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A MULTILEVEL SCHWARZ PRECONDITIONER BASED ON A1

HIERARCHY OF ROBUST COARSE SPACES∗2

HUSSAM AL DAAS† , LAURA GRIGORI† , PIERRE JOLIVET†‡ , AND PIERRE-HENRI3

TOURNIER†§4

Abstract. In this paper we present a multilevel preconditioner based on overlapping Schwarz5
methods for symmetric positive definite (SPD) matrices. Robust two-level Schwarz preconditioners6
exist in the literature to guarantee fast convergence of Krylov methods. As long as the dimension of7
the coarse space is reasonable, that is, exact solvers can be used efficiently, two-level methods scale8
well on parallel architectures. However, the factorization of the coarse space matrix may become9
costly at scale. An alternative is then to use an iterative method on the second level, combined with10
an algebraic preconditioner, such as a one-level additive Schwarz preconditioner. Nevertheless, the11
condition number of the resulting preconditioned coarse space matrix may still be large. One of the12
difficulties of using more advanced methods, like algebraic multigrid or even two-level overlapping13
Schwarz methods, to solve the coarse problem is that the matrix does not arise from a partial14
differential equation (PDE) anymore. We introduce in this paper a robust multilevel additive Schwarz15
preconditioner where at each level the condition number is bounded, ensuring a fast convergence for16
each nested solver. Furthermore, our construction does not require any additional information than17
for building a two-level method, and may thus be seen as an algebraic extension.18

Key words. domain decomposition, multilevel, elliptic problems, subspace correction19

AMS subject classifications. 65F08, 65F10, 65N5520

1. Introduction. We consider the solution of a linear system of equations21

(1.1) Ax = b,22

where A ∈ R
n×n is a symmetric positive definite (SPD) matrix, b ∈ R

n is the right-23

hand side, and x ∈ R
n is the vector of unknowns. To enhance convergence, it is24

common to solve the preconditioned system25

M−1Ax = M−1b.26

Standard domain decomposition preconditioners such as block Jacobi, additive27

Schwarz, and restricted additive Schwarz methods are widely used [32, 9, 8]. In a28

parallel framework, such preconditioners have the advantage of relatively low com-29

munication costs. However, their role in lowering the condition number of the sys-30

tem typically deteriorates when the number of subdomains increases. Multilevel ap-31

proaches have shown a large impact on enhancing the convergence of Krylov methods32

[33, 12, 7, 25, 20, 10, 21, 1, 15, 23, 34, 30]. In multigrid and domain decomposition33

communities, multilevel methods have proven their capacity of scaling up to large34

numbers of processors and tackling ill-conditioned systems [37, 4, 19]. While some35

preconditioners are purely algebraic [7, 20, 10, 26, 29, 16, 1], several multilevel meth-36

ods are based on hierarchical meshing in both multigrid and domain decomposition37

communities [35, 9, 25, 15, 23]. Mesh coarsening depends on the geometry of the38

problem. One has to be careful when choosing a hierarchical structure since it can39
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2 H. AL DAAS, L. GRIGORI, P. JOLIVET, AND P.-H. TOURNIER

have a significant impact on the iteration count [23, 25]. In [23], the authors propose40

a multilevel Schwarz domain decomposition solver for the elasticity problem. Based41

on a heuristic approach and following the maximum independent set method [2], they42

coarsen the fine mesh while preserving the boundary in order to obtain a two-level43

method. This strategy is repeated recursively to build several levels. However, they44

do not provide a bound on the condition number of the preconditioned matrix of the45

multilevel method. Multilevel domain decomposition methods are mostly based on46

non-overlapping approaches [35, 9, 25, 23, 37, 4, 30, 34]. Two-level overlapping domain47

decomposition methods are well studied and provide robust convergence estimates48

[33, 12, 5]. However, extending such a construction to more than two levels while49

preserving robustness is not straightforward. In [6], the authors propose an algebraic50

multilevel additive Schwarz method. Their approach is inspired by algebraic multigrid51

strategies. One drawback of it is that it is sensitive to the number of subdomains. In52

[15], the authors suggest applying the two-level Generalized Dryja–Smith–Widlund53

preconditioner recursively to build a multilevel method. In this case, the condition54

number bound of the two-level approach depends on the width of the overlap, the55

diameter of discretization elements, and the diameter of the subdomains. They focus56

on the preconditioner for the three-level case. One drawback of their approach is that57

the three-level preconditioner requires more iterations than the two-level variant. In58

this paper, the only information from the PDE needed for the construction of the59

preconditioner consists of the local Neumann matrices at the fine level. These ma-60

trices correspond to the integration of the bilinear form in the weak formulation of61

the studied PDE on the subdomain-decomposed input mesh. No further information62

is necessary: except on the fine level, our method is algebraic and does not depend63

on any coarsened mesh or auxiliary discretized operator. For problems not arising64

from PDE discretization, one needs to supply the local SPSD matrices on the finest65

level. In [3], a subset of the authors propose a fully algebraic approximation for such66

matrices. However, their approximation strategy is heuristic and may not be effective67

in some cases.68

Our preconditioner is based on a hierarchy of coarse spaces and is defined as fol-69

lowing. At the first level, the set of unknowns is partitioned into N1 subdomains and70

each subdomain has an associated matrix A1,j = R1,jAR⊤
1,j obtained by using appro-71

priate restriction and prolongation operators R1,j and R⊤
1,j respectively, defined in the72

following section. The preconditioner is formed as an additive Schwarz preconditioner73

coupled with an additive coarse space correction, defined as,74

M−1 = M−1
1 = V1A

−1
2 V ⊤

1 +

N1
∑

j=1

R⊤
1,jA

−1
1,jR1,j ,75

where V1 is a tall-and-skinny matrix spanning a coarse space obtained by solving for76

each subdomain j = 1 to N1 a generalized eigenvalue problem involving the matrix77

A1,j and the Neumann matrix associated with subdomain j. The coarse space matrix78

is A2 = V ⊤
1 AV1. This is equivalent to the GenEO preconditioner, and is described79

in detail in [33] and recalled briefly in section 2. The dimension of the coarse space80

is proportional to the number of subdomains N1. When it increases, factorizing A281

by using a direct method becomes prohibitive, and hence the application of A−1
2 to a82

vector should also be performed through an iterative method.83

Our multilevel approach defines a hierarchy of coarse spaces Vi and coarse space84

matrices Ai for i = 2 to any depth L+1, and defines a preconditioner M−1
i such that85

the condition number of M−1
i Ai is bounded. The depth L+1 is chosen such that the86

This manuscript is for review purposes only.



HIERARCHICAL ROBUST COARSE SPACES 3

coarse space matrix AL+1 can be factorized efficiently by using a direct method. At87

each level i, the graph of the coarse space matrix Ai is partitioned into Ni subdomains,88

and each subdomain j is associated with a local matrix Ai,j = Ri,jAiR
⊤
i,j obtained by89

using appropriate restriction and prolongation operators Ri,j and R⊤
i,j , respectively.90

The preconditioner at level i is defined as,91

M−1
i = ViA

−1
i+1V

⊤
i +

Ni
∑

j=1

R⊤
i,jA

−1
i,j Ri,j ,92

where the coarse space matrix is Ai+1 = V ⊤
i AiVi.93

One of the main contributions of the paper concerns the construction of the94

hierarchy of coarse spaces Vi for levels i going from 2 to L, that are built algebraically95

from the coarse space of the previous level Vi−1. This construction is based on the96

definition of local symmetric positive semi-definite (SPSD) matrices associated with97

each subdomain j at each level i that we introduce in this paper. These matrices are98

obtained by using the local SPSD matrices of the previous level i−1 and the previous99

coarse space Vi−1. They are then involved, with the local matrices Ai,j , in concurrent100

generalized eigenvalue problems solved for each subdomain j that allows to compute101

the local eigenvectors contributing to the coarse space Vi.102

We show in Theorem 5.3, section 5, that the condition number of M−1
i Ai is103

bounded and depends on the maximum number of subdomains at the first level that104

share an unknown, the number of distinct colors required to color the graph of Ai so105

that
{

span{R⊤
i,j}
}

16j6Ni
of the same color are mutually Ai-orthogonal, and a user106

defined tolerance τ . It is thus independent of the number of subdomains Ni.107

The main contribution of this paper is based on the combination of two previous108

works on two-level additive Schwarz methods [3, 33]. The coarse space proposed in109

[33] guarantees an upper bound on the condition number that can be prescribed by110

the user. The SPSD splitting in the context of domain decomposition presented in111

[3] provides an algebraic view for the construction of coarse spaces. The combination112

of these two works leads to a robust multilevel additive Schwarz method. Here,113

robustness refers to the fact that at each level, an upper bound on the condition114

number of the associated matrix can be prescribed by the user a priori. The rest115

of the paper is organized as follows. In the next section, we present the notations116

used throughout the paper. In section 2, we present a brief review of the theory of117

one- and two-level additive Schwarz methods. We extend in section 3 the class of118

SPSD splitting matrices presented in [3] in order to make it suitable for multilevel119

methods. Afterwards, we define the coarse space at level i based on the extended120

class of local SPSD splitting matrices associated with this level. Section 4 describes121

the partitioning of the domain at level i + 1 from the partitioning at level i. In122

Section 5, we explain the computation of the local SPSD matrices associated with each123

subdomain at level i+ 1. We compute them using those associated with subdomains124

at level i. Section 6 presents numerical experiments on highly challenging diffusion125

and linear elasticity problems in two- and three-dimensional problems. We illustrate126

the theoretical robustness and practical usage of our proposed method by performing127

strong scalability tests up to 8,192 processes.128

Context and notation. By convention, the finest level, on which (1.1) is de-129

fined, is the first level. A subscript index is used in order to specify which level130

an entity is defined on. In the case where additional subscripts are used, the first131

subscript always denotes the level. For the sake of clarity, we omit the subscript cor-132

This manuscript is for review purposes only.



4 H. AL DAAS, L. GRIGORI, P. JOLIVET, AND P.-H. TOURNIER

responding to level 1 when it is clear from context, e.g., matrix A. Furthermore, the133

subscripts i and j always refer to a specific level i and its subdomain j, respectively.134

The number of levels is L + 1. Let Ai ∈ R
ni×ni denote symmetric positive definite135

matrices, each corresponding to level i = 1, . . . , L+1. We suppose that a direct solver136

can be used at level L+ 1 to compute an exact factorization of AL+1.137

Let B ∈ R
p×q be a matrix. Let P ⊂ J1; pK and Q ⊂ J1; qK be two sets of138

indices. The concatenation of P and Q is represented by [P,Q]. We note that the139

order of the concatenation is important. B(P, :) is the submatrix of B formed by140

the rows whose indices belong to P . B(:, Q) is the submatrix of B formed by the141

columns whose indices belong to Q. B(P,Q) = (B(P, :)) (:, Q). The identity matrix142

of size p is denoted Ip. We suppose that the graph of Ai is partitioned into Ni non-143

overlapping subdomains, whereNi ≪ ni andNi+1 6 Ni for i = 1, . . . , L. We note that144

partitioning at level 1 can be performed by using a graph partitioning library such as145

ParMETIS [22] or PT-SCOTCH [11]. Partitioning at greater levels will be described146

later in section 4. In the following, we define for each level i = 1, . . . , L notations147

for subsets and restriction operators that are associated with the partitioning. Let148

Ωi = J1;niK be the set of unknowns at level i and let Ωi,j,I for j = 1, . . . , Ni be the149

subset of Ωi that represents the unknowns in subdomain j. We refer to Ωi,j,I as the150

interior unknowns of subdomain j. Let Γi,j for j = 1, . . . , Ni be the subset of Ωi that151

represents the neighbor unknowns of subdomain j, i.e., the unknowns at distance 1152

from subdomain j through the graph of Ai. We refer to Γi,j as the overlapping153

unknowns of subdomain j. We denote Ωi,j = [Ωi,j,I , Γi,j ], for j = 1, . . . , Ni, the154

concatenation of interior and overlapping unknowns of subdomain j. We denote155

∆i,j , for j = 1, . . . , Ni, the complementary of Ωi,j in Ωi, i.e., ∆i,j = Ωi \ Ωi,j . In156

Figure 1.1, a triangular mesh is used to discretize a square domain. The set of157

nodes of the mesh is partitioned into 16 disjoint subsets Ω1,j,I , which represent a158

non-overlapping decomposition, for j = 1, . . . , 16 (left). On the left, a matrix A1159

whose connectivity graph corresponds to the mesh is illustrated. The submatrix160

A1(Ω1,j,I ,Ω1,j,I) is associated with the non-overlapping subdomain j. Each submatrix161

A1(Ω1,j,I ,Ω1,j,I) is colored with a distinct color. The same color is used to color the162

region that contains the nodes in the non-overlapping subdomain Ω1,j,I . Note that163

if two subdomains j1, j2 are neighbors, the submatrix A1(Ω1,j1,I ,Ω1,j2,I) has nonzero164

elements. For j = 1, . . . , Ni, we denote by ni,j,I , γi,j and ni,j the cardinality of Ωi,j,I ,165

Γi,j and Ωi,j respectively.166

Let Ri,j,I ∈ R
ni,j,I×ni be defined as Ri,j,I = Ini

(Ωi,j,I , :).167

Let Ri,j,Γ ∈ R
γi,j×ni be defined as Ri,j,Γ = Ini

(Γi,j , :).168

Let Ri,j ∈ R
ni,j×ni be defined as Ri,j = Ini

(Ωi,j , :).169

Let Ri,j,∆ ∈ R
(ni−ni,j)×ni be defined as Ri,j,∆ = Ini

(∆i,j , :).170

Let Pi,j = Ini
([Ωi,j,I ,Γi,j ,∆i,j ], :) ∈ R

ni×ni , be a permutation matrix associated171

with the subdomain j, for j = 1, . . . , Ni. The matrix of the overlapping subdomain j,172

Ri,jAiR
⊤
i,j , is denoted Ai,j . We denote Di,j ∈ R

ni,j ,×ni,j , j = 1, . . . , Ni, any set of173

non-negative diagonal matrices such that174

Ini
=

Ni
∑

j=1

R⊤
i,jDi,jRi,j .175

We refer to {Di,j}16j6Ni
as the algebraic partition of unity. Let Vi ∈ R

ni×ni+1 be176

a tall-and-skinny matrix of full rank. We denote Si the subspace spanned by the177

columns of Vi. This subspace will stand for the coarse space associated with level i.178

By convention, we refer to Si as subdomain 0 at level i. Thus, we have ni,0 = ni+1.179

This manuscript is for review purposes only.
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Fig. 1.1. Left: a triangular mesh is used to discretize the unit square. The set of nodes of the
mesh is partitioned into 16 disjoint subsets, non-overlapping subdomains, Ω1,j,I for j = 1, . . . , 16.
Right: Illustration of the matrix A1 whose connectivity graph corresponds to the mesh on the left.
The diagonal block j of A1 corresponds to the non-overlapping subdomain Ω1,j,I . Each submatrix
A1(Ω1,j,I ,Ω1,j,I) is colored with a distinct color. The same color is used to color the region of the
square that contains nodes in Ω1,j,I .

The interpolation operator at level i is defined as:180

Ri,2 :

Ni
∏

j=0

R
ni,j → R

ni

(uj)06j6Ni
7→

Ni
∑

j=0

R⊤
i,juj .

(1.2)181

182

Finally, we denote Vi,j the set of neighboring subdomains of each subdomain j at183

level i for (i, j) ∈ J1;LK × J1;NiK.184

Vi,j = {k ∈ J1;NiK : Ωi,j ∩ Ωi,k 6= ∅}.185

As previously mentioned, partitioning at level 1 can be performed by graph parti-186

tioning libraries such as ParMETIS [22] or PT-SCOTCH [11]. Partitioning at further187

levels will be defined later: the sets Ωi,j,I , Ωi,j,Γ, Ωi,j , and ∆i,j for i > 1 are defined188

in subsection 4.2. The coarse spaces Si as well as the projection and prolongation189

operators V ⊤
i and Vi are defined in subsection 3.2. We suppose that the connectivity190

graph between the subdomains on each level is sparse. This assumption is not true in191

general, however, it is valid in structures based on locally constructed coarse spaces192

in domain decomposition as we show in this paper, see [18, Section 4.1 p.81] for the193

case of two levels.194

2. Background. In this section, we review briefly several theoretical results195

related to additive Schwarz preconditioners. We introduce them for the sake of com-196

pleteness.197

Lemma 2.1 (fictitious subspace lemma). Let A ∈ R
nA×nA , B ∈ R

nB×nB be two198

This manuscript is for review purposes only.



6 H. AL DAAS, L. GRIGORI, P. JOLIVET, AND P.-H. TOURNIER

symmetric positive definite matrices. Let R be an operator defined as199

R : RnB → R
nA

v 7→ Rv,
200

201

and let R⊤ be its transpose. Suppose that the following conditions hold:202

1. The operator R is surjective.203

2. There exists cu > 0 such that204

(Rv)
⊤
A (Rv) 6 cuv

⊤Bv, ∀v ∈ R
nB .205

3. There exists cl > 0 such that for all vnA
∈ R

nA , ∃vnB
∈ R

nB |vnA
= RvnB

206

and207

clv
⊤
nB

BvnB
6 (RvnB

)
⊤
A (RvnB

) = v⊤nA
AvnA

.208

Then, the spectrum of the operator RB−1R⊤A is contained in the segment [cl, cu].209

Proof. We refer the reader to [12, Lemma 7.4 p.164] or [28, 27, 13] for a detailed210

proof.211

Lemma 2.2. The operator Ri,2 as defined in (1.2) is surjective.212

Proof. The proof follows from the definition of Ri,2 (1.2).213

Lemma 2.3. Let ki,c for i = 1, . . . , L be the minimum number of distinct colors214

so that
{

span{R⊤
i,j}
}

16j6Ni
of the same color are mutually Ai-orthogonal. Then, we215

have216
217

(Ri,2uBi
)
⊤
Ai (Ri,2uBi

)218

6 (ki,c + 1)

Ni
∑

j=0

u⊤
j

(

Ri,jAiR
⊤
i,j

)

uj , ∀uBi
= (uj)06j6Ni

∈
N
∏

j=0

R
ni,j .219

220

Proof. We refer the reader to [9, Theorem 12 p.93] for a detailed proof.221

We note that at level i, the number ki,c is smaller than the maximum number of222

neighbors over the set of subdomains J1;NiK223

ki,c 6 max
16j6Ni

#Vi,j .224

Due to the sparse structure of the connectivity graph between the subdomains at225

level i, the maximum number of neighbors over the set of subdomains J1;NiK is226

independent of the number of subdomains Ni. Then, so is ki,c.227

Lemma 2.4. Let uAi
∈ R

nAi and uBi
= {uj}06j6Ni

∈
∏Ni

j=0 R
ni,j such that uAi

=228

Ri,2uBi
. The additive Schwarz operator without any other restriction on the coarse229

space Si verifies the following inequality230

Ni
∑

j=0

u⊤
j

(

Ri,jAiR
⊤
i,j

)

uj 6 2u⊤
Ai
AiuAi

+ (2ki,c + 1)

Ni
∑

j=1

u⊤
j Ri,jAiR

⊤
i,juj ,231

where ki,c is defined in Lemma 2.3.232
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HIERARCHICAL ROBUST COARSE SPACES 7

Proof. We refer the reader to [12, Lemma 7.12, p. 175] to view the proof in233

detail.234

Lemma 2.5. Let A,B ∈ R
m×m be two symmetric positive semi-definite matrices.235

Let ker(A), range(A) denote the null space and the range of A respectively. Let P0236

be an orthogonal projection on range(A). Let τ be a positive real number. Consider237

the generalized eigenvalue problem,238

P0BP0uk = λkAuk,

(uk, λk) ∈ range(A)× R.
239

240

Let Pτ be an orthogonal projection on the subspace241

Z = ker(A)⊕ span {uk|λk > τ} ,242

then, the following inequality holds:243

(2.1) (u− Pτu)
⊤
B (u− Pτu) 6 τu⊤Au, ∀u ∈ R

m.244

Proof. We refer the reader to [3, Lemma 2.4] and [12, Lemma 7.7] for a detailed245

proof.246

2.1. GenEO coarse space. In [33, 12] the authors present the GenEO coarse247

space which relies on defining appropriate symmetric positive semi-definite (SPSD)248

matrices Ãj ∈ R
n×n for j = 1, . . . , N . These are the unassembled Neumann matrices,249

corresponding to the integration on each subdomain of the operator defined in the250

variational form of the PDE. These matrices are local, i.e., Rj,∆Ãj = 0. Furthermore,251

they verify the relations252

u⊤Ãju 6 u⊤Au, ∀u ∈ R
n,

u⊤

N
∑

j=1

Ãju 6 kGenEOu
⊤Au, ∀u ∈ R

n,
253

254

where kGenEO 6 N is the maximum number of subdomains that share an unknown.255

2.2. Local SPSD splitting of an SPD matrix. In [3], the authors present256

the local SPSD splitting of an SPD matrix. Given the permutation matrix Pj , a local257

SPSD splitting matrix Ãj of A associated with subdomain j is defined as258

(2.2) PjÃjP
⊤
j =





Rj,IAR⊤
j,I Rj,IAR⊤

j,Γ

Rj,ΓAR⊤
j,I Ã

j
Γ

0



 ,259

where Ã
j
Γ ∈ R

γj×γj satisfies the two following conditions: For all u ∈ R
γj ,260

• u⊤
(

Rj,ΓAR⊤
j,I

) (

Rj,IAR⊤
j,I

)−1 (
Rj,IAR⊤

j,Γ

)

u 6 u⊤Ãj
γu261

• u⊤Ã
j
Γu 6 u⊤

(

(

Rj,ΓAR⊤
j,Γ

)

−
(

Rj,ΓAR⊤
j,∆

) (

Rj,∆AR⊤
j,∆

)−1 (
Rj,∆AR⊤

j,Γ

)

)

u.262

The authors prove that the matrices Ãj defined in such a way verify the following263

relations:264

Rj,∆Ãj = 0,(2.3)265

u⊤Ãju ≤ u⊤Au, ∀u ∈ R
n,(2.4)266

u⊤

N
∑

j=1

Ãju 6 ku⊤Au, ∀u ∈ R
n,(2.5)267

268
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where k is a number that depends on the local SPSD splitting matrices and can be269

at most equal to the number of subdomains k 6 N . The authors also show that the270

local matrices defined in GenEO [33, 12] can be seen as a local SPSD splitting.271

In [3], the authors highlight that the key idea to construct a coarse space relies272

on the ability to identify the so-called local SPSD splitting matrices. They present273

a class of algebraically constructed coarse spaces based on the local SPSD splitting274

matrices. Moreover, this class can be extended to a larger variety of local SPSD275

matrices. This extension has the advantage of allowing to construct efficient coarse276

spaces for a multilevel structure in a practical way. This is discussed in the following277

section.278

3. Extension of the class of coarse spaces. In this section we extend the279

class of coarse spaces presented in [3]. To do so, we present a class of matrices, that is280

larger than the class of local SPSD splitting matrices. This will be our main building281

block in the construction of efficient coarse spaces. Furthermore, this extension can282

lead to a straightforward construction of hierarchical coarse spaces in a multilevel283

Schwarz preconditioner setting.284

3.1. Extension of the class of local SPSD splitting matrices. Regarding285

the two-level additive Schwarz method, the authors of [3] introduced the local SPSD286

splitting related to a subdomain as defined in (2.2). As it can be seen from the theory287

presented in that paper, it is not necessary to have the exact matrices Rj,IAR⊤
j,I ,288

Rj,IAR
⊤
j,Γ, and Rj,ΓAR⊤

j,I in the definition of the local SPSD splitting in order to289

build an efficient coarse space. Indeed, the one and only necessary condition is to290

define for each subdomain j an SPSD matrix Ãj for j = 1, . . . , N such that:291

Rj,∆Ãj = 0,

u⊤

N
∑

j=1

Ãju 6 ku⊤Au, ∀u ∈ R
n,

(3.1)292

293

where k is a number that depends on the local SPSD matrices Ãj for j = 1, . . . , N .294

The first condition means that Ãj has the local SPSD structure associated with sub-295

domain j, i.e., it has the following form:296

PjÃjP
⊤
j =

(

Ã
j
I,Γ 0

0 0

)

,297

where Ã
j
I,Γ ∈ R

nj×nj . The second condition is associated with the stable decom-298

position property [36, 12]. Note that with regard to the local SPSD matrices, the299

authors in [33] only use these two conditions. That is to say, with matrices that verify300

conditions (3.1) the construction of the coarse space is straightforward through the301

theory presented in either [33] or [3]. To this end, we define in the following the local302

SPSD (LSPSD) matrix associated with subdomain j as well as the associated local303

filtering subspace that contributes to the coarse space.304

Definition 3.1 (local SPSD matrices). An SPSD matrix Ãi,j ∈ R
ni×ni is called305

local SPSD (LSPSD) with respect to subdomain j if306

• Ri,j,∆Ãi,j = 0,307

• u⊤
∑Ni

j=1 Ãi,ju 6 kiu
⊤Aiu,308

where ki > 0.309
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We note that the local SPSD splitting matrices form a subset of the local SPSD310

matrices.311

3.2. Multilevel coarse spaces. This section summarizes the steps to be per-312

formed in order to construct the coarse space at level i once we have the LSPSD313

matrices associated with each subdomain at that level.314

Definition 3.2 (coarse space based on LSPSD matrices). Let Ãi,j ∈ R
ni×ni for315

j = 1, . . . , Ni be LSPSD matrices. Let Di,j ∈ R
ni,j for j = 1, . . . , Ni be the partition316

of unity. Let τi > 0 be a given number. For a subdomain j ∈ J1;NiK, let317

Gi,j = Di,j

(

Ri,jAiR
⊤
i,j

)

Di,j .318

Let P̃i,j be the projection on range(Ri,jÃjR
⊤
i,j) parallel to ker(Ri,jÃjR

⊤
i,j). Let Ki,j =319

ker(Ri,jÃi,jR
⊤
i,j). Consider the generalized eigenvalue problem:320

P̃i,jGi,jP̃i,jui,j,k = λi,j,kRi,jÃi,jR
⊤
i,jui,j,k,

(ui,j,k, λi,j,k) ∈ range(Ri,jÃi,jR
⊤
i,j)× R.

(3.2)321

322

Set323

(3.3) Zi,j = Ki,j ⊕ span {ui,j,k|λi,j,k > τi} .324

Then, the coarse space associated with LSPSD matrices Ãi,j for j = 1, . . . , Ni at level i325

is defined as:326

(3.4) Si =

Ni
⊕

j=1

R⊤
i,jDi,jZi,j .327

Following notations from section 1, the columns of Vi span the coarse space Si. The328

matrix Ai+1 is defined as:329

(3.5) Ai+1 = V ⊤
i AiVi.330

The local SPSD splitting matrices at level 1 will play an important role in the331

construction of the LSPSD matrices at subsequent levels. In the following, we present332

an efficient approach for computing LSPSD matrices for levels greater than 1.333

4. Partitioning for levels strictly greater than 1. In this section, we ex-334

plain how to obtain the partitioning sets Ωi,j,I for (i, j) ∈ J2;LK × J1;NiK. Once the335

sets Ωi,j,I for j = 1, . . . , Ni are defined at level i, the following elements are readily336

available: sets Γi,j ,∆i,j , and Ωi,j ; restriction operators Ri,j,I , Ri,j,Γ, Ri,j,∆, and Ri,j ;337

permutation matrices Pi,j for j = 1, . . . , Ni. The partition of unity is constructed in338

an algebraic way. The mth diagonal element of Di,j is 1 if m 6 ni,j,I and 0 otherwise.339

4.1. Superdomains as unions of several subdomains. In this section, we340

introduce the notion of a superdomain. It refers to the union of several neighboring341

subdomains. Let Gi,1, . . . ,Gi,Ni+1
be disjoint subsets of J1;NiK, where

⋃Ni+1

j=1 Gi,j =342

J1;NiK. We call the union of the subdomains {k ∈ J1;NiK : k ∈ Gi,j } superdomain j,343

for j = 1, . . . , Ni+1. Figure 4.1 gives an example of how to set superdomains. Though344

this definition of superdomains may look somehow related to the fine mesh, it is in345

practice done at the algebraic level, as explained later on. Note that the indices of346

columns and rows of Ai+1 are associated with the vectors contributed by the subdo-347

mains at level i in order to build the coarse space Si, see Figure 4.2. Hence, defining348

subdomains on the structure of Ai+1 is natural once we have the subsets Gi,j , for349

j = 1, . . . , Ni+1.350
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Ω1,1,I Ω1,2,I

Ω1,3,I

Ω1,4,I

Ω1,5,I

Ω1,6,I

Ω1,7,I

Ω1,8,I

Ω1,9,I

Ω1,10,I

Ω1,11,I

Ω1,12,I

Ω1,13,I

Ω1,14,I

Ω1,15,I

Ω1,16,I

G1,1

G1,2

G1,3

G1,4

Fig. 4.1. Left: 16 subdomains at level 1. Right: 4 superdomains at level 1. G1,j = J4(j − 1) +
1; 4(j − 1) + 4K.

Di,1Zi,1

Di,3Zi,3





















































































(R⊤
i,1Di,1Zi,1)

⊤Ai(R
⊤
i,1Di,1Zi,1)

(R⊤
i,3Di,3Zi,3)

⊤Ai(R
⊤
i,4Di,4Zi,4)





































Fig. 4.2. Illustration of the correspondence of indices between the columns of Vi (left) and the
rows and columns of Ai+1 (right). Having no overlap in Vi is possible through a non-overlapping
partition of unity.

4.2. Heritage from superdomains. Let ei,j be the set of indices of the vectors351

that span R⊤
i,jDi,jZi,j in the matrix Vi for some (i, j) ∈ J1;L − 1K × J1;NiK, see352

Figure 4.2. We define Ωi+1,j,I = ∪k∈Gi,j
ei,k, for j = 1, . . . , Ni+1. We denote Ωi+1,j,Γ353

the subset of J1;ni+1K\Ωi+1,j,I whose elements are at distance 1 from Ωi+1,j,I through354

the graph of Ai+1. We note that355

Ωi+1,j,Γ ⊂
⋃

p∈Gi,j

⋃

k∈Vi,p

ei,k,356

where Vi,j represents the set of subdomains that are neighbors of subdomain j at357

level i for j = 1, . . . , Ni. The overlapping subdomain j is defined by the set Ωi+1,j =358

[Ωi+1,j,I ,Ωi+1,j,Γ]. The rest of the sets, restriction, and prolongation operators can359

be defined as given in section 1.360
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5. LSPSD matrices for levels strictly greater than 1. In [33, 12, 3], differ-361

ent methods are suggested to obtain local SPSD splitting matrices at level 1. These362

matrices are used to construct efficient two-level additive Schwarz preconditioners.363

Here in this section, we do not discuss the construction of these matrices at level 1. We364

suppose that we have the local SPSD matrices Ã1,j ∈ R
n1×n1 for j = 1, . . . , N1. We365

focus on computing LSPSD matrices Ãi,j ∈ R
ni×ni for (i, j) ∈ J2;LK×J1;NiK. We also366

suppose that the coarse space S1 is available, i.e., the matrices V1 and A2 = V ⊤
1 A1V1367

are known explicitly.368

Proposition 5.1. Let i be a fixed level index, and let Ãi,j be an LSPSD of Ai,369

(see Definition 3.1), associated with subdomain j, for j = 1, . . . , Ni. Let Gi,1, . . . ,Gi,Ni+1
370

be a set of superdomains at level i associated with the partitioning at level i + 1, see371

subsection 4.1. Let V ⊤
i be the restriction matrix to the coarse space at level i. Then,372

the matrix Ãi+1,j which is defined as:373

Ãi+1,j =
∑

k∈Gi,j

V ⊤
i Ãi,kVi,374

satisfies the conditions in Definition 3.1. That is, Ãi+1,j is LSPSD of Ai+1 with375

respect to subdomain j for j = 1, . . . , Ni+1.376

Proof. To prove that Ãi+1,j is LSPSD of Ai+1 with respect to subdomain j, we377

have to prove the following:378

• Ri+1,j,∆Ãi+1,j = 0379

• u⊤
∑Ni+1

j=1 Ãi+1,ju 6 ki+1u
⊤Ai+1u for all u ∈ R

ni+1 .380

First, note that Ri,kÃi,j = 0 for all non-neighboring subdomains k of subdomain j.381

This yields Z⊤
i,kDi,kRi,kÃi,j = 0 for these subdomains k.382

Now, let m ∈ J1;ni+1K \Ωi+1,j . We will show that the mth row of Ãi+1,j is zero.383

Following the partitioning of subdomains at level i+1, there exists a subdomain Ωp0
384

such that the mth column of Vi is part of R⊤
i,p0

Di,p0
Zi,p0

. We denote this column385

vector by vm. Furthermore, the subdomain p0 is not a neighbor of any subdomain386

that is a part of the superdomain Gi,j . Hence, v⊤mÃi,k = 0 for k ∈ Gi,j . The mth row387

of Ãi+1,j is given as v⊤m
∑

k∈Gi,j
Ãi,kVi. Then, v

⊤
m

∑

k∈Gi,j
Ãi,k = 0, and the mth row388

of Ãi+1,j is zero.389

To prove the second condition, we have390

u⊤

Ni+1
∑

j=1

Ãi+1,ju = u⊤

Ni+1
∑

j=1

∑

k∈Gi,j

V ⊤
i Ãi,kViu.391

392

Since {Gi,j}16j6Ni+1
form a disjoint partitioning of J1;NiK, we can write393

u⊤

Ni+1
∑

j=1

Ãi+1,ju = u⊤

Ni
∑

k=1

V ⊤
i Ãi,kViu,394

= u⊤V ⊤
i

Ni
∑

k=1

Ãi,kViu.395

396
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Ãi,k is an LSPSD matrix of Ai for k = 1, . . . , Ni. Hence, we have397

u⊤

Ni+1
∑

j=1

Ãi+1,ju 6 kiu
⊤V ⊤

i AiViu,398

6 kiu
⊤Ai+1u.399400

We finish the proof by setting ki+1 = ki.401

Figure 5.1 gives an illustration of the LSPSD construction provided by Proposi-402

tion 5.1. Figure 5.1 (top left) represents the matrix A1. The graph of A1 is partitioned403

into 16 subdomains. Each subdomain is represented by a different color. Figure 5.1404

(top right) represents the matrix V1 whose column vectors form a basis of the coarse405

space S1. Colors of columns of V1 correspond to those of subdomains in A1. Figure 5.1406

(bottom left) represents the matrix A2 = V ⊤
1 A1V1. Note that column and row indices407

of A2 are associated with column indices of V1. Four subdomains are used at level 2.408

The partitioning at level 2 is related to the superdomain G1,j = J4(j−1)+1; 4(j−1)+4K409

for j = 1, . . . , 4. Figure 5.1 (bottom right) represents an LSPSD matrix of A2 with410

respect to subdomain 1 at level 2.411

Theorem 5.2 shows that the third condition of the fictitious subspace lemma412

Lemma 2.1 holds at level i for i = 1, . . . , L.413

Theorem 5.2. Let Ãi,j be an LSPSD of Ai associated with subdomain j, for414

(i, j) ∈ J1;LK × J1;NiK. Let τi > 0, Zi,j be the subspace associated with Ãi,j, and415

Pi,j be the projection on Zi,j as defined in Lemma 2.5. Let ui ∈ R
ni and let ui,j =416

(

Di,j

(

Ini,j
− Pi,j

)

Ri,jui

)

for (i, j) ∈ J1;LK × J1;NiK. Let ui,0 be defined as,417

ui,0 =
(

V ⊤
i Vi

)−1
V ⊤
i





Ni
∑

j=1

R⊤
i,jDi,jPi,jRi,jui



 .418

Let mi = (2 + (2ki,c + 1)kiτi)
−1

. Then,419

ui =

Ni
∑

j=0

R⊤
i,jui,j ,420

and421

(5.1) mi

Ni
∑

j=0

u⊤
i,jRi,jAiR

⊤
i,jui,j 6 u⊤

i Aiui.422

Proof. We have423

Ni
∑

j=0

R⊤
i,jui,j = Vi

(

V ⊤
i Vi

)−1
V ⊤
i





Ni
∑

j=1

R⊤
i,jDi,jPi,jRi,jui



+

Ni
∑

j=1

R⊤
i,jui,j424

425
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Fig. 5.1. Illustration of the LSPSD construction provided by Proposition 5.1. Top left:
the matrix A1, top right: V1, bottom left: the matrix A2 = V ⊤

1
A1V1, bottom right: Ã2,1 =

∑
j∈G1,1

V ⊤
1

Ã1,jV1, where G1,1 = 1, . . . , 4

Since for all y ∈ Si, Vi

(

V ⊤
i Vi

)−1
V ⊤
i y = y, we have426

Ni
∑

j=0

R⊤
i,jui,j =

Ni
∑

j=1

R⊤
i,jDi,jPi,jRi,jui +

Ni
∑

j=1

R⊤
i,j

(

Di,j

(

Ini,j
− Pi,j

)

Ri,jui

)

,427

=

Ni
∑

j=1

R⊤
i,jDi,jRi,jui,428

= ui.429430

To prove the inequality (5.1), we start with the inequality from Lemma 2.4. We431

have432

Ni
∑

j=0

u⊤
i,jRi,jAiR

⊤
i,jui,j 6 2u⊤

i Aiui + (2ki,c + 1)

Ni
∑

j=1

u⊤
i,jRi,jAiR

⊤
i,jui,j ,(5.2)433

434

where we chose uBi
in Lemma 2.4 to be (ui,j)j=0,...,Ni

and uAi
= ui. In Definition 3.2,435
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we defined Zi,j , such that for all w ∈ R
ni,j we have436

(

(Ini,j
− Pi,j)w

)⊤ (

Di,jRi,jAiR
⊤
i,jDi,j

) (

(Ini,j
− Pi,j)w

)

6 τiw
⊤
(

Ri,jÃi,jR
⊤
i,j

)

w.437
438

Hence, in the special case w = Ri,jui, we can write439

440
(

(Ini,j
− Pi,j)Ri,jui

)⊤ (

Di,jRi,jAiR
⊤
i,jDi,j

) (

(Ini,j
− Pi,j)Ri,jui

)

441

6 τi(Ri,jui)
⊤
(

Ri,jÃi,jR
⊤
i,j

)

(Ri,jui).442
443

Equivalently,444

u⊤
i,jRi,jAiR

⊤
i,jui,j 6 τi(Ri,jui)

⊤Ri,jÃi,jR
⊤
i,j(Ri,jui).445446

Plugging this inequality in (5.2) gives447

Ni
∑

j=0

u⊤
i,jRi,jAiR

⊤
i,jui,j 6 2u⊤

i Aiui + (2ki,c + 1) τi

Ni
∑

j=1

(Ri,jui)
⊤Ri,jÃi,jR

⊤
i,j(Ri,jui).448

449

Since Ãi,j is local, we have450

(Ri,jui)
⊤Ri,jÃi,jR

⊤
i,j(Ri,jui) = u⊤

i Ãi,jui, for j = 1, . . . , Ni.451

By using the fact that Ãi,j is LSPSD of Ai for j = 1, . . . , Ni, we obtain the following:452

Ni
∑

j=0

u⊤
i,jRi,jAiR

⊤
i,jui,j 6 2u⊤

i Aiui + (2ki,c + 1) kiτiu
⊤
i Aiui.453

454

Multiplying both sides with mi ends the proof, i.e.,455

mi

Ni
∑

j=0

u⊤
i,jRi,jAiR

⊤
i,jui,j 6 u⊤

i Aiui.456

457

In [3], the authors presented the minimal subspace that replaces Zi,j (defined in (3.3)458

and used in Theorem 5.2) that is required to prove Theorem 5.2. The main difference459

with respect to the subspace that we define in (3.3) is that it is not necessary to include460

the entire kernel of the LSPSD matrix, Ki,j , in Zi,j , see Definition 3.2. Nevertheless,461

in this work, we include the entire kernel of the LSPSD matrix in the definition of462

Zi,j . This allows us to ensure that the kernels of Neumann matrices are transferred463

across the levels, see Theorem 5.4. And in addition, this corresponds to the definition464

used in GenEO [12, Lemma 7.7] and to its implementation in the HPDDM library465

[19].466

Theorem 5.3 provides an upper bound on the condition number of the precondi-467

tioned matrix M−1
i Ai for i = 1, . . . , L.468

Theorem 5.3. Let Mi be the additive Schwarz preconditioner at level i combined469

with the coarse space correction induced by Si defined in (3.4). The following inequality470

holds,471

κ
(

M−1
i Ai

)

6 (ki,c + 1) (2 + (2ki,c + 1)kiτi) .472
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Proof. Lemma 2.2, Lemma 2.3, and Theorem 5.2 prove that the multilevel precon-473

ditioner verifies the conditions in Lemma 2.1 at each level i. Hence, the spectrum of the474

preconditioned matrixM−1
i Ai is contained in the interval [(2 + (2ki,c + 1)kiτi)

−1
, ki,c+475

1]. Equivalently, the condition number of the preconditioned matrix at level i verifies476

the following inequality477

κ
(

M−1
i Ai

)

6 (ki,c + 1) (2 + (2ki,c + 1)kiτi) .478

Proposition 5.1 shows that the constant ki associated with the LSPSD matrices at479

level i is independent of the number of levels and bounded by the number of subdo-480

mains at level 1. Indeed,481

k1 ≥ ki for i = 2, . . . , L.482

Furthermore, in the case where the LSPSD matrices at the first level are the Neumann483

matrices, ki is bounded by the maximum number of subdomains at level 1 that share484

an unknown.485

The constant ki,c for i = 1, . . . , L is the minimum number of distinct colors so that486
{

span{R⊤
i,j}
}

16j6Ni
of the same color are mutually Ai-orthogonal. Both constants487

ki and ki,c are independent of the number of subdomains for each level i.488

The constant τi can be chosen such that the condition number of the precondi-489

tioned system at level i is upper bounded by a prescribed value. Hence, this allows490

to have a robust convergence of the preconditioned Krylov solver at each level.491

Algorithm 5.1 presents the construction of the multilevel additive Schwarz method492

by using GenEO. The algorithm iterates over the levels. At each level, three main493

operations are performed. First, the construction of the LSPSD matrices. At level 1,494

the LSPSD matrices are the Neumann matrices, otherwise, Proposition 5.1 is used495

to compute them. Once the LSPSD matrix is available, the generalized eigenvalue496

problem in (3.2) has to be solved concurrently. Given the prescribed upper bound on497

the condition number, Zi,j can be set. Finally, the coarse space is available and the498

coarse matrix is assembled.499

The following Theorem 5.4, describes how the kernel of Neumann matrices are500

transferred across the levels.501

Theorem 5.4. Suppose that Ã1,j is the Neumann matrix associated with the sub-502

domain Ω1,j for j ∈ J1;N1K. For (i, j) ∈ J2;LK × J1;NiK, let503

• Ãi,j be the LSPSD matrices associated with Ai,j defined in Proposition 5.1,504

• Gi−1,j be the corresponding superdomains,505

• G1
i−1,j be the union of subdomains at level 1 which contribute hierarchically506

to obtain Gi−1,j,507

• ÃGi−1,j
be the Neumann matrix associated with G1

i−1,j (seeing G1
i−1,j as a508

subdomain),509

• AGi−1,j
be the restriction of A to the subdomain G1

i−1,j.510

Then, the kernel of ÃGi−1,j
is included in the kernel of

(

∏i−1
l=1 Vl

)

Ãi,j

(

∏i−1
l=1 Vl

)⊤

.511

Proof. First, note that for any LSPSD matrix computed as in Proposition 5.1, we
have

(

i−1
∏

l=1

Vl

)

Ãi,j

(

i−1
∏

l=1

Vl

)⊤

=

(

i−1
∏

l=1

Vl

)(

i−1
∏

l=1

Vl

)⊤
∑

k∈G1
i,j

Ã1,k

(

i−1
∏

l=1

Vl

)(

i−1
∏

l=1

Vl

)⊤

.
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Algorithm 5.1 Multilevel GenEO

Require: A1 = A ∈ R
n×n SPD, L + 1 number of levels, Ni number of subdomains

at each level, Gi,j sets of superdomains
Ensure: preconditioner at each level i, M−1

i with bounded condition number of
M−1

i Ai

1: for i = 1, . . . , L do

2: for each subdomain j = 1, . . . , Ni do

3: Ai,j = Ri,jAiR
⊤
i,j (local matrix associated with subdomain j)

4: if i = 1 then

5: local SPSD Ãi,j is Neumann matrix of subdomain j

6: else

7: compute local SPSD matrix as

Ãi,j =
∑

k∈Gi,j

V ⊤
i−1Ãi−1,kVi−1

8: end if

9: solve the generalized eigenvalue problem (3.2), set Zi,j as in (3.3)
10: end for

11: Si =
⊕Ni

j=1 Di,jR
⊤
i,jZi,j , Vi basis of Si

12: coarse matrix Ai+1 = V ⊤
i AiVi, Ai+1 ∈ R

ni+1×ni+1

13: end for

14: M−1
i = ViA

−1
i+1V

⊤
i +

∑Ni

j=1 R
⊤
i,jA

−1
i,j Ri,j

Moreover, due to the fact that ÃGi−1,j
and Ã1,k are Neumann matrices, we have

u⊤ÃGi−1,j
u 6 u⊤

∑

k∈G1
i,j

Ã1,ku 6 k1u
⊤ÃGi−1,j

u.

On one hand, the kernels of Ã1,k for k ∈ G1
i,j are included, by construction, in the im-512

age of V1, see Definition 3.2. So is their intersection which is the kernel of
∑

k∈G1
i,j

Ã1,k.513

On the other hand, the previous two-sided inequality implies that the kernels of ÃGi−1,j
514

and
∑

k∈G1
i,j

Ã1,k are identical. Hence, the kernel of ÃGi−1,j
is included in the image515

of QQ⊤, where Q =
(

∏i−1
l=1 Vl

)

.516

Theorem 5.4 proves that the kernel of the Neumann matrix of a union of subdomains517

at level 1 that hierarchically contribute to form a subdomain at level i is conserved by518

the construction of the hierarchical coarse spaces. For example in the case of linear519

elasticity, it is essential to include the rigid body motions in the coarse space in order520

to have a fast convergence. As these are included in the kernel of the Neumann matrix521

of the subdomain, the hierarchical coarse space includes them, consequently.522

6. Numerical experiments. In this section, the developed theory is validated523

numerically with FreeFEM [14] for finite element discretizations and HPDDM [19]524

for domain decomposition methods. We present numerical experiments on two highly525

challenging problems illustrating the efficiency and practical usage of the proposed526

method. For both problems, we use N1 = 2,048 MPI processes (equal to the number527

of subdomains at level 1), and the domain partitioning is performed using ParMETIS528
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[22], with no control on the alignments of subdomain interfaces. We compare the529

two-level GenEO preconditioner and its multilevel extension by varying N2 between 4530

and 256. For the two-level method, N2 corresponds to the number of MPI processes531

that solve the coarse problem in a distributed fashion using MKL CPARDISO [17].532

For the multilevel method, N3 is set to 1, i.e., a three-level method is used. The goal533

of these numerical experiments is to show that when one switches from a two-level534

method with an exact coarse solver, to our proposed multilevel method, the number535

of outer iterations is not impacted. Thus, three levels are sufficient. As an outer536

solver, since all levels but the coarsest are solved approximately, the flexible GMRES537

[31] is used. It is stopped when relative unpreconditioned residuals are lower than538

10−6. Subdomain matrices {Ai,j}16i62,16j6Ni
are factorized concurrently using MKL539

PARDISO, and eigenvalue problems are solved using ARPACK [24]. In both, two-540

and three-level GenEO, we factorize the local matrices A1,j for j ∈ J1;N1K and solve541

the generalized eigenvalue problems concurrently at the first level. For this reason,542

we do not take into account the time needed for these two steps which are performed543

without any communication between MPI processes. We compare the time needed544

to assemble and factorize A2 in the two-level approach against the time needed to545

assemble A2 and local SPSD matrices Ã2,j for j ∈ J1;N2K, solve the generalized546

eigenvalue problems concurrently on the second level, assemble, and factorize the547

matrix A3 in the three-level approach. We also compare the time spent in the outer548

Krylov solver during the solution phase. Readers interested by a comparison of the549

efficiency of GenEO and multigrid methods such as GAMG [1] are referred to [18].550

FreeFEM scripts used to produce the following results are available at the following551

URL: https://github.com/prj-/aldaas2019multi1.552

6.1. Diffusion test cases. The scalar diffusion equation with highly heteroge-553

neous coefficient κ is solved in [0, 1]d (d = 2 or 3). The strong formulation of the554

equation is:555

−∇ · (κ∇u) = 1 in Ω,

u = 0 on ΓD,

∂u

∂n
= 0 on ΓN .

556

557

The exterior normal vector to the boundary of Ω is denoted n. ΓD is the subset558

of the boundary of Ω corresponding to x = 0 in 2D and 3D. ΓN is defined as the559

complementary of ΓD with respect to the boundary of Ω. We discretize the equation560

using P2 and P4 finite elements in the 3D and 2D test cases, respectively. The number561

of unknowns is 441 × 106 and 784 × 106, with approximately 28 and 24 nonzero562

elements per row in the 3D and 2D cases, respectively. The heterogeneity is due563

to the jumps in the diffusion coefficient κ, see Figure 6.1, which is modeled using564

a combination of jumps and channels, cf. the file coefficients.idp from https:565

//github.com/prj-/aldaas2019multi.566

The results in two dimensions are reported in Table 6.1. The number of outer567

iterations for both two- and three-level GenEO is 32. The size of the level 2 operator568

is n2 = 25× 2,048 = 51,200. In all numerical results, the number of eigenvectors per569

subdomain, here 25, is fixed. This is because ARPACK cannot a priori compute all570

eigenpairs below a certain threshold, and an upper bound has to be provided instead.571

1note to reviewers: the repository is now public
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1

5 · 105

1 · 106

1.7 · 106
κ

Fig. 6.1. Variation of the coefficient κ used for the diffusion test case

HPDDM is capable of filtering the eigenpairs for which eigenvalues are above the user-572

specified GenEO threshold from Lemma 2.5. However, this means that the coarse573

operator may be unevenly distributed. With a fixed number of eigenvectors per sub-574

domain, it is possible to use highly optimized uniform MPI routines and block matrix575

formats. Hence, for performance reasons, all eigenvectors computed by ARPACK are576

kept when building coarse operators. It is striking that the multilevel method does not577

deteriorate the numerical performance of the outer solver. For the two-level method,578

the first column corresponds to the time needed to assemble the Galerkin operator A2579

from (3.5) (assuming V1 has already been computed by ARPACK), and to factorize it580

using N2 MPI processes. For the three-level method, the first column corresponds to581

the time needed to assemble level 2 local subdomain matrices {A2,j}16j6N2
, level 2582

local SPSD matrices, solve the generalized eigenvalue problem (3.2) concurrently, as-583

semble the Galerkin operator A3 and factorize it on a single process. The size of584

the level 3 operator is n3 = 20 × N2. For both two- and three-level methods, the585

second column is the time spent in the outer Krylov solver once the preconditioner586

has been set up. In the last column of the three-level method, the number of inner587

iterations for solving systems involving A2, which is not inverted exactly anymore,588

is reported. For all tables, this column is an average over all successive outer itera-589

tions. Another important numerical property of our method is that, thanks to fully590

controlled bounds at each level, the number of inner iterations is low, independently591

of the number of superdomains N2. Because this problem is not large enough, it is592

still tractable by a two-level method, for which HPDDM was highly optimized for.593

Thus, there is no performance gain to be expected at this scale. However, one can594

notice that the construction of the coarse operator(s) scales nicely with N2 for the595

three-level method, whereas the performance of the direct solver MKL CPARDISO596

quickly stagnates because of the finer and finer parallel workload granularity.597

The results in three dimensions are reported in Table 6.2. The number of outer598

iterations for both the two- and three-level GenEO is 19. The observations made599

in two dimensions still hold, and the dimensions of A2 and A3 are the same. Once600

again, it is important to note that the number of outer iterations is the same for both601

methods.602
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two-level GenEO three-level GenEO
N2 CS solve % of nnz A2 CS solve inner it. % of nnz A3

4 2.4 11.9

0.19

6.5 27.4 14 56.0
16 1.8 11.3 3.6 15.4 15 19.0
64 1.9 12.1 3.0 16.7 14 5.5
256 2.4 18.4 2.8 13.9 13 1.4

Table 6.1
Diffusion 2D test case, comparison between two- and
three-level GenEO. The percentage of nonzero entries
in A1 is 0.3%.

two-level GenEO three-level GenEO
N2 CS solve % of nnz A2 CS solve inner it. % of nnz A3

4 7.0 20.9

0.36

16.9 43.6 17 62.0
16 5.0 19.8 7.7 26.7 17 28.0
64 5.1 20.1 5.8 32.7 15 8.9

256 5.2 24.1 5.3 22.6 14 2.6
Table 6.2

Diffusion 3D test case, comparison between two- and
three-level GenEO. The percentage of nonzero entries
in A1 is 0.5%.

6.2. Linear elasticity test cases. The system of linear elasticity with highly603

heterogeneous elastic moduli is solved in 2D and 3D. The strong formulation of the604

equation is given as:605

div σ(u) + f = 0 in Ω,

u = 0 on ΓD,

σ(u) · n = 0 on ΓN .

(6.1)606

607

The physical domain Ω is a beam of dimensions [0, 10] × [0, 1], extruded for z ∈608

[0, 1] in 3D. The Cauchy stress tensor σ(·) is given by Hooke’s law: it can be expressed609

in terms of Young’s modulus E and Poisson’s ratio ν.610

σij(u) =

{

2µεij(u) i 6= j,

2µεii(u) + λdiv(u) i = j,
611

where612

εij(u) =
1

2

(

∂ui

∂xi

+
∂uj

∂xj

)

, µ =
E

2(1 + ν)
, and λ =

Eν

1− 2ν
.613

The exterior normal vector to the boundary of Ω is denoted n. ΓD is the subset614

of the boundary of Ω corresponding to x = 0 in 2D and 3D. ΓN is defined as the615

complementary of ΓD with respect to the boundary of Ω. We discretize (6.1) using616

the following vectorial finite elements: (P2,P2,P2) in 3D and (P3,P3) in 2D. The617

number of unknowns is 146 × 106 and 847 × 106, with approximately 82 and 34618

nonzero elements per row in the 3D and 2D cases, respectively. The heterogeneity is619

due to the jumps in E and ν. We consider discontinuous piecewise constant values620

for E and ν: (E1, ν1) = (2× 1011, 0.25), (E2, ν2) = (107, 0.45), see Figure 6.2.621

Results in two (resp. three) dimensions are reported in Table 6.3 (resp. Table 6.4).622

The number of outer iterations are 73 and 45 respectively. For these test cases, we623
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Fig. 6.2. Variation of the structure coefficients used for the elasticity test case

two-level GenEO three-level GenEO
N2 CS solve % of nnz A2 CS solve inner it. % of nnz A3

4 4.8 52.7

0.18

22.5 179.3 31 43.0
16 3.9 50.3 9.3 124.9 57 17.0
64 4.0 53.1 7.2 71.5 34 4.9
256 4.8 63.2 6.8 71.2 44 1.4

Table 6.3
Elasticity 2D test case, comparison between two- and
three-level GenEO. The percentage of nonzero entries
in A1 is 0.4%.

slightly relaxed the criterion for selecting eigenvectors in coarse spaces, which explains624

why the iteration counts increase. However, the same observations as for the diffusion625

test cases still hold. The dimension of the level 2 matrix is n2 = 50×2,048 = 1.02·105,626

while for the level 3 matrix it is n3 = 20 × N2. This means that 50 (resp. 20)627

eigenvectors are kept per level 1 (resp. level 2) subdomains. We observe that the628

number of iterations of the inner solver increases slowly when increasing the number629

of subdomains from 4 to 256 in the 2D case and remains almost constant in the 3D630

case. In terms of runtime, the two-level GenEO is faster than three-level GenEO for631

these matrices of medium dimensions.632

To show the potential of our method at larger scales, a three-dimensional linear633

elasticity problem of size 593 × 106 is now solved on N1 = 16,384 processes and634

N2 = 256 superdomains. With the two-level method, A2 is assembled and factorized635

in 40.8 seconds. With the three-level method, this step now takes 35.1 seconds, see636

Table 6.5. There is a two iterations difference in the iteration count. Not taking637

into account the preconditioner setup, the problem is solved in 222.5 seconds in the638

two-level case and 90.1 seconds in the multilevel case. In this test case the cost of639

applying the two-level preconditioner on a given vector is approximately twice the cost640

of applying the multilevel variant. At this regime, it is clear that there are important641

gains for the solution phase. At even greater scales, gains for the setup phase are642

also expected. Moreover, another interesting fact to note regarding computation time643

is that the generalized eigenvalue problems solved concurrently at the first level to644

obtain V1 actually represents a significant part of the total time of 377.6 seconds (resp.645

244.8 seconds) with the two- (resp. three-)level method: 78.2 seconds. This cost can646

be reduced by taking a larger number of (smaller) subdomains, with the drawback of647

increasing the size of V1 and thus A2. This drawback represents a clear bottleneck648

for the two-level method but is alleviated by using the three-level method, making it649

a good candidate for problems at greater scales.650

7. Conclusion. In this paper, we reviewed general properties of overlapping651

Schwarz preconditioners and presented a framework for its multilevel extension. We652
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two-level GenEO three-level GenEO
N2 CS solve % of nnz A2 CS solve inner it. % of nnz A3

4 28.5 46.9

0.38

78.9 296.7 23 43.0
16 17.3 35.4 24.5 124.5 23 19.0
64 15.0 33.2 15.4 62.2 21 7.9

256 13.6 40.7 10.6 50.7 23 2.5
Table 6.4

Elasticity 3D test case, comparison between two- and
three-level GenEO. The percentage of nonzero entries
in A1 is 3.3%.

two-level GenEO three-level GenEO
N2 CS solve CS solve inner it.
256 40.8 222.5 35.1 90.1 11

Table 6.5

Elasticity 3D test case, comparison between two- and three-level GenEO

generalized the local SPSD splitting presented in [3] to cover a larger set of matrices653

leading to more flexibility for building robust coarse spaces. Based on local SPSD654

matrices on the first level, we presented how to compute local SPSD matrices for655

coarser levels. The multilevel solver based on hierarchical local SPSD matrices is656

robust and guarantees a bound on the condition number of the preconditioned matrix657

at each level depending on predefined values. Numerical experiments illustrate the658

theory and prove the efficiency of the method on challenging problems of large size659

arising from heterogeneous linear elasticity and diffusion problems with jumps in the660

coefficients of multiple orders of magnitude.661
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