
A Multilevel Introspective Dynamic
Optimization System For Holistic Power-Aware

Computing

Vasanth Venkatachalam1, Christian W. Probst2 and Michael Franz1

1 Donald Bren School of Information and Computer Science
University of California, Irvine

Irvine, CA, 92697, USA
{vvenkata,franz}@uci.edu

2 Informatics and Mathematical Modelling
Technical University of Denmark
2800 Kongens Lyngby, Denmark

probst@imm.dtu.dk

Abstract. Power consumption is rapidly becoming the dominant limit-
ing factor for further improvements in computer design. Curiously, this
applies both at the “high-end” of workstations and servers and the “low
end” of handheld devices and embedded computers. At the high-end, the
challenge lies in dealing with exponentially growing power densities. At
the low-end, there is a demand to make mobile devices more powerful
and longer lasting, but battery technology is not improving at the same
rate that power consumption is rising. Traditional power-management
research is fragmented; techniques are being developed at specific levels,
without fully exploring their synergy with other levels. Most software
techniques target either operating systems or compilers but do not ex-
plore the interaction between the two layers. These techniques also have
not fully explored the potential of virtual machines for power manage-
ment.
In contrast, we are developing a system that integrates information from
multiple levels of software and hardware, connecting these levels through
a communication channel. At the heart of this system are a virtual ma-
chine that compiles and dynamically profiles code, and an optimizer that
reoptimizes all code, including that of applications and the virtual ma-
chine itself. We believe this introspective, holistic approach enables more
informed power-management decisions.

Keywords. Power-aware Computing, Virtual Machines, Dynamic Op-
timization

1 Introduction

Power consumption has become the main obstacle for improving computer per-
formance. As computers become faster and more versatile, they consume more

Dagstuhl Seminar Proceedings 05141
Power-aware Computing Systems
http://drops.dagstuhl.de/opus/volltexte/2005/309



2 V. Venkatachalam, C. W. Probst, M. Franz

applications

application

mobile code virtual machine

operating system

optimizer

hardware

operating system

hardware

virtual machine JIT compilation & profiling introspective

Fig. 1. High-level overview of traditional system architectures (left), and our
architecture (right). The virtual machine layer is essential for compiling and
executing applications: all application code executes above this layer, and appli-
cations as well as the virtual machine are profiled and reoptimized. This holistic
approach allows power-management decisions to adapt to variations in resource
levels and the execution behavior of the virtual machine and diverse applications.

power and become hotter. Given the rate at which chip temperature is rising,
it is likely to approach “nuclear reactor” levels within ten years [29]. The main
negative impacts of high chip temperatures are impaired processor reliability
and life expectancy along with increased cooling costs. For battery-powered de-
vices, power consumption poses an additional, severe problem: these devices are
extremely limited in functionality, because fast processors and large memories
drain batteries quickly. Without cost-effective solutions to the power problem,
improvements in processor technology will eventually reach a standstill.

Encouragingly, there has been a substantial amount of research into “power-
aware computing”. However, traditional power-management techniques are lim-
ited in two ways. First, power management is a multi-dimensional problem,
while most of the existing research addresses only a single dimension. Currently,
techniques for reducing power are applied exclusively at the hardware level, op-
erating system level, compiler level, or application level. However, each of these
levels has limitations that make it non-ideal to base any decision involving pro-
gram optimization or resource management solely on information available to it.
Moreover, existing techniques have not fully explored the potential of a software
level that already exists in many devices, the virtual-machine level.

While the currently prevailing solutions are one-dimensional in that they only
target one system layer, we are developing a system that integrates all layers
into a virtual-machine-based power-management system. Our system integrates
information about the structure of an individual program as seen by the compiler,
about the tasks currently running in the system as seen by the operating system,
about the actual runtime behavior of the whole system as seen by profilers, and
hardware-specific information, such as temperature variations, resource levels,
and memory and I/O bottlenecks as reported by hardware sensors.

The main components of our system (Figure 1) are a virtual-machine layer
that compiles programs and profiles their execution behavior, and a separate
dynamic optimizer that reoptimizes application code as well as VM code, to



Holistic Power-Aware Computing 3

adapt to varying runtime conditions. For this reason, we call this system holistic
and introspective.

Our research leverages the growing body of results in software techniques for
power reduction [11,13,14,22], dynamic optimization [4,5,6,7,12,23,24,25,30,41],
and extensible operating systems [9,15,26,27,32,33,36,37,38]. It also extends prior
work in introspective computers [17] to the power-management setting.

The remainder of this paper is organized as follows. Section 2 describes the
limitations of traditional power-management approaches in more detail and ex-
plains why it is beneficial to use a holistic approach exploiting virtual machines
for power management. Section 3 describes our holistic approach in more detail,
and is followed by a discussion of recent related work on collaborative power
management in Section 4. Section 5 describes the current status of our frame-
work and gives an outlook on future work, and Section 6 concludes.

2 The Case For A Virtual-Machine-Based Holistic
Approach

Power-management techniques, as we have noted, typically target either the
hardware, operating system, compiler or application level. Each of these levels
allows different kinds of techniques to be used for reducing power. The hardware
level allows one to choose a power-efficient circuit structure. However, hardware
contains limited information about program behavior, and it is costly to imple-
ment dedicated hardware that analyzes and optimizes programs. The software
level has more information about program behavior and allows ways of reducing
power without changing the underlying hardware. Yet, different levels of system
software differ in their capabilities.

Operating systems have a wealth of information about the runtime environ-
ment. They know, for example, what tasks have been released into the system,
where the tasks have been placed in memory, what resources the tasks are con-
suming, and in what order the tasks are being scheduled. Using this information,
they can apply a number of techniques to reduce power. These include slowing
down the processor, make paging decisions that reduce cache contention, and
powering down idle peripheral devices. However, operating systems lack infor-
mation about an individual program’s control flow and data structures. This is
because this information is lost when a program is compiled into its binary rep-
resentation, and it is nontrivial to recover this information from the binary. As
a result, operating systems lack forward-looking information about individual
programs, and are forced to extrapolate future program behavior from past be-
havior. This prevents operating system heuristics for power management from
adapting well to irregular programs. It also prevents operating systems from
being able to modify the execution behavior of individual programs. Resource
inefficient tasks may be released into the system, but standard operating sys-
tems will be unable to optimize these programs to better adapt to the runtime
environment.



4 V. Venkatachalam, C. W. Probst, M. Franz

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	P7


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


 
 
 
 


� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �P1 P2 P3 P4 P5 P6

(a) (b)

A[8] A[10] A[11] A[12] A[13]A[0] A[1] A[2] A[3] A[4] A[5] A[6]

P7P4P3

P6

P2

P5P1

A[7] A[9]

Fig. 2. An example of what can go wrong when programs are optimized in
isolation from information about system-level events. A compiler assigns the
successive elements of a large array to pages (P1-P7) that are contiguous in
logical memory (a). However, physical memory may be internally fragmented
and lack sufficient room for storing these pages contiguously. In this case, the
operating system would have to assign these pages noncontiguous locations (b).
If the array is traversed from beginning to end, every two array accesses will
result in a random I/O, and thus may require a costly memory access to bring
array elements into the cache.

Compilers, however, have forward looking information about individual pro-
gram structure. As a result, compilers are in a better position to predict the
control flow of a program, and to optimize a program’s code prior to execution.
However, static compilers lack runtime information that is relevant for making
power-management decisions, information such as what paths in a program’s
control-flow graph are actually being executed. Hence, statically optimizing com-
pilers often rely on laborious simulations of a program collected prior to execu-
tion, to determine what optimizations should be applied in different program
regions. A program’s actual runtime behavior may diverge from its behavior in
these “simulation runs”, thus leading to suboptimal decisions. Compiler opti-
mizations also tend to treat programs as if they exist in a vacuum. For example,
compiler techniques for memory allocation typically assign the elements of an ar-
ray contiguously in logical memory. Consider a large array that has been assigned
in this manner across several pages (Figure 2(a)). Physical memory may not have
sufficient room for storing these pages in contiguous locations, since the pages
of other applications may already be occupying these locations. Hence, the op-
erating system may have to assign these pages noncontiguous memory locations
(b). As a result, the array elements would be dispersed across these locations.
If the array is traversed from beginning to end, poor cache utilization would
result, since every two array element accesses induces a random I/O rather than
a sequential I/O.

Dynamically optimizing virtual machines like ours offer a number of advan-
tages over operating systems and static compilers. Unlike pure interpreters, these
virtual machines can compile programs, monitor their execution behavior, and
reoptimize them as execution patterns and resource levels change. The input



Holistic Power-Aware Computing 5

Virtual Machine

Communication
Introspective Optimizer

Hardware
Runtime Data

System Snapshot

Compile
Time Data

JIT compiler
& profiling

Optimized Native Code

Applications

DVS Heuristic

DVS Regulator

Operating System

Fig. 3. Schematic overview of our system architecture, with the virtual machine
layer and the JIT compiler running on top of the operating system. The system
is introspective: the code of applications and the virtual machine is profiled and
reoptimized continuously.

programs may consist of source code, binary code, or platform independent code
such as Java or .Net bytecode. Like compilers, virtual machines that compile
source code or bytecode know about a program’s internal structure. But they
also have recent runtime information that can more accurately guide dynamic
optimizations than data gathered through offline simulations. In addition, they
have high-level information, such as the library calls made in different program
regions. Using this information, they can predict the resources that will be used
and power down idle resources.

Because of these advantages, virtual machines are widely used in real systems,
and can thus be readily exploited for power management. For example, the very
popular Transmeta Crusoe processor [39,40] leverages the virtual machine con-
cept for power management. Its code morphing software monitors applications
and adjusts the clock frequency to match their performance requirements. But
unlike the system we are developing, Transmeta aims to emulate x86 function-
ality on a VLIW platform. Its operating system runs above the code morphing
software, and does not directly communicate with the underlying physical plat-
form. Other examples of devices that come equipped with virtual machines are
PDAs, pagers, and set-top boxes.

However, even virtual machines do not have a complete picture of events oc-
curring at runtime. Even though they have profiling data, such as the frequencies



6 V. Venkatachalam, C. W. Probst, M. Franz

with which different program paths are taken, they do not precisely know what
other layers of software may be doing at any given time. For example, context
switches may occur sporadically as in the case of interrupts, or be scheduled
ahead of time by the operating system or by users. In the middle of execution, a
process might call a kernel routine or request memory, thereby spawning a series
of events between the time execution leaves the process to the time it enters it
again. All these events affect execution behavior and the dynamic optimizations
that are likely to be effective. However, information about these events is spread
out across multiple layers of software and hardware. Our goal is to integrate this
information, so that dynamic optimizers can make better decisions.

3 Holistic Approach

For these reasons, we depart from the traditional notion of operating systems,
compilers, virtual machines, applications and hardware as entities that work or-
thogonally, oblivious to the activities of one other. In our system these entities
collaborate on functions normally assigned to only one of them. As a result,
traditional compiler phases and optimizations, including runtime optimizations
in an adaptive virtual machine, become system-aware, while traditional operat-
ing system functions (e.g., scheduling, memory management) become sensitive
to internal program structure, dynamic data structures and runtime behavior.
Surprisingly, this solution does not require adding extra levels to the software
layers present in existing systems, since a growing number of devices already
have virtual machines.

3.1 Compilation And Execution

The foundation of our system is a dynamically optimizing virtual machine that
executes directly on the OS and manages the execution of all other programs
running on a device. This virtual machine compiles code at runtime into the
native instructions of the target. As programs execute, the VM collects informa-
tion about their execution behavior and reoptimizes them on the fly as execution
patterns change.

Our system preserves and integrates essential information throughout the
compilation and execution process. The most fundamental information that
needs to be preserved is information about what code is executing at any time
and what its function is. For example, the system needs to differentiate be-
tween code belonging to different components of an application. It also needs
to preserve more fine-grained information about a program’s internal structure,
e.g. loops. We use annotations in the meta data to preserve this information.

All applications are initially compiled from source code or platform indepen-
dent bytecode into native code before execution. At compile time, our virtual
machine inserts annotations into a program’s internal control-flow representa-
tion to preserve high-level information such as what software module is being
compiled, to which application it belongs, and what libraries are being used in



Holistic Power-Aware Computing 7

� �� �
� �
� �

� �� �
� �
� �

� �� �� �
� �� �� � � �� �

� �
� �

� �� �� �
	 		 		 	


 

 

 

� �� �� �

Task2Task1

battery level

CPU Usage

Program Structure

temperature

Application Routine

Kernel
Routine

context switch

� �� �
 

 


Task

call to graphics API� �� �
call to math API� �� �
call to networking API

� �� �� � system call

Fig. 4. Different levels of information used in the dynamic voltage scaling (DVS)
heuristic. Each task is represented by a control-flow graph that represents ap-
plication code as well as intentional context switches. The graph includes in-
formation about calls to API and kernel routines to enable fine grained power
management decisions.

different code regions. It inserts extra annotations to more easily identify pro-
gram constructs such as loops and branches. This information can provide insight
into what resources are being used in different program regions. Regions using
math libraries may be computationally intensive and stress the CPU, while re-
gions using I/O and networking libraries may stress peripheral devices. Regions
using graphical libraries may make heavy use of the GUI controller. By moni-
toring the control flow through different regions, one can determine the optimal
power modes for different resources. For example, during the execution of I/O
intensive regions, the processor is slowed down if it is not doing any useful work.
When control flows out of a region using the network interface, the network in-
terface can power down. Similarly, when it flows out of a region using graphical
libraries, the GUI controller can power down. To make it easier to exploit this
information, the dynamic optimizer can cluster successive accesses to the same
libraries into contiguous program regions.

In the control-flow graph shown at the top of Figure 4, calls that have been
annotated are shaded according to the API they call. For example, different
regions have been labeled as graphics, math, or networking based on the li-
braries they use. The loop inside the application method periodically calls a
kernel method using a system call. This high-level information will be useful
when making power-management decisions. For example, if the operating sys-
tem knows that control is about to enter library code in an I/O bound graphics
API, it can apply a power-management heuristic optimized for this API.



8 V. Venkatachalam, C. W. Probst, M. Franz

When programs execute, a profiler monitors their runtime behavior and col-
lects statistical information such as path execution frequencies and loop iter-
ations. It also records hardware information, such as temperature and process
variations and resource levels. The decision of what code to profile is based on re-
quests from other software components, past profiling data indicating “hotspots,”
as well as the profiling overhead. This run-time information is integrated with
program information (provided by the runtime compiler) and system informa-
tion (provided by the operating system). These three levels of information drive
heuristics for deciding how to apply power-management techniques (e.g., dy-
namic voltage scaling) and when to reoptimize executing code.

A unique feature of this architecture is that it is introspective: all execut-
ing programs, including the VM code, are continuously profiled and reoptimized
within the contexts in which they execute. These optimizations, including power-
management decisions, extend past component boundaries. The compiler infras-
tructure is connected to the runtime system and application layer via a commu-
nication channel. Through these channels, all layers exchange messages: appli-
cations send hints to the runtime compiler and operating system, the operating
system itself sends “system snapshots” to the dynamic optimizer to broaden the
optimizer’s view past individual programs. In turn, the compiler and dynamic
optimizer send the operating system fine-grained program information that is
useful for power-management decisions as well as for standard operating system
functions such as memory management and CPU scheduling.

3.2 Example: VM-driven CPU Scheduling

We illustrate the use of this architecture by explaining how VM/OS interac-
tion during CPU scheduling can result in better power-management decisions.
As we have noted, a limitation of compilers is that the standard control-flow
representation does not capture interprocess control flow arising from context
switches. To make the compiler aware of these switches, we need an efficient way
of representing them in a program’s control-flow graph. However, the exact pro-
gram point where a context switch will occur is unknown because some switches
(arising from external interrupts) are unpredictable while others (arising from
CPU scheduling decisions) are scheduled by the operating system without any
information about internal program structure.

We can improve this situation by making CPU scheduling more deterministic
with virtual-machine support. Results from prior operating-systems research [35]
suggest that context switches are least costly when they occur at program points
where a program’s working set is small, and thus very little context needs to be
saved. Hence, it makes sense for a virtual machine to profile the program’s work-
ing set at runtime. When the profiling data stabilizes, it can insert context switch
annotations (c.f. Figure 4) to indicate where in its execution a program can be
interrupted. These context switch points can be varied when the program’s ex-
ecution patterns change noticeably.

The operating system, on the other hand, can provide to the virtual ma-
chine a “system snapshot” containing information about what tasks will preempt



Holistic Power-Aware Computing 9

the task currently being compiled, and the order in which these tasks will pre-
empt each other. Using this information, the VM can construct an inter-program
control-flow graph with special edges indicating context switches between differ-
ent tasks. This will allow more informed power-management decisions. If the
VM knows, ahead of time, that a task will be interrupted, and that execution
will continue with a different task that can be slowed down considerably (to save
CPU power), it can inform the operating system about this ahead of time. The
operating system can then slow down the processor before the context switch
actually occurs.

4 Related Work In Collaborative Power Management

Recently, researchers have begun to attack the problem of collaborative power
management, but up to now no definite breakthroughs have been achieved. Shin
et al. [34] introduce an approach called cooperative voltage scaling. Under this
approach, applications are divided into slices and code is inserted at the start
of each slice to set the CPU speed. The speed chosen depends on the difference
between the slice’s worst case runtime and the remaining time to deadline. The
worst case time is determined statically and the time to deadline is determined
through a system call that subtracts the current time from the deadline. Thus,
when a slice is completed before its worst case time, the processor can slow down
and still meet the deadline. Two issues that that need to be addressed are how
to divide applications into timeslices and how to prevent frequency thrashing. If
the CPU speed is adjusted at every timeslice, it may be adjusted too frequently,
causing power and performance overheads. Moreover, there are many other kinds
of information that a DVS algorithm could consider, information such as program
structure, runtime events and resource levels.

Heath et al. [20] propose application transformations for reducing disk drive
energy. These transformations increase idle periods where the disk can be spun-
down by clustering disk accesses. Using system calls, the application asks the
operating system how much memory is available, buffers disk accesses to fill up
the available memory, and informs the operating system the expected runtime of
the clustered accesses. The OS serves the requests in a single batch and powers
down the disk. However, expected runtimes are not easily predictable when mul-
tiple tasks are executing. The disk access patterns of different tasks can collide,
causing frequent power-mode transitions. Realizing this, Hom and Kremer [21]
extend the previous work to explore the benefits of compiling multiple programs
at once and synchronizing them at compile time. They propose an optimization,
the inverse barrier, that regulates access to shared resources. When a task is
ready to access a resource such as a disk drive it informs the other tasks to ac-
cess the resource so that the collective requests can be clustered. The approach is
promising but can be developed further. Compiling sets of programs is more ex-
pensive than compiling individual programs. The question of how compilers can
perform analyses on multiple programs efficiently and dynamically reoptimize
multiple programs in response to runtime events needs to be addressed



10 V. Venkatachalam, C. W. Probst, M. Franz

Aboughazaleh et al. [1,2,3] attempt to communicate path specific informa-
tion about a program’s progress to the operating system. Namely, the compiler
instruments each application with code that saves the remaining worst case cy-
cles into a register. The operating system periodically reads this register and
adjusts the processor speed to fill up slack. While this approach has a desir-
able long term goal, it could be developed further. Since the operating system’s
decisions consider only the worst case cycles of a single program, they may be
suboptimal in the presence of context switches: The worst case cycles estimate
does not include the cycles for context switching to other programs and back.
Also, the approach could provide the OS more information. For example, it could
send snapshots of entire program regions to the OS on an as-needed basis. These
snapshots could include control-flow information, runtime profiling data and the
most recent DVS decisions. The OS could use these snapshots to make DVS
decisions across multiple programs.

Pereira et al. [28] propose a software architecture allowing applications to
communicate with the operating system, and the operating system to commu-
nicate with hardware. It allows programmers to make system calls to inform
the OS about the start times, end times and expected duration of tasks. An
advantage of this approach is that it allows programmers to provide the operat-
ing system information that might be relevant for power management. However,
this architecture could be extended to include a software runtime layer that pro-
files and reoptimizes programs, and integrates fine-grained information about
program structure into the power-management decisions.

5 Status and Future Work

We have developed a set of heuristics [19] for doing virtual machine based power
management at runtime. We have also developed an ahead-of-time SSA-based
optimizing compiler [10,31,42] that embeds virtual machine functionality into
the generated code.

Currently, we are migrating this solution to an architecture based on Linux
and the Jikes virtual machine [4], and incorporating our existing compiler in-
frastructure into the introspective optimizer. We are also developing heuristics
for efficiently exchanging information between different levels and for applying
optimizations based on this information, and are investigating what their trade-
offs are. This architecture will allow us to manage the power consumption of
resource constrained devices, taking into account all of the information needed
to manage power effectively. Being virtual machine based, this framework allows
portability and can be used as a testbed for new power management heuristics.

However, the impacts of our framework extend beyond power management
alone. We envision future consumer devices containing dynamic compilers that
intimately interact with the operating system, and where all of the traditional
compiler functions (e.g., register allocation, instruction scheduling) extend be-
yond the boundaries of individual programs and integrate system-level informa-
tion [18]. Recent research suggests that this direction is promising. For example,



Holistic Power-Aware Computing 11

register allocation is normally done for individual programs in isolation from
other programs executing in the system. However, programs that do not pre-
empt each other can use the same registers. If a compiler is aware of preemption
patterns (with help from the operating system) it can minimize the total number
of registers used across different tasks. As Barthelmann [8] shows, a technique
like this saves memory in embedded systems. Other inter-program optimizations
that have recently been shown to reduce energy include transformations at the
process level [16], transformations that, for example, merge processes to reduce
interprocess communication, split processes to increase concurrency, or migrate
computations from one process to another.

6 Conclusion

Continued progress in system design requires cost-effective techniques for man-
aging power. However, power management has been a highly compartmentalized
discipline: techniques are being developed along one or more dimensions without
fully exploring their synergy and tradeoffs along other dimensions. In particular,
software techniques for power reduction are being applied at just a single one
of the operating system and compiler levels. Each of these levels lacks relevant
information that the others have, and thus alone offers only part of the picture
needed to manage power effectively.

Our system manages power at runtime, integrating all of the intelligence
offered by different layers of system software, applications and hardware. The
system allows these layers to communicate efficiently, and incorporates heuristics
for driving power-management decisions based on all of this information. All of
the executing software, including the code of the virtual machine, is monitored
continuously and reoptimized with respect to profiling data. Thus, optimizations
extend beyond program boundaries and consider the system at large.

With systems becoming increasingly complex, this holistic approach to power
management is likely to be the most cost effective way of shattering the limits
imposed by growing power densities and enabling continued progress in system
design.

References

1. N. AbouGhazaleh, B. Childers, D. Mosse, R. Melhem, and M. Craven. Energy
Management for Real-Time Embedded Applications with Compiler Support. In
Proceedings of the 2003 ACM SIGPLAN Conference on Languages, Compilers, and
Tools for Embedded Systems, pages 284–293. ACM Press, 2003.

2. N. AbouGhazaleh, D. Mosse, B. Childers, and R. Melhem. Toward the Placement of
Power Management Points in Real Time Applications. In Workshop on Compilers
and Operating Systems for Low Power. ACM Press, 2001.

3. N. AbouGhazaleh, D. Mosse, B. Childers, R. Melhem, and M. Craven. Collabo-
rative Operating System and Compiler Power Management for Real-Time Appli-
cations. In Proceedings of the 9th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 133–143. IEEE Computer Society Press, 2003.



12 V. Venkatachalam, C. W. Probst, M. Franz

4. B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V.Litvinov,
M. F. Mergen, T.Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeno Virtual
Machine. In IBM System Journal, 2000.

5. M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adaptive Optimiza-
tion in the Jalapeno JVM: The Controller’s Analytical Model. In The 3rd ACM
Workshop on Feedback-Directed and Dynamic Optimization (FDDO-3), December
2000.

6. A. Azevedo, A. Nicolau, and J. Hummel. Java Annotation-Aware Just-In-Time
Complilation System. In Proceedings of the ACM 1999 conference on Java Grande,
pages 142–151. ACM Press, 1999.

7. V. Bala, E. Duesterwald, and S. Banerjia. Transparent Dynamic Optimization: The
Design and Implementation of Dynamo. Technical Report HPL-1999-78, Hewlett
Packard Laboratories, June 1999.

8. V. Barthelmann. Inter-Task Register-Allocation for Static Operating Systems. In
Proceedings of the joint conference on Languages, compilers and tools for embedded
systems, pages 149–154. ACM Press, 2002.

9. B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,
C. Chambers, and S. Eggers. Extensibility Safety and Performance in the SPIN
Operating System. In Proceedings of the fifteenth ACM symposium on Operating
systems principles, pages 267–283. ACM Press, 1995.

10. D. Chandra, C. Fensch, W.-K. Hong, L. Wang, E. Yardimci, and M. Franz. Code
Generation at the Proxy: An Infrastructure-Based Approach to Ubiquitous Mobile
Code. In Proceedings of the Fifth ECOOP Workshop on Object-Orientation and
Operating Systems, 2002.

11. G. Chen, M. T. Kandemir, N. Vijaykrishnan, M. J. Irwin, and M. Wolczko. Adap-
tive Garbage Collection for Battery-Operated Environments. In Usenix Java Vir-
tual Machine Research and Technology Symposium (JVM ’02), pages 1–12, San
Francisco, CA, Aug. 2002.

12. M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth. Practicing JUDO: Java Under
Dynamic Optimizations. In Proceedings of the ACM SIGPLAN’00 Conference on
Programming Language Design and Implementation (PLDI), October 2000.

13. V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Energy-Oriented
Compiler Optimizations for Partitioned Memory Architectures. In Proceedings
of the International Conference on Compilers, Architectures, and Synthesis for
Embedded Systems, pages 138–147. ACM Press, 2000.

14. F. Douglis, P. Krishnan, and B. Bershad. Adaptive Disk Spindown Policies for
Mobile Computers. In Proceedings of the Second USENIX Symposium on Mobile
and Location Independent Computing, April 1995.

15. D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An Operating System
Architecture for Application-Level Resource Management. In Proceedings of the
fifteenth ACM symposium on Operating systems principles, pages 251–266. ACM
Press, 1995.

16. Y. Fei, S. Ravi, A. Raghunathan, and N. K. Jha. Energy-Optimizing Source Code
Transformations For OS-Driven Embedded Software. In Proceedings of the IEEE
International Conference On VLSI Design, 2003.

17. K. Flautner and T. Mudge. Introspective computers. In ASPLOS 1998 Wild and
Crazy Ideas Session, October 1998.

18. M. Franz. Run-Time Code Generation As A Central System Service. In Proceedings
of the 6th Workshop On Hot Topics In Operating Systems, 1997.



Holistic Power-Aware Computing 13

19. V. Haldar, C. W. Probst, V. Venkatachalam, and M. Franz. Virtual Machine Driven
Dynamic Voltage Scaling. Technical Report 03-21, University of California, Irvine,
School of Information and Computer Science, October 2003.

20. T. Heath, E. Pinheiro, and R. Bianchini. Application-Supported Device Manage-
ment for Energy and Performance. In Proceedings of the Workshop on Power-
Aware Computer Systems PACS’02, Feb. 2002.

21. J. Hom and U. Kremer. Inter-program Compilation For Disk Energy Reduction.
In Proceedings of the Workshop on Power-Aware Computer Systems, 2003.

22. M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye. Influence of Compiler
Optimizations on System Power. In Proceedings of the 37th Conference on Design
Automation, pages 304–307. ACM Press, 2000.

23. T. Kistler and M. Franz. Continuous Program Optimization: A Case Study. ACM
Transactions on Programming Languages and Systems, 25(4):500–548, 2003.

24. C. Krintz. Coupling On-Line and Off-Line Profile Information to Improve Program
Performance. In International Symposium on Code Generation and Optimization,
Mar. 2003.

25. C. Krintz and B. Calder. Using annotation to reduce dynamic optimization time.
In C. Norris and J. J. B. Fenwick, editors, Proceedings of the ACM SIGPLAN
’01 Conference on Programming Language Design and Implementation (PLDI-01),
volume 36.5 of ACM SIGPLAN Notices, pages 156–167, N.Y., June 20–22 2001.
ACMPress.

26. D. Mosberger and L. L. Peterson. Making Paths Explicit in the Scout Operating
System. In Proceedings of the second USENIX Symposium on Operating Systems
Design and Implementation, pages 153–167. ACM Press, 1996.

27. D. Mosberger, L. L. Peterson, P. G. Bridges, and S. O’Malley. Analysis of Tech-
niques to Improve Protocol Processing Latency. In Conference Proceedings on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations, pages 73–84. ACM Press, 1996.

28. C. Pereira, R. Gupta, and M. Srivastava. PASA: A Software Architecture for build-
ing Power aware Embedded Systems. In Proceedings of the IEEE CAS Workshop
on Wireless Communications and Networking - Power Efficient Wireless Ad Hoc
Networks, September 2002.

29. F. Pollack. New Microarchitecture Challenges in the Coming Generations of
CMOS Process Technologies. In Proceedings of the 32nd Annual Symposium on
ACM/IEEE International Symposium on Microarchitecture, 1999.

30. P. Pominville, F. Qian, R. Vallee-Rai, L. Hendren, and C. Verbrugge. A Framework
for Optimizing Java Using Attributes. In Proceedings of the 2000 Conference of the
Centre for Advanced Studies on Collaborative Research, page 8. IBM Press, 2000.

31. C. W. Probst, A. Gal, and M. Franz. Code Generating Routers: A Network-Centric
Approach to Mobile Code. In Proceedings of the 2003 IEEE 18th Annual Workshop
on Computer Communications, 2003.

32. C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana,
J. Walpole, and K. Zhang. Optimistic Incremental Specialization: Streamlining
a Commercial Operating System. In Proceedings of the fifteenth ACM Symposium
on Operating Systems Principles, pages 314–321. ACM Press, 1995.

33. W. Schmidt, R. Roediger, C. Mestad, B. Mendelson, and I. Shavit-Lottem. Profile-
Directed Restructuring Of Operating System Code. IBM Systems Journal, 37(2),
1998.

34. Y. Shin, H. Kawaguchi, and T. Sakurai. Cooperative Voltage Scaling (CVS) Be-
tween OS And Applications For Low-Power Real-Time Systems. In Proceedings of
the CICC’01, 2001.



14 V. Venkatachalam, C. W. Probst, M. Franz

35. J. Simonson and J. Patel. Use Of Preferred Preemption Points in Cache-Based
Real-Time Systems. In International Computer Performance And Dependability
Symposium, 1995.

36. A. Tamches. Fine-Grained Dynamic Instrumentation Of Commodity Operating
System Kernels. PhD thesis, University of Wisconsin, Madison, 2001.

37. A. Tamches and B. P. Miller. Fine-Grained Dynamic Instrumentation of Commod-
ity Operating System Kernels. In Proceedings of the third Symposium on Operating
Systems Design and Implementation, pages 117–130. USENIX Association, 1999.

38. J. Torrellas, C. Xia, and R. Daigle. Optimizing the Instruction Cache Performance
of the Operating System. IEEE Transactions On Computers, 47(12), 1998.

39. Transmeta Corporation. LongRun Power Management: Dynamic Power Manage-
ment for Crusoe Processors, 2001.

40. Transmeta Corporation. Crusoe Processor Product Brief: Model tm5800, 2003.
41. P. Unnikrishnan, G. Chen, M. Kandemir, and D. R. Mudgett. Dynamic Compila-

tion for Energy Adaptation. In Proceedings of the 2002 IEEE/ACM International
Conference on Computer-Aided Design, pages 158–163. ACM Press, 2002.

42. V. Venkatachalam, L. Wang, A. Gal, C. W. Probst, and M. Franz. ProxyVM:
A Network-Based Compilation Infrastructure for Resource-Constrained Devices.
Technical Report 03-13, University of California, Irvine, School of Information and
Computer Science, March 2003.


	Vasanth Venkatachalam, Christian W. Probst and Michael Franz 

