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Abstract—This paper proposes a novel pixel-based system
for the supervised classification of very high geometrical (spa-
tial) resolution images. This system is aimed at obtaining ac-
curate and reliable maps both by preserving the geometrical
details in the images and by properly considering the spatial-
context information. It is made up of two main blocks: 1) a novel
feature-extraction block that, extending and developing some con-
cepts previously presented in the literature, adaptively models the
spatial context of each pixel according to a complete hierarchical
multilevel representation of the scene and 2) a classifier, based on
support vector machines (SVMs), capable of analyzing hyperdi-
mensional feature spaces. The choice of adopting an SVM-based
classification architecture is motivated by the potentially large
number of parameters derived from the contextual feature-
extraction stage. Experimental results and comparisons with a
standard technique developed for the analysis of very high spatial
resolution images confirm the effectiveness of the proposed system.

Index Terms—Hierarchical feature extraction, hierarchical
segmentation, multilevel and multiscale analysis, spatial-context
information, support vector machines (SVMs), very high spatial
resolution images.

I. INTRODUCTION

ONE of the most challenging problems addressed by the

remote sensing community in current years is the de-

velopment of effective data processing techniques for images

acquired with the last generation of very high spatial resolution

sensors. The development of these kinds of techniques appears

even more important in light of recently launched commercial

satellites (e.g., Ikonos and Quickbird), with on-board sensors

characterized by very high geometrical resolution (from 2.5 to

0.60 m). The availability of images acquired by these sensors

leads to a new set of possible applications, which require map-

ping the Earth surface both with great geometrical precision and

a high level of thematic detail. In this context, great attention

is devoted to the analysis of urban scenes, with applications

such as road network extraction and road map updating, trans-

portation infrastructure management, the monitoring of growth

in urban areas, and discovering building abuse [1], [2]. Other

applications are related to the monitoring of forests, like the

definition of selective cutting planning and the analysis of forest

status health [3], [4]. In addition, high-resolution remote sens-

ing images can be used by public administrations to monitor,

manage, and prevent natural disasters, to analyze evacuation
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planning in areas with high probability of floods or fires [5],

etc. However, these are only a few examples of the wide range

of potential applications of high geometrical resolution data.

The significant amount of geometrical details present in a

high-resolution scene completely changes the perspective of

data analysis compared with moderate-resolution images pro-

vided by previous-generation multispectral sensors [such as the

Thematic Mapper (TM) and Enhanced Thematic Mapper Plus

(ETM+)]. In particular, the improvement in spatial resolution

simplifies the problem of mixed pixels1 present in standard

multispectral images, but at the same time, it increases the

internal spectral variability (intraclass variability) of each land-

cover class and decreases the spectral variability between dif-

ferent classes (interclass variability). Thus, on the one hand, the

resulting high intraclass and low interclass variabilities lead to

a reduction in the statistical separability of the different land-

cover classes in the spectral domain, which in turn involves high

classification errors [6], [7]. In addition, the limited spectral

resolution of very high geometrical resolution sensors, which

depends on technical constraints, further increases the com-

plexity of the classification problem [6], [19]. On the other

hand, due to the high spatial resolution of the images, the

geometrical information of the scene can also be considered in

the classification process according to proper feature-extraction

methodologies.

In the recent literature, many papers have addressed the

development of novel techniques for the classification of high-

resolution remote sensing images. In [9], the authors present

a technique for the identification of land developments across

large-scale regions. The proposed technique uses straight lines,

statistical measures (length, orientation, and periodicity of

straight line), and a spatial coherence constraint to identify

three classes, namely: 1) urban; 2) residential; and 3) rural. In

[10], a standard maximum-likelihood classifier is used to dis-

criminate four spectrally similar macroclasses. Subsequently,

each macroclass can be hierarchically subdivided according

to class-dependent spatial features and a fuzzy classifier. The

main problem of these techniques is that they are highly prob-

lem dependent. This means that they cannot be considered as

a general operational tool. In [11], the authors analyze the

effectiveness of the gray-level cooccurrence matrix (GLCM)

texture features in modeling the spatial context that character-

izes high-resolution images. However, the fact that the analysis

1Mixed pixels are pixels that represent the spectral signature of more than
one class due to the insufficient geometrical resolution of the sensor (more than
one land-cover class is included in the ground-projected instantaneous field of
view (GIFOV) of the sensor).
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depends on a square window and different heuristic parameters

and the intrinsic inability to model the shape of the objects do

not yield satisfactory classification accuracies.

A more promising family of approaches to the analysis

of high spatial resolution images, which is inspired by the

behavior of the human view system, is based on object-oriented

analysis and/or multilevel/multiscale strategies. The rationale

of these approaches is that each image is made up of interrelated

objects of different shapes and sizes. Therefore, each object

can be modeled both with shape and topological measures

which can be used and integrated with spectral features to

improve the classification accuracy. Objects can be extracted

from images according to one of the standard segmentation

techniques proposed in the literature [6], [12]. In greater detail,

the main idea of multilevel analysis is that for each level

of detail, it is possible to identify different objects that are

peculiar to the considered level and that should not appear

in other levels. In other words, each object can be analyzed

at its “optimal” representation level. Moreover, other aspects

considered in this analysis are: 1) that objects at the same level

are logically related to each other and 2) that each object at a

generic level is hierarchically related to those at the higher and

lower levels [7], [8], [13], [14]. For example, in the multiscale

analysis of a high-resolution image, at finer levels, we can

identify houses, gardens, streets, and single trees; at higher

levels, we can identify urban aggregates, groups of trees, and

agricultural fields; finally, at the coarser level, we can identify

towns and cities, forests, and agricultural areas as one single

object. The exploration of the hierarchical tree results in a

precise analysis of the relations of objects. For example, we can

count the number of houses that belong to an urban area [13].

In [15], the authors propose an approach based on the

analysis of a high-resolution scene through a set of concentric

windows. The concentric windows analyze the pixel under

investigation and the effects of its neighbor system at different

scales of resolution. To reduce the computational burden, the

information contained in each analysis window is compacted

using a Gaussian pyramidal resampling approach. The classi-

fication task is accomplished by a soft multilayer perceptron

neural network that can be used adaptively as a pixel-based or

an area-based classifier. One of the limitations of this approach

is the fixed shape and choice of size of the analysis window.

In [16], an object-based approach is proposed for classification

of dense urban areas from pan-sharpened multispectral Ikonos

imagery. This approach exploits a cascade combination of a

fuzzy pixel-based classifier and a fuzzy object-based classifier.

The fuzzy pixel-based classifier uses spectral and simple spatial

features to discriminate between roads and buildings, which

are spectrally similar. Subsequently, a segmented image is

used to model the spectral and spatial heterogeneities and to

improve the overall accuracy of the pixel-based thematic map.

Shape features and other spatial features (extracted from the

segmented image) as well as the previously generated fuzzy

classification map are used as inputs to an object-based fuzzy

classifier. In [17], morphological operators (such as opening

and closing) are exploited within a multiscale approach to

provide image structural information for the automatic recog-

nition of man-made structures. In greater detail, the structural

information is obtained by applying morphological operators

with a multiscale approach and analyzing the residual images

obtained as a difference between the multiscale morphological

images at successive scales. A potential problem of this tech-

nique is the large feature space generated by the application

of a series of opening and closing transforms. In [17], the

authors overcome this problem by proposing the use of different

feature-selection algorithms. An adaptive and supervised model

for object recognition is presented in [7], where a scale-space

filtering process that models a multiscale analysis for feature

extraction is integrated in a unified framework within a mul-

tilayer perceptron neural network. This means that the error

backpropagation algorithm used to train the neural network

also identifies the most adequate filter parameters. The main

problems of this technique are related to the choice of the

number and type of filters to be used in the input filtering

layer (first layer) of the neural network. In [18], an algorithm

based on selective region growing is proposed to classify a

high-resolution image. In the first step, the image is classified

by taking into account only spectral information. In the second

step, a classification procedure is applied to the previous map

by taking into account not only spectral information but also

a pixel distance condition to aggregate neighbor pixels. By

reiteration, neighbor pixels that belong to the same class grow

in a selective way, obtaining a final classification map.

Nevertheless, at present, the few techniques specifically de-

veloped for the automatic analysis of high spatial resolution

images (compared with the very large literature on the classifi-

cation of moderate-resolution sensors) do not exhibit sufficient

accuracy to meet end-user requirements in all application do-

mains. For this reason, it is important that the remote sensing

community invests further efforts to define advanced effec-

tive methods for the classification of the aforementioned type

of data.

In this paper, we propose a novel pixel-based approach to

the classification of very high spatial resolution images, which

is based on two modules (see Fig. 1): 1) a feature-extraction

module that exploits an adaptive, multilevel, and complete

hierarchical representation of the spatial context of each pixel

in the scene under investigation and 2) a classification module

based on support vector machines (SVMs). In greater detail,

extending and developing concepts previously presented in

the literature, a strategy for defining the spatial context of a

pixel at different levels in an adaptive way is presented. The

multilevel spatial-context information is then used to drive

the feature-extraction phase. The resulting high-dimensional

feature vectors are then analyzed according to a proper SVM-

based multiclass architecture. The choice of the SVM depends

on the effectiveness of this machine-learning methodology to

manage classification problems in hyperdimensional feature

spaces [21], [22]. It is worth noting that the contribution of

this work concerning the importance of SVM in the classifi-

cation of very high resolution images goes beyond the specific

methodologies presented in this paper because the classifica-

tion of high-resolution images generally requires the analysis

of hyperdimensional feature vectors (e.g., when multiscale

morphological filters are used, we can obtain a large feature set)

and, thus, the exploitation of a classification technique robust
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Fig. 1. Block scheme of the proposed approach.

to the Hughes phenomenon. Unlike other methods presented

in the literature, the proposed approach is general2 and can be

applied to any kind of very high geometrical resolution image.

Experimental results, obtained on two different data sets

made up of very high spatial resolution images acquired by the

Quickbird satellite in significantly different scenes (i.e., urban

and rural areas), point out the effectiveness of the proposed

system.

This paper is organized in five sections. Section II presents

a detailed description of the proposed adaptive multilevel

context-driven feature-extraction technique. Section III ad-

dresses the classification module and describes the adopted

SVM-based classification architecture. Section IV presents the

data sets used for the experiments and reports on experimental

results. Finally, Section V provides a discussion on the pro-

posed approach and draws the conclusion of this paper.

II. PROPOSED ADAPTIVE MULTILEVEL CONTEXT-DRIVEN

FEATURE-EXTRACTION TECHNIQUE

The rationale of the proposed feature-extraction technique

consists of adaptively modeling the spatial context of each pixel

according to a multilevel strategy. Each context level is defined

according to predefined spectral and spatial constraints.

A. Adaptive Definition of the Multilevel Spatial Context

To adaptively characterize the spatial context of each pixel by

taking into account a complete hierarchical multiscale context

representation, extending and developing some concepts pre-

viously presented in the literature, we propose to decompose

the scene under investigation from the pixel level to the high-

est levels of representation of its spatial context. A complete

hierarchical modeling allows to capture and exploit the entire

information present in the scene by working with adaptive

context/neighborhood systems at different scales. This task is

based on the application of a segmentation technique with a

set of properly defined parameters that take into account both

spectral and spatial constraints. This decomposition results in

a multilevel representation of the spatial context of each pixel

in the investigated scene. To satisfy a tree-based hierarchical

2It is worth noting that, in this paper, the words “general” and “problem
independent” mean that the proposed technique has not a priori constraints
on the kinds of objects present in the scene, but it can be used with any kind
of high-resolution image and in any application domain. On the contrary, many
techniques proposed in the literature are not general and are problem dependent
as they are specifically developed for addressing particular applications (e.g.,
analysis of urban areas) and are based on feature-extraction procedures and
processing algorithms that cannot be applied to other scenes.

Fig. 2. Hierarchical multilevel segmentation applied to a multispectral
Quickbird image. From (a) to (c), we use three different sets of parameters
in the segmentation algorithm to adaptively model (at different levels) the
context of the pixels in the image in (d). The selected rule guarantees that
precise hierarchical relations between different levels are established.

requirement, this process is accomplished according to a spe-

cific set of rules. In this way, precise hierarchical relationships

between each pixel in the image and the regions that adaptively

define its context at different levels are established. In other

words, we obtain a set of segmentation maps (one for each

level) that characterize the context of each spatial position in

the image hierarchically and in a nonambiguous way (Fig. 2).

It is worth noting that, unlike other approaches proposed in

the literature and briefly described in Section I, hierarchical

segmentation does not aim to identify the best level of rep-

resentation of each object, but simply models the multilevel

spatial context of each pixel. This should be considered as a pre-

processing stage aimed at driving the feature-extraction phase.

A formal definition of the adopted segmentation procedure

is given in the following. Let I denote the investigated im-

age and H l the homogeneity predicate at the generic level l

(l = 1, . . . , L). Varying the homogeneity predicate means vary-

ing the level of definition of the adaptive spatial context of

the pixel. This homogeneity predicate is defined according to

different spatial and spectral attributes at different levels. Ac-

cording to the literature, the segmentation of I at a generic level

l is a partition P l in a set of N l regions Ol
i (i = 1, 2, . . . , N l),
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such that

N l
⋃

i=1

Ol
i = I with Ol

n ∩Ol
m = φ, n �= m (1)

H l
(

Ol
i

)

= true ∀i (2)

H l
(

Ol
n ∪Ol

m

)

= false ∀Ol
n and Ol

m adjacent. (3)

These three rules are valid for objects at a generic level l.

To establish a precise hierarchy between the contexts of a pixel

defined at different levels, we consider the following additional

constraint:

⋃

O
l−1

i
⊆Ol

j

Ol−1
i = Ol

j . (4)

This simple relation states that the adaptive neighborhood of a

pixel at level l − 1 cannot be included in more than one adaptive

neighborhood at level l (it has only one father node). It is worth

noting that level 1 represents the pixel level, i.e., the pixel for

which the context is hierarchically defined.

We would like to stress that the idea of using hierarchical

segmentation to represent the objects that compose the scene at

different levels of abstraction is not a new contribution of this

paper, but the novelty of this paper consists in the technique

adopted for exploiting the results of the hierarchical segmenta-

tion. In this respect, any segmentation algorithm that satisfies

the aforementioned constraints can be used in the proposed

system (see, for example, [13] and [28]).

The multiresolution segmentation algorithm we adopted is

a bottom-up region-merging technique starting from the pixel

level (at the first step, each pixel represents an object). In an

iterative way, at each subsequent step, image objects are merged

into bigger ones. The aim of this procedure is to minimize the

homogeneity predicate when two different objects are merged

together (this constraint must be valid for all the couple of

objects in the image). If the smallest growth exceeds a thresh-

old defined by the user (the so-called “scale parameter”), the

process stops. As briefly mentioned before, the homogeneity

predicate takes into account spectral and spatial constraints. In

detail, it can be defined as follows:

H l
(

Ol
i

)

= wl
spectral ·h

l
spectral

(

Ol
i

)

+ wl
shape ·h

l
shape

(

Ol
i

)

(5)

where wl
spectral ∈ [0, . . . , 1], wl

shape ∈ [0, . . . , 1] are user-

defined parameters and wl
shape = 1 − wl

spectral. The first part of

(5) is a cost criterion for the spectral component of the objects,

whereas the second part is a shape cost criterion. Hence, we can

define an information loss function when two closest objects Ol
i

and Ol
j , at a certain level l, are fused together as

Cl
i,j =H

(

Ol
i ∪Ol

j

)

−H
(

Ol
i

)

−H
(

Ol
j

)

=wl
spectral ·C

l
i,j,spectral+

(

1−wl
spectral

)

·Cl
i,j,shape. (6)

We can stop the segmentation algorithm when Cl
i,j ≤ H l

TH,

where H l
TH is a level-dependent user-defined threshold defined

for each level. The greater the value of H l
TH, the greater the

dimension of obtained objects. (In other words, we decrease

the sensibility of the homogeneity predicate in the fusion of

two adjacent regions.) The spectral information loss function

Cl
i,j,spectral in (6) can be defined as

Cl
i,j,spectral =

B
∑

d=1

wl,d
[

N l
i,j · σ

l,d
i,j −

(

N l
i · σ

l,d
i + N l

j · σ
l,d
j

)]

(7)

where wl,d, d = 1, . . . , B (B is the number of spectral bands),

represents the weight associated to the dth spectral channel

at level l in the combination process, and
∑B

d=1 w
l,d = 1;

N l
i,j represents the number of pixels of the object obtained by

merging Ol
i and Ol

j , and σ
l,d
i,j represents its standard deviation

on the spectral band d. N l
i and N l

j represent the number of

pixels that compose objects Ol
i and Ol

j , respectively, and σ
l,d
i

and σ
l,d
j represent their standard deviations calculated on the

spectral band d.

The spatial information loss function, Cl
i,j,shape in (6), takes

into account the compactness and smoothness of the shape of

the obtained object by merging Ol
i and Ol

j . It is defined as

Cl
i,j,shape = wl

cmp · Cl
i,j,cmp +

(

1 − wl
cmp

)

· Cl
i,j,smooth (8)

where

Cl
i,j,cmp =N l

i,j ·
el
i,j

√

N l
i,j

−N l
i ·

el
i

√

N l
i

−N l
j ·

el
j

√

N l
j

(9)

Cl
i,j,smooth =N l

i,j ·
el
i,j

rl
i,j

−N l
i ·

el
i

rl
i

−N l
j ·

el
j

rl
j

(10)

where wl
cmp ∈ [0, . . . , 1] is a user-defined parameter to weight

the smoothness of the obtained objects with respect to the com-

pactness; el
i,j represents the perimeter of the object obtained by

merging Ol
i and Ol

j , whereas rl
i,j represents the perimeter of

the rectangle containing it; el
i and el

j represent the perimeter

of the objects Ol
i and Ol

j , respectively, whereas rl
i and rl

j

represent the perimeter of the rectangles that contain Ol
i and

Ol
j , respectively. It is worth noting that the basic criteria of the

aforementioned segmentation strategy are also implemented in

commercial software packages [28].

The choice of the range of variation of the parameters defin-

ing the homogeneity criterion affects the number of levels3 in

which the scene is decomposed. The number of levels to be used

for characterizing the spatial context of each pixel depends on

many factors. The most important issues to take into account

are: 1) geometrical resolution of the image [e.g., given a specific

scene, Quickbird images (GIFOV equal to 0.6 m) require higher

numbers of decomposition levels than SPOT 5 images (GIFOV

equal to 2.5 m)] and 2) size of the objects present in the scene.

An empirical rule, for obtaining indications on the number of

levels to use, consists in computing the mean size of the regions

at different decomposition levels and comparing this size with

3In this paper, we refer to a multilevel representation of the scene and not to
a multiscale decomposition. This is due to the use of a segmentation procedure,
which is driven not only on geometrical criteria but also on spectral parameters,
for accomplishing the image decomposition task.
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the expected average size of the objects in the scene, which can

be defined by the end user. In greater detail, all the levels in the

decomposition have to satisfy the following condition:

1

N l

N l
∑

i=1

Al
i ≤ EAth (11)

where N l is the number of objects at level l, Al
i represents the

area of object i at level l (in pixels), and EAth is a user-defined

parameter that corresponds to the expected average size of the

objects in the scene (in pixels). It is also possible to define

the quantity EAth,m2 = EAth · GIFOV2, which represents the

expected average size of the objects in square meters. Accord-

ingly, (11) can be rewritten as





1

N l

N l
∑

i=1

Al
i



 · GIFOV2 ≤ EAth,m2 . (12)

The definition of the value of EAth (or EAth,m2) is rel-

atively easy in homogeneous scenes (e.g., urban areas). In

heterogeneous scenes, the problem can be addressed according

to two different strategies: 1) consider a tradeoff between the

average sizes of different classes of objects and 2) select the

aforementioned parameters according to the average size of

the greatest class of objects (implicitly assuming the use of

context information including more objects for the smallest

components of the scene). Both strategies are consistent with

the proposed approach. The choice of one of them should be

based on end-user requirements.

It is worth noting that, in the discussion above, we considered

the pixel level as the lowest level of the hierarchy, but it is also

possible to define any level of the multiscale segmentation maps

as the lowest level of the tree (in the latter case, we consider an

object and its adaptive context).

B. Multilevel Context-Driven Feature Extraction

Given the hierarchical tree structure, it is then possible to

exploit the relationships between pixels and regions at differ-

ent levels to extract an effective set of features that describe

each pixel and its adaptive context at each level. Depending

on the level considered, different kinds of features can be

extracted to characterize the spatial context with the most

reliable attributes for the specific analyzed “scale.” We can

extract spectral, spatial, or relational features. Spectral features

are derived analyzing directly the spectral information of a

pixel and that of its adaptive neighborhood at different levels.

Simple spectral features (such as mean and standard deviation)

or more complex measures (such as entropy and high-order

statistics) can be easily extracted to characterize both space-

invariant and texture properties associated with the pixel. In

addition, geometrical and relational measures can be computed

to characterize the shape, size, and interrelation of the adaptive

neighborhood of a pixel. In greater detail, geometrical features

are related to the description of the shape and size of the spatial

context at different levels of analysis (e.g., we can compute the

area, the shape factor, and the perimeter of a generic region m

Fig. 3. Example of the features extracted for objects that, at different levels,
characterize the context of the pixel under investigation. “Mean” and “StDev”
represent the mean value and the standard deviation of pixels in a generic object,
respectively. “Area” and “SF” represent the area and the shape factor (the ratio
between length and width) of an object, respectively. “Number of sub-objects”
represents the number of objects at level l − 1 that make up an object at level l.

at level l).4 Concerning relational parameters, they can be

expressed by a contextual analysis of neighboring regions at the

same level or at different levels to model the relation between

the spatial context of a pixel at the same or at different levels.

Thus, we can define the feature vector xi, which describes the

pixels and, through the hierarchical tree, the spatial context

(objects) in which the pixel is included.

For a generic pixel i under analysis, we can write

xi =
{

f i

1
, f i

2
, . . . , f i

l
, . . . , f i

L

}

(13)

where f i

l
is the feature vector associated with the contextual

information of pixel i at generic level l of the hierarchical tree,

and L is the number of segmentation levels. It is worth noting

that the components of f i

1
are the features that characterize the

spatial position i in the image at pixel level. The subvector f i

l
is defined as

f i

l
=

{

f i
l,1, . . . , f

i
l,j , . . . , f

i
l,NFl

}

(14)

where f i
l,j is the jth feature that models the context of pixel i at

level l, and NFl is the number of features extracted at level l.

As stated before, the component f i
l,j can be a spectral, a

geometrical, or a relational feature. An important observation

concerns the criterion to adopt for defining the set of features

to be used at each level. As shown in the example reported in

Fig. 3, at the pixel level, it is possible to use only the pixel spec-

tral signature (there are no regions, and hence, it is not possible

to compute any geometrical feature). At intermediate levels, the

regions are typically small and represent only portions of the

objects; thus, we recommend avoiding the use of geometrical

features, as they do not contain relevant information about

the geometry of the true objects present in the scene. At the

higher levels, instead, the objects are better modeled by the

4Examples of these parameters are reported in Section IV-B.
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segmentation algorithm, and geometrical and relational features

can be properly used.

It is worth noting that the main ideas of the proposed ap-

proach are that: 1) all the segmentation levels, which should

be selected according to the aforementioned general guidelines,

can be used to obtain a complete hierarchical representation of

the spatial context of each pixel and 2) all the features extracted

to characterize the context information of each pixel at different

levels can be used as input to the classification module. How-

ever, although this approach provides the classifier with a large

amount of information, it has the disadvantage of leading to a

very high dimensional (hyperdimensional) feature vector. This

problem should be addressed in the classification module.

III. SVM CLASSIFICATION APPROACH

To achieve a good characterization of the spatial context of

each pixel, we should use a sufficient number of segmentation

levels. [The number of levels depends on the scene under

analysis; see the criterion defined in (11).] As mentioned earlier,

from the adaptive neighborhood of a pixel at each single level l,

we can extract a large number of features that characterize the

spectral, geometrical, and relational attributes of the regions.

Hence, the number of components of the feature vector ex-

tracted from the hierarchical tree may be very high.

To obtain proper learning of the classifier and to achieve

a good generalization capability while avoiding the course of

dimensionality problem (the so-called Hughes phenomenon

due to the small ratio between the number of training samples

and the number of features [26]), we should collect a large

number of independent training set samples to characterize

all the possible spectral variations of each land-cover class.

Although it is quite simple to collect ground truth samples by

photo interpretation on very high resolution images, it is rather

time consuming. In addition, the spatial autocorrelation of each

sample reduces the spectral information of the neighboring

samples and violates the sample-independent condition. This

can lead to the so-called unrepresentative sample problem

[24] that increases the complexity in the definition of training

samples.

The following two possible alternatives to the problem of

collecting a very large number of training samples can be con-

sidered: 1) applying a feature-selection procedure and 2) using

a classifier intrinsically robust to the Hughes phenomenon.

Concerning feature selection, in the considered problem, it is

quite difficult to define a criterion function (aimed at evaluating

the effectiveness of the considered subset of features) capable

of dealing with the heterogeneity of the statistical models that

characterize the different parameters extracted in the previous

phase. Many feature-selection techniques assume Gaussian (or

monomodal) distributions for the analyzed features, which do

not fit some of the considered measures. For this reason, in

the proposed approach, we prefer to avoid feature selection and

to adopt a classification technique intrinsically less sensitive to

the high dimensionality of the feature space. In particular, we

consider a machine-learning classifier based on SVMs, which

have been recently proved to be effective in hyperdimensional

problems [21], [22].

Developed by Vapnik, SVMs are based on the structural risk

minimization principle [27], and their popularity within the

remote sensing community is constantly on the increase [20],

due to their properties and intrinsic effectiveness. In the follow-

ing, we briefly describe the main concepts of the mathematical

formulation of SVMs for binary classification problems.

Let us consider a binary classification problem, with N

training patterns in a d-dimensional feature space. Each pattern

is associated with a target yi ∈ {+1,−1}. The nonlinear SVM

approach consists of mapping the data into a higher dimen-

sional feature space, i.e., Φ(x), where a separation between the

two classes is looked for by means of an optimal hyperplane

defined by a weight vector w and a bias b. The decision rule is

defined by the function sign[f(x)], where f(x) represents the

discriminant function of the hyperplane and is defined as

f(x) = w · Φ(x) + b. (15)

The optimal hyperplane is the one that minimizes a cost

function that expresses a combination of two criteria, namely:

1) margin maximization and 2) error on training samples mini-

mization. It is defined as

Ψ(w, ξ) =
1

2
‖w‖ + C

N
∑

i=1

ξi (16)

and it is subject to the following constraints:

{

yi (w · Φ(x) + b) ≥ 1 − ξi, i = 1, 2, . . . , N
ξi ≥ 0, i = 1, 2, . . . , N

(17)

where ξi are called slack variables and are introduced to take

into account nonseparable data. The constant C represents

a regularization parameter that allows to tune the shape of

the discriminant function. The above minimization problem

can be reformulated through a Langrage functional for which

the Lagrange multipliers can be found by means of a dual

optimization leading to a quadratic programming solution. The

final result is a discriminant function described (in the original

feature space) by the following equation:

f(x) =
∑

i∈S

αiyiK(xi, x) + b (18)

where K(., .) is a kernel function that should satisfy the

Mercer’s theorem. The set S is a subset of the indices

{1, 2, . . . , N} corresponding to the nonzero Lagrange multipli-

ers αi. The training vectors associated with these multipliers are

called support vectors. The solution of the dual-optimization

problem avoids the problem of defining optimal transformation

from the original to the hyperdimensional feature space. The

most widely used kernel functions adopted in the remote sens-

ing problems are

Polynomial kernel

K(xi, xj) = (xi · xj + 1)d (19)

Radial basis function (RBF ) kernel

K(xi, xj) = exp
(

−γ‖xi − xj‖
2
)

(20)
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where d is the order of the polynomial kernel function, and γ is

the spread of the RBF kernel.

To solve the multiclass problem, we propose to define an

architecture made up of as many binary SVMs as the number

of information classes. Each single SVM solves a one-against-

all problem [20]. In greater detail, let Ω = {ω1, . . . , ωc} be

the set of information classes that characterize the considered

problem. The ith SVM solves a binary problem between classes

ωA = ωi and ωB = Ω − ωi (ωi ∈ Ω). A generic pattern x is

labeled according to a winner-takes-all rule, i.e.,

x ∈ ω∗ ⇔ ω∗ = arg max
i=1,...,C

{fi(x)} (21)

where fi(x) is the output of the ith SVM. However, other

multiclass strategies could be considered (see [22]). We re-

fer the reader to [20], [22], [23], and [27] for greater detail

on SVMs.

IV. EXPERIMENTAL RESULTS

To assess the effectiveness of the proposed approach, two

different sets of experiments were conducted on two different

data sets composed of Quickbird satellite images. The first data

set represents a complex urban scene related to the city of Pavia

(Italy), whereas the second data set represents a rural area close

to the city of Trento (Italy).

A. Pavia Data Set: Urban Area

The image used in the experiments refers to the downtown

area of the city of Pavia (northern Italy) and was acquired

on June 23, 2002 from the Quickbird satellite. In particular,

we used a panchromatic image (Fig. 4) and a pan-sharpened

multispectral image obtained by applying a proper fusion tech-

nique to the panchromatic channel and the four bands of the

multispectral image. The adopted technique is based on the

Gram–Schmidt procedure implemented in the ENVI software

package [25]. The final data set is made up of a panchromatic

image and four pan-sharpened multispectral images of 1024 ×
1024 pixels with a spatial resolution of 0.7 m. It is worth

noting that the multiresolution fusion task artificially increases

the spatial resolution of the multispectral channels on the one

hand, whereas on the other, it may affect the spectral signatures

of pixels. Nevertheless, this process was used both with the

proposed method and with the standard approach adopted for

comparison. We therefore do not expect it to affect the assess-

ment of the effectiveness of the proposed approach compared

with the standard method.

To assess the effectiveness of the proposed method in chal-

lenging classification problems, we define classes in a very

detailed way, by considering land covers with similar spec-

tral and/or geometrical attributes (e.g., buildings with differ-

ent spectral signature). Table I shows the distribution of the

samples (in pixels) in the training and test sets among the

eight land-cover classes that characterize the considered scene.

These samples have been collected by an accurate photo in-

terpretation of the image for training and test samples and

Fig. 4. Panchromatic image (1024 × 1024 pixels) acquired by the Quickbird
satellite on the city of Pavia (northern Italy).

TABLE I
NUMBER OF SAMPLES (IN PIXELS) IN THE TRAINING

AND TEST SETS (PAVIA DATA SET)

according to the following guidelines: 1) they have been ex-

tracted from different spatial positions in the image to prop-

erly represent classes in different portions of the scene and

2) training and test samples have been selected from different

regions to have patterns as more uncorrelated as possible. In

addition, unlike in standard accuracy assessment protocols,

to better evaluate the performance of the proposed system in

both homogeneous and edge (or boundary) areas, we have

split the test set samples in two subsets. This allows to

better understand the effectiveness of the different classification

approaches in dealing with pixels with different properties in

the image and results in a more precise accuracy assessment

procedure.

To evaluate the effectiveness of the proposed approach, we

conducted two different sets of experiments. One was aimed

at assessing the effect of the number of context levels (seg-

mentation levels) on classification accuracy. In the other set of

experiments, we compared the performances of the proposed
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Fig. 5. Representation of the hierarchical modeling of the context at different
levels. (a) Four. (b) Five. (c) Six levels of segmentation (Pavia data set).

system with those of a standard pixel-based classifier and of

an alternative technique based on a classical feature-extraction

method based on the generalized Gaussian pyramid decompo-

sition of the image.

1) Experiment 1—Analysis of the Effectiveness of the Pro-

posed Approach: In our experiments, we carried out several

trials with hierarchies made up of a different number of levels

(up to six levels). The first level is the pixel level, whereas the

other five levels are obtained using the presented multiscale

hierarchical segmentation technique with different parameters

to tune the homogeneity predicate. On the one hand, the levels

between two and four are characterized by very small regions.

This means that from a general point of view, objects in these

levels are highly oversegmented, as shown in Fig. 5(a). In other

words, a small neighborhood system is adaptively defined for

the pixel. On the other hand, the levels between five and six are

characterized by regions of medium size [Fig. 5(b) and (c)].

In particular, at level 6, a single region defining the context

of a pixel may contain different objects belonging to different

information classes. Although this models the complex context

of the object to which the pixel belongs, it may lead to classifi-

cation errors.

We assessed the effectiveness of the proposed approach

versus the number of levels considered (from two to six). The

features extracted for the first level (i.e., the pixel level) were

only the values of each spectral channel and the panchromatic

image. For level 2, we only considered the mean value of the

digital numbers of pixels defining each region in each spectral

band and the panchromatic image. From levels 3 to 6, for each

region and for each band, we considered the mean value and

the standard deviation of the digital numbers. On the whole,

10, 20, 30, 40, and 50 features were considered for experiments

with two, three, four, five, and six levels, respectively. In the

experiments, we used an SVM classifier with RBF kernels,

which have been proved effective in a number of different

classification problems. According to a proper model selection

technique [20], we have identified the best values of parameters

(i.e., the regularization parameter C and the spread factor of

Gaussian kernels γ) using the training samples and the global

test samples (edge and homogeneous areas jointly) for valida-

tion. The highest accuracies obtained, as well as the related

parameters, are shown in Table II.

These results confirm that the proposed classification system

always exhibited a much greater overall accuracy compared

with that obtained using only the pixel level. In detail, the

greater increase in overall accuracy (i.e., about 13%) obtained

with the presented approach relates to edge areas. Classification

accuracy increased also on homogeneous areas, although the

TABLE II
(a) KAPPA ACCURACY AND (b) OVERALL ACCURACY PROVIDED BY THE

PROPOSED APPROACH ON EDGE, HOMOGENEOUS, AND GLOBAL TEST

AREAS VERSUS THE NUMBER OF CONSIDERED CONTEXT LEVELS.
THE OPTIMAL VALUES OF THE REGULARIZATION PARAMETER C

AND OF THE SPREAD γ OF THE KERNEL FUNCTIONS

ARE REPORTED (PAVIA DATA SET)

improvement is significantly smaller (i.e., about 2%) than that

in edge areas.

The proposed criterion for the adaptive selection of the

number of levels [see (11) and (12)] resulted in the choice of

five levels. [The value of EAth used in (11) was related to the

expected average size of buildings present in the scene.] This

confirms the effectiveness of this simple criterion that selected

the number of levels that provided the highest classification

accuracy on the global test set. It is worth noting that the

proposed approach provided stable accuracies for a number of

levels close to the one identified by the automatic procedure

(in the range between four and six levels), exhibiting Kappa

values between 0.71 and 0.74 on edge areas and between 0.94

and 0.96 on homogeneous areas. This confirms its ability to

model the spatial context of each analyzed pixel. As one can

see from Table II, six context levels lead to a slight decrease

of classification accuracies. This behavior is due to the sig-

nificant undersegmentation of real objects at level 6, which

may affect classification accuracy both on edge and homo-

geneous areas.

In the second part of this experiment, according to the

obtained results, we considered only four, five, and six context

levels, as they gave the highest classification accuracy. To better

evaluate the performance of the proposed classification system,

we also analyzed the classification maps obtained in all trials.

We report only on a small representative portion of the obtained

maps, to present examples that show both the advantages and

the limitations of the proposed system.

Fig. 6 shows a small portion of the classification maps

obtained with (a) four, (b) five, and (c) six segmentation levels

and (d) with only the pixel level.

As can be seen, whereas the crossroad in the center of the

images (within the red rectangle) is well modeled in Fig. 6(b)

and (c), the results are inaccurate in Fig. 6(a) because of high

fragmentation in the modeling of the spatial context at the

higher level. In the map obtained using only the pixel level

(without contextual information) reported in Fig. 6(d), we can
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Fig. 6. Detail of classification maps obtained with (a) four, (b) five, and (c) six
segmentation levels and (d) with only the pixel level. The real-color Quickbird
image is reported in (e). The red rectangle shows an example of the effects of
the different levels of the spatial context. The legend of the maps is reported in
the caption of Fig. 8 (Pavia data set).

see that the shape of the buildings is not well modeled, and in

many cases, homogeneous areas are not correctly classified. In

addition, the crossroad is not properly recognized.

On the other hand, in some areas, using fewer levels (i.e.,

very small regions to characterize the adaptive neighborhood)

leads to a better definition of small details. For example, in

Fig. 7(a), small roads are well classified, whereas in Fig. 8(b)

and (c), by exploiting more context levels, we obtain a poor

representation of objects in the scene under investigation.

It is worth noting that we carried out also some trials by

using geometrical (minimum rectangular fit, width-to-length

ratio, etc.) and relational (number of neighbors of an object

and number of sub-objects that compose an object at the upper

level) features. These kinds of features were extracted only for

the higher levels of the representation (levels 5 and 6). The

obtained results did not improve both the classification accu-

racies and the quality of the classification maps. This behavior

mainly depends on the criterion adopted for the definition of

classes. Inasmuch as many classes share the same geometrical

features (e.g., different kinds of building are discriminated only

on the basis of the spectral signature), in this case, the use of

the geometrical and relational information does not increase the

separability among classes in the feature space.

2) Experiment 2—Comparisons With a Feature-Extraction

Module Based on a Generalized Gaussian Pyramid Decompo-

sition: The aim of the second set of experiments is to compare

the proposed system with a different approach to multilevel

Fig. 7. Classification maps obtained with (a) four, (b) five, and (c) six levels of
segmentation and (d) with only the pixel level. The real-color Quickbird image
is reported in (e). The legend of the maps is reported in the caption of Fig. 8
(Pavia data set).

feature extraction of very high resolution images based on

the generalized Gaussian pyramid decomposition. In detail,

the panchromatic and pan-sharpened images are iteratively

analyzed by a Gaussian kernel low-pass filter, with 5 × 5 square

analysis window, and are undersampled by a factor of 2. In this

way, it is possible to obtain a simple multiscale decomposition

of the scene. In our experiments, we exploit five levels of

pyramidal decomposition (this is the number of levels that gives

the highest accuracy between two and six) to characterize the

spatial context of pixels and to label each pixel of the scene

under investigation. The extracted feature vector was made up

of 25 spectral features. The SVM classification module was also

used in these trials.

The best accuracies obtained for the proposed technique and

for the reference feature-extraction technique are reported in

terms of Kappa coefficient and overall accuracy in Table III.

These results show that the proposed feature-extraction tech-

nique provided an accuracy higher than the reference method.

The accuracy obtained on test edge areas confirms the greater

ability of the proposed approach (which increased Kappa values

by 8.5% compared with the generalized Gaussian pyramid

method) to model the geometrical details of objects in the

scene, such as roofs and roads. A comparison between the

accuracies obtained on homogeneous areas points out a gap

of 2.4%. To better assess the effectiveness of the investigated

methods, Fig. 8(a) and (b) shows the classification maps ob-

tained using the proposed classification system and the refer-

ence system.

A qualitative analysis of the maps confirms the previous

consideration based on the quantitative results. The adaptive

and multilevel properties of the proposed feature-extraction
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Fig. 8. Classification maps obtained by an SVM classifier (a) with the
proposed feature extraction module and (b) with a feature extraction algorithm
based on a pyramidal Gaussian decomposition (Pavia data set).

technique can better model the edge of objects in the scene,

especially in areas with small details. The great complexity of

the analyzed scene, which includes different types of buildings

of different sizes and different types of roads, shows that the

low-pass filter used in the generalized Gaussian pyramid de-

composition is not suitable to model the boundaries of objects

TABLE III
(a) KAPPA ACCURACY AND (b) OVERALL ACCURACY ON EDGE,

HOMOGENEOUS, AND GLOBAL TEST AREAS VERSUS THE PROPOSED

FEATURE EXTRACTION TECHNIQUE (ADAPTIVE HIERARCHICAL CONTEXT

MODELING) AND THE REFERENCE TECHNIQUE (GENERALIZED GAUSSIAN

PYRAMID REDUCTION) (PAVIA DATA SET)

and complex structures accurately. On the contrary, when a

multilevel segmentation algorithm is used to adaptively model

the neighborhood of a pixel, a proper representation of the

edges of the objects is obtained.

B. Trento Data Set: Rural Area

The image used in these experiments refers to the rural

area of Trento (northern Italy) and was acquired on March 30,

2004 from the Quickbird satellite. The data set consists of a

panchromatic image (Fig. 9) and four pan-sharpened images

of 512 × 512 pixels with a spatial resolution of 0.7 m. The

pan-sharpened images were obtained with the Gram–Schmidt

procedure [25].

Table IV shows the distribution of the samples (in pixels) in

the training and test sets among the eight land-cover classes that

characterize the considered scene. We have selected the ground

truth according to the guidelines followed in the previous data

set on the Pavia area.

As in the case of the Pavia data set, to evaluate the

effectiveness of the proposed approach, we conducted two

different sets of experiments. The first one was aimed at as-

sessing the effects of both the number of context levels and

the different kinds of extracted features on the classification

accuracies. The second one compared the performances of the

proposed system with those of the feature-extraction method

based on the generalized Gaussian pyramid decomposition of

the image.

1) Experiment 1—Analysis of the Effectiveness of the Pro-

posed Approach: In our experiments, we carried out several

trials with hierarchies made up of two to seven context levels.

The first level is the pixel level, whereas the other six levels

are obtained according to the presented multiscale hierarchical

segmentation technique with different parameters to tune the

homogeneity predicate. As in experiments on the urban data

set, levels between two and three are characterized by very

small regions. This means that from a general point of view,

objects in these levels are highly oversegmented. Levels 4 and
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Fig. 9. Panchromatic image (512 × 512 pixels) acquired by the Quickbird
satellite on the city of Trento (northern Italy).

TABLE IV
NUMBER OF SAMPLES (IN PIXELS) IN THE TRAINING

AND TEST SETS (TRENTO DATA SET)

5 are characterized by regions of medium size. Levels 6 and 7

contain regions that represent (or include) the objects present

in the scene. The features extracted for the first level (i.e.,

the pixel level) were only the pixel values in all the spectral

channels and the panchromatic image. For level 2, we only

considered the mean value of the digital numbers of pixels

defining each region in each spectral band and the panchromatic

image. From levels 3 to 7, for each region and for each band,

we considered the mean value and the standard deviation of

the digital numbers. On the whole, 10, 20, 30, 40, 50, and 60

features were considered for experiments with two, three, four,

five, six, and seven levels, respectively. In all the experiments,

we used an SVM classifier with RBF kernels. According to a

proper model selection technique [20], we identified the best

values of the regularization parameter C and the spread factor

of Gaussian kernels γ using the training set samples and the

global test set samples for validation. The highest accuracies

obtained, as well as the related parameter values, are shown

in Table V.

These results confirm the effectiveness of the proposed clas-

sification system, which always exhibited a greater overall

accuracy compared with that obtained using only the pixel

TABLE V
(a) KAPPA ACCURACY AND (b) OVERALL ACCURACY PROVIDED BY THE

PROPOSED APPROACH ON EDGE, HOMOGENEOUS, AND GLOBAL TEST

AREAS VERSUS THE NUMBER OF CONSIDERED CONTEXT LEVELS.
THE OPTIMAL VALUES OF THE REGULARIZATION PARAMETER C

AND OF THE SPREAD γ OF THE KERNEL FUNCTIONS ARE

REPORTED (TRENTO DATA SET)

level (much greater starting from three levels of context rep-

resentation). In detail, the greatest increase in overall accu-

racy (i.e., about 10%) was obtained on edge test areas with

six levels. With this number of levels, classification accuracy

increased also on homogeneous test areas with an improvement

of about 3%. It is worth nothing that these results confirm

the effectiveness of the empirical criterion for the selection

of the number of levels described in (11), which on this data

set identified an optimal number of decomposition levels equal

to six.5 By analyzing Table V, one can see that the proposed

approach provided stable accuracies versus the number of levels

considered in the neighborhood of the optimal number of scales

identified with the proposed empirical criterion (in the range

between five and seven levels). In particular, it exhibited Kappa

values between 0.62 and 0.64 on edge areas and between 0.97

and 0.98 on homogeneous areas. This confirms the ability of

the presented methodology to model the spatial context of each

analyzed pixel.

According to the previous results, in the second part of this

experiment, we considered only five and six levels, as they gave

the highest classification accuracies on the overall test set. To

assess the importance of the use of geometrical features on this

data set, we computed some geometrical parameters from the

regions extracted at levels 5 and 6. We considered the following

features.

1) Width-to-length ratio. It can be calculated as the ratio

between the length and the width of the bounding box

that contains the object under investigation.

2) Shape index. It can be obtained by the ratio of the border

length of the object under analysis and four times the

square root of its area.

5In this case, we used a hybrid approach for defining the EAth parameter, by
considering an average of the size of the objects that compose the rural scene
(i.e., buildings and crops).



2598 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 9, SEPTEMBER 2006

TABLE VI
(a) KAPPA ACCURACY AND (b) OVERALL ACCURACY PROVIDED BY THE

PROPOSED APPROACH ON EDGE, HOMOGENEOUS, AND GLOBAL TEST

AREAS VERSUS THE NUMBER OF CONSIDERED CONTEXT LEVELS

WHEN GEOMETRICAL FEATURES WERE ALSO CONSIDERED.
THE OPTIMAL VALUES OF THE REGULARIZATION PARAMETER C

AND OF THE SPREAD γ OF THE KERNEL FUNCTIONS ARE

REPORTED (TRENTO DATA SET)

3) Rectangular fit. It can be obtained as the ratio between

the area not covered by a rectangle with the same area

and proportion of the object under investigation, and the

area of the object.

On the whole, 46 and 56 features were considered for experi-

ments with five and six levels, respectively. Table VI reports the

best accuracies obtained with these features after performing a

new model selection for the SVM classifier.

These results point out that, on this data set, the use of

geometrical features increases the accuracy on edge areas with

respect to that obtained by using only spectral features, at the

expense of a slight decrease of accuracy in homogeneous areas.

In greater detail, in the six-level case, we obtained an increase

of about 3% in terms of Kappa accuracy over edge areas and

a decrease of 1% over homogeneous areas. This interesting

result, which does not seem intuitive, can be explained as

follows. On the one hand, the use of geometrical features

allows a better characterization of pixels close to the border

areas, which are better “attracted” from the geometry of objects

to which they belong. On the other hand, oversegmentation

errors slightly affect the accuracy on homogeneous areas, where

spectral and textural features are sufficient for obtaining high

accuracies.

2) Experiment 2—Comparisons With a Feature-Extraction

Module Based on a Generalized Gaussian Pyramid Decom-

position: Also, on this study area, the aim of the second set

of experiments is to compare the proposed system with a

multilevel feature extraction based on the generalized Gaussian

pyramid decomposition. As in the previous case, we used five

levels of pyramidal decomposition to characterize the spatial

context of pixels (five levels resulted in the highest accuracies

on the global test set) and adopted an SVM-based classification

module. The extracted vector was made up of 25 features.

The best results (in terms of Kappa and overall accuracies)

obtained with the proposed technique (with six levels and the

same feature vector extracted in the first part of the previous

experiment) and with the generalized Gaussian pyramid tech-

nique are reported in Table VII.

These results confirm the better capability of the proposed

approach to model the geometrical details of objects in the

scene. In greater detail, it increased the Kappa value on the

TABLE VII
(a) KAPPA ACCURACY AND (b) OVERALL ACCURACY ON EDGE,

HOMOGENEOUS, AND GLOBAL TEST AREAS VERSUS THE

PROPOSED FEATURE-EXTRACTION TECHNIQUE (ADAPTIVE

HIERARCHICAL CONTEXT MODELING) AND THE REFERENCE

TECHNIQUE (GENERALIZED GAUSSIAN PYRAMID

REDUCTION) (TRENTO DATA SET)

edge areas by about 19% compared with the generalized

Gaussian pyramid method. In addition, a slight increase of

accuracy on homogeneous areas was obtained (i.e., about 2%).

To better assess the effectiveness of the investigated methods,

Fig. 10(a) and (b) shows the classification maps obtained using

the proposed classification system and the system based on the

Gaussian pyramid feature extraction.

A qualitative analysis of maps in Fig. 10 confirms the pre-

vious consideration based on the quantitative results. The adap-

tive and multilevel properties of the proposed feature-extraction

technique can better model the edge of objects in the scene. In

greater detail, the map in Fig. 10(b) shows that the generalized

Gaussian pyramid decomposition is not suitable to accurately

model the boundaries of objects and complex structures due to

a blurring effect. On the contrary, when the proposed multilevel

segmentation algorithm is used to adaptively model the neigh-

borhood of a pixel, a proper representation of the edges of the

objects is obtained.

V. DISCUSSION AND CONCLUSION

In this paper, a novel system for the classification of very

high resolution images has been presented. The system is

made up of: 1) a feature-extraction module that adaptively

models the spatial context of each pixel according to a complete

hierarchical multilevel representation of the scene under inves-

tigation and 2) a proper classifier based on SVMs. In greater

detail, a hierarchical segmentation is applied to the images

to obtain segmentation results at different levels of resolu-

tion according to tree-based hierarchical constraints. In this

way, precise hierarchical relationships are established between

each pixel in the image and the regions that adaptively define

its context at different levels. Each pixel is characterized by

a feature vector that includes both the pixel-level informa-

tion in the spectral channels of the sensor and the attributes

of all the regions, which represent the multilevel relation-

ships of the pixel and define its spatial context adaptively.
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Fig. 10. Classification maps obtained by an SVM classifier (a) with the
proposed feature extraction module and (b) with a feature extraction algorithm
based on a pyramidal Gaussian decomposition (Trento data set).

Depending on the level considered, different kinds of features

are extracted to characterize the regions with the most reli-

able attributes for the specific scale analyzed and the specific

scene considered. It is worth noting that in our technique,

unlike other approaches proposed in the literature, all features

associated both with the pixel level and all the region levels are

jointly considered in the classification phase to label a pixel.

This hierarchical representation allows to capture and exploit

the entire information in the scene by working with adaptive

regions at different scales. To deal with the large number of

feature-vector components to be given to the classifier as input,

we used a machine-learning classifier based on SVMs. This

choice depends both on the effectiveness of SVMs classifiers

and on their capabilities to analyze a high-dimensional feature

space with a reduced effect of the Hughes phenomenon.

Experimental results, obtained on two very high geomet-

rical resolution Quickbird images acquired on a complex

urban area and on a rural area, confirm the effectiveness of

the proposed classification system. In detail, two main exper-

iments have been carried out. In the first, we focused on the

number of levels to be used to model the context of a pixel.

The results show that varying the number of levels used to

characterize the spatial context adaptively, in a range close to

the “optimal” level identified by the empirical criterion pro-

posed in (11) and (12), does not critically change the overall ac-

curacy and the quality of classification maps. In the second set

of experiments, we compared the proposed feature-extraction

technique with a standard feature-extraction algorithm based

on a generalized Gaussian decomposition pyramid. The SVM

classifier was also used in these experiments. The experimental

results confirm that the proposed feature-extraction module

outperforms the reference method based on the Gaussian pyra-

midal reduction. This is due both to the adaptive and to the

multilevel nature of the proposed feature-extraction module,

which by exploiting a hierarchical segmentation algorithm can

model the objects (shapes and relationships at different levels

of resolution) in the scene under investigation better, compared

with the feature-extraction module based on the generalized

Gaussian pyramid decomposition.

ACKNOWLEDGMENT

The authors wish to thank A. Garzelli (University of Siena,

Italy) for providing the Quickbird image of Pavia, R. Rigon

(University of Trento, Italy) for providing the Quickbird image

of Trento (which was acquired in the framework of the project

ASI 175/02 funded by the Italian Space Agency), and A.

Baraldi (Joint Research Centre, Ispra, Italy) for useful dis-

cussions about the segmentation algorithm. The authors are

also grateful to the anonymous referees for their constructive

comments.

REFERENCES

[1] F. Volpe and L. Rossi, “Quickbird high resolution satellite data for urban
application,” in Proc. 2nd GRSS/ISPRS Joint Workshop Data Fusion and
Remote Sens. Over Urban Areas, May 2003, pp. 1–3.

[2] S. R. Repaka, D. D. Truax, E. Kolstad, and C. G. O’Hara, “Comparing
spectral and object based approaches for classification and transportation
feature extraction from high resolution multispectral imagery,” in Proc.

ASPRS Annu. Conf., May 2004.



2600 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 9, SEPTEMBER 2006

[3] S. P. Lennartz and R. G. Congalton, “Classifying and mapping forest cover
types using Ikonos imagery in the northeastern United States,” in Proc.

ASPRS Annu. Conf., May 2004.
[4] L. M. Moskal, “Historical landscape visualization of the Wilson’s creek

nationalbattlefield based on object oriented tree detection method from
Ikonos imagery,” in Proc. ASPRS Annu. Conf., May 2004.

[5] S. J. Goetz, R. K. Wright, A. J. Smith, E. Zineckerb, and E. Schaub,
“IKONOS imagery for resource management: Tree cover, impervious
surfaces, and riparian buffer analyses in the mid-Atlantic region,” Remote
Sens. Environ., vol. 88, no. 1/2, pp. 195–208, Nov. 2003.

[6] A. Carleer, O. Debeir, and E. Wolff, “Comparison of very high spatial
resolution satellite image segmentation,” in Proc. SPIE Conf. Image and
Signal Processing Remote Sensing IX, vol. 5238, pp. 532–542.

[7] E. Binaghi, I. Gallo, and M. Pepe, “A neural adaptive model for
feature extraction and recognition in high resolution remote sens-
ing imagery,” Int. J. Remote Sens., vol. 24, no. 20, pp. 3947–3959,
Oct. 2003.

[8] T. Blaschke, “Object-based contextual image classification built on image
segmentation,” in Proc. IEEE Workshop Adv. Tech. Anal. Remote Sensed
Data, Oct. 2003, pp. 113–119.

[9] C. Unsalan and K. L. Boyer, “Classifying land development in high-
resolution panchromatic satellite images using straight-line statistics,”
IEEE Trans. Geosci. Remote Sens., vol. 42, no. 4, pp. 907–919,
Apr. 2004.

[10] A. K. Shackelford and C. H. Davis, “A hierarchical fuzzy classifi-
cation approach for high-resolution multispectral data over urban ar-
eas,” IEEE Trans. Geosci. Remote Sens., vol. 4, no. 9, pp. 1920–1932,
Sep. 2003.

[11] M. De Martinao, F. Causa, and S. B. Serpico, “Classification of
optical high resolution images in urban environment using spec-
tral and textural information,” in Proc. IGARSS, Jul. 2003, vol. 1,
pp. 467–469.

[12] R. M. Haralick and L. G. Shapiro, “Image segmentation techniques,”
Comput. Vis. Graph. Image Process., vol. 29, no. 1, pp. 100–132,
Jan. 1985.

[13] U. C. Benz, P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen,
“Multi-resolution, object-oriented fuzzy analysis of remote sensing data
for GIS-ready information,” ISPRS J. Photogramm. Remote Sens., vol. 58,
no. 3/4, pp. 239–258, Jan. 2004.

[14] C. Burnett and T. Blaschke, “A multi-scale segmentation/object relation-
ship modeling methodology for landscape analysis,” Int. J. Ecol. Model.
Syst. Ecol., vol. 168, no. 3, pp. 233–249, Oct. 2003.

[15] E. Binaghi, I. Gallo, and M. Pepe, “A cognitive pyramid for contextual
classification of remote sensing images,” IEEE Trans. Geosci. Remote

Sens., vol. 41, no. 12, pp. 2906–2922, Dec. 2003.
[16] A. K. Shackelford and C. H. Davis, “A combined fuzzy pixel-based and

object-based approach for classification of high-resolution multispectral
data over urban areas,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 10,
pp. 2354–2363, Oct. 2003.

[17] J. A. Benediktsson, M. Pesaresi, and K. Arnason, “Classification and
feature extraction for remote sensing images from urban areas based
on morphological transformations,” IEEE Trans. Geosci. Remote Sens.,
vol. 41, no. 9, pp. 1940–1949, Sep. 2003.

[18] C. Mott, T. Andresen, S. Zimmermann, T. Schneider, and
U. Ammer, “Selective region growing-an approach based on object-
oriented classification routine,” in Proc. IGARSS, Jun. 2002, vol. 3,
pp. 1612–1614.

[19] R. A. Schowengerdt, Remote Sensing. Models and Methods for Image
Processing, 2nd ed. Norwell, MA: Academic, 2002.

[20] N. Cristianini and J. Shaew-Taylor, An Introduction to Support Vector
Machines and Other Kernel Based LearningMethods. Cambridge, U.K.:
Cambridge Univ. Press, 2000.

[21] L. Bruzzone and F. Melgani, “Support vector machines for classi-
fication of hyperspectral remote-sensing images,” in Proc. IGARSS,
Jun. 2002, vol. 1, pp. 506–508.

[22] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote-
sensing images with support vector machines,” IEEE Trans. Geosci. Re-
mote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.

[23] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in

Kernel Methods—Support Vector Learning, B. Schölkopf, C. Burges, and
A. Smola, Eds. Cambridge, MA: MIT Press, 1999.

[24] A. Baraldi, L. Bruzzone, and P. Blonda, “Badly-posed classification of
remotely sensed images—An experimental comparison of existing data
mapping system,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 1,
pp. 214–235, Jan. 2006.

[25] ENVI User Manual. Boulder, CO: RSI, 2003. [Online.] Available:
http://www.RSInc.com/envi

[26] G. Huges, “On the mean accuracy of statistical pattern recognizers,” IEEE
Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55–63, Jan. 1968.

[27] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[28] Definiens Imaging, eCognition Professional User Guide 4, 2003, Munich,

Germany. [Online]. Available: http://www.definiens-imaging.com

Lorenzo Bruzzone (S’95–M’98–SM’03) received
the laurea (M.S.) degree in electronic engineering
(summa cum laude) and the Ph.D. degree in telecom-
munications from the University of Genoa, Genoa,
Italy, in 1993 and 1998, respectively.

From 1998 to 2000, he was a Postdoctoral Re-
searcher at the University of Genoa. From 2000 to
2001, he was an Assistant Professor at the University
of Trento, Trento, Italy, and from 2001 to 2005, he
was an Associate Professor at the same university.
Since March 2005, he has been a Full Professor of

telecommunications at the University of Trento, where he currently teaches
remote sensing, pattern recognition, and electrical communications. He is
currently the Head of the Remote Sensing Laboratory in the Department of
Information and Communication Technology, University of Trento. His current
research interests are in the area of remote-sensing image processing and
recognition (analysis of multitemporal data, feature selection, classification,
regression, data fusion, and machine learning). He conducts and supervises
research on these topics within the frameworks of several national and in-
ternational projects. Since 1999, he has been appointed Evaluator of project
proposals for the European Commission. He is the author (or coauthor) of
more than 150 scientific publications, including journals, book chapters, and
conference proceedings. He is a Referee for many international journals and
has served on the Scientific Committees of several international conferences.

Dr. Bruzzone ranked first place in the Student Prize Paper Competition of the
1998 IEEE International Geoscience and Remote Sensing Symposium (Seattle,
July 1998). He was a recipient of the Recognition of IEEE TRANSACTIONS

ON GEOSCIENCE AND REMOTE SENSING Best Reviewers in 1999 and was a
Guest Editor of a Special Issue of the IEEE TRANSACTIONS ON GEOSCIENCE

AND REMOTE SENSING on the subject of the analysis of multitemporal
remote-sensing images (November 2003). He was the General Chair and
Cochair of the First and Second IEEE International Workshop on the Analysis
of Multi-temporal Remote-Sensing Images. Since 2003, he has been the Chair
of the SPIE Conference on Image and Signal Processing for Remote Sensing.
He is an Associate Editor of the IEEE TRANSACTIONS ON GEOSCIENCE

AND REMOTE SENSING. He is a member of the Scientific Committee of
the India–Italy Center for Advanced Research. He is also a member of the
International Association for Pattern Recognition and of the Italian Association
for Remote Sensing (AIT).

Lorenzo Carlin (S’06) received the laurea (B.S.)
and Laurea Specialistica (M.S.) degrees in telecom-
munication engineering (summa cum laude) from
the University of Trento, Trento, Italy, in 2001 and
2003, respectively. He is currently working toward
the Ph.D. degree in information and communication
technologies at the same university.

He is currently with the Pattern Recognition
and Remote Sensing group at the Department of
Telecommunication and Information Technologies,
University of Trento. His main research activity is in

the area of pattern recognition applied to remote sensing images; in particular,
his interests are related to classification of very high resolution remote sensing
images. He conducts research on these topics within the frameworks of several
national and international projects. He is a referee for the Italian Journal of
Remote Sensing (AIT).

Mr. Carlin is a referee for the IEEE TRANSACTIONS ON GEOSCIENCE AND

REMOTE SENSING.


