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Abstract

In this paper, a new type of iteration method is proposed to solve eigen-
value problem by finite element method. With this new scheme, solving
eigenvalue problem is transformed to solving a series of source problems on
multilevel meshes by multigrid method. Besides, all other efficient iteration
methods for solving source problems can serve as source problem solver. The
computational work of this new scheme can reach optimal order the same as
solving the corresponding source problem. Therefore, this type of iteration
scheme improves the efficiency of eigenvalue problem solving. Some numerical
experiments are presented to validate the efficiency of the new method.
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1 Introduction

Solving large scale eigenvalue problems becomes a fundamental problem in modern
science and engineering society. However, it is always a very difficult task to solve
high-dimensional eigenvalue problems which come from physical and chemistry sci-
ences. Although many efficient algorithms, such as multigrid method and many
other precondition techniques ([7, 17]), for solving source problems have been devel-
oped, there is no such efficient numerical method to solve eigenvalue problems with
optimal computation work property.
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The multigrid method and other efficient preconditioners provide an optimal order
algorithm for solving boundary value problems. The error bounds of the approx-
imate solution obtained from these efficient numerical algorithms are comparable
to the theoretical bounds determined by the finite element discretization. But the
amount of computational work involved is only proportional to the number of un-
knowns in the discretized equations. For more details of the multigrid and multilevel
methods, please read the papers: Bank and Dupont [3], Bramble and Pasciak [5],
Bramble and Zhang [6], Xu [17], Scott and Zhang [15] and books: Brenner and
Scott [7], Hackbusch [11], McCormick [12] and Bramble [4] and the references cited
therein.

For the solution of eigenvalue problem, [18] gives a type of two-grid discretization
method to improve the efficiency of solving eigenvalue problems. By the two-grid
method, the solution of eigenvalue problem on a fine mesh is reduced to a solution
of eigenvalue problem on a coarse mesh and a solution of a source problem on the
fine mesh. Recently, we propose a new type of multilevel correction method to
solve eigenvalue problem which can be implemented on multilevel grids ([13]). In
the multilevel correction scheme, the solution of eigenvalue problem on a fine mesh
can be reduced to a series of solutions of eigenvalue problem on a very coarse mesh
and a series of solutions of source problems on the multilevel meshes. The multilevel
correction method gives a way to construct a type of multigrid method for eigenvalue
problem.

The aim of this paper is to present this new type of multigrid scheme for solv-
ing eigenvalue problems based on multilevel correction method ([13]). With this
method solving eigenvalue problem will not be much more difficult than the so-
lution of the corresponding source problem. The multigrid method for eigenvalue
problem is based on a series of finite element spaces with different approximation
properties which can be built with the same way as the multilevel method ([17]). It
is worth to noting that besides the multigrid method acting as the linear algebraic
solver for source problems here, other types of numerical algorithms such as BPX
multilevel preconditioners, algebraic multigrid method and domain decomposition
preconditioners ([7]) can also been adopted as the linear algebraic solvers.

The standard Galerkin finite element method for eigenvalue problem has been
extensively investigated, e.g. Babuška and Osborn [1, 2], Chatelin [8] and references
cited therein. Here we adopt some basic results in these papers for our analysis.
The corresponding error and computational work estimates of the type of multi-
grid scheme for eigenvalue problem will be analyzed. Based on the analysis, the
new method can obtain optimal errors with an optimal computational work. The
eigenvalue multigrid procedure can be described as follows: (1) solve the eigenvalue
problem in the coarsest finite element space; (2) solve an additional source problem
with multigrid method on the refined mesh using the previous obtained eigenvalue
multiplying the corresponding eigenfunction as the load vector; (3) solve eigenvalue
problem again on the finite element space which is constructed by combining the
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coarsest finite element space with the obtained eigenfunction approximation in step
(2). Then go to step (2) for next loop until stop.

In order to describe our method clearly, we give the following simple Laplace
eigenvalue problem to illustrate the main idea in this paper (see section 4).

Find (λ, u) such that





−∆u = λu, in Ω,
u = 0, on ∂Ω,∫

Ω
u2dΩ = 1,

(1.1)

where Ω ⊂ R2 is a bounded domain with Lipschitz boundary ∂Ω and ∆ denote the
Laplace operator.

Let VH denote the coarsest linear finite element space defined on the coarsest
mesh TH . Additionally, we also need to construct a series of finite element spaces
Vh2

, Vh3
, · · · , Vhn

which are defined on the corresponding series of multilevel meshes
Thk

(k = 2, 3, · · ·n) such that VH := Vh1
⊂ Vh2

⊂ · · · ⊂ Vhn
with hk = hk−1/β

([7, 9]). Our multigrid algorithm to obtain the approximation of the eigenpair can
be defined as follows (see section 3 and section 4):

1. Solve an eigenvalue problem in the coarsest space VH :

Find (λH , uH) ∈ R× VH such that ‖uH‖0 = 1 and

∫

Ω

∇uH∇vHdΩ = λH

∫

Ω

uHvHdΩ, ∀vH ∈ VH .

2. Set h1 = H and Do k = 1, · · · , n− 2

• Solve the following auxiliary source problem with multigrid method:

Find ûhk+1
∈ Vhk+1

such that

∫

Ω

∇ûhk+1
∇vhk+1

dΩ = λhk

∫

Ω

uhk
vhk+1

dΩ, ∀vhk+1
∈ Vhk+1

.

Then let ũhk+1
:= MG(Vhk+1

, uhk
, λhk

uhk
, mk+1) and the multigrid solu-

tion has the error estimate ‖ûhk
− ũhk

‖ ≤ Chk, where ũhk+1
is the solution

by multigrid method, uhk
denotes the initial solution, λhk

uhk
the right

hand side term, mk+1 the multigrid iteration time.

• Define a new finite element space VH,hk+1
= VH + span{ũhk+1

} and solve
the following eigenvalue problem:

Find (λhk+1
, uhk+1

) ∈ R× VH,hk+1
such that ‖uhk+1

‖0 = 1 and

∫

Ω

∇uhk+1
∇vH,hk+1

dΩ = λhk+1

∫

Ω

uhk+1
vH,hk+1

dΩ, ∀vH,hk+1
∈ VH,hk+1

.
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end Do

3. Solve the following auxiliary source problem with multigrid method:

Find ûhn
∈ Vhn

such that

∫

Ω

∇ûhn
∇vhn

dΩ = λhn−1

∫

Ω

uhn−1
vhn

dΩ, ∀vhn
∈ Vhn

.

Define uhn
:= MG(Vhn

, uhn−1
, λhn−1

uhn−1
, mn) and the multigrid solution has

the error estimate ‖ûhn
− uhn

‖ ≤ Chn. Then compute the Rayleigh quotient

λhn
=

‖∇uhn
‖20

‖uhn
‖20

.

If, for example, λH is the approximation of the first eigenvalue of the problem at
the first step and Ω is a convex domain, then we can establish the following results
by taking βηa(H) < 1 (see section 3 and section 4 for details)

‖∇(u− uhn
)‖0 = O(hn), and |λhn

− λ| = O(h2n).

These two estimates means that we obtain asymptotic optimal errors.

In this method, we replace solving eigenvalue problem on the finest finite element
space by solving a series of boundary value problems with multigrid scheme in the
corresponding series of finite element spaces and a series of eigenvalue problems in
the coarsest finite element space. So this multigrid method can improve the efficiency
of solving eigenvalue problems as it does for solution problems (with computational
work O(Nn)).

An outline of the paper goes as follows. In Section 2, we introduce finite element
method for eigenvalue problem and the corresponding basic error estimates. A type
of one correction step is given in section 3. In section 4, we propose a type of
multigrid algorithm for solving eigenvalue problem by finite element method. Two
numerical examples are presented to validate our theoretical analysis in section 5.
Some concluding remarks are given in the last section.

2 Discretization by finite element method

In this section, we introduce some notation and error estimates of the finite element
approximation for eigenvalue problems. The letter C (with or without subscripts)
denotes a generic positive constant which may be different at its different occurrences
through the paper. For convenience, the symbols ., & and ≈ will be used in this
paper. That x1 . y1, x2 & y2 and x3 ≈ y3, mean that x1 ≤ C1y1, x2 ≥ c2y2 and
c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3 and C3 that are independent of mesh
sizes.
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Let (V, ‖ · ‖) be a real Hilbert space with inner product (·, ·) and norm ‖ · ‖,
respectively. Let a(·, ·), b(·, ·) be two symmetric bilinear forms on X ×X satisfying

a(w, v) . ‖w‖‖v‖, ∀w ∈ V and ∀v ∈ V, (2.1)

‖w‖2 . a(w,w), ∀w ∈ V and 0 < b(w,w), ∀w ∈ V and w 6= 0. (2.2)

From (2.1) and (2.2), we know that ‖ · ‖a := a(·, ·)1/2 and ‖ · ‖ are two equivalent
norms on V . We assume that the norm ‖ · ‖ is relatively compact with respect to
the norm ‖ · ‖b := b(·, ·)1/2. We shall use a(·, ·) and ‖ · ‖a as the inner product and
norm on V in the rest of this paper.

Set
W := the completion of V with respect to ‖ · ‖b.

Thus W is a Hilbert space with the inner product b(·, ·) and compactly imbedded in
V . Construct a “negative space” by V ′ = the dual of V with a norm ‖ · ‖−a given
by

‖w‖−a = sup
v∈V,‖v‖a=1

b(w, v). (2.3)

Then W ⊂ V ′ compactly, and for v ∈ V , b(w, v) has a continuous extension to
w ∈ V ′ such that b(w, v) is continuous on V ′ by Hahn-Banach theorem ([10]). We
assume that Vh ⊂ V is a family of finite-dimensional spaces that satisfy the following
assumption:

For any w ∈ V

lim
h→0

inf
v∈Vh

‖w − v‖a = 0. (2.4)

Let Ph be the finite element projection operator of V onto Vh defined by

a(w − Phw, v) = 0, ∀w ∈ V and ∀v ∈ Vh. (2.5)

Obviously

‖Phw‖a ≤ ‖w‖a, ∀w ∈ V. (2.6)

For any w ∈ V , by (2.4) we have

‖w − Phw‖a = o(1), as h→ 0. (2.7)

Define ηa(h) as

ηa(h) = sup
f∈V,‖f‖a=1

inf
v∈Vh

‖Tf − v‖a, (2.8)

where the operator T : V ′ 7→ V is defined as

a(Tf, v) = b(f, v), ∀f ∈ V ′ and ∀v ∈ V. (2.9)

In order to derive the error estimate of eigenpair approximation in negative norm
‖ · ‖−a, we need the following negative norm error estimate of the finite element
projection operator Ph.
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Lemma 2.1. ([2, Lemma 3.3 and Lemma 3.4])

ηa(h) = o(1), as h→ 0, (2.10)

and

‖w − Phw‖−a . ηa(h)‖w − Phw‖a, ∀w ∈ V. (2.11)

In our methodology description, we are concerned with the following general eigen-
value problem:

Find (λ, u) ∈ R× V such that b(u, u) = 1 and

a(u, v) = λb(u, v), ∀v ∈ V. (2.12)

For the eigenvalue λ, there exists the following Rayleigh quotient expression ([1,
2, 18])

λ =
a(u, u)

b(u, u)
. (2.13)

From [2, 8], we know the eigenvalue problem (2.12) has an eigenvalue sequence {λj} :

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→∞

λk = ∞,

and the associated eigenfunctions

u1, u2, · · · , uk, · · · ,

where b(ui, uj) = δij . In the sequence {λj}, the λj are repeated according to their
geometric multiplicity.

Now, let us define the finite element approximations of the problem (2.12). First
we generate a shape-regular decomposition of the computing domain Ω ⊂ Rd (d =
2, 3) into triangles or rectangles for d = 2 (tetrahedrons or hexahedrons for d = 3).
The diameter of a cell K ∈ Th is denoted by hK . The mesh diameter h describes
the maximum diameter of all cells K ∈ Th. Based on the mesh Th, we can construct
a finite element space denoted by Vh ⊂ V . In order to apply multigrid scheme, we
start the process on the original mesh TH with the mesh size H and the original
coarsest finite element space VH defined on the mesh TH .

Then we can define the approximation of eigenpair (λ, u) of (2.12) by the finite
element method as:

Find (λh, uh) ∈ R× Vh such that b(uh, uh) = 1 and

a(uh, vh) = λhb(uh, vh), ∀vh ∈ Vh. (2.14)
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From (2.14), we know the following Rayleigh quotient expression for λh holds
([1, 2, 18])

λh =
a(uh, uh)

b(uh, uh)
. (2.15)

Similarly, we know from [2, 8] the eigenvalue problem (2.12) has eigenvalues

0 < λ1,h ≤ λ2,h ≤ · · · ≤ λk,h ≤ · · · ≤ λNh,h,

and the corresponding eigenfunctions

u1,h, u2,h, · · · , uk,h, · · · , uNh,h,

where b(ui,h, uj,h) = δij , 1 ≤ i, j ≤ Nh (Nh is the dimension of the finite element
space Vh).

From the minimum-maximum principle ([1, 2]), the following upper bound result
holds

λi ≤ λi,h, i = 1, 2, · · · , Nh.

LetM(λi) denote the eigenspace corresponding to the eigenvalue λi which is defined
by

M(λi) =
{
w ∈ V : w is an eigenvalue of (2.12) corresponding to λi

and ‖w‖b = 1
}
. (2.16)

Then we define

δh(λi) = sup
w∈M(λi)

inf
v∈Vh

‖w − v‖a. (2.17)

For the eigenpair approximations by finite element method, there exist the fol-
lowing error estimates.

Proposition 2.1. ([1, Lemma 3.7, (3.29b)], [2, P. 699] and [8])

(i) For any eigenfunction approximation ui,h of (2.14) (i = 1, 2, · · · , Nh), there is
an eigenfunction ui of (2.12) corresponding to λi such that ‖ui‖b = 1 and

‖ui − ui,h‖a ≤ Ciδh(λi). (2.18)

Furthermore,

‖ui − ui,h‖−a ≤ Ciηa(h)‖ui − ui,h‖a. (2.19)

(ii) For each eigenvalue, we have

λi ≤ λi,h ≤ λi + Ciδ
2
h(λi) (2.20)

Here and hereafter Ci is some constant depending on i but independent of the mesh
size h.
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3 One correction step with multigrid method

In this section, we present a type of correction step to improve the accuracy of the
current eigenvalue and eigenfunction approximations. This correction method con-
tains solving an auxiliary source problem with multigrid method in the finer finite
element space and an eigenvalue problem on the coarsest finite element space. For
simplicity of notation, we set (λ, u) = (λi, ui) (i = 1, 2, · · · , k, · · · ) and (λh, uh) =
(λi,h, ui,h) (i = 1, 2, · · · , Nh) to denote an eigenpair and the corresponding approxi-
mation of problem (2.12) and (2.14), respectively.

To analyze our method, we introduce the error expansion of eigenvalue by the
Rayleigh quotient formula which comes from [1, 2, 14, 18].

Theorem 3.1. Assume (λ, u) is the true solution of the eigenvalue problem (2.12),
0 6= ψ ∈ V . Let us define

λ̂ =
a(ψ, ψ)

b(ψ, ψ)
. (3.1)

Then we have

λ̂− λ =
a(u− ψ, u− ψ)

b(ψ, ψ)
− λ

b(u− ψ, u− ψ)

b(ψ, ψ)
. (3.2)

Proof. First from (2.13), (3.1) and direct computation, we have

λ̂− λ =
a(ψ, ψ)− λb(ψ, ψ)

b(ψ, ψ)

=
a(ψ − u, ψ − u) + 2a(ψ, u)− a(u, u)− λb(ψ, ψ)

b(ψ, ψ)

=
a(ψ − u, ψ − u) + 2λb(ψ, u)− λb(u, u)− λb(ψ, ψ)

b(ψ, ψ)

=
a(ψ − u, ψ − u)− λb(ψ − u, ψ − u)

b(ψ, ψ)
. (3.3)

Then we obtain the desired result (3.2).

Assume we have obtained an eigenpair approximation (λh1
, uh1

) ∈ R× Vh1
. Now

we introduce a type of correction step to improve the accuracy of the current eigen-
pair approximation (λh1

, uh1
). Let Vh2

⊂ V be a finer finite element space such
that Vh1

⊂ Vh2
. Based on this finer finite element space, we define the following

correction step.

Algorithm 3.1. One Correction Step
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1. Define the following auxiliary source problem:

Find ûh2
∈ Vh2

such that

a(ûh2
, vh2

) = λh1
b(uh1

, vh2
), ∀vh2

∈ Vh2
. (3.4)

Solve this equation with multigrid method to obtain a new eigenfunction ap-
proximation ũh2

∈ Vh2
with error estimate ‖ûh2

− ũh2
‖a ≤ Cδh2

(λ) and define
ũh2

:= MG(Vh2
, uh1

, λh1
uh1

, m2), where Vh2
denotes the computing space, uh1

is the initial solution, λh1
uh1

the right hand side and m2 the iteration time of
the multigrid scheme.

2. Define a new finite element space VH,h2
= VH + span{ũh,2} and solve the

following eigenvalue problem:

Find (λh2
, uh2

) ∈ R× VH,h2
such that b(uh2

, uh2
) = 1 and

a(uh2
, vH,h2

) = λh2
b(uh2

, vH,h2
), ∀vH,h2

∈ VH,h2
. (3.5)

Define (λh2
, uh2

) = Correction(VH , λh1
, uh1

, Vh2
).

Theorem 3.2. Assume the current eigenpair approximation (λh1
, uh1

) ∈ R × Vh1

has the following error estimates

‖u− uh1
‖a . εh1

(λ), (3.6)

‖u− uh1
‖−a . ηa(H)‖u− uh1

‖a, (3.7)

|λ− λh1
| . ε2h1

(λ). (3.8)

Then after one correction step, the resultant approximation (λh2
, uh2

) ∈ R×Vh2
has

the following error estimates

‖u− uh2
‖a . εh2

(λ), (3.9)

‖u− uh2
‖−a . ηa(H)‖u− uh2

‖a, (3.10)

|λ− λh2
| . ε2h2

(λ), (3.11)

where εh2
(λ) := ηa(H)εh1

(λ) + ε2h1
(λ) + δh2

(λ).

Proof. From problems (2.5), (2.12) and (3.4), and (3.6), (3.7) and (3.8), the following
estimate holds

‖ûh2
− Ph2

u‖2a . a(ûh2
− Ph2

u, ûh2
− Ph2

u) = b(λh1
uh1

− λu, ûh2
− Ph2

u)

. ‖λh1
uh1

− λu‖−a‖ûh2
− Ph2

u‖a

. (|λh1
− λ|‖uh1

‖−a + λ‖uh1
− u‖−a)‖ûh2

− Ph2
u‖a

.
(
ε2h1

(λ) + ηa(H)εh1
(λ)

)
‖ûh2

− Ph2
u‖a.
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Then we have

‖ûh2
− Ph2

u‖a . ε2h1
(λ) + ηa(H)εh1

(λ). (3.12)

Combining (3.12) and the error estimate of finite element projection

‖u− Ph2
u‖a . δh2

(λ),

we have

‖ûh2
− u‖a . ε2h1

(λ) + ηa(H)εh1
(λ) + δh2

(λ). (3.13)

From (3.13) and ‖ûh2
− ũh2

‖a . δh2
(λ), the following estimate holds

‖ũh2
− u‖a . ε2h1

(λ) + ηa(H)εh1
(λ) + δh2

(λ). (3.14)

Now we come to estimate the eigenpair solution (λh2
, uh2

) of problem (3.5). Based
on the error estimate theory of eigenvalue problem by finite element method ([1, 2]),
the following estimates hold

‖u− uh2
‖a . sup

w∈M(λ)

inf
v∈VH,h2

‖w − v‖a . ‖u− ũh2
‖a, (3.15)

and

‖u− uh2
‖−a . η̃a(H)‖u− uh2

‖a, (3.16)

where

η̃a(H) = sup
f∈V,‖f‖a=1

inf
v∈VH,h2

‖Tf − v‖a ≤ ηa(H). (3.17)

From (3.14), (3.15), (3.16) and (3.17), we can obtain (3.9) and (3.10). The estimate
(3.11) can be derived by Theorem 3.1 and (3.9).

4 Multigrid scheme for the eigenvalue problem

In this section, we introduce a type of multigrid scheme based on the One Correction
Step defined in Algorithm 3.1. This type of multigrid method can obtain the optimal
error estimate as same as solving the eigenvalue problem directly in the finest finite
element space.

In order to do multigrid scheme, we define a sequence of triangulations Thk
of Ω

determined as follows. Suppose Th1
is given and let Thk

be obtained from Thk−1
via

regular refinement (produce βd congruent elements) such that

hk =
1

β
hk−1.
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Based on this sequence of meshes, we construct the corresponding linear finite ele-
ment spaces such that

VH := Vh1
⊂ Vh2

⊂ · · · ⊂ Vhn
,

and the following relation of approximation errors holds

δhk
(λ) =

1

β
δhk−1

(λ), k = 2, · · · , n. (4.1)

Algorithm 4.1. Eigenvalue Multigrid Scheme

1. Construct a coarse finite element space VH and solve the following eigenvalue
problem:

Find (λH , uH) ∈ R× VH such that b(uH , uH) = 1 and

a(uH, vH) = λHb(uH , vH), ∀vH ∈ VH . (4.2)

2. Set h1 = H and construct a series of finer finite element spaces Vh2
, · · · , Vhn

such that ηa(H) & δh1
(λ) ≥ δh2

(λ) ≥ · · · ≥ δhn
(λ) as (4.1).

3. Do k = 0, 1, · · · , n− 2
Obtain a new eigenpair approximation (λhk+1

, uhk+1
) ∈ R× Vhk+1

by a correc-
tion step

(λhk+1
, uhk+1

) = Correction(VH , λhk
, uhk

, Vhk+1
). (4.3)

end Do

4. Solve the following source problem with multigrid method:

Find ûhn
∈ Vhn

such that

a(ûhn
, vhn

) = λhn−1
b(uhn−1

, vhn
), ∀vhn

∈ Vhn
. (4.4)

And let uhn
:=MG(Vhn

, uhn−1
, λhn−1

uhn−1
, mn) and has error estimate ‖uhn

−
ûhn

‖a . δhn
(λ). Then compute the Rayleigh quotient of uhn

λhn
=

a(uhn
, uhn

)

b(uhn
, uhn

)
. (4.5)

Finally, we obtain an eigenpair approximation (λhn
, uhn

) ∈ R× Vhn
.

Theorem 4.1. After implementing Algorithm 4.1, the resultant eigenpair approxi-
mation (λhn

, uhn
) has the following error estimate

‖uhn
− u‖a . δhn

(λ), (4.6)

|λhn
− λ| . δ2hn

(λ), (4.7)

with the condition βηa(H) < 1.
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Proof. From ηa(H) & δh1
(λ) ≥ δh2

(λ) ≥ · · · ≥ δhn
(λ) and Theorem 3.2, we have

εhk+1
(λ) . ηa(H)εhk

(λ) + δhk+1
(λ), for 1 ≤ k ≤ n− 2. (4.8)

Then by recursive relation, we can obtain

εhn−1
(λ) . ηa(H)εhn−2

(λ) + δhn−1
(λ)

. ηa(H)2εhn−3
(λ) + ηa(H)δhn−2

(λ) + δhn−1
(λ)

.

n−1∑

k=1

ηa(H)n−1−kδhk
(λ). (4.9)

Based on the proof in Theorem 3.2, (4.1) and (4.9), the final eigenfunction approx-
imation uhn

has the error estimate

‖uhn
− u‖a . ε2hn−1

(λ) + ηa(H)εhn−1
(λ) + δhn

(λ)

.

n∑

k=1

ηa(H)n−kδhk
(λ)

=

n∑

k=1

(βηa(H))n−kδhn
(λ)

.
βηa(H)

1− βηa(H)
δhn

. δhn
(λ). (4.10)

This is the estimate (4.6). From Theorem 3.1 and (4.10), we can obtain the estimate
(4.7).

5 Work estimates of eigenvalue multigrid scheme

In this section, we turn our attention to the estimate of computation work for
Eigenvalue Multigrid Scheme 4.1. We will show that Algorithm 4.1 makes solving
eigenvalue problem need almost the same work as solving source problem.

First, we define the dimension of each level finite element space as Nk := dimVhk
.

Then we have

Nk =
( 1

β

)d(n−k)

Nn, k = 1, 2, · · · , n. (5.1)

Theorem 5.1. Assume the eigenvalue problem solving in the coarsest space VH =
Vh1

need work O(N1) and the work of the multigrid solver MG(Vhk
, uhk

, λhk
uhk

, mk)
in each level space Vhk

be O(Nk) for k = 2, 3, · · · , n. Then the work involved in the
Eigenvalue Multigrid Scheme 4.1 is O(Nn).
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Proof. LetWk denote the work in the correction step in the k-th finite element space
Vhk

. Then with the correction definition, we have

Wk = O(Nk +N1). (5.2)

Iterating (5.2) and using the fact (5.1), we obtain

Wn =

n∑

k=1

Wk = O
( n∑

k=1

(
Nk +N1

))

= O
( n∑

k=1

Nk

)
= O

( n∑

k=1

( 1
β

)d(n−k)
Nn

)

= O(Nn).

This is the desired result and we complete the proof.

6 Numerical results

In this section, two numerical examples are presented to illustrate the efficiency of
multigrid scheme proposed in this paper. We solve the model eigenvalue problem
(1.1) on the unit square Ω = (0, 1)× (0, 1) and unit brick Ω = (0, 1)× (0, 1)× (0, 1).

6.1 Model eigenvalue problem in two dimensional domain

Here we give the numerical results of the multigrid scheme on the two dimensional
domain Ω = (0, 1)× (0, 1). The sequence of finite element spaces is constructed by
using linear element on the series of mesh which are produce by regular refinement
with β = 2 (connecting the midpoints of each edge). In this example, we use
two coarse meshes which are generated by Delaunay method as the initial mesh
to investigate the convergence behaviors. Figure 1 shows the corresponding initial
meshes: one is coarse and the other is fine.

Eigenvalue Multigrid Scheme 4.1 is applied to solve the eigenvalue problem. For
comparison, we also solve the eigenvalue problem by the direct method. Figure 2
gives the corresponding numerical results for the first eigenvalue λ1 = 2π2 and the
corresponding eigenfunction on the two initial meshes illustrated in Figure 1. From
Figure 2, we find the multigrid scheme can obtain the optimal error estimates as same
as the direct eigenvalue solving method for the eigenvalue and the corresponding
eigenfunction approximations.

We also check the convergence behavior for multi eigenvalue approximations with
Eigenvalue Multigrid Scheme 4.1. Here the first six eigenvalues λ = 2π2, 5π2, 5π2, 8π2,
10π2, 10π2 are investigated. We adopt the right one in Figure 1 as the initial mesh
and the corresponding numerical results are shown in Figure 3. Figure 3 also exhibits
the optimal convergence of the multigrid scheme. 4.1.
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Figure 1: The coarse and fine initial meshes for the unit square
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Figure 2: The errors of the multigrid algorithm for the first eigenvalue 2π2 and
the corresponding eigenfunction, where udirh and λdirh denote the eigenfunction and
eigenvalue approximation by direct eigenvalue solving

6.2 Model eigenvalue problem in three dimensional domain

Here we give the numerical results of the multigrid scheme for solving the model
eigenvalue problem on the three dimensional unit brick domain. We first solve the
eigenvalue problem (1.1) by linear finite element space on the coarse mesh TH . Then
refine the mesh by the regular way to produce a series of meshes Thk

(k = 2, · · · , n)
with β = 2 (connecting the midpoints of each edge) and solve the auxiliary source
problem (3.4) in the finer linear finite element space Vhk

defined on Thk
and the

corresponding eigenvalue problem in VH,hk
.

In this example, we use two coarse meshes which are shown in Figure 4 as the
initial meshes to investigate the convergence behaviors. Figure 5 gives the corre-
sponding numerical results for the first eigenvalue λ = 3π2 and the corresponding
eigenfunction. Here we also compare the numerical results with the direct algorithm.
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Figure 3: The errors of the multigrid algorithm for the first six eigenvalues on the
unit square

Figure 4: The coarse and fine initial meshes for the unit brick

From Figure 5, we find the multigrid scheme can also obtain the optimal error esti-
mates for the eigenvalue and the corresponding eigenfunction approximations.

As in the two dimensional case, we also check the convergence behavior for multi
eigenvalue approximations with the multigrid scheme 4.1. Here the first four eigen-
values λ = 3π2, 6π2, 6π2, 6π2 are investigated. We adopt the right one in Figure 4
as the initial mesh and the corresponding numerical results are shown in Figure 6.
Figure 6 also exhibits the optimal convergence of Eigenvalue Multigrid Scheme 4.1.
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Figure 5: The errors of the multigrid algorithm for the first eigenvalue 3π2 and
the corresponding eigenfunction, where udirh and λdirh denote the eigenfunction and
eigenvalue approximation by direct eigenvalue solving

7 Concluding remarks

In this paper, we give a new type of multigrid scheme to solve the eigenvalue prob-
lems. The idea here is to use the multilevel correction method to transform solving
eigenvalue problem to a series of solving source problems with multigrid method.
We can replace the multigrid method by other types of efficient iteration methods
such as algebraic multigrid method and other types preconditioned schemes based
on the subspace decomposition and subspace corrections ([7, 17]) and the domain
decomposition method ([16]).

Furthermore, our framework here can also be coupled with parallel method and
the adaptive refinement technique. The ideas here can be extended to other types
of linear and nonlinear eigenvalue problems. These will be investigated in our future
work.
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