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A multilinear mixing model for nonlinear spectral

unmixing
Rob Heylen, Paul Scheunders

Abstract—In hyperspectral unmixing, bilinear and linear-
quadratic models have become popular recently, and also the
polynomial post-nonlinear model shows promising results. These
models do not consider endmember interactions involving more
than two endmembers, although such interactions might compose
a nontrivial part of the observed spectrum in scenarios involving
bright materials and complex geometrical structures such as
vegetation and intimate mixtures. In this work, we present
an extension of these models to include an infinite number of
interactions. Several technical problems such as divergence of
the resulting series can be avoided by introducing an optical
interaction probability, which becomes the only free parameter
of the model in addition to the abundances. We present an
unmixing strategy based on this multilinear mixing model,
present comparisons with the bilinear models and the Hapke
model for intimate mixing, and show that in several scenarios,
the multilinear mixing model obtains superior results.

I. INTRODUCTION

In hyperspectral unmixing applications, the aim is to de-

compose the spectrum observed in a pixel of a hyperspectral

image into different contributions from elemental materials.

Typically, one assumes that there exist a number of pure

materials, named endmembers, and that each endmember

comprises a certain fractional area of the instantaneous field

of view (IFOV) of the pixel, known as the abundance of

the endmember. The observed spectrum then depends of

the spectra of the individual endmembers and their relative

abundances in the pixel according to some mixing model.

The simplest mixing model assumes that there are no

interactions between endmembers, and that each incoming

light ray interacts with only a single material before reaching

the observer. This leads to a linear mixing model (LMM),

where the observed spectrum is a convex linear combination of

the endmember spectra. Convexity arises due to two physical

constraints: Since the abundances are relative areal fractions,

they have to be non-negative, yielding the abundance non-

negativity constraint (ANC). Furthermore, one typically as-

sumes an abundance sum-to-one constraint (ASC) as well,

reasoning that the entire spectral signal has to be decomposed

into endmember contributions, disallowing unknown signal

components or scaling factors. Several authors consider this

latter constraint too restrictive, and alleviate it by introducing

a zero or shadow endmember, or by simply discarding this

constraint. In all cases, the resulting set of pixel values allowed

by the model will still be a convex set.

Due to its simplicity and intuitive interpretation, the LMM

has become a very popular model for unmixing, and has shown

great results in many scenarios, especially those involving

large flat areas with clearly separated regions containing differ-

ent endmembers. However, there are several situations where

the LMM no longer functions well due to the breakdown of

the used assumptions. One notable example are scenes with

large geometrical structures such as buildings or trees, where

shadowing and mutual illumination start to play a large role.

Another example are mineral mixtures, where an incoming

light ray can interact many times with the different mineral

grains, and the single interactions assumed in the LMM

can even become relatively rare [1]. Furthermore, the LMM

only considers reflection and disregards optical transmission,

which can become quite important in vegetation and mineral

mixtures.

To cope with these additional complexities, more involved

models have been developed over the years. These nonlin-

ear models can be divided into several different categories,

depending on the intended application or their complexity.

In this work, we will focus mainly on the models used in

remote sensing, and more specifically, hyperspectral image

processing.

A first class of nonlinear models are the bilinear or linear-

quadratic models, which extend the LMM with additional

terms that describe spectral interactions between two end-

members. Many such models have been introduced, each with

its own mixing model, restrictions, and underlying physical

reasoning. The model proposed by Nascimento [2] and Somers

[3] assumes that the bilinear interaction terms can be con-

sidered as extra endmembers, leading to a LMM consisting

of both linear and bilinear terms. Remark that this model

has been proposed for two endmembers in [4] as well. Other

approaches, such as the Fan model [5], the generalized bilinear

model (GBM) [6] or the polynomial post-nonlinear model

(PPNM) [7], [8] scale the bilinear interactions with the linear

abundances, reasoning that the probability of interacting with

two different materials should be proportional to their presence

in the pixel. It is this class of bilinear models that we will

consider in this paper, focusing especially on the PPNM

model. Several other bilinear or linear-quadratic models can

be found in [9], [10], and detailed overviews of these models

and their differences can be found in the review papers [11],

[12].

These bilinear models can in theory be extended to allow

interactions between more than two endmembers by introduc-

ing trilinear or higher-order terms, or by using higher-order

polynomials in the PPNM. However, it is argued in several of

the papers on the bilinear models [4], [8] that such higher

order terms do not contribute significantly to the spectral

signal, as they involve multiplications of several reflectance
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and abundance values that are all smaller than one. Their

contribution to the total spectral signal is not considered to

be significant enough to merit their added complexity, as

adding such higher order terms will usually lead to models

that become very hard to solve. On the other hand, in certain

other scenarios such as mineral mixtures involving very bright

components [1], it is observed that multiple reflections will

start to play a dominant role in the observed spectral signal,

and third-order reflections or higher can no longer be simply

dismissed. A similar reasoning can be made for vegetation

canopies, where the often dense three-dimensional structures

might be expected to generate a significant fraction of higher-

order interactions.

Two broad and overlapping classes of nonlinear mixing

models that take such higher-order interactions into account

are, with increasing complexity, the layered models and the

radiative transfer models. Both have been used to describe

vegetation and mineral mixtures, and show sometimes dra-

matic improvements over linear mixing models. In layered

models, one severely simplifies the geometrical description

of a complex scene by modeling it as a stack of layers or

plates. Depending on the model, techniques from radiative

transfer, radiosity theory or transfer matrix techniques are used

to derive the resulting mixture models. In all these layered

models, transmission through layers is also taken into account.

Some notable examples of mixing models based on a layered

approach are the canopy model derived in [13] based on

radiosity theory, the isograin model for mineral mixtures in

[14], [15] which uses transfer matrices, or radiative transfer

based models such as the Shkuratov model [16] and the model

proposed in [17].

Many radiative transfer based models that do not assume a

layered geometrical structure have been derived as well, and

have reached very high levels of complexity, integrating a large

amount of possible optical and physical effects that can be

present in mineral mixtures, such as coherent backscattering,

porosity, interference, the effects of grain sizes and shapes.

One of the first such models which is also often used in

hyperspectral unmixing was the Hapke model [1], which has

been constantly refined since its inception. We do not aim to

provide a detailed description of these types of models, but

refer to the rich literature on these models. See e.g. [18], [19]

and references therein. Furthermore, we refer to the overview

paper [11] and references therein for a much more detailed

explanation of many of the models and concepts described in

this section.

One problem with layered or radiative transfer based models

is that while they are excellent forward models, they can often

not be easily used for hyperspectral unmixing. If all the physi-

cal properties of a scene and its components are known, these

models excel at predicting the resulting reflectance. For the

unmixing application however, we need to invert these models,

as we want to know the abundances of the endmembers given

only the observed reflectances. This is usually very hard to

do without several strong additional assumptions, destroying

much of the strength of such models.

In this work, we present a new model which takes multiple

reflections into account: the multilinear mixing (MLM) model.

The MLM model can be considered as an extension of the

bilinear models to include all orders of interactions, or as an

extension of the PPNM to all degrees. The MLM model intro-

duces but a single parameter which describes the probability

of undergoing further interactions. This makes the model com-

putationally and analytically tractable, and physically sound,

as opposed to several other possible extensions of the bilinear

models which are not physical or possess a high complexity.

The model is not as advanced as several of the layered or

radiative transfer based models, which is also one of its

strengths: The resulting mixing equation can be easily inverted,

and used for practical unmixing applications. Furthermore,

the MLM model provides a per-pixel estimate of the size of

the nonlinear component. This way, maps can be generated

indicating where nonlinear effects manifest themselves, which

can be useful information in many scenarios.

This paper is organized as follows: In section II we present

several existing bilinear models, and show some difficulties

one might encounter when these models are extended to

an infinite number of interactions. In section III the MLM

model is introduced. We first explain the underlying physical

interpretation, show how a mixing model can be derived from

these assumptions, and finally how this model can be inverted

and solved given a data set and known endmembers. Next,

several experiments on synthetic and real data follow in section

IV, along with comparisons with several alternatives, such as

the LMM, bilinear models, and the Hapke model for intimate

mixtures. Section V contains the conclusions, followed by the

bibliography.

II. BILINEAR MODELS

Consider a data matrix X = (x1, . . . ,xN ) containing

columnwise the N data points {xi}Ni=1 in a d-dimensional

spectral space, and p endmembers listed columnwise in the

endmember matrix E = (e1, . . . , ep). The LMM given in

(1) then assumes that each data point can be constructed

as a convex linear combination of endmembers, with their

respective abundances as linear coefficients

x =

p
∑

i=1

aiei + η (1)

where also additive Gaussian noise is added to each band,

represented by the noise vector η. The constraints on the

abundances are the ANC and ASC:

∀i : ai ≥ 0,

p
∑

i=1

ai = 1 (2)

As noted in the introduction, this model cannot deal with

multiple reflections that often occur in many situations, and

several authors have hence augmented the LMM with bilinear

terms. The Fan bilinear model [5] is given by

x =

p
∑

i=1

aiei +

p−1
∑

i=1

p
∑

j=i+1

aiajei ⊙ ej + η (3)

where x ⊙ y = (x1y1, . . . , xdyd) is the Hadamard or

element-wise product of two vectors. The constraints on the
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abundances are the traditional ANC and ASC also employed in

the LMM (2). The bilinear terms in the Fan model are scaled

with the respective abundances, reasoning that the probability

that a light ray interacts with any two endmembers has to be

proportional to their abundances in the scene.

The generalized bilinear model extends the Fan model by

including additional free parameters γij ∈ [0, 1] in each

bilinear interaction:

x =

p
∑

i=1

aiei +

p−1
∑

i=1

p
∑

j=i+1

γijaiajei ⊙ ej + η (4)

These additional parameters allow more flexibility in the

model, and allow for better spectral reconstructions. The

amount of free parameters can become quite large for increas-

ing values of p, which can cause numerical problems.

A linear-quadratic model that was recently proposed is

the PPNM. The mixing model contains two steps: First, the

spectrum is linearly mixed with the LMM. Next, a polynomial

transformation of the resulting spectrum is performed to intro-

duce nonlinearities. In [7], [8], only a second-order polynomial

is assumed, leading to a linear-quadratic model, or a bilinear

model which includes self-interactions. The modeled spectrum

x is obtained as

x = y + b (y ⊙ y) + η (5)

y =

p
∑

i=1

aiei (6)

with b a parameter which scales the size of the quadratic

term. By substitution, this mixing model can also be written

as

x =

p
∑

i=1

aiei + b

p
∑

i=1

p
∑

j=1

aiajei ⊙ ej + η (7)

Note that both the Fan model and the GBM exclude self-

interaction terms such as ei ⊙ ei, while these are included in

the PPNM. It is noted in several papers [9], [20] that self-

interactions can form an important contribution in the total

spectral signal, and should hence be allowed.

Furthermore, most images used in hyperspectral remote

sensing are reflectance images, and the spectral vectors are

restricted to the interval [0, 1]d. The mixing models should

reflect this restriction, which is not the case in the GBM,

PPNM or Fan model as these models can output modeled

spectra outside this range.

Note that several other types of bilinear models exist as well,

with sometimes very different interpretations or derivations

[3], [2], [9], [10]. We will only consider bilinear models that

scale the bilinear terms with the abundances.

Extending the models proposed in previous section with

higher-order terms is not straightforward. Consider for in-

stance the following noiseless mixing equation, which is the

PPNM with b = 1, or a version of the Fan model where self-

interactions are added:

x =

p
∑

i=1

aiei +

p
∑

i=1

p
∑

j=1

aiajei ⊙ ej (8)

If we extend this model to include higher order interactions,

this becomes

x =

p
∑

i=1

aiei +

p
∑

i=1

p
∑

j=1

aiajei ⊙ ej

+

p
∑

i=1

p
∑

j=1

p
∑

k=1

aiajakei ⊙ ej ⊙ ek + . . . (9)

or by using the same substitution (6) as in the PPNM

x = y + (y ⊙ y) + (y ⊙ y ⊙ y) + . . .

=

∞
∑

i=1

y
i (10)

where all algebraic operations containing vectors have to be

considered on a component-wise basis. As all components of

y are in [0, 1], this leads to

x =
y

1− y

=

∑p

i=1
aiei

1−∑p

i=1
aiei

(11)

It is immediately clear that the resulting reflectance will

not stay bounded to [0, 1], and that simply extending the Fan

model to an infinite number of multilinear interactions will

not give a realistic model.

III. THE MULTILINEAR MIXING MODEL

A. Derivation of the model

We propose a new nonlinear mixing model that solves

several of the problems described in the previous section. The

model includes all degrees of endmember interactions, and

has a clear underlying physical reasoning. Furthermore, the

reflectance vectors generated by the model stay constrained to

the allowed interval [0, 1]. This can be accomplished by con-

sidering the reflection process as a discrete Markov process.

We use a ray-based approximation of light, and trace

the path that a single light ray follows before reaching the

observer. This path is modeled as a discrete Markov chain,

subject to the following rules:

• A light ray incoming from the source will interact with

at least one material.

• After each interaction with a material, the ray will have

a probability P of undergoing further interactions, and a

probability (1 − P ) of escaping the scene and reaching

the observer.

• The probability of interacting with material i is propor-

tional to its abundance ai.

• When a light ray is scattered by material i, its intensity

changes according to that material’s albedo wi ∈ [0, 1]d.
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Source

1− P
a1

a2

w1

w2

1− P

Observer

Pa1

Pa2

Pa2 Pa1

Fig. 1: Diagram describing the transition probabilities between

source, endmembers and observer for a two-endmember sce-

nario.

This process is illustrated for a two endmember scenario

in the diagram in Fig. 1, where a directed graph is used to

represent the transition probabilities. From this diagram, it can

be easily seen that the probability that a light ray will follow

a sequence (wi1 ,wi2 , . . . ,wiR) before reaching the observer

is given by

Prob(wi1 ,wi2 , . . . ,wiR) = (1 − P )PR−1ai1ai2 . . . aiR (12)

The spectral contribution of such a path is wi1 ⊙wi2 ⊙ . . .⊙
wiR . The total observed reflectance under these assumptions

then becomes the sum over all possible paths of these contri-

butions, each weighted by their corresponding probability:

x =
∞
∑

R=1

(

p
∑

i1=1

. . .

p
∑

iR=1

)

(1− P )PR−1

R
⊙

k=1

(aikwik) (13)

This summation can be conveniently written as a multilinear

expansion. The resulting MLM model becomes

x = (1− P )

p
∑

i=1

aiwi + (1− P )P

p
∑

i=1

p
∑

j=1

aiajwi ⊙wj

+(1− P )P 2

p
∑

i=1

p
∑

j=1

p
∑

k=1

aiajakwi ⊙wj ⊙wk . . .

= (1− P )y + (1− P )Py
2 + (1− P )P 2

y
3 . . .

= (1− P )y + Py ⊙
(

(1 − P )y + P (1− P )y2 . . .
)

= (1− P )y + Py ⊙ x

with y =
∑

i aiwi. The solution is given by

x =
(1− P )y

1− Py
(14)

=
(1− P )

∑p

i=1
aiwi

1− P
∑p

i=1
aiwi

(15)

Remark that in reality, spectral noise will be present, and a

noise vector η has to be added to (15).

B. Properties of the MLM model

The reflectance values allowed by the mixing equation (15)

of the MLM model will always lie in the interval [0, 1] for

P < 1. Remark that the model can be reduced to the LMM

by choosing P = 0. Furthermore, there is only a single

parameter P in addition to the set of abundances {ai}pi=1
,

with a clear physical interpretation: P is the probability of

undergoing further interactions, and hence specifies the size

of the nonlinear component in the model. This can be useful

for detecting deviations from the LMM, and where nonlinear

effects are present in an image. This possible use of the model

will also be illustrated in the experiments.

The MLM model assumes that a light ray has a proba-

bility P of undergoing further interactions at each step. The

probability of reaching the observer at each interaction is

a binomial trial with success rate (1 − P ). The number of

spectral interactions X before reaching the observer follows a

geometric distribution, as

Prob (X = R) = (1− P )PR−1 (16)

The average number of interactions is given by

E(X) =
1

1− P
(17)

It must be noted that the geometric distribution is a heavy

tailed distribution, hence light rays undergoing many more

interactions than this average can be expected.

The albedos {wi}pi=1
used in the model define how the light

intensity changes when a ray bounces off the corresponding

material, and play the role of endmembers in the model. Such

endmembers are in practice often obtained from image pixels,

as many endmember extraction algorithms (EEAs) employ

the pure pixel assumption. Such a pure pixel might contain

multiple reflections as well, and as such be a composite of

single and multiple reflected paths. This distinction becomes

important when the total contribution of multiply reflected

paths becomes large, for instance in mineral mixture scenarios.

The Hapke theory of reflectance also exploits this difference,

and treats the albedo as a linear mixture instead of the observed

total reflectance.

When only a single material with albedo wi is present in a

pixel, the mixing equation (15) reduces to

ei =
(1− Pi)wi

1− Piwi

(18)

which can be inverted as

wi =
ei

Piei + 1− Pi

(19)

It is thus in theory possible to determine the albedo wi

that corresponds with an observed endmember spectrum ei,

as long as the variable Pi is known beforehand. Furthermore,

as each pure material might show a different reflectance-albedo

relation, the Pi values can be different for every endmember.
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This would introduce p additional parameters in the mixing

equation, one for each endmember, resulting in a much more

involved model. Fortunately, in most practical situations in

remote sensing, one can assume that the nonlinear effects are

relatively small, which results in small values of Pi, and small

differences between albedo and reflectance: ∀i : ei ≈ wi. We

will clearly indicate how we handled the reflectance-albedo

relation in each of the experiments.

Furthermore, it must be noted that (15) is also well defined

for P < 0. Although the physical reasoning that led to (15)

is no longer valid (P would become a negative probability),

the mixing equation can in theory be used for negative values

of P as well, as the resulting reflectance values will still be

restricted to the range [0, 1] for any P < 1. The effect of the

nonlinear behavior in this case would be to increase the total

observed reflectance instead of causing a decrease with respect

to the LMM result with the same endmembers and abundances.

Such a situation might occur due to two reasons: A pixel

might receive additional illumination from three-dimensional

structures outside its IFOV, or the albedo vectors {wi}pi=1
are

erroneous. The latter situation might occur if one or several

materials do possess a high degree of multiple scattering, and a

conversion from reflectance to albedo has not been performed.

An alternative motivation for relaxing the constraint on

P can be obtained by redefining the reflection process to

include additional unknown scaling factors in each endmember

spectrum, which will allow more flexibility in the model.

Such an approach has been successfully used in the partially

constrained least-squares unmixing algorithm [21] to deal

with spectral variability, and in the Fan model [5] to obtain

the GBM [6]. Remark that this is a reinterpretation of the

reflection process which has no effect on the mixing equation

(15), except for relaxing the constraint to P < 1. Values for

P of one or larger are mathematically impossible as they will

lead to singularities in (15).

An illustration of the data manifold generated by (15) is

shown in Fig. 2, and the values of x as a function of y given by

(14) are shown in Fig. 3. It can be seen from these figures that

values of P in [0, 1] will cause a decrease of the reflectance

with respect to the LMM, while P < 0 will cause an increase.

The abundances in the model now correspond with the prob-

ability that a light ray will interact with a given material. In the

LMM, this corresponds with the fractional areal presence of

the endmember in the pixel’s field of view. In the MLM model

this interpretation is not longer valid, and it is not sure that an

abundance can be interpreted as a true areal fraction. Similar

difficulties arise in other bilinear models [3]. Fortunately, the

abundances in the MLM model still have a clear physical

meaning, and also obey standard constraints such as the ANC

and ASC. It does not seem unreasonable to assume a close

similarity of the interaction probabilities in the MLM model

with areal abundances, or other interpretations of abundances

in spectral unmixing settings, such as volumetric fractions.

C. Unmixing strategy

To unmix a hyperspectral data set with the MLM model,

we first assume that the albedos are available, e.g. obtained as

1

0.8

0.6

0.4

0.2

0
10.80.60.40.20

0.6

0

0.2

0.4

1

0.8

Fig. 2: Three endmembers in three dimensions (black circles),

the paths that the endmembers follow when P is varied in

[0, 1] (blue) or for P < 0 (gray), the manifold induced by the

MLM model for P = 0 (black), P = 0.25 (red), P = 0.5
(green) and P = 0.75 (cyan).

y
0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5
-1
0
0.25
0.5
0.75
0.9

Fig. 3: The value of x as a function of y for different values

of the parameter P , indicated in the legend.

endmember spectra with an EEA such as vertex component

analysis (VCA) [22] or available from a library. Because we

assume that the mixtures follow mixing equation (15), but are

corrupted by additive uncorrelated Gaussian noise, we want

to find the set of abundances {ai}pi=1
and the value of P that

minimizes the reconstruction error (RE) with the data point

x. This is also the maximum likelihood solution under the

employed mixing model and noise assumptions:

argmin
{ai}

p

i=1
,P

∥

∥

∥

∥

x− (1− P )
∑p

i=1
aiwi

1− P
∑p

i=1
aiwi

∥

∥

∥

∥

2

2

(20)

For remote sensing imagery, we can set the albedos equal

to the endmember spectra: ∀i : wi = ei, as we do not expect

large values of P in such data sets. On the other hand, in

mineral mixtures the average number of spectral interactions

can become very large, and if only endmember spectra are
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Model x γ Constraints

LMM (1) N/A N/A
Fan (3) N/A N/A

GBM (4) γ = (γij)
p

i>j=1
γij ∈ [0, 1]

PPNM (7) b N/A
MLM (15) P P ≤ 1

TABLE I: The models, mixing equations, hyperparameters and

constraints

available, a conversion to albedos should be carried out. An

example of this situation is presented in section IV-C.

The abundances are subject to the ANC and ASC, while

P < 1. As the search space is a convex set, this mini-

mization problem can be solved by constrained minimization

techniques, such as active set approaches or quadratic pro-

gramming.

Remark that this unmixing strategy can be generalized to

other mixing models as well. Consider a data point y and

a reconstructed point x(a,γ) obtained with a mixing model

which depends on the abundances in the vector a and on

the hyperparameters in the vector γ (and implicitly on the

reflectances or albedos). The RE is then given by

R(y,a,γ) = ‖y − x(a,γ)‖22 (21)

Remark that several authors do not square the norm in the

right-hand side of (21), making RE and Euclidean distance

equivalent. This does not affect the location of the minimum

in parameter space. Next, for a given value of y and a given

mixing model for x(a,γ), we want to minimize R(y,a,γ)
with respect to a and γ. Depending on the mixing model

used, several equality or inequality constraints are additionally

present, which can be implemented via matrix identities or pa-

rameter ranges. The models used in the experimental section,

with their mixing equation for x, the hyperparameters γ, and

the constraints, are given in table I. All models have the ANC

and ASC on the abundance vector a, given by (2).

In practice, we used the Matlab function FMINCON to

perform the minimization of (21) with respect to a and γ, with

the constraints on these variables implemented through the

proper matrix identities. The employed technique is sequential

quadratic programming, and the initial search point is given by

a = p−1
1, and zero for every hyperparameter. The function

tolerance was set to 10−10, while the constraint tolerance was

set to 10−8. For all the results in all experiments in this paper,

the minimizer found a local minimum within the tolerance

limits. Remark that while the search space is always a convex

set, the induced manifolds, and hence target functions, are not

(see Fig. 2 for an example for the MLM model). Local minima

of the objective function are possible in theory.

IV. EXPERIMENTS

A. Comparison with bilinear models on synthetic data

We have tested the MLM model on several synthetic data

sets, and compared the obtained results with some commonly

used bilinear and linear-quadratic models. Three endmembers

were randomly chosen from the USGS spectral database,

LMM Fan GBM PPNM MLM

LMM 0.00(0) 0.030(15) 0.00(0) 0.00(0) 0.00(0)
Fan 0.10(10) 0.00(0) 0.00(0) 0.00(0) 0.023(13)

GBM 0.026(43) 0.009(9) 0.00(0) 0.00(0) 0.006(7)

PPNM1 0.12(11) 0.004(8) 0.02(7) 0.00(0) 0.025(17)

PPNM2 0.038(4) 0.086(28) 0.038(4) 0.00(0) 0.013(4)
MLM 0.15(47) 0.19(47) 0.15(47) 0.05(22) 0.00(0)

TABLE II: The mean RE for the noiseless data sets.

LMM Fan GBM PPNM MLM

LMM 0.00(0) 0.18(11) 0.00(0) 0.00(0) 0.00(0)
Fan 0.17(10) 0.00(0) 0.00(0) 0.022(16) 0.14(8)

GBM 0.10(7) 0.087(70) 0.00(0) 0.014(11) 0.073(54)

PPNM1 0.16(9) 0.040(35) 0.029(41) 0.00(0) 0.13(8)

PPNM2 0.24(13) 0.35(21) 0.24(13) 0.00(0) 0.13(9)
MLM 0.18(18) 0.30(19) 0.18(18) 0.10(13) 0.00(0)

TABLE III: The mean AE for the noiseless data sets.

pruned to 50 wavelengths in the range 1.97-2.47 µm, and 1000

abundance vectors were generated uniformly and randomly

from the unit simplex, hence respecting the ANC and ASC.

The data sets were generated using the mixing models them-

selves, i.e., the LMM, the Fan model, the GBM, the PPNM

and the MLM model. The γ parameters in the GBM were

chosen randomly and uniformly in the interval [0, 1]. Two

different values were used for the b parameter in the PPNM,

b = 0.25 and b = −0.25, indicated with PPNM1 and PPNM2

respectively. The P values in the MLM data set were chosen

randomly from a half-normal distribution with σ = 0.3, and

values of P larger than one were set to zero. This creates

mostly small values for P , which seems realistic for a real

scenario. For all data sets, two variants were created: One

without noise, and one with Gaussian noise with SNR = 20.

These data sets were unmixed with respect to the known

endmembers by optimization of the REs with respect to the

abundances and possible model parameters. The reconstruc-

tions were calculated using the different mixing models, and

possible model-dependent constraints were included in the

optimization procedure. The performance of the unmixing

procedure was assessed using the mean RE and the mean

abundance error (AE). The mean RE is given by averaging (21)

over all pixels. The AE is obtained as the absolute difference

between the abundance values, averaged over all endmembers

and data points. The obtained errors are listed in tables II and

III for the noiseless data sets, and in tables IV and V for the

noisy data sets, along with the uncertainty in the last digits as

determined by the standard deviation. Each row corresponds

with a data set, and each column with an unmixing model.

These results indicate that each model excels in unmixing

its corresponding data sets. The GBM always outperforms the

Fan model, which seems reasonable since the GBM extends

LMM Fan GBM PPNM MLM

LMM 0.009(2) 0.038(17) 0.009(2) 0.009(2) 0.009(2)
Fan 0.11(10) 0.011(3) 0.011(3) 0.011(3) 0.033(16)

GBM 0.033(40) 0.020(10) 0.009(3) 0.010(3) 0.016(8)

PPNM1 0.13(12) 0.016(11) 0.035(80) 0.011(3) 0.037(21)

PPNM2 0.045(6) 0.093(30) 0.045(7) 0.006(2) 0.020(6)
MLM 0.16(46) 0.20(46) 0.16(46) 0.06(21) 0.007(3)

TABLE IV: The mean RE for the noisy data sets.
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LMM Fan GBM PPNM MLM

LMM 0.016(14) 0.18(11) 0.019(16) 0.022(18) 0.021(16)
Fan 0.16(10) 0.015(14) 0.018(16) 0.030(23) 0.14(9)

GBM 0.097(72) 0.090(72) 0.021(17) 0.024(19) 0.071(57)

PPNM1 0.16(9) 0.044(40) 0.041(46) 0.019(15) 0.13(8)

PPNM2 0.24(13) 0.35(21) 0.24(12) 0.025(20) 0.14(9)
MLM 0.18(19) 0.30(20) 0.18(19) 0.11(13) 0.018(14)

TABLE V: The mean AE for the noisy data sets.

Fig. 4: The AVIRIS Cuprite data set in approximate true

colors.

the Fan model with extra degrees of freedom. The PPNM

performs significantly better than the bilinear alternatives on

many data sets.

The MLM model outperforms the LMM and the Fan model

on most data sets, and also the GBM on the PPNM data

set with negative b. None of the bilinear models cope well

on the MLM data set. As several of the considered bilinear

models (Fan, GBM and PPNM with b > 0) regard the bilinear

interactions as a purely additional signal on top of the linear

component, the inclusion of bilinear interactions will only

allow reflectance values larger than those obtained via the

LMM. On the other hand, the proposed MLM model will

obtain smaller reflectance values for P > 0 when compared

to the LMM. These observations indicate that we need to

allow negative values for P in the MLM model for unmixing

artificial data sets mixed according to several of these bilinear

mixing models. One notable exception is the PPNM with

negative values of b. Here, the total reflectance will decrease

with respect to the LMM, and the MLM model will also

obtain better reconstructions and abundance estimates than the

bilinear alternatives.

B. Real hyperspectral imagery

1) The Cuprite data set: We have unmixed the well-known

Cuprite data set obtained by the Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS), and displayed in Fig. 4. This

data set has an IFOV of 20 × 20 m2 per pixel, and images

an area of the Nevada desert, USA, with many interesting

geological features. The number of spectral bands is d = 51,

in the wavelength range 1.97− 2.48 µm.

We unmixed this data set with the MLM model, and have

used the several alternatives from the bilinear and linear-

quadratic family for comparison. First of all, 10 endmembers

were extracted by the VCA algorithm [22], and identified

by locating the spectra of minimal spectral angle in the

USGS spectral database. Next, the abundance maps were

generated using the bilinear mixing models used in previous

subsection. Additionally, we also unmixed this data set with

the Hapke unmixing methodology used in many papers [1],

[23], [24], [11]. The Hapke model assumes that a mixture

with a wavelength-dependent albedo w will give rise to an

observed reflectance x through the relation

x =
w

(1 + 2µ
√
1− w)(1 + 2µ0

√
1− w)

(22)

where µ and µ0 are the cosines of the angles of the incoming

and outgoing light ray with the surface normal. These angles

can be obtained from the metadata of the Cuprite data set,

where we assume that the scene is flat. Linear constrained

unmixing is applied to the albedo vectors instead of the

reflectances, where (22) and its inverse are used for the

conversion. A detailed explanation of this method of unmixing

can be found in [25] and [11].

The abundance maps for four well-known minerals are

presented in Fig. 5 for all mixing models. Unfortunately, no

ground truth exists for the Cuprite data set, hence we cannot

perform a quantitative analysis of these abundance maps.

However, it should be clear that the abundance maps obtained

by the different methods show subtle differences. The Hapke

model shows more speckle noise than the LMM, and the miz-

zonite endmember has a much lower overall abundance. Also

the PPNM and the Fan model show significant differences

in the mizzonite abundance map. The MLM model abundance

maps show a large overlap with the LMM maps, but also some

significant differences in small areas of the image.

As indicated in section III, the P values obtained by the

MLM model have a clear physical meaning, at least for the

interval [0, 1]. They indicate the probability that a light ray

will undergo further reflections after each interaction, and can

thus be used to assess the size of the effects of nonlinearity

in a pixel, or the size of the deviation from the LMM. A

similar approach was presented in [26], where a nonlinearity

detector was developed based on the b values found by the

PPNM: Above a given threshold for |b|, the pixel is considered

nonlinearly mixed.

We can compare the two approaches for nonlinearity detec-

tion by studying the P values obtained by the MLM model,

and the b values obtained by the PPNM model. Proper thresh-

olding is required to obtain an actual detector, and we refer

to [26] for the underlying theory and practical implementation

of determining an appropriate threshold.

In Fig. 6, we have plotted the histograms of the P and b

values obtained in the Cuprite data set. It can be seen that 33%

of the pixels has P < 0, and that the P values generally stay

small. This is physically plausible, as one would not typically

expect a very large fraction of light rays to undergo multiple

interactions. For instance, ray tracing results present in the
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LMM Hapke PPNM FM MLM

Fig. 5: The abundance maps of (top to bottom) alunite, kaolinite, hydrogrossular and mizzonite in the Cuprite data set, obtained

by the (left to right) LMM, Hapke model, PPNM, FM and the MLM model.
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Fig. 6: Histogram of the values of P obtained by the MLM

model (left) and the values of b obtained by the PPNM (right)

on the Cuprite data set.

literature [27] show that a fraction of up to 20% of light rays

will undergo multiple interactions in a vegetation scenario.

The histogram for b shows a similar situation, as most of the

b values also stay small.

These values can also be plotted for each pixel as color maps

(Fig. 7), so that one can observe where the nonlinear effects

will be the strongest. The map for the P values obtained by the

MLM model shows several contiguous areas where relatively

strong nonlinear effects seem to be present. These areas are the

areas where the abundance maps show the largest differences

(see the alunite and kaolinite abundance maps in Fig. 5). Also

the asphalt road crossing north-south, and the dirt road in the

north, seem to show strong nonlinear effects. For the PPNM

model, the results are less clear, as the negative b values seem

to correspond well with the mizzonite abundance map (see

Fig. 5). While some overlaps can be observed between the

two methods, no strong conclusions can be drawn from these

results.

2) Heathland data set: The proposed unmixing methodol-

ogy, along with nonlinearity detection, has been applied to the

”Kalmthoutse heide” data set, which is a hyperspectral image

of a heathland area in the north of Belgium, containing 52

bands in the wavelength range 0.45 - 2.55 µm, and a IFOV of

approximately 2.4× 2.4 m2. We focus on a subsection of this

image of 200× 200 pixels, displayed in Fig. 8 (a). This part

of the image contains standalone trees with visible shadows,



9

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 7: The values of P obtained by the MLM model (left)

and b obtained by the PPNM (right) for each pixel. Positive

(negative) values are indicated as gray (red) values.
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Fig. 8: (a): The heathland data set in approximate true colors.

(b): The values of P obtained by the MLM model.

forest, water bodies, and partly submerged grasslands, all of

which can be expected to generate optically complex nonlinear

effects to some extent.

We extracted 8 endmembers from this data set with the VCA

algorithm. Detailed and hierarchical classification ground truth

exists for this data set [28], with 24 classes on the finest

classification level, describing different types of vegetation,

grasslands, heathlands, arable fields, forests, and water bodies.

This classification ground truth was used to identify the

obtained endmembers. Three pairs of endmembers were identi-

fied with the same class, which lead to five uniquely identified

classes: Temporary grassland, dry natural permanent grassland,

Juncus effusus-dominated grassland (common rush), shallow

water, and arable field with maize. The abundance maps of

these 5 classes are displayed in Fig. 9, where we summed the

abundance maps of classes with two endmembers together.

These abundance maps can be visually compared with

Fig. 8 (a), and show some clear differences in certain areas.

Especially around the water bodies, large differences can be

seen: The MLM model is able to find strips of common rush,

a vegetation commonly found on moist soil, around and in

these water bodies. The LMM detects the trees in the image

as water, while the MLM model does not show this behavior

(note that a tree or forest endmember was not obtained by the

VCA endmember extraction). Also the dry grassland is much

more prominently present in the MLM abundance maps.

The P values obtained by the MLM model are displayed in

Fig. 8 (b), and can be used to assess the size of the nonlinear

effects in the image. This map corresponds very well with

the areas in the image where large nonlinear effects can be

(a)

 

 

−2.5

−2

−1.5

−1

−0.5

0

(b)

Fig. 10: (a): The Moffett Field data set in approximate true

colors. (b): The values of P obtained by the MLM model.

Soil Water/shadow Vegetation

Fig. 11: The three abundance maps of the Moffett Field data

set. Top: the LMM. Bottom: The MLM model.

expected, such as in the shallow water bodies, and in the trees,

forest and their shadows. These are also the areas where the

abundance maps show the largest differences.

3) Moffett field data set: Another data set which is used

by many authors to assess spectral unmixing techniques [29],

[30], [31] is the AVIRIS Moffett Field data set, displayed in

Fig. 10 (a). We focus on a 50 × 50 pixel subsection of this

image, as this subsection has also been used to assess the

performance of several bilinear models [6], [32].

Three endmembers were extracted from this data set with

the VCA algorithm. Comparison of their spectra and abun-

dance maps with results in the literature [6], [32] show that

these endmembers correspond to soil, water and vegetation.

With these endmembers, we have unmixed the data set with the

LMM and the MLM model. The abundance maps are shown

in Fig. 11, and the map for the P values is shown in Fig. 10

(b).

While the abundance maps show but subtle differences, the

map for P clearly indicates the areas where nonlinear effects

can be expected. Note that the coastline shows relatively large

negative values for P , indicating that the observed spectra here

are larger in magnitude than any convex linear combination of
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Temporary grassland Dry grassland Common rush Shallow water Arable maize

Fig. 9: The abundance maps of the 5 classes. Top: the LMM. Bottom: The MLM model.

endmember spectra. Furthermore, as the spectrum of the water

endmember has a very small reflectance for all wavelengths,

it can also be interpreted as a shadow endmember.

C. Intimate mineral mixtures

The performance of the MLM model can be tested on

intimate mineral mixtures measured in a laboratory setting as

well. One drawback is that the unmixing strategy that was

employed for hyperspectral imagery will fail to provide better

results than the LMM on such data sets, because one can

no longer assume that the albedos used in the MLM model

are equal to the measured reflectances of the pure mineral

components. By using alternative theories for the optical

effects in mineral mixtures, such as diffusive reflectance or

Hapke’s isotropic multiple scattering approximation, one can

estimate several of the parameters we would need in the MLM

model.

In [33], several relations between (single scattering) albedo

and reflectance are provided. For instance, by using diffusive

reflectance, one can derive that an observed reflectance of 0.8

in an intimate mineral mixture corresponds with an albedo

of 0.99, and 18 reflections on average before reaching the

observer. A series distribution of the reflectance-albedo re-

lation (22) derived by Hapke shows that the albedo is nine

times larger than reflectance to first order (valid for low

reflectance values), and that higher order terms have a large

contribution for higher albedos, indicating the importance of

multiply reflected paths. All these results suggest that values

of P close to one would be required for intimate mixtures.

In Fig. 12, we have plotted the relation between reflectance

and albedo given by the Hapke model. We have also added

this relation as given by the MLM equation (15). Notice that

these plots follow the same trend, but that large values for P
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Fig. 12: The reflectance-albedo relation from the Hapke model

(with µ = µ0 = 1), and the MLM model for several large

values of P .

are required, indeed indicating that multiple reflections play a

dominant role in intimate mixtures.

For unmixing mineral mixtures with the MLM model, one

can follow the same strategy as employed in the Hapke model.

All reflectances are converted to albedo using a reflectance-

albedo relation, the albedos are linearly unmixed and recon-

structed using the LMM, and the reconstructed albedo is

converted to reflectance again. If this strategy is used with

the Hapke model, relation (22) is used to convert between

reflectances and albedos. If we employ the MLM model, equa-

tion (14) is used. However, the MLM model depends on the P

variable, which is unknown beforehand. We assume that the

value of P which yields the smallest RE is the most plausible,

and optimize with respect to the abundances and P . Remark
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True 1 0.75 0.5 0.25 0

LMM 1.00 0.34 0.21 0.075 0
GBM 1.00 0.32 0.17 0.071 0
PPNM 1.00 0.32 0.18 0.073 0
Hapke 1.00 0.73 0.51 0.26 0
MLM 1.00 0.49 0.39 0.12 0
P value 0 0.71 0.88 0.60 0

TABLE VI: The abundance of the quartz component in a

quartz-alunite binary mixture. The optimal P values are given

as well.

that the same value for P is used for both the endmembers

{ei}pi=1
and the target spectrum x. This will simplify the

optimization and avoids overfitting. Furthermore, because all

mineral components in the employed binary mixture share

similar physical properties [14], also their nonlinear behavior

can be expected to be similar. The optimization problem then

becomes

argmin
{ai}

p

i=1
,P

∥

∥

∥

∥

∥

x−
(1 − P )

∑p

i=1

aiei

Pei+1−P

1− P
∑p

i=1

aiei

Pei+1−P

∥

∥

∥

∥

∥

(23)

To demonstrate this unmixing strategy, we have unmixed

quartz-alunite mineral mixtures from the RELAB spectral

database. These mixtures are described in detail in [14], and

show highly nonlinear mixing behavior due to the presence

of the quartz component, which has a very high albedo. As

these mixtures were carefully crafted in a laboratory setting,

the true abundances are known.

The abundances obtained by different unmixing methods

are shown in table VI, along with the optimal values for P

obtained by the MLM model. These results indicate that the

LMM, the GBM and the PPNM all show severe deviations

from the true abundances. The Hapke model shows excellent

performance on this data set, and obtains abundances which

are almost indiscernible from the ground truth. The MLM

model also shows a systematic deviation from the ground

truth, but performs much better than the linear of bilinear

alternatives. As this data set is a prime example of an intimate

mineral mixture, it can be expected that models designed for

unmixing remotely sensed imagery will not perform well.

The MLM model somewhat mitigates this because it is able

to interpolate between linear mixing and mixing including

multiple reflections by modifying its P parameter. This is clear

from the improved results, but the performance of much more

involved models specifically designed for intimate mixtures,

such as the Hapke model, cannot be reached.

V. CONCLUSIONS

In this work, we have derived a new nonlinear mixing

model which extends the existing bilinear mixing models to an

infinite number of reflections. The model is based on a Markov

chain interpretation of the reflection process of a single light

ray, and introduces an additional parameter which describes

the probability of undergoing further interactions after a reflec-

tion. This interpretation leads to a mixing equation which can

be inverted via a constrained optimization technique. Several

problems which might pose themselves in bilinear models

are not present in this model, as every parameter has a clear

physical interpretation, and the reflectances produced by the

mixing equation stay constrained to the allowed interval [0, 1].
The model is demonstrated on several synthetic data sets, on

three hyperspectral images, and on spectra of intimate mineral

mixtures. Furthermore, plotting the value of the nonlinearity

parameter for each pixel in a hyperspectral image results in

maps that indicate where nonlinear behavior is present in the

scene.

Future work concerns further theoretical and practical com-

parison of the model with more advanced models for vege-

tation or mineral mixing, such as models based on radiative

transfer or layered approaches. In many situations, transmit-

tance plays a large role, and transmission effects could be

incorporated into the model. Finally, wavelength- or albedo-

dependence of the nonlinear optical effects might be present,

and can be investigated with such models as well.
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