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The polynomial sets { Y,(x; k)} and { Z3(x; k)}, discussed by Joseph
D. E. Konhauser, are biorthogonal over the interval (0, o) with respect to
the weight function x% ~*, where @« > —1 and £ is a positive integer. The
object of the present note is to develop a fairly elementary method of
proving a general multilinear generating function which, upon suitable
specializations, yields a number of interesting results including, for exam-
ple, a multivariable hypergeometric generating function for the multiple
sum:
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(*) Z (m + nl + -t nr)!Yrg+nl+~~~+n,(x; k)
ny,..., n,=0
ﬁ fo()’i? s)ul
i=1 (1 + Bi)s,n, ’
involving the Konhauser biorthogonal polynomials; here, by definition,
a> -1, B,>-1; k,s;,=1,2,3,...; vie{l,...,r}.

1. Introduction. Joseph D. E. Konhauser ([5]; see also [4]) intro-
duced two interesting classes of polynomials: Y,*(x; k) a polynomial in x,
and Z%(x; k) a polynomial in x*, « > —1and k = 1,2,3,.... Fork =1,
these polynomials reduce to the classical Laguerre polynomials L{*(x),
and for k = 2 they were encountered earlier by Spencer and Fano [8] in
the study of the penetration of gamma rays through matter and were
discussed subsequently by Preiser [7]. Also [5, p. 303]
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so that the Konhauser polynomial sets { Y,*(x; k)} and { Z3(x; k)} are
biorthogonal over the interval (0, co) with respect to the weight function
x%~*, where « > —1, k is a positive integer, and §,,, is the Kronecker
delta.

The following explicit expression for the polynomials Z%(x; k) was
given by Konhauser [5, p. 304, Eq. (5)]:

kj

Q) zpxey =Tt D ¢ g ()2

n! =0 (b +a+1)°

Subsequently, Carlitz pointed out that [2, p. 427, Eq. (9)]
1 & x/ g NI+ a+1
®  mEo-g DT EE0()EE,

where (A), = T'(A + n)/T(N).

In a recent paper [10] we derived various properties of (for example)
the Konhauser biorthogonal polynomials Y(x; k) by suitably specializ-
ing those of the Srivastava-Singhal polynomials G{*)(x, h, p, k) which are
defined by the generalized Rodrigues formula [14, p. 75, Eq. (1.3)]
x~kn=aexp( px")

n!

(4) G(x,h,p, k)=

~(xk+1Dx)"{x“exp(—px")}, D =—

and given explicitly by [14, p. 77, Eq. (2.1)]

() G(x ko p.k) = "f“’x)jé ).

where the parameters a, &, k and p are unrestricted, in general. In fact, by
comparing (5) with Carlitz’s result (3), we at once deduce the known
relationship [13, p. 315, Eq. (83)]

(6) Y(x;k)=k "GV (x,1,1,k), a>-1;k=1,23,. ..,

which was of fundamental importance in our paper [10].

The object of the present note is first to give a rather elementary
proof of a general multilinear generating function for the Srivastava-
Singhal polynomials G{*)(x, h, p, k). We then show how this multilinear
generating function can be further generalized and applied to derive a
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number of interesting results including, for example, a multivariable
hypergeometric generating function for the multiple sum (*) involving the
product of several Konhauser biorthogonal polynomials. Our main result
is contained in the following

THEOREM. For a bounded multiple sequence { A(n,,...,n,)} of arbitrary
complex numbers, let

(7) H[ny,...on;m,...0]

[ny/m] [n,/m,] (_nl)mljx (_nr)m,j,
— Z .. j ' .« .. j !
i=0 =0 v ’

'A(.jlﬁ""jr)yljl e rjr’
where m,,. . .,m, are positive integers. Also let A, be defined by

(8) A=1-Yu, r=123,....

Then, for every nonnegative integer m,

(9) Z (m+n1+ oo tn )'G,(n"ﬁnl +n,(x’h’pak)

ny,...,n,=0

u k " (u,/k "
-af[nl,...,n,;yl,. . ]( 1/ ) . ;. !)
= k™ exp( px")A;m—e/k

> hn + «

S N e
U{[( u/A,)"y]" } k # 0,

n;!

provided that the multiple series on the right-hand side of (9) has a meaning,
and

(10) lu, + -+ u,|< 1.
2. Proof of the theorem. For convenience, let (u,,...,u,) denote

the left-hand side of (9), and set
(11) N=n+ ---4+n, and J=myj;+ ---+m,j,.
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Applying the explicit representation (5) and the definition (7), we find
that

(12)  Quy,...,u)=k™ Y ul---u™
ny,..., n,=0
miN (px")’ L ({j\[ A+ a
j=0 J: 1=0 l m+N
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: \(hl+ a
D
Eo( ) { k m+N+J
Now we appeal to the series identity [9, p. 4, Eq. (12)]
00 " n,
(13) )> f(n1+--'+nr)u1'...u"
ny,..., n,=0 ny n,

and (12) becomes

(14) Quy,...,u,) =k | Y

n,f1se-.0fp=0

r —u, m ) Ji\ m+n+J A
1—[{[( 2 Y] } y (P")
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where J is defined, as before, by (11).
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The innermost sum in (14) is the jth difference of a polynomial of
degree m + n + J in a; it is nil when j > m + n + J. Thus we have

m+n+J ( h)j J . hl +
px tfJ a
j=0 J! =0 l k m+n+J
/ J
hl + _pxh ) pxh
=0 m+n+J j=0 ]
(Al + a (—px")’
= exp(px") X ( A ) —,r—)‘
=0 m+n+J .

and substituting this expression in (14), and applying the binomial expan-
sion to sum the resulting n-series, we finally obtain

(15) @(uy,...,u,)=k" exp( pxh)A:m~u/k

!
ol W+ o 1 . . px"
£ e (haca o -22)

Ljis-ees J,=0

r —u/A )™ 14
.n{[( ul/];) yl] }, k+0,
i=1 i

where A, and J are given by (8) and (11), respectively, and the inequality
in (10) is assumed to hold.

The right-hand sides of (9) and (15) are essentially the same. This
evidently completes the proof of our theorem under the hypothesis that
the various interchanges of the order of summation are permissible by
absolute convergence of the series involved. Thus, in general, our theorem
holds true whenever each member of (9) has a meaning.

ReMARK. Our method of derivation can be applied mutatis mutandis
in order to prove the following generalization of the multilinear generating
function (9):

oo}

(16) Z (m + nl + - +nr)!'g;n(i)nl+-~+n,(x’h’ pik)
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where, in terms of the bounded sequence {£,} of arbitrary complex
numbers,

17) Z‘“’(x,h,p,k)=%§o( )’2:: () (hl+a),,’

which obviously reduces to the Srivastava-Singhal equation (5) when
§=11>0.

3. Applications. By assigning suitable special values to the arbi-
trary coefficients A(j,...,j,), the multiple sum in (7) can indeed be
expressed in terms of the generalized Lauricella hypergeometric function
of r variables [11, p. 454]. Thus, following the various notations and
conventions explained fairly fully by Srivastava and Daoust ([11, p. 545 et
seq.]; see also [12]), we obtain from our theorem the multivariable hyper-
geometric generating function:

o0

(18) Z (m+n1+ ”'+n)'Gr(na+n1 +n,(x’h’p’k)
ny,..., n,=0

.FA:1+B’;---;1+B"’ [(0)30’»--’0(’)]:['"1:’"1]’ [(6):¢7;---;
c: D;---; DV [():v,....97]: [(d):87];-;
[—n,:m,],[(b(’)):qb(”]; (.u_l m & n,
(aoyeae] ¢ (%)

7. . (r)

= km ) ex thma/kFl'l‘AOB ,B
( o) C:1;D";-++; DV

([m+a/k:h/k,ml,...,m,],[(a):0,0’,...,0(”] _
[(e):0,¢,. .. 0] :[a/k: hyk];

[(8):¢0; - [(3): 6] _ _
[(d):87];- [(d")) a(r)] Eo» Ep- -o,-,), k#0,

where h/k > 0, A, is given by (8), and

— x" _ u \"™
(19) ':'0= _i)h/k, :"i=y,'('__) N l=1,...,r.

Next we set A = C = 0 in (18) and, for convenience, let each of the
positive coefficients ¢, j = 1,...,B"; 8, j=1,...,DV (i=1,...,r)
equal 1. Denoting the array of parameters

(—ni+j—1)/mi9 j=1a'-"m',

il
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by A(m; —n;),i=1,...,r, we thus find from (18) that

oo
(200 X (mAm+ A n)Gin Xk, p LK)

nyyens n,=0

H{m+5<)FD()[A(mi;—ni)’ (o; ym'm‘}(%)m}

(d®);
= ( ) exp( px")A;mm ek

0 B(r) [m+as/k:h/k,my,...,m}:———————;
[a/k: h/k];

[(b/):ll;”';[(”(’))ill; = 5. 5|, k%0
[(d,)ll];c-.;[(d(")):ll;""0"-1,-..,,_’ , ,

where h/k > 0, A, is given by (8), and £, E,,..., =, are defined by (19).

Obviously, this last formula (20) generates the product of r gener-
alized hypergeometric polynomials; it is a generalization of several known
results due to Srivastava and Singhal [15].

For special values of the parameters, the Srivastava-Singhal poly-
nomials G{*(x, h, p, k) can be reduced to the classical Hermite and
Laguerre polynomials and their various generalizations studied in the
literature (cf. [14, p. 76]). Furthermore, the generalized hypergeometric
polynomials occurring in (20) can be specialized to several important
classes of hypergeometric polynomials including, for example, the classical
Hermite polynomials and their such generalizations as those considered
by Gould and Hopper [3, p. 58]

01 D

[n/m] n'

(21) gr(x,\) = B \ixnmi
(x, A) ,-‘;0 Jin = mj)!

_xanO{A(m; —n); ;\(_1;1)’"],

b

and by Brafman [1, p. 186]
(22) Bl ay,...,a,; By, .., B, x]

[A(m; -n), a,...,a,; J
X1,
Bl""?ﬁs;

where, as in (20), A(m; —n) abbreviates the array of m parameters

(—n+j-1)/m, j=1,..m,

= .+ F

m+r-s
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m being an arbitrary positive integer. The details involved in these
derivations of known or new multilinear generating functions from (20)
may be left as an exercise to the interested reader.

Yet another interesting application of our theorem would result when

in (18) we set

h=p=1, A=B®=C=D®-1=0,

dP=1+8, 8 =5, m,=1, i=1,...r,
replace @ by a + 1, and y, by y%, i = 1,...,r, and appeal to the relation-
ship (6) and to the explicit representation (2). We thus obtain our desired

multilinear generating function for the Konhauser biorthogonal polynomi-
als in the form:

e e}

(23) Z (m + nl + -t nr)!Yrg+n1+‘-~+n,('X; k)

T2 (y"s>u—+;s‘>:}

_ (0‘ + 1) e XA —m—(a+1)/k
m r

O([m +(a+1)/k:1/k,1,...,1]:

b

[(a + 1)/k:1/k]; [1 +,81:s1];’ :

T X wmay u)r
[1+8:5,]; Ak A, 77 A )
where, by definition,
(24) a> —-1; B, > —1; k,s,=1,2,3,...; vie{l,...,r}.

A seriously erroneous version of a special case of the multilinear
generating function (23), when s, = --- = s, = 5, was proven earlier by
Patil and Thakare [6] who incidentally used a markedly different method.
In fact, (23) with k = 5, = --- =5, = 1 is a well-known result (involving

the classical Laguerre polynomials) due to Srivastava and Singhal [15, p.
1239, Eq. (5)].

Since s,,...,s, are, by definition, positive integers, the multilinear
generating function (23) would follow also as an obvious special case of
(20).
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