,
money code, etc.) to assign values to parameters’
units. If a parameter does not have a unit (e.g.,
address), its unit is equal to “none.”
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. Language. The content of a message parameter may
be specified in different languages. For example, an
English-Urdu-translation operation takes as
input an English word and returns as output its
translation in Urdu. We adopt the standard taxon-
omy for languages to specify the value of this
attribute.

4.3 Dynamic Semantics

The dynamic semantics or business logic of an operation opik
refers to the outcome expected after executing opik given a

specific condition. Service providers may decide before-

hand which “effects” are made visible to users. In the case

of e-government, for example, the rules for citizens’

eligibility are “public.” A check_eligibility operation

for a given social program returns whether citizens are

eligible or not given certain conditions.
The business logic of an operation is defined by a set of

rules where each rule Rm
ik has the following format:

Rm
ik ¼

ðPreParametersmik; PreConditionm
ikÞ

ðPostParametersmik; PostConditionm
ikÞ

:

PreParametersmik and PostParametersmik are sets of para-

meters. Each parameter is defined by name, data type,

business role, unit, and language as stated in Section 4.2.

The elements of PreParametersmik and PostParametersmik
generally refer to opik’s input and output parameters.

However, they may in some cases refer to parameters that

are neither input nor output of opik. For example, assume

that the address of every citizen registered with the

Department on the Aging is stored in the department’s

database. In this case, this parameter should not be required

as input for the orderMeal operation since its value could

be retrieved from the database.

PreConditionmik and PostConditionmik are conditions over
the parameters in PreParametersmik and PostParametersmik,
respectively. They are specified as predicates in first-order
logic. The rule Rm

ik specifies that if PreConditionmik holds
when the operation opik starts, then PostConditionmik holds
after opik reaches its End state. If PreConditionmik does not
hold, there are no guarantees about the outcome of the
operation. The following is an example of the pre and
postcondition of a rule associated with the operation
registerFoodCheck:

income < 22; 090 ^ size � 2 ^ zip ¼ 22; 044

approved ¼ true ^ duration ¼ 6
;

The rule uses income (unit = {year, US dollar}), familySize,
zip, approved, and duration (unit = {month}) as parameters. It
states that citizens with a yearly income less than 22,090 US
dollars, a minimum household size 2, and living in area code
22,044 are eligible for food checks for a 6-month period.

5 SEMANTIC COMPOSABILITY

For two operations opik and opjl to be “plugged” together,
they must be semantically “compliant.” In this section, we
present composability rules at the static and dynamic
semantic levels. We define each rule with regard to vertical
and horizontal composability. For the static semantics, we
consider composability at both operation and message
granularities.

5.1 Static Semantic Composability of Operations

We summarize in Table 1 the static semantic rules at the
operation granularity. The first rule compares opik’s and
opjl’s serviceability. Horizontal composition does not require
comparing serviceability since no operation will “service” the
other. However, the content of both attributes must be
“similar” if opik and opjl are vertically composed
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(serviceabilityik ¼ serviceabilityjl). For example, an operation
providing cash support cannot “subcontract” in-kind
operations. The “=” operator used here refers to one of
the following two cases: 1) serviceabilityik and serviceabilityjl
have the same content if the attributes use the same vertical
ontology; or 2) serviceabilityik and serviceabilityjl have
“mappable” content if the attributes use different vertical
ontologies.

The second rule compares opik’s and opjl’s provider and
consumer types. If the composition is vertical, opik and opjl
must have at least one common provider type and one
common consumer type. For example, if opik expects to
outsource from a federal agency’s operation, then opjl’s
agency should include the type “federal.” Additionally, if
opik provides benefits for children and pregnant women,
then opjl should provide benefits for at least those two
groups. If opik is horizontally composed with opjl, then it
should be viewed as a consumer of opjl. Hence, opjl’s
consumer type should include at least one value from opik’s
provider types.

The third rule compares operations’ categories. Assume
that opik is vertically composed with opjl. Since opik is
meant to “replace” opjl, the following two conditions

should be true: 1) opik’s and opjl’s domains of interest are
similar or synonyms and 2) all characteristics (i.e., elements
of the “spec” attribute) of opik’s category are provided by
opjl’s. For example, assume that opik’s category provides
health insurance for children (i.e., Domik ¼ 00healthcare00

and Specik ¼ f 00children;00 00insurance00g). The operation opjl
should not only deal with healthcare but also at least
provide insurance for children as well. Assume now that
opik is horizontally composed with opjl. Categoryik and
categoryjl should be defined so that opik and opjl “can” be
combined. This is captured by the Overlap attribute of a
category. Hence, categoryik is composable with categoryjl if
Overlapik contains categoryjl.

The last rule compares operations’ purposes. The purpose
composability rule is defined in the same way as category
composability where Dom is replaced by Func.

5.2 Static Semantic Composability for Messages

Table 2 summarizes the static semantic rules at the message
granularity. The first rule compares opik’s and opjl’s
message types. This rule is applicable only to vertical
composition since horizontal composition does not involve
replacing opik’s messages with opjl’s or vice versa. Assume
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that opik is vertically composed with opjl. As depicted in
Fig. 3, we identify two cases based on the mode of opik. If
opik’s mode is In/Out, then Inik’s (respectively, Outik’s) and
Injl’s (Outjl’s) types should be similar. If opik’s mode is
Out/In, then Outik’s (respectively, Inik’s) and Injl’s (Outjl’s)
types should be similar.

The second composability rule compares parameters’
data types. It is based on the notion of compatibility between
data types (XML Schema). Two parameters are data type
compatible if they have the same built-in type. Compatibility
of derived types and complex data types can also be
adopted. However, these issues are out of the scope of this
paper. A discussion about typing in XML can be found in [9].

Data type composability depends on the composition
type (horizontal or vertical) and operations’ modes. As
depicted in Fig. 3, we identify the following four cases: If opik
is vertically composed with opjl and Modeik ¼ 00In=Out00,
then Inik is “plugged” with Injl and Outjl is “plugged” with
Outik (Fig. 3c). The data type of each parameter in InjlðOutikÞ
should be compatible with the data type of a corresponding
parameter in InikðOutjlÞ. If opik is vertically composed with
opjl and Modeik ¼ 00 Out=In00, then Outik is “plugged” with
Injl and Outjl is “plugged” with Inik (Fig. 3d). The data type
of each parameter in Injl (respectively, Inik) should be
compatible with the data type of a corresponding parameter
in Outik ðOutjlÞ. If opik is horizontally composed with opjl,
then Inik and Outik are “plugged” with Injl independently
of opik’s mode (Figs. 3a and 3b). The data type of each
parameter in Injl should be compatible with the data type of
a corresponding parameter in Inik or Outik.

The remaining three rules compare parameters’ business
role, language, and unit, respectively. They are defined
similarly to data type composability, except that the data
type is replaced by business role, language, and unit,
respectively.

5.3 Dynamic Semantic Composability

The dynamic semantic composability (or B-Composability)
compares the business logic rules of source and target
operations. Let us consider two rules

Rn
ik ¼ ðPreCn

ik; PostCn
ikÞ

and Rm
jl ¼ ðPreCm

jl ; PostCm
jl Þ that belong to opi and opj,

respectively. B-composability relates PreCn
ik to PreCm

jl and
PostCn

ik to PostCm
jl . We define several forms of B-compo-

sability depending on the relationships between post and
preconditions. Each form is an instantiation of the general
form of B-composability, called generic B-composability. We
say that opik is Generically B-composable with opjl if:

8 Rn
ik 2 RulesðopikÞ 9 Rm

jl 2 RulesðopjlÞ j
ð gPreCPreCikn R1 PreCm

jl Þ ^ ðPostCm
jl R2 PostCn

ikÞ:

The relations R1 and R2 relate preconditions and post

conditions, respectively. Each relation is either equivalence

(, ), implication () ), or nil (meaning that the correspond-

ing term is dropped). As illustrated in this section, we may

need to include information about the postcondition in the

precondition clause. To allow this flexibility, we define
gPreCPreCikn as either PreCn

ik or PreCn
ik ^ PostCn

ik in the generic

B-composability rule. Note that techniques for comparing

pre and postconditions have been presented in [21].

However, these techniques deal with component-based

environments not Web services.
Fig. 4 depicts the different forms of B-Composability

rules. We first give the strongest rule and then weaken the

rules by relaxing R1 and R2 from , to ) , and nil. We also

vary gPreCPreCikn from PreCn
ik to PreCn

ik ^ PostCn
ik. Relaxing

the rules enables the comparison of less closely related

operations:

. Exact. Exact B-composability instantiates R1 and R2

to , and gPreCPreCikn to PreCn
ik (Fig. 4a). If two

operations are exactly B-composable, then their
business logics are equivalent. Hence, whenever
one operation is used, it could be replaced by the
other with no change in observable business logic.
This rule is suitable for vertical composition since
opik and opjl are in their active state simultaneously.

. Plugin. This rule relaxes both R1 and R2 from , to
) . It also instantiates gPreCPreCikn to PreCn

ik. The rule
Rn

ik is matched by any rule Rm
jl whose precondition is

weaker to allow at least all of the conditions that Rn
ik

allows. The postcondition of Rm
jl is stronger than

Rn
ik’s to provide a condition at least as strong as Rn

ik’s.
As depicted in Fig. 4b, this rule is suitable for vertical
composition since opik and opjl are in their active
state simultaneously.

. Exact Post. In some cases, composers are concerned
only with the effects of operations. For example, a
composer may be interested in an operation that
provides a social benefit independently of any
precondition of that operation. Thus, a useful relaxa-
tion of the exact B-composability is to consider only
the postcondition part of the conjunction. Exact post is
also an instance of the generic B-composability, with
R2 instantiated to, and dropping both gPreCPreCikn and
PreCm

jl (Fig. 4c). Since only the equivalence relation-
ship is used, the exact post is symmetric. Because opik
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and opjl are in their active state simultaneously
(Fig. 4c), this rule is suitable for vertical composition.

. Plugin Pre. Plugin Pre includes information about
opi’s postcondition in the precondition and drops the
relationship between postconditions. It is an instan-
tiation of generic B-composability where R1 is
instantiated to ) , R2 to nil, and gPreCPreCikn to
PreCn

ik ^ PostCn
ik. This rule is particularly useful

to check horizontal composability, that is, whether
the execution of opi can be followed by the execution
of opj. Fig. 4d shows that opik and opjl enter their
active states sequentially (Activeik �!t Activejl).
Since opi is executed (according to Rn

ik) before opj,
PreCn

ik, and PostCkl are by definition true. In order
for opj to be executable according to Rm

jl , its
precondition PreCm

jl should be true. One way to
ensure this is to check that the implication PreCn

ik ^
PostCn

ik ) PreCm
jl is true.

6 CHECKING SERVICE COMPOSABILITY

We identify three avenues in the area of service
composition that could benefit from checking composa-
bility: composition analysis, automatic composition, and
operation outsourcing. In the first case, composability is
checked a posteriori. Composers first specify their
composite service (e.g., using BPEL4WS). The composition
engine then checks the “correctness” of the composite
service using composability rules. In the second case, the
composition engine uses the composability rules to
generate composite service descriptions from high-level
specifications of composition requests. The engine needs
to determine the set of participants relevant to the
composition request while making sure that they are
composable. In the third case, composability rules are
used to “replace” an operation by a “compatible” one.
This could be useful to enable the subcontracting of
operations or substitutability of a participant by another.
In this section, we propose an algorithm for checking
composability in the case of operation outsourcing.

6.1 Algorithms

The aim of our algorithm (Fig. 5) is to determine the set of
all operations within the service registry that could be
outsourced by a given source operation SO. The target
operation should be “similar enough” to the source
operation so that it could be invoked instead of SO. We
formulate this problem using our composability model as
follows: “determine the set T of target operations op within
the registry so that SO is vertically composable with op.”
The degree of similarity between SO and op is defined by � .

The algorithm browses the registry, checking the
vertical composability of SO with every operation op in
the registry (Fig. 5). As the number of target operations
may be large, users have the possibility to set in their
profile the maximum number of target operations to be
determined (max_target variable). Composability degree is
computed after checking composability at each level and
granularity. If the degree is greater or equal to � , then op
is a potential candidate to “replace” SO. In this case, op is
added to T . Users will be able to select the “best”

operations to be outsourced via qualitative composability.
Details about qualitative composability are outside the
scope of this paper.

The static semantic procedures are a straightforward
implementation of vertical composability rules as defined
in Tables 1 and 2, respectively. The dynamic_semantics()
procedure (Fig. 6) compares SO’s business logic rules
with op’s. Since B-composability rules are hierarchically
organized, we adopt a bottom-up approach for checking
these rules. For example, if the Plugin Pre rule is not
satisfied, then the Plugin rule is necessarily not satisfied
since Plugin ) Plugin Pre. A rule is checked if the
corresponding weight is positive. For that purpose, we
use a function get_ weightR(CR) that returns the weight of
the current rule CR from the RW matrix. We also use a
function get_weightL(CL) that returns the weight of the
current level CL from the LW vector.

B-composability rules are mainly based on proving
implications between conditions (pre and postconditions)
within a pair of business logic rules. However, proving
theorems such as Cond1 ) Cond2 is a NP-complete pro-
blem [16]. To deal with this issue, we define an approximate
solution for proving such theorems. The proposed solution
(Fig. 7) is based on the assumption that each condition is a
conjunction of terms. Each term has the form x < r > v
where x is parameter, v is a constant value, and < r > is a
relational operator that belongs to f¼; 6¼; <;>;�;�g.

The theorem prover (Fig. 7) first unifies the parameters in
Cond1 and Cond2. The unification step works as follows: If
there are parameters x11; . . . ; x

1
n in Cond1 that are compo-

sable with parameters x21; . . . ; x
2
m in Cond2, then replace

x11; . . . ; x
1
n and x21; . . . ; x

2
m by the same parameter name (say
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x21). Composability between parameters refers to the

verification of composability rules between message para-

meters. The second step of the prover is to match each term

t2p of Cond2 with a term t1q in Cond1. We say that t2p matches

with t1q if t1q ) t2p. Proving the matching between terms is

done by applying one of the inference rules for relational

operators. Note that the number of inference rules is finite.

If a given term in Cond2 matches with no term in Cond1,

then Cond1 ) Cond2 is false. If all terms in Cond2 are

matched with a term in Cond1, then Cond1 ) Cond2 is true.

As an example, we give below the inference rules for the

“>” operator:

.
x>a ^ a¼b

x>b ; x>a ^ a>b
x>b ; x>a ^ a�b

x�b ; x>b
x�b .

The composability algorithms return a Boolean answer

for whether operations are �-composable (by comparing �

and the computed degree). However, a log containing

details about which composability rules were not satisfied

can also be returned. For example, a data type incompat-

ibility between message parameters can be mentioned in the

log by the static_semantics_message procedure.

Composers have then the possibility to review that log

and, if possible, modify the description of their outsourcing

requests to increase the composability degree of their

requests. For the sake of simplicity, we did not include

such details in our algorithms.

6.2 Analytical Model

In this section, we present the analytical model for the

composability algorithm. We focus on computing the total

time for checking composability of all target operations.

This time will be the sum of the global time for checking

static (TSS) and dynamic (TDS) semantic composability.

Table 3 defines the parameters and symbols used in this

section.
We compute the average execution time for the algo-

rithm. Thus, T is equal to ðTmin þ TmaxÞ=2. To simplify the

analysis, we assume that the times to retrieve a description

from a service registry and parse that description are fixed

values. It is also reasonable to assume that time to check

static semantic (at the operation granularity) composability

for an operation is a constant. In contrast, message and

business logic composability times depend on the number

of message parameters and business logic rules, respec-

tively. Thereby, Ut, Ot, tST , and tSS are constants.
Let us start by computing the minimum composability

time Tmin. This time corresponds to the case where

NT iterations of the algorithm are executed. This means

that we get a composability plan after each iteration. The

total static semantic composability time Tmin
SS is equal to

NT � ðtSS þ TmsgÞ. Let us now compute the time Tmsg for

checking message composability. Tmsg refers to the time of

comparing a pair of message twice. At minimum, each

parameter in a message would be compared to one

parameter of the dual message. Hence, Tmsg is equal to

2� PM and Tmin
SS is equal to NT � ðtSS þ 2� PMÞ. The last

time to compute is Tmin
DS . Since the algorithm performs

vertical composability, dynamic semantic composability

does not check plugin prerule. Based on the definition of

B-composability rules, there is a need to execute the

theorem prover eight times: two for exact post, two for

plugin, and four for exact B-composability. At minimum,

each business rule would be proven using the first

inference rule. Tmin
DS is then equal to NT � ð8�Bop � TCÞ.

Based on the above analysis, we have:

Tmin ¼ NT � ðUt þOt þ tSS þ 2� PM þ 8�Bop � TCÞ:
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The maximum composability time Tmin refers to the
case where all operations in the registry are checked. This
means that the number of iterations executed by the
algorithm is equal to Nop. Consequently, T

max
SS is equal to

Nop � ðtSS þ TmsgÞ. Let us now compute the formula for
Tmsg. The first parameter of each message should be
compared to PM parameters of the other message. The
next parameter needs to be compared to PM � 1 para-
meters, and so on. Hence, Tmsg is equal to

2� ðPM þ ðPM � 1Þ þ :::þ 1Þ ¼ PM � ðPM þ 1Þ:

Now, we need to compute Tmax
DS . As mentioned pre-

viously, we execute the theorem prover eight times to check
the different B-composability rules. We compare each rule
in the subrequest with all rules of the current operations.
The total of comparisons is then B2

op. For each term, we need
to go through all inference rules for a total of TC � IR. T

max
DS

is then equal to Nop � ð8�B2
op � TC � IRÞ. The maximum

composability time is then given below:

Tmax ¼ Nop � ðUt þOt þ tSS þ PM � ðPM þ 1Þ
þ 8�B2

op � TC � IRÞ:

The previous formulas give composability times for one
outsourcing request. In what follows, we specify the total
execution time for the composability algorithm when
executed on nSO source operations. In this case, we consider
the times to access the registry and parse operation
descriptions:

T ¼ 1

2
�Nop � nSO � ðUt þOt þ tSS þ PM

� ðPM þ 1Þ þ 8�B2
op � TC � IRÞþ

1

2
�NT � nSO � ðUt þOt þ tSS þ 2� PM

þ 8�Bop � TCÞ:

7 IMPLEMENTATION AND PERFORMANCE ANALYSIS

This section is devoted to the implementation and perfor-
mance study of composability checking algorithms. We use
social and welfare services within the Family and Social
Services Administration (FSSA) as an application domain for
our implementation. The FSSA serves families facing issues
associated with low income, mental illness, addiction,
mental retardation, disability, and aging. The system, called
WebDG, provides customized services to needy citizens.

7.1 Implementation

WebDG system is implemented across a network of Solaris
workstations. WebDG architecture is organized into four
layers (Fig. 8). The first layer contains a set of Oracle
databases (Oracle 8.0.5) that store government and citizens’
data. The second layer includes “proprietary” applications.
We implemented several FSSA applications (Java JDK 1.3)
includingWIC (Women, Infant, and children),Medicaid, and
TOP (Teen Outreach Pregnancy). WIC provides Federal
grants to States for supplemental food for low-income
pregnant and postpartum women. Medicaid is a health
insurance program for specific groups of low-income
people. TOP provides pregnant teens with childbirth and
postpartum educational support.

To enable access to the aforementioned applications,
we “wrapped” them into Web services. We use state-of-
the-art technologies for implementing WebDG. Services
are deployed using Apache SOAP (2.2). We use the
WSDL language to describe WebDG services. WSDL
descriptions are extended with semantic features defined
in Section 4. We use IBM Web Service Tool Kit (WSTK) to
automatically generate WSDL files for Web services from
Java class files. We adopt Systinet’s WASP UDDI Standard
3.1 as our UDDI toolkit. Cloudscape (4.0) database is used
as a UDDI registry.

The upper layer includes a Graphical User Interface (GUI)
and WebDG manager. Citizens and case officers access
WebDG via a GUI implemented using HTML/Servlet. The
WebDG manager is at the core of the system. It is composed
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of the following main components: Request Handler, Service
Locator, Composability Engine, Message Semantics Controller,
Operation Semantics Controller, and Dynamic Semantics
Controller. The request handler is the router of the WebDG
manager. Its task depends on the type of request it receives.
If the request type is “discovery,” it forwards it to the
service locator which implements UDDI Inquiry Client using
WASP UDDI API. If the request type is “invocation,” the
request handler invokes the corresponding operation
through SOAP Binding Stub which is implemented using
Apache SOAP API. If the request type is “outsourcing,” the
request handler forwards the source operation (specified by
the user) to the composability engine. The engine interacts
with the service locator to get operations from the registry.
Then, it uses the aforementioned controllers to check static
semantic of messages, static semantic of operations, and
dynamic semantic composability. The composability engine
finally returns a set of target operations to the user.

7.2 Performance Analysis

The aim of this section is threefold. First, we show the
scalability of our approach by computing the composability
checking time for a large number of operations. We also
compare the results of our analytical model with those
obtainedvia experiments. Second,weassess the impact of the
composability threshold � on the number of composable
operations. Third, we show the efficacy of our approach, i.e.,
the usefulness of the composability algorithms to composers.

Although we implemented the composability model in
WebDG prototype, we felt it was necessary to build a
simulation testbed to run the experiments. This has the
advantage of allowing the generation of a large number of
operations using various settings. The descriptions gener-
ated by the testbed are used to conduct our experimental
study. We run our experiments on a Sun Enterprise Ultra 10
server with a 440-MHz UltraSPARC-IIi processor, 1-GB of

RAM, and under Solaris operating system. Table 4 shows
the common settings for all simulation experiments. The
Confidence level and accuracy are used to control the accuracy
of the simulation results.1 Users specify the values of
confidence level and accuracy before starting simulation.
The simulation is not complete until the expected con-
fidence level and accuracy are achieved. Operation out-
sourcing requests are simulated through a random request
generator. The generation of requests follows the exponen-
tial distribution. We generate 50 outsourcing requests
generated (nSO ¼ 50) during each simulation round.

In the first set of experiments, we evaluate the time for
checking static and dynamic semantic composability
(Fig. 9a). We vary the number of operations in the registry
from 1,000 to 15,000 with an iteration range of 1,000. To
enable a better visualization of the figure, we represent TSS

and TDS using logarithm function. Fig. 9b depicts the
composition times obtained using our analytical model
(Section 6.2). Figs. 9a and 9b show that most of the
composability time is spent on checking dynamic compo-
sability. Indeed, static semantic composability compares
simple ontological attributes (e.g., serviceability). However,
B-composability compares each business logic rules of a
source operation with each business logic rules of a target
operation. Each pair of business logic rules involves the
comparison of two preconditions and two postconditions
using the theorem prover (Fig. 7).

In the second set of experiments, we assess the impact of �
on the number of target operations (Fig. 9c). We conducted
experiments for � ¼ 33% and � ¼ 66%. The results show that
the number of generated targets is higher for � ¼ 33%.
Indeed, in this case, target operations are generated if at least
33 percent of the composability rules are satisfied. However,
for � ¼ 66%, target operations are generated if at least
66 percent of the composability rules are satisfied.

In the third set of experiments, we measure the efficacy of
the proposed approach (Fig. 9d). Given a setO of outsourcing
requests, we define the efficacy ratio by the expression

jT j
max target�jOj , where T is the set of targets returned by the
composition engine for all outsourcing requests,max_target is

966 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 7, JULY 2005

1. Given N sample results Y1; Y2; . . . ; YN , the confidence accuracy is defined
as H/Y, where H is the confidence interval half-width and Y is the sample
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probability that the absolute value of the difference between the Y and �
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H ¼ t�=2;N�1 � �=

ffiffiffiffiffi
N

p
, where �2 ¼ �iðYi � Y Þ2=ðN � 1Þ, and t is the stan-

dard t distribution.

Fig. 8. WebDG architecture.
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the maximum number of generated targets (Fig. 5), and
j O j ¼ nSO. This ratio gives the probability that the composi-
tion engine returns targets for a source operation. For each
source operation, we consider a different value of the
composability threshold � (e.g., 0.33, 0.66).We set the variable
max_target to 1. We also vary the number of operations
available in the registry. Fig. 9d shows that the efficacy ratio
varies from 58 percent to 88 percent. This means that the
composition engine is able to find a composable operation for
most of the outsourcing requests.

8 RELATED WORK

In this section, we overview major techniques that are most
closely related to our approach.

8.1 Composability Techniques

Several techniques have been proposed to deal with service
composability. LARKS defines five techniques for service
matchmaking: context matching, profile comparison, simi-
larity matching, signature matching, and constraint match-
ing [17]. These techniques mostly compare text descriptions,
signatures (inputs and outputs), and logical constraints
about inputs and outputs. The ATLAS matchmaker defines
two methods to compare service capabilities described in
DAML-S [15]. The first method compares functional
attributes to check whether advertisements support the
required type of service or deliver sufficient quality of
service. The second compares the functional capabilities of
Web services in terms of inputs and outputs. No evaluation
study is presented to determine the effectiveness and speed
of ATLAS matchmaker.

8.2 AI Planning Techniques for Service
Composition

Another trend for dealing with the automatic service
composition is the use of Artificial Intelligence planning

techniques. The composition engine treats service composi-
tion as a planning problem. SHOP2 adopts the concept of
HTN (Hierarchical Task Network) as a planning methodol-
ogy [19]. It decomposes tasks into smaller and smaller
subtasks, until primitive tasks are found that can be
performed directly. SHOP2 uses a knowledge base which
contains operators and methods. Each operator is a descrip-
tion of what needs to be done to accomplish a primitive
task. Each method describes the process of decomposing a
compound task into partially ordered subtasks. Estimated-
regression is another planning technique for service compo-
sition [11]. The situation-space search is guided by a
heuristic estimator obtained by backward chaining in a
relaxed problem space. The resulting space is so much
smaller than situation space that a planner can build
complete representation of it, called a regression graph.
The regression graph reveals, for each conjunct of a goal,
the minimal sequence of actions that could achieve it.

Several aspects differentiate our approach from planning-
based techniques. First, our approach is rule-based while
planning-based techniques are generally knowledge-based.
We use a set of composability rules to determine whether
Web services can be combined together. Second, we define a
broader view of service composition through the notions of
horizontal composition, vertical composition, and composa-
bility degree. Third, we introduce the concepts of degree and
� composability to enable partial and total composability.
Finally, planning techniques generally focus on comparing
pre and postconditions. Our approach adopts amore general
definition of semantics (static and dynamic). It compares
several service features organized into different levels.

8.3 Techniques Dealing with Service Behavior

A number of techniques dealing with service behavior
have been proposed (e.g., [4], [8], [20]). These techniques
deal with services whose lifecycle consists of several
related calls. Models and formalisms for describing
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Fig. 9. Experiments and analytical model. (a) Experiments—static and dynamic semantic composition times. (b) Analytical model—static and

dynamic semantic composition times. (c) Experiments—impact of threshold on composability. (d) Experiments—efficacy of the composability

algorithms.



service behaviors have been discussed, including finite
state machine, Mealy machine, and pi-calculus [8]. Our focus
in this paper was on “isolated” operations, that is,
services whose lifecycle consists of independent operation
invocations. The techniques described in [8] can be
adopted to define dynamic semantic rules dealing with
the composability of service behaviors.

A pi-calculus model for extending CORBA IDL with
protocol descriptions is proposed in [4]. The model is based
on the concept of role which allows the specification of the
observable behavior of CORBA objects. Techniques for
testing the compatibility of behaviors are also presented.
Protocol Specifications is another approach for describing
object service protocols using finite state machines [20]. This
approach describes both the services offered and required
by objects. It also defines techniques that allow components
to be checked for protocol compatibility. In contrast to our
model, the aforementioned techniques deal with objects and
components not Web services.

9 CONCLUSION

We presented in this paper a framework that elicits the
automated checking of service composability. We devel-
oped a multilevel composability model for semantic Web
services. The model is defined by a set of rules called
composability rules. Each rule specifies the constraints and
requirements for checking horizontal and vertical compo-
sability. We introduced the notions of composability degree
and �-composability to cater for partial and total composa-
bility. We also proposed a set of algorithms for checking
composability and implemented them in WebDG, a proto-
type for government Web services. We finally performed an
analytical and experimental analysis to assess the perfor-
mance of our algorithms. Future work includes the
definition of behavioral rules to consider pre/postopera-
tions during the composability process. We will also use the
proposed composability model to define techniques for the
automatic composition of semantic Web services.
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