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Abstract This article describes research results based on multiple years of experimen-

tation and real-world experience with an adaptive tutoring system named Wayang

Outpost. The system represents a novel adaptive learning technology that has shown

successful outcomes with thousands of students, and provided teachers with valuable

information about students’ mathematics performance. We define progress in three

areas: improved student cognition, engagement, and affect, and we attribute this

improvement to specific components and interventions that are inherently affective,

cognitive, and metacognitive in nature. For instance, improved student cognitive

outcomes have been measured with pre-post tests and state standardized tests, and

achieved due to personalization of content and math fluency training. Improved student

engagement was achieved by supporting students’ metacognition and motivation via

affective learning companions and progress reports, measured via records of student

gaming of the system. Student affectwithin the tutor was measured through sensors and
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student self-reports, and supported through affective learning companions and progress

reports. Collectively, these studies elucidate a suite of effective strategies to support

advanced personalized learning via an intelligent adaptive tutor that can be tailored to

the individual needs, emotions, cognitive states, and metacognitive skills of learners.

Keywords Intelligent tutoring . Cognition .Metacognition . Affect . Mathematics

education

Introduction

Intelligent tutoring systems, Cognitive Tutors, and adaptive learning environments are all

variations of the same common theme: instructional systems that contain empirical models

of the student to predict student behaviors and knowledge, and to act upon these predic-

tions to make pedagogical moves as students progress towards gaining expertise and

mastery of the target domain. Such systems have expanded across many critical and

complex domains with far reaching results (Woolf et al. 2009). These systems have been

embedded within formal education, in K-12 schools (e.g., Arroyo et al. 2009a; Gobert et al.

2013; Heffernan et al. 2012; Koedinger et al. 1997) as well as in military/corporate training

and in organizational learning (Lajoie and Lesgold 1989; Stottler and Domeshek 2005).

They offer learners various affordances, such as personalized trajectories of content, just in

time feedback, and flexibility in terms of progressing through the instructional materials.

These systems have been created for a variety of domain areas. Within the specific

area of mathematics education, the challenges to be addressed by an adaptive tutoring

system in order to be successful within the school system are numerous. Such systems

have to support students as they move throughout the K-12 school system, as they

develop expertise with numbers and operations, measurement and data, statistics and

probability, geometrical concepts in 2D and 3D, in algebra and equations, relationships

and functions. Traditionally, teachers model new concepts in front of the class, engage

students in a variety of activities, and accompany, support, and help students through

their development of abstract thinking.

However, math teachers face many challenges related to supporting the varied skill

and motivation levels in their classrooms, where some students excel while others lack

abilities for their corresponding grade level (e.g., in literacy or numeracy). Many

students reach higher-level classes missing the foundations of mathematical reasoning

such as rational numbers (e.g., fractions) or even basic whole number arithmetic. The

math difficulties of individual students vary across students within a class, making it

very challenging for mathematics teachers to meet the needs of every student. Beyond

weaknesses in specific knowledge components, students often face common chal-

lenges, such as difficulty with number sense, i.e., a sense of quantity, a sense of

magnitude and length, and the ability to flexibly manipulate numbers through various

operations (Mazzocco et al. 2011); difficulty in transferring mathematical knowledge to

novel contexts, difficulty addressing even small variations within the same context

(Carraher et al. 1985; Carraher and Schliemann 2002); and difficulty making reason-

able estimations (Lemaire and Lecacheur 2011). Some students with low achievement

in mathematics struggle with memory tasks, such as quick retrieval from long term

memory, which affects their mathematical fluency (Tronsky and Royer 2003), as well
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as working memory capacity and executive function (Bull and Scerif 2001). These are

very basic cognitive abilities that improve as children develop and are key to solving

any kind of non-trivial mathematical task (Geary and Hoard 2003; Royer 2003), but

low achieving students, including ones with math disabilities, generally have difficulty

in these basic skills and need extra support and practice. These students often become

disengaged, and fail to develop and implement the metacognitive skills that would be

most effective to their learning, eventually developing a more negative affective

relationship to mathematics than their peers, and reporting more negative emotions

towards math problem solving (Woolf et al. 2010). Still, most of the literature in

mathematics learning difficulties has focused on understanding where and how students

struggle but research has rarely deeply analyzed how to address these difficulties, at

least not in an extensive way. Thus, understanding effective means of supporting low

achieving students and those who struggle with mathematics is a key goal of the

Wayang research agenda, and fills an important gap in this area of research.

Students’ individual mathematical differences, their strengths and weaknesses in

specific areas of the curriculum or basic cognition are accompanied by various other

challenges. These relate to, for instance, the regulation of students’ own learning, the

when, how and why to carry out a variety of self-regulatory actions in the course of

learning and practicing. Some self-regulatory actions require accurate personal judgment

of knowledge and learning, accompanied by important decisions related to effective help

seeking (Aleven et al. 2003), understanding which problem solving strategies to apply,

and setting manageable goals and objectives for one-self (Locke and Latham 2002).

Research has repeatedly shown that such metacognitive and self-regulative behaviors

are major factors influencing students’ academic success. In a meta-analysis of self-

regulatory training programs, (Dignath et al. 2008) summarized evidence that by address-

ing self-regulation during learning, students’ academic performance, strategy use, and

motivational outcomes were improved. The analyzed scaffolds were all human-based, and

only few attempts are now beginning to appear for computer-based metacognitive support

(e.g., Azevedo et al., 2011; Long and Aleven 2013). Even that work is specifically

dedicated to studying self-regulation interventions on student learning, but more research

is needed to understand how educational technologies that tailor metacognitive support to

individual student needs, can weave the complex interleaving of self-regulation, learning

and affective outcomes, at each step of the learning process. More research is needed to

effectively customize metacognitive support for individuals of various levels and abilities

to tailor tutor responses to individuals and groups that seem to respond differently to such

support. The Wayang Outpost research is seeking to address this gap.

Another major factor that influences students’ learning is their general affective

experience as they learn. For instance, experiences of confidence, boredom, and

confusion are major aspects influencing students’ academic success and predictors of

achievement (Pekrun et al. 2007, 2010). Certain affective experiences can hinder

learning by increasing unproductive behaviors (e.g., Baker et al. 2004). While students’

affective experiences may be both a cause and a consequence of specific non-

productive actions towards learning and achievement, nonetheless affect plays a critical

role in education, both in short term performance outcomes and in long term life-long

career choices. Note that in many ways, affective experiences such as interest and

curiosity towards math and science are more important for long-term outcomes than are

the short-term outcome of mastering a specific knowledge unit (e.g., see Ceci et al.
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2009; Royer and Walles 2007). Research in computer-based interventions so far has

focused on short-term measures of success (e.g., correct answers) and longer-term

measures (e.g., interest in mathematics and value of mathematics) have been neglects.

Long-term measures have always been part of the Wayang research agenda. The next

generation of intelligent learning systems should examine longer-term outcomes of

affect, as well as examine how to juggle the complexities of dealing with competing

outcome measures, while optimizing both student affect and cognitive mastery.

The learning sciences community acknowledges the importance of affect in stu-

dents’ experiences with educational systems and has developed technologies that can

automatically detect and respond to student affect (Arroyo et al. 2009a; Calvo and

D’Mello 2010; Conati and Maclaren 2009; Cooper et al. 2010; Graesser et al. 2007;

McQuiggan et al. 2008; Muldner et al. 2010). As mentioned above, intelligent tutoring

systems have to carry out two major tasks: model the student and act upon estimates of

student states. Modeling affect is a critical first step for providing adaptive support

tailored to students’ affective needs; however, beyond modeling, to date little work

exists that systematically explores the impact of using model information to tailor

affective interventions and explores the impact of doing so on students’ performance,

learning, motivation and attitudes (i.e., how to respond to students’ emotions, such as

frustration, anxiety, boredom and hopelessness), as well as how to help students to

regulate their learning process, within one comprehensive learning environment.

The research described in this article aims to address all of the areas discussed

above, acknowledging the complexity of the mathematics education problem, where

each individual has strengths and weaknesses in various areas. In many ways, we

follow the ideas of Allen Newell, who in this excerpt expresses how intelligent tutoring

systems are a step in the direction of smart machines for education:

Exactly what the computer provides is the ability not to be rigid and unthinking

but, rather, to behave conditionally. That is what it means to apply knowledge to

action: It means to let the action taken reflect knowledge of the situation, to be

sometimes this way, sometimes that, as appropriate…. In sum, technology can be

controlled especially if it is saturated with intelligence to watch over how it goes,

to keep accounts, to prevent errors, and to provide wisdom to each decision.

— Allen Newell, Fairy Tales, AI Magazine, Vol 13. Number 4. 1992.

In particular, this article focuses on one landmark mathematics adaptive tutoring

system that takes a student-centered and holistic approach to teaching, by addressing

cognitive, metacognitive and affective factors that influence students as they learn. This

system is the Wayang Outpost Mathematics Tutoring System, 1 now referred to as

MathSpring, an intelligent tutor for mathematics that uses a variety of computational

techniques to promote student learning in meaningful, effective, and efficient ways.

The key open questions that we seek to address are: 1) How to design tailored

interventions within educational technologies that encourage students to feel positive

about their learning experience? (see “Affective Scaffolds and Interventions” section:

Affective scaffolds); 2) How to tailor tutor behavior to support students to self regulate

their learning? (see “Metacognitive Scaffolds and Interventions” section:

1 Wayang Outpost is now called “MathSpring” and is built in HTML, see MathSpring.org.
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Metacognitive scaffolds); 3) How to support personalized trajectories through the

mathematics content, adjusting difficulty and fostering fluency over pre-requisite

knowledge components (see “Cognitive Scaffolds and Interventions” section:

Cognitive scaffolds); 4) How to build interventions for one construct that also provides

cross-over to other constructs (e.g., cognitive interventions impact affective outcome;

affective interventions impact metacognitive outcome); and 5) Can a single tutoring

system effectively address all three constructs?

Few if any other systems address aspects of all three constructs: affect, metacogni-

tion, and cognition simultaneously, so the integration and efficacy of attending to these

collectively is likewise an open issue. The challenges related to addressing these

questions pertain to the fact that it is unclear how and when to tailor scaffolding of

student affect in educational technologies, or when to stop to think about ‘why’ and

‘how’ students are using the software to provide metacognitive support, or when to

provide further cognitive challenges and increased difficulty of math activities instead

of going back to review pre-requisite knowledge components.

Our approach in addressing all these challenges has been to employ a student-

centered design process by iteratively piloting interventions, refining them and

performing large scale evaluations, both of individual components and of the system

as a whole, in order to obtain a holistic view of their pedagogical utility over a variety

of cognitive, affective and metacognitive outcomes.

Wayang Outpost

Wayang Outpost is a multimedia-based intelligent tutoring system (Woolf 2009) that

provides a broad range of pedagogical support while students solve mathematics

problems of the type that commonly appear on standardized tests, (see Fig. 1and 2)

for examples (Arroyo et al. 2004).

The tutor supports strategic and problem-solving abilities based on the theory of

cognitive apprenticeship (Collins et al. 1989) that take place when a master teaches skills

to an apprentice. In this case, the expert is the Wayang system that assists students during

mathematics problem solving. The software models solutions via worked-out examples

with the use of sound and animation, and provides practice opportunities on math word

problems. Math problems are mostly released items from the Massachusetts

Comprehensive Assessment System (MCAS),2 administered annually to K-12 students

as standardized tests; items are also generated by teachers and researchers, and from the

Scholastic Achievement Tests (SAT)3 -Math and other state-wide standardized tests across

the country. Our choice of focusing on items of such high-takes tests are mainly two-fold:

1) the items are good and non-trivial, as they require deep processing and strategic

thought, beyond a rote procedure; 2) passing these tests has huge implications on a

2 MCAS exams are given to all public school students in Massachusetts, on English Language Arts,

Mathematics, and Science and Technology/Engineering. Students must pass the grade 10 tests in English

Language Arts (ELA), Mathematics and one of the four high school Science and Technology Engineering

tests as one condition of eligibility for a high school diploma.
3 The SAT is a globally recognized college admission test designed to assess a student’s academic readiness

for college. These exams are typically given to graduating high school students and the results are used for

financial support and scholarships. Many colleges use SAT Tests for admission, course placement, and to

advise about course selection.

Int J Artif Intell Educ (2014) 24:387–426 391



student’s future, thus they are high-stakes, for example students who don’t pass theMCAS

grade 10 test by the end of high school cannot graduate from high school in the United

States, and students who don’t score reasonably high in the scholastic aptitude test will not

be accepted into good colleges. Many classes are given regularly to support students and

remedial students to re-take these tests (e.g., the students from year 2005 in Fig. 4 were

preparing to take their 10th grade MCAS test for a second or third time).

Using high-stakes test items as part of the teaching content of the tutoring system has

implications for the design of the system, and especially on how the knowledge

components are structured. Compared to most other math tutoring systems, the gran-

ularity of knowledge units/components in Wayang Outpost is more coarse-grained, and

the differences across items within a knowledge unit is larger, with only pairs or triplets

of problems being highly similar and parameterized (e.g., changing only operands, or

words in the text). Instead, problems from high-stakes tests (released items fromMCAS

and SAT) are clustered together during a content-organization phase, generating sets

Fig. 1 The Wayang Outpost Math Tutor interface. An animated companion provides individualized com-

ments and support

Fig. 2 Two math problem items that involve exactly the same mathematical procedure to solve, but have a

different difficulty level — the one on the right is estimated to be more difficult than the one on the left
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that involve similar math skills. This is an important difference from other mathematics

tutoring systems that may benefit students, as the implicit skill that is being addressed is

an identification and classification task – students must identify what kind of problem

this is, and how to approach it, within a certain set of problems that involve a subset of

math skills. This classification/identification task is a major skill involving analogical

mapping that can help students succeed at standardized high-stakes tests, where math

problems can “look” very different from each other. We argue that the kinds of

mathematical and abstract problems that students must solve in real life are varied

too, thus, this classification/identification phase seems a critical part of mathematics

education.

For instance, Wayang has a knowledge unit of called decimals and percentages.

A student will know they are working on decimals and percentages, still the student

needs to identify whether the problem they are solving involves converting from a

decimal to a percent, or from a fraction to a decimal, or from a fraction to a percent,

or requires interpreting a percent, or computing the percent of a number. We find

that, if students see a very similar problem again that is simply parameterized with

other operands/words, the student automatically identifies the problem making it

much easier to solve –eliminating an important problem type classification task that

is essential in high-stakes tests and in application of math in real life situations in

general.

Scaffolds or hints are a key component of the Wayang Outpost tutor to help students

learn strategies to approach math problems; hints are spoken to showing students steps

towards a solution and implementing principles from multimedia learning theory

(Mayer 2001), such as the contiguity principle, modality principle, animation principle,

etc. Wayang Outpost is particularly strong at coaching and scaffolding, as it provides

synchronized sound, animations, contiguous explanations using the math problem

space (e.g., underlining, drawing on the figure), videos that show instructors solving

problems and graphically provides virtual pencils to support student problem solving

with their own notes, if so desired. It also provides worked-out examples as scaffolding

(gives a worked-out example of a problem similar to that presented on the screen).

An important element of cognitive apprenticeship is to challenge students by

providing slightly more difficult problems than learners/apprentices could accomplish

by themselves. Vygotsky (1978) referred to this as the zone of proximal development

and suggested that fostering development within this zone led to the most rapid

learning (Murray and Arroyo 2002). The software provides adaptive selection of

problems with increased/decreased difficulty depending on recent student success and

effort (Arroyo et al. 2010a; Corbett and Anderson 1995). While there is no explicit

“scaffold fading” procedure in Wayang Outpost, ‘help fading’ happens naturally as

students first learn from the help provided in one math problem, and then are given a

new problem of similar difficulty, to encourage them to transfer and perform problems

without the need of help. This “help fading” process therefore happens naturally as the

system encourages transfer of student knowledge to subsequent questions of similar

difficulty (rows 2, 4, 9 within Table 1), until the student demonstrates mastery and

challenge is increased. Later sections will show that Wayang also includes motivational

learning companions that act much like students’ peers, offering affective support

during the learning process and supportive talk as students become disengaged, see

Figs. 14 and 15.

Int J Artif Intell Educ (2014) 24:387–426 393



T
a
b
le
1

T
h
e
ef
fo
rt
-b
as
ed

tu
to
ri
n
g
al
g
o
ri
th
m
in
fo
rm

s
p
ed
ag
o
g
ic
al
m
o
v
es

an
d
af
fe
ct
iv
e
d
ec
is
io
n
s
(l
as
t
tw
o
co
lu
m
n
s)
fo
r
ea
ch

st
u
d
en
t
o
n
ea
ch

p
ro
b
le
m
.
T
h
e
al
g
o
ri
th
m
fi
rs
t
in
fe
rs
a
re
as
o
n

fo
r
st
u
d
en
ts
b
eh
av
io
r
(f
o
u
rt
h
co
lu
m
n
)
b
as
ed

o
n
th
e
n
u
m
b
er
o
f
in
co
rr
ec
t
st
u
d
en
t
an
sw

er
s,
h
in
ts
re
q
u
es
te
d
an
d
th
e
am

o
u
n
t
o
f
ti
m
e
sp
en
t
(f
ir
st
th
re
e
co
lu
m
n
s)
.
T
h
en

th
e
al
g
o
ri
th
m

d
ec
id
es

w
h
ic
h
p
ed
ag
o
g
ic
al
ac
ti
o
n
th
e
tu
to
r
sh
o
u
ld

ta
k
e
(l
as
t
tw
o
co
lu
m
n
s)
.
T
h
e
al
g
o
ri
th
m

en
co
u
ra
g
es

tr
an
sf
er
o
f
st
u
d
en
t
k
n
o
w
le
d
g
e
to

su
b
se
q
u
en
t
q
u
es
ti
o
n
s
o
f
si
m
il
ar
d
if
fi
cu
lt
y
(r
o
w
s
2
,
4
,
9
),

en
co
u
ra
g
in
g
st
u
d
en
ts
to

tr
an
sf
er

sk
il
ls
an
d
“
fa
d
e”

th
ei
r
n
ee
d
fo
r
h
el
p

O
b
se
rv
ed

b
eh
av
io
r
an
d
in
fe
rr
ed

re
as
o
n
fo
r
th
is
b
eh
av
io
r

P
ed
ag
o
g
ic
al
M
o
d
el
M
o
v
es

C
o
g
n
it
iv
e
o
r
A
ff
ec
ti
v
e
o
r
M
et
ac
o
g
n
it
iv
e

In
co
rr
ec
t

H
in
ts

T
im

e
M
o
st
L
ik
el
y
R
ea
so
n

D
ec
is
io
n

A
ff
ec
ti
v
e/
M
et
ac
o
g
.
D
ec
is
io
n
s

1
<
E
(I
i)
–
δ
IL

<
E
(H

i)
–
δ
H
L

<
E
(T
i)
–
δ
T
L

M
as
te
ry

w
it
h
o
u
t
ef
fo
rt

In
cr
ea
se

P
ro
b
le
m

D
if
fi
cu
lt
y

S
h
o
w

le
ar
n
in
g
p
ro
g
re
ss

2
<
E
(I
i)
–
δ
IL

<
E
(H

i)
–
δ
H
L

>
E
(T
i)
+
δ
T
H

M
as
te
ry

w
it
h
h
ig
h
ef
fo
rt

M
ai
n
ta
in
P
ro
b
le
m

D
if
fi
cu
lt
y

A
ff
ec
ti
v
e
fe
ed
b
ac
k
:
P
ra
is
e
E
ff
o
rt

3
<
E
(I
i)
–
δ
IL

>
E
(H

i)
+
δ
H
H

<
E
(T
i)
–
δ
T
L

H
in
t
ab
u
se
,
lo
w

ef
fo
rt

R
ed
u
ce

P
ro
b
le
m

D
if
fi
cu
lt
y

D
ee
m
p
h
as
iz
e
im

p
o
rt
an
ce

o
f
im

m
ed
ia
te
su
cc
es
s

4
<
E
(I
i)
–
δ
IL

>
E
(H

i)
+
δ
H
H

>
E
(T
i)
+
δ
T
H

T
o
w
ar
d
s
m
as
te
ry
,
ef
fo
rt

M
ai
n
ta
in
P
ro
b
le
m

D
if
fi
cu
lt
y

P
ra
is
e
ef
fo
rt

5
>
E
(I
i)
+
δ
IH

<
E
(H

i)
–
δ
H
L

<
E
(T
i)
–
δ
T
L

Q
u
ic
k
g
u
es
si
n
g
,
lo
w

ef
fo
rt

R
ed
u
ce

P
ro
b
le
m

D
if
fi
cu
lt
y

D
ee
m
p
h
as
iz
e
im

p
o
rt
an
ce

o
f
im

m
ed
ia
te
su
cc
es
s

6
>
E
(I
i)
+
δ
IH

<
E
(H

i)
–
δ
H
L

>
E
(T
i)
+
δ
T
H

H
in
t
av
o
id
an
ce

an
d
h
ig
h
ef
fo
rt

R
ed
u
ce

P
ro
b
le
m

D
if
fi
cu
lt
y

O
ff
er

h
in
ts
u
p
o
n
in
co
rr
ec
t
an
sw

er
in

th
e
n
ex
t

p
ro
b
le
m

7
>
E
(I
i)
+
δ
IH

>
E
(H

i)
+
δ
H
H

<
E
(T
i)
–
δ
T
L

Q
u
ic
k
g
u
es
s
an
d
h
in
t
ab
u
se

R
ed
u
ce

P
ro
b
le
m

D
if
fi
cu
lt
y

D
ee
m
p
h
as
iz
e
im

p
o
rt
an
ce

o
f
im

m
ed
ia
te
su
cc
es
s

8
>
E
(I
i)
+
δ
IH

>
E
(H

i)
+
δ
H
H

>
E
(T
i)
+
δ
T
H

L
o
w

m
as
te
ry

an
d
H
ig
h
E
ff
o
rt

R
ed
u
ce

P
ro
b
le
m

D
if
fi
cu
lt
y

E
m
p
h
as
iz
e
im

p
o
rt
an
ce

o
f
ef
fo
rt
an
d
p
er
se
v
er
an
ce

9
O
th
er
w
is
e

E
x
p
ec
te
d
B
eh
av
io
r

M
ai
n
ta
in
P
ro
b
le
m

D
if
fi
cu
lt
y

394 Int J Artif Intell Educ (2014) 24:387–426



Teacher Tools

In addition to supporting students, Wayang Outpost provides support for teachers. In

particular, Wayang’s assessment of student performance throughout their interaction

with the system is reified through a graphical interface designed to show student

progress to teachers.

The teacher’s interface provides several reports, including estimates of student

learning overall, as well as progress per individual knowledge unit, assessments over

individual problems as well as over math skills, and assessments aggregated by class,

or by student. Wayang micro-analyzes features related to deep learning, such as fine-

grained behavior while students solve problems related to timing (e.g., time to attempt

an answer or read a problem, amount of help requested, etc.). This data is delivered to

teachers immediately in real-time as students work on problems. Thus teachers can

quickly assess which students have mastered skills, along with each student’s engage-

ment, affect and motivation, see Fig. 3. In a typical math class, teachers might invite

students to discuss the hardest problems in front of the class, projecting the teacher

tools in front of the class from the teacher’s computer. Other teachers prefer to print

booklets that include the hardest problems and have students work in small groups to

solve each problem with the aid of a teacher and other helpers.

Teacher tools become a selling point for teachers, supporting them to analyze student

strengths and difficulties in specific math skills, currently mapped to Common Core

State Standards Initiative (CC).4 Teacher tools provide a precise assessment of students’

strengths and weaknesses at specific math skills, in a language with which teachers are

familiar, highlighting both individual math problems and full areas of knowledge

(standards) that appear challenging to students. Since each practice activity is internally

mapped to standard-based math skills and mastery levels are computed and updated

instantly depending on student success at problems, teachers can view an estimate of

students’ abilities, and how their knowledge has evolved and developed as they used

the system. Teachers can log in to the tools to see the hardest problems with which a

class is struggling, or the math skill in which students are weakest/strongest. Teachers,

and potentially other stakeholders, can receive regular emails about individual and class

group progress.

Performance of Students Using Wayang in the Classroom

Wayang Outpost has been used in middle and high schools as part of regular math

classes since 2004, before statewide-standardized test exams. Typically, when the

software was used, there were experimental and control conditions to assess the utility

and/or impact of various models and variations of the software or pedagogical inter-

ventions. During years 2004 through 2006 we carried out studies in an urban school in

Western Massachusetts, and in 2012 we carried out in suburban schools in Western

Massachusetts. In these studies, we did not always have access to students’ MCAS

4 Common Core State Standards Initiative is an effort to ensure that all students in public schools in America

acquire the skills and knowledge they need to achieve success at college or in the workforce. This initiative

was developed at the state level by leaders concerned about the lack of national standards for the education of

children. Nearly all the states in the USA have voluntarily adopted the standards, see http://www.

corestandards.org/Math/
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scores; the results shown in Fig. 4 correspond to all the data from Massachusetts’s

standardized tests (MCAS) that were available to us since 2004 that included matched

control groups.

Empirical evaluations of Wayang have repeatedly shown it to be beneficial both for

short-term learning (measured by pre to posttest improvement in researcher-created

tests) and for longer-term retention (evidenced by state-based standardized test scores, 1

to 4 weeks later). Fig. 4 shows aggregate results since 2004, and highlights that students

had higher standardized tests scores at the end of the year after using Wayang Outpost

as compared to students in a control condition who did not use the software. We

Fig. 3 One of the teacher reports highlights math skills (soon Common Core standards) that students in the

class found challenging (yellow). When clicking on each skill (column 1), a new report is launched that

highlights which individual problems involving that math skill were more or less challenging for students in

this class
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Fig. 4 Massachusetts Statewide Standardized Test (MCAS) passing rates for experimental groups (using

Wayang, dark grey) and control groups (in regular math class, light grey), within the same school, same grade

and same teachers. Passing rates include several ratings above warning/failing
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discourage the reader from making comparisons across years, as populations of

students and schools change quite drastically from year to year, as well as total number

of students and student ratio between experimental and control groups. In particular,

our studies in the years 2004 through 2006 involved schools in urban low achieving

educational settings, while the larger 2012 study involved a rural high achieving school

with better prepared teachers and students.

We will look in detail into a controlled study from year 2012 that involved 198

seventh and eighth grade students in a single (average to high achieving) school in

Massachusetts. Half of the math classes were assigned to a control condition and half

were assigned to an experimental 5 condition, with the experimental group using

Wayang Outpost about once a month throughout the full school year. MCAS results

at the end of the year revealed a near significant trend in MCAS scores for 7th grade

students using Wayang compared to their counterparts not using Wayang (Mean

Wayang (N=34)=244.82; Mean Control (N=60)=239.50; F(1, 93)=2.2, p=0.14). As

can be seen in Fig. 5, which plots the percent of students in each MCAS scoring

category (warning/failing, needs improvement, proficient or advanced), the 7th graders

using Wayang shift their performance towards the advanced category compared to the

control condition: 12 % more students actually passed the MCAS test than the control

7th graders (leftmost side, warning/failing) and 7 % more experimental students

reached the advanced level (rightmost side, advanced/above proficient).

As this was a high achieving school, we analyzed the frequency of both seventh and

eighth graders at reaching the advanced (beyond proficient) level. Fifteen percent

(15 %) of students in the non-Wayang condition reached the “advanced/above profi-

cient” level, while twenty-one (21 %) of students using Wayang Outpost reached the

advanced level. This shift into the advanced MCAS category considering both 7th and

8th grade students approached significance (Chi Square (186,1), p=0.17), with Wayang

8th graders having significantly more students in the proficient or advanced category

than non-Wayang 8th graders (Chi Square (92,1), p=0.05).

Further analyses of the Measures of Academic Progress (MAP)6 test scores, which

was given at the beginning and end of the year to measure growth, indicated a

significant difference in student gains from the beginning to the end of the year for

one specific area of the mathematics curriculum, the “patterns and algebra” section of

MAP, between the control and Wayang groups (p<0.01*, effect size Cohen’s d=0.38).

This result was obtained using both seventh and eighth grade data. A more detailed

analysis of eighth grade students alone showed largest gains in MAP-Algebra/Patterns

than other areas, with an effect size of d=0.77. Unlike 7th grade teachers, eighth grade

teachers had tailored Wayang Outpost’s content to mostly contain Knowledge Units

related to Algebra, with these eighth grade students seeing most Wayang Outpost

problems in this area, for a total of 6109 algebra-related problems seen by individual

5 There was one extra 8th grade class in the experimental Wayang condition, and one extra 7th grade class in

the control condition, resulting in an uneven split across grades: there were more 8th graders using Wayang

(MCAS N=65) than no-Wayang (MCAS N=28), and more 7th graders in the no-Wayang control condition

(MCAS N=60) than the Wayang condition (MCAS N=34).
6 Measures of Academic Progress (MAP) assessments are designed to provide actionable data about where

each child is on their unique learning path. Administered online or locally, MAP helps teachers pinpoint—to

the goal—strand level—where students are ready to advance, and where they need help. Longitudinal data

from MAP can be used to analyze program impact, see. http://www.nwea.org/node/98
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students (72 % of the total math problems seen by eighth graders were of this kind) in

“Expressions with Variables, Univariate Equations, Inequalities, and Linear Functions

and Relationships”. This provided further evidence of Wayang Outpost’s capability at

improving student achievement, as students improved most in those areas of mathe-

matics on which teachers had pre-set Wayang to focus.

Cognitive Scaffolds and Interventions

We attribute part of the success of Wayang Outpost at improving student performance

during the last decade to several components that target student cognition: personali-

zation of the difficulty of selected mathematics problems; provision of multimedia

scaffolding and support; worked-out animated examples and video tutorials; and

training for retrieval of basic arithmetic skills. This section describes a subset of these

components along with their design and evaluation.

Adapting Curriculum to Individual Learning Needs

The first component in the Wayang Tutor that we believe led to improved student

learning and behavior is an algorithm that aims to maintain students within the zone of

proximal development, see Fig. 6. Thus, students who perform well on problems of

average difficulty receive harder problems and those who struggle receive easier

problems. This novel and flexible framework takes into account: (a) a student’s recent

Fig. 5 Area chart comparison of performance for a 7th grade of students on the Massachusetts Comprehen-

sive Assessment System (MCAS), for students using vs. not using Wayang Outpost. Students represented by

the yellow/green polygon used Wayang Outpost and students represented by the blue polygon did not use the

tutor. Distribution of students usingWayang Outpost shifts to the right indicating that more students passed the

exam and received a grade of “proficient” or “advanced” when using Wayang Outpost. Groups of students

were matched in terms of teacher of seventh grade students
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performance as well as level of effort exerted; (b) the inherent difficulty of each math

problem item estimated from past students’ log files; (c) limitations of content availability;

and (d) realistic scenarios of classroom management, such as the time that teachers want

students to spend on each topic (e.g., minimum number of problems to be seen in that

topic, maximum time to be spent reviewing a topic, etc.) (Arroyo et al. 2010b).

This approach, referred to as “effort-based tutoring” (EBT), adapts problem selec-

tion depending on the effort exerted by a student on a practice activity based on three

different dimensions of student behavior: attempts to solve a problem, help requested,

and time to answer (see Table 1). The algorithm defines an expected value of behavior

E for each problem, based on student-problem interactions over several years, across

students (E (Ii), E (Hi), E (Ti) for i=1… p where p is the total number of problem items

and I,H, and T are incorrect responses, hints, and time, respectively). In fact, it defines a

region of expected behavior, due to two delta values for each E (Ii), E (Hi) and E (Ti),

for a total of six delta values for each problem pi, which represent a fraction of the

standard deviation, regulated by two parameters, θLOW and θHIGH in the interval [0,1].

For example, if θLOW=1/4 and θHIGH=1/2, then δIL=θLOWSD (Ii)=SD (Ii)/4 (a fourth

of the standard deviation of Ii) and δIH=SD (Ii) θHIGH=SD (Ii)/2, half of the standard

deviation of Ii. θLOW and θHIGH are the same for all problems in the system.

These values help define “a region of expected behavior” for a practice item within

the tutoring system. The reason for having separate deltas for the lower and higher side

of the distribution is because these distributions of student behavior are not normally

distributed, and instead skewed towards zero. Note that the notation for δ values has

been simplified (e.g. should really be as it refers to an individual practice item pi).

The left side of Table 1 shows the estimated student state (e.g., mastery without

effort, hint avoidance and high effort, etc.), that represents a student’s most likely state

of mind (cognitive, metacognitive, motivational) while approaching a new problem,

compared to the problem solving behavior for the whole population of students. Thus,

the tutor interprets the reason for specific student behaviors (column 4) through

comparison with average student behaviors (i.e., expected values), for timing, errors

and help received (columns 1, 2, 3). The right side of Table 1 indicates the action taken

by Wayang Outpost based on the inferred reason (column 4). One significant benefit of

having a pedagogical model in which decisions are made based on orthogonal axes of

behavior (correctness, hints, and time, columns 1, 2, 3) is that such decisions can help

researchers and the software itself to discern between cognitive, metacognitive and

Fig. 6 The tutor attempts to maintain the student within a “zone of proximal development” (from Murray and

Arroyo 2002). It adapts the curriculum to individual learning needs
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motivational states. Thus, based on student behavior (left) corresponding to help abuse

and disengagement (affective and metacognitive) as well as lack of mastery or knowl-

edge (cognitive), the algorithm indicates which pedagogical moves should be made

next by the tutor, in terms of both content difficulty and other actions such as

pedagogical agent moves. Thus, Wayang’s main pedagogical decision-making method

integrates cognitive, metacognitive and affective factors before making a teaching

decision based on student learning needs.

Wayang Outpost’s pedagogical decisions concern not just content selection, but also

affective and metacognitive feedback. Note that student disengagement or low engage-

ment (e.g., Table 1, rows 3 and 5) will result in reduced problem difficulty, based on the

assumption that if a student is not working hard enough on the current problem, she/he

probably won’t work hard on a similar or harder problem. If this might appear to be a

somewhat simplistic tutor response, it is important to note that it will be followed by an

intervention with a learning companion, an animated digital character (see “Animated

Affective Learning Companions” section) that speaks to the student deemphasizing the

importance of immediate success, trying to encourage the student to exert more effort

solve problems. These cognitive and motivational scaffolds are designed to increase the

likelihood that students will engage further in the next problem. Further details about

how the level of challenge is adjusted in order to increase or decrease the difficulty of

the upcoming math problems can be found in (Arroyo et al. 2010b). A small random-

ized controlled study provided evidence that the adaptive problem selection results in

improved learning, compared with a control condition where problems were randomly

selected (Arroyo et al. 2010b) within the knowledge unit.

The effort-based tutoring (EBT) approach is different in many ways from the more

traditional Bayesian knowledge tracing, BKT (Corbett and Anderson 1995; Wang and

Heffernan 2013), as explained next. This article does not claim that a non-Bayesian

approach to student modeling is superior compared to a Bayesian approach, as further

studies would be needed to make such claim. In fact, we have started using hidden

Markov models to model engagement and knowledge in parallel (Arroyo et al. 2014;

Johns and Woolf 2006) to take a Bayesian approach towards modeling a variety of

cognitive, metacognitive, and affective states. In addition, the current Wayang Outpost

uses an estimation of knowledge mastery in the traditional BKT sense at the topic/

knowledge unit level, and uses it as one factor to decide to move on and across

knowledge units; by contrast, EBT is used to adjust content difficulty and other

decisions within a knowledge unit (e.g., a knowledge unit such as “decimals and

percent”). Still, the authors believe that using EBT to make decisions within the

knowledge unit affords several improvements to traditional knowledge tracing or other

theories such as Item Response Theory (IRT) (Rasch 1960) used in computer-adaptive

testing. Specifically:

a) EBT models a combination of the cognitive, affective and metacognitive states of

students as they interact with the tutoring system, based on combinations of timing,

correctness and hint requests. Traditional BKT models only the cognitive compo-

nent of students’ knowledge;

b) EBTcaptures the fact that some problems are inherently harder or easier, regardless

of the mathematical procedure required to solve each problem and depending on

operand size and other characteristics of the problem such as spatial distribution.
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Traditional BKT models assume that problem difficulty is related to student

knowledge (where less knowledge means greater difficulty). For instance, the two

problems shown in Fig. 2 are exactly the same from a procedural perspective –they

require exactly the same steps for the problem to be solved, however, students are

more familiar with horizontal parallel lines, thus the item on the bottom of Fig. 2 is

harder for students in general. The EBT approach can capture differences in

problem/item difficulty without having to explicitly model the knowledge that

might account for these difficulties;

c) EBT models item difficulty in terms of a continuous range of correctness (attempts),

and takes into account timing or help received by the student. Traditional IRTsystems

do model item difficulty and do capture items that might contribute differentially

towards evidence leading towards knowledge, but they do not do it in terms of a

continuous range of different student behaviors, beyond correct/incorrect;

d) EBT combines modeling with an optimization mechanism (the acting component),

which depends on very recent student performance, continuously searching for the

ideal content for an ever moving target –a student’s changing knowledge, affective

and metacognitive state. Traditional BKT and IRT are methods used to model

student knowledge states (modeling towards prediction) and their relationship to

correctness to respond, and the Cognitive Mastery approach uses BKT and selects

problems for not-yet mastered skills on an individual basis, until the student

reaches mastery on all skills, about .95 probability of knowing;

e) EBT is simple, scales up easily as new material is added to the system; it also learns

from students as new data is input; and easily integrates different activity formats

(e.g., short answer vs. multiple choice vs. other forms of responding such as

clickable/draggable answers) within the same system.

Training Students In Basic Cognitive Skills

The second component in Wayang Outpost that has shown improved student learning is

math fluency training (Arroyo et al. 2011a). This involves training very basic arithmetic

skills such as addition, subtraction, multiplication and division of single and double

digits numbers, focusing not only on accuracy (which might be at ceiling performance)

but especially on speed to respond. Based on an information-processing model of the

brain (Baddeley 1986), this approach is also called math facts retrieval (MFR) Training,

and it attempts to reduce working memory load by automating math fact retrieval from

long-term memory into working memory, and by developing automaticity in basic

math operations (Tronsky 2005; Tronsky and Royer 2003). As will be described

shortly, our experiments have shown improved learning among middle school children

on math-standardized tests, when sessions of Wayang Outpost are preceded with MFR

training, as compared to Wayang alone, or MFR training alone.

The underlying cognitive theory is based on retrieval from long-term memory as an

important skill in mathematics activities, since problem solving takes place in a

cognitive system constrained by a limited capacity of working memory. Many students

have difficulty with mathematics problems, in part because they are slow and/or

inaccurate in retrieval of simple math facts from long-term memory. Training in the

speed and accuracy of very basic math skills has been shown to be especially effective
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for students with learning disabilities, who may show number processing inefficiencies

(Royer and Walles 2007).

The math fact retrieval software, MathSuccess,7 is an off the shelf product that is

independent of Wayang. Originally developed for reading and dyslexia and then

extended to mathematics fluency, the math facts retrieval software provides both

training and assessment that blends an auditory/verbal with a visual/spatial component

of fluency. In the training phase, students study pages of math facts (e.g., two operand

addition/subtraction/multiplication/division of at most two digit numbers). Students

click on each item to hear the answer and “study” individual math facts, as if they

are studying vocabulary words. During the assessment phase, students are tested for

their accuracy and speed (recorded at millisecond resolution). Students speak the

answer aloud and immediately hit the space bar, after which the correct answer is

spoken back to the student. Students self-score themselves with the right/left buttons of

the mouse, and at the end of the assessment session, they can see a graph chart that

shows their progress (in speed and accuracy) at retrieving easy (already mastered) math

facts compared to the previous assessment session. Students normally become faster at

retrieving math facts as they work on more pages. Progress charts show them how

much faster and accurate they are getting, which serves as a motivation to “go for

another round”.

A time-controlled study involving 250 middle school students in a

Massachusetts school produced encouraging results for the combination of MFR

and Wayang Outpost (Arroyo et al. 2011a). Students were randomly assigned to one

of four conditions: (1) use of Wayang Tutor alone (Wayang-noMFR); (2) use of

Wayang Tutor after working on the MFR Training software for 15 min (Wayang-

MFR); (3) use of the MFR Training software (noWayang-MFR) and then use of

other modules and web sites (e.g., National Library of Virtual Manipulatives) that

did not explicitly tutor mathematics; and (4) classroom instruction instead of

software instruction or use of math web sites (noWayang-noMFR). Students used

the technology instead of math class.

There were significant effects for Wayang and the combination of Wayang and MFR

training, indicating that the Wayang-MFR group did better than the Wayang-noMFR

group. The effect size for Wayang vs. no-Wayang groups (Cohen’s d) was 0.39, and the

group with the highest scores at posttest time was the Wayang-MFR group that

received both Wayang and MFR training (Fig. 7; for details, see Arroyo et al.

(2011a)). As expected, students with MFR training became faster at responding to

easy arithmetic items, see Fig. 8.

One interpretation of these results is that increased math fluency, resulting from

MFR training, frees up cognitive resources that are essential to solve challenging math

problems. Easy problems do not require as much working memory, thus MFR training

does not have an impact on performance for these items. This evidence that suggests

that training provided by intelligent tutors for mathematics can be enhanced if students

also receive training in speed of foundational skill activities – even if those skills are at

ceiling accuracy before tutoring starts (i.e., mastered at pretest time). A combination of

fluency training (the speed with which students either retrieve or calculate answers) and

7 http://www.mathsuccesslab.com
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strategic training (approaches to solve specific kinds of problems) should yield higher

success at more complex problem solving. Efforts are currently in place to integrate the

MFR software into the Wayang Outpost/MathSpring tutor, and research continues to

Fig. 7 Mean improvement (and standard deviations) on hardest items of the math pre/posttest. The thick line

represents students who received both the Wayang Tutor and math facts retrieval training software; all other

groups did not really improve on these harder multi-step items

Fig. 8 Means and Standard Deviations of milliseconds to respond to basic arithmetic problems. Students who

received MFR Training (to the right of each chart) became faster at solving simple arithmetic problems as

compared to students who did not receive MFR (to the left of each chart)
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understand the limits of which and how pre-requisite math skills should be trained

towards automaticity.

Metacognitive Scaffolds and Interventions

Wayang Outpost also includes components that target metacognition, by which we

mean cognitive resources and mechanisms that help students to regulate their own

learning. We evaluated several interventions that involve 1) open student models that

scaffold the self-regulatory process, encouraging reflection and informed choice at key

moments of boredom, 2) progress charts and tips that encourage good study habits, and

3) interventions supporting help-seeking behavior in order to improve self-monitoring

and evaluation. These components will be discussed later in this section, after we

present the theoretical foundations for this work.

In general, support for self-regulation in Wayang Outpost is based on several models

of learning (Butler and Winne 1995; Greene and Azevedo 2007). These models define

the learning process as a flow model where each individual uses strategies to produce an

outcome that is then subjected to external feedback or revision based on an internal

monitoring loop within the cognitive system. These researchers propose that learning

occurs in the following phases: task definition, goal setting and planning, studying tactics

and strategies, carrying out a plan to generate a product, comparing outcomes to

standards, and adaptations to metacognition. Monitoring is an important and necessary

process while solving a problem, while evaluation occurs at the outcome or product level.

Based on Butler and Winne’s model, and following work by Azevedo et al. (2005), we

hypothesize that an optimal tutoring system needs to help students analyze the learning

situation, set meaningful learning goals, determine which strategies to use, assess whether

the strategies are effective, and evaluate their own emerging understanding of the topic.

Another model that inspired our work on metacognitive scaffolding is that of

Zimmerman and Moylan (2009), which is a socio-cognitive model of self-regulation

that adds a motivational/affective component to self-regulation. In their model, students

loop through three cyclical phases: forethought, performance and self-reflection. The

forethought phase refers to motivational/affective processes that precede efforts to

learn, and which influence students’ predisposition to start or continue the learning

process. Performance involves processes that occur during studying and/or problem

solving and impact concentration and outcomes (including monitoring during problem-

solving execution). The self-reflection phase involves processes that follow problem

solving or studying efforts, with a focus on a learner’s reactions to the experience

(including self-evaluation and self-judgment). These self-reflections, in turn, influence

forethought regarding subsequent learning efforts, which completes the self-regulatory

cycle.

Dignath et al. (2008) extend these ideas in a large meta-analysis of self-regulatory

training programs, which highlights that self-regulation training programs have been

effective at improving primary school students’ academic performance (cognitive

outcomes), strategy awareness and use (metacognitive outcomes), and motivation

(affective outcomes). Given these models and findings it is reasonable to believe that

intelligent adaptive learning environments should not only support self-regulation but

also include components that explicitly teach self-regulation. The distinction between
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teaching and supporting metacognition is that for teaching metacognition, the goal is to

improve students’ metacognitive behavior, even after the metacognitive scaffolds are

removed. In contrast, supporting metacognitive means that the goal is to improve

learning while the metacognitive scaffolds are in place.

We conjecture that emotions arise throughout all phases of the metacognitive

process. Pekrun introduced the control-value theory of achievement emotions

(Pekrun 2006; Pekrun et al. 2007), in which emotions are classified as prospective

(future expectancy of performance outcomes); retrospective (regarding past perfor-

mance evaluations) and activity-based emotion (experienced during performance/

studying). Combining theories from Pekrun (2006) and Zimmerman and Moylan

(2009), we propose that prospective emotions are more likely to occur in the fore-

thought phase, activity emotions in the performance phase, and retrospective emotions

in the self-evaluation phase –this is still an issue that deserves further investigation. In

addition, negative valence emotions during any of these phases can make students

disengaged, degrade performance and eventually make students quit out of the self-

regulatory loop (give up).

Based on these foundations, we incorporated several new components into the

Wayang Outpost Tutor to support student metacognition. Our focus is on self-

regulation of students’ learning in order to address disengagement and other non-

optimal student experiences observed in student-tutor interactions that we consider

are in part consequences of a degraded self-regulatory cycle.

Open Student Models to Enhance Self-Regulation

The first component in the Wayang Tutor that targeted metacognition was an open

student model called student progress pages (SPP), see Fig. 9. Promising research into

Fig. 9 The open student model in Wayang is called the Student Progress Page (SPP). It encourages students

to reflect on their progress for each topic (column 1). The plant (column 2) demonstrates the tutor’s assessment

of student effort, while the mastery bar (column 3) records presumed knowledge (according to Bayesian

Knowledge Tracing). The tutor comments on its assessment of the student’s behavior (column 4) and offers

students the choice to continue, review or challenge themselves and make informed decisions about future

choices (column 5)
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the relation between metacognition, student learning (Zimmerman 2000), and

supporting students’ self-regulation (Aleven et al. 2010; Roll et al. 2007) shows that

open student models promote metacognitive activities by encouraging students to

reflect on their progress, to take greater control and responsibility over their learning,

and to increase their trust in an adaptive environment through increased transparency

(Bull 2012; Kay 2012; Long and Aleven 2013; Mathews et al. 2012; Thomson and

Mitrovic 2010). The open student model in Wayang allows students to inspect their

progress and the tutor’s assessment of their work, see Fig. 9 (Rai et al. 2013). Students

use the open student model to make choices about which topics and difficulty level to

work on next. They also use it to monitor their own performance, to receive feedback

about their progress, to reflect on their learning, and to make informed choices.

Students can explicitly visualize their effort excerpted in problems via a plant that

blooms and gives peppers; the effort displayed is problem-based and represented based

on total amount of effort scenarios as shown in Table 1, i.e. being engaged with a

problem, spending time in it and asking for hints when mistakes are made. Currently,

students cannot modify the student model, or dispute the assessment of their own

knowledge.

The student progress page lists mathematics topics (rows) and encourages students

to reflect on the tutor’s assessment of their effort and knowledge (Fig. 9, columns 2–3

respectively) supporting students in the self-assessment stage. The SPP also supports

students to stop and set new goals through buttons in the last column that allow

students to choose to continue, review or challenge themselves and to make informed

decisions about future choices. Students might also switch to a topic that they might be

weaker in and need further “growing,” column 1. The SPP is designed to encourage

many of the behaviors that have been predicted to be beneficial with respect to open

student models (Bull 2012; Bull et al. 2012; Kay 2012; Mathews et al. 2012), including

encouraging students to reflect on their progress, supporting them to take greater

control and responsibility over their learning, and increasing their trust in the

environment.

In an evaluation of this approach of how a “metacognitive intervention” might cross

over and produce an improved affective outcome, one experimental condition invited

students to use the SPP when it detected a deactivating negative affective state

(boredom or lack of excitement). Students in the control condition had the same SPP

available via a button, but the tutor did not suggest its usage at any point of time. The

purpose of the experiment was to compare how students behaved using the tutor, what

emotions they reported, and what emotions our affect detectors predicted they experi-

enced, when being encouraged or not to visit the student progress page to encourage

evaluation and goal setting (continuing, reviewing, challenging themselves, switching

topics, etc.).

The decision to offer to see the SPP was based on students’ actual self-reports of

their emotion. Unfortunately, according to student self-reports, students were almost

never bored in this experiment, so Wayang almost never suggested that they use the

SPP. As a result, the total amount of use of the SPP was not reliably different between

the experimental and control groups of students. Given this, we analyzed differences

between students who had low vs. high SPP usage based on a median split of SPP

access (comparing students who used the student progress page more frequently vs. less

frequently). We created affect detectors specific for this data set using a variety of
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features and techniques that we have used in the past (Wixon et al. 2014), which

allowed us to understand how students felt during each and every math problem. We

then used Markov chain models for our analyses, path models that show how students

transition between emotional states from math problem to math problem, see Fig. 10.

These path models show that students with high-access to the SPP have a higher

probability to transition from a ‘neutral’ emotional state to a state of ‘interested’, instead

of remaining in a neutral state or becoming bored, Fig. 10, right. On the other hand,

students who demonstrated low usage of the SPP (Fig. 10, left) were more likely to

transition from a neutral state to one of boredom (+.05) and were less likely to transition

from a neutral state to one of interest than the student with high SPP usage.

Unfortunately, this might be an effect similar to the “rich get richer”, meaning that

students that already had good metacognitive behavior benefitted most from the

metacognitive feedback and the system as a whole. These studies need to be repeated

to verify the kinds of metacognitive and affective benefits the student progress page can

produce.

Progress Reminders to Enhance Self-Regulation

Another component in Wayang Outpost that targeted self-regulation was a suite of

reminders of student progress, including charts and tips. This intervention corresponded

to two intervention screens that appeared after fixed intervals every six problems (i.e.,

after students clicked the ‘next problem’ button on the sixth problem). The intervention

screens were shown to all students, but their contents were driven by the student’s

behavior within the system. Students received either 1) a progress performance chart

with an accompanying message, see Fig. 11.a (negative/positive bars depending on

recent and past performance); or 2) a tip (message) that encouraged productive learning

behavior, see Fig. 11.b (“Dear [student’s name], We think this will make you improve

even more: Read the problem thoroughly. If the problem is just too hard, then ask for a

hint. . . .”). Students were addressed by their first name in the messages accompanying

Interest (Students with low SPP use) Interest (Students with high SPP use) 

Fig. 10 Markov chain models represent student transition probabilities from one learning activity to another,

between states of boredom and interest. The overall likelihood for students remaining interested was 83 % for

students who accessed the SPP most (right, bottom), a bit lower than the 88 % for students in the low-access

group (left, bottom). However, students with high SPP use had a higher likelihood to transition from neutral to

interested (0.85) than did students in the control condition (0.63), a 22 % difference. Students with high SPP

use (right) were less likely to remain in the neutral state (0.15) than students with lower SPP use (0.32)
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both charts and tips. Whether a student saw a progress chart or a tip and which one, was

randomly decided.

Eighty-eight students from four different classes (10th grade students and some 11th

grade students) from an urban-area school in Massachusetts used Wayang Outpost for

1 week during four class periods. Students in the experimental condition used Wayang

with progress charts and tips. One control group used a version of Wayang that lacked

progress charts and tips. A second control group (called no-tutor control) consisted of

matched classes of students who did not use the Wayang Outpost tutor at all. These

students were of the same grade level, equivalent proficiency level, and taught by the

same teachers as the students in the other conditions. Students were randomly assigned

to either an experimental control conditions, and the experiment controlled for time.

Further details on this study can be found in (Arroyo et al. 2007).

Mathematics performance was evaluated with pre- and posttests; these instruments

also included questions on mastery learning orientation and students’ liking of math-

ematics (Mueller and Dweck 1998; Wigfield and Karpathian 1991). The post-tutor

survey also inquired about how human-like the tutor was. Another measure used

corresponded to disengagement (a form of gaming, assessed via an automated gaming

detector specified in Johns and Woolf (2006)), which consisted of estimations in

relation to each problem within the tutoring sessions. If the interventions were effective,

students’ gaming behaviors would be reduced, as found for instance in (Baker et al.

2008).

The interventions did influence student behavior. In particular, students in the

experimental group displayed significantly fewer cases of quick-guessed answers to

Fig. 11 a. Progress Charts in Wayang show students the accuracy of their answers. b. Tips in Wayang

encourage good learning habits
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problems (a form of gaming defined as rushing to answer in less than 4 s) in the

problems following the intervention: 12 % quick-guessed in the experimental condition

vs. 18 % in the control condition (based on analysis of every sixth problem), a

significant difference of 6 % more guessing in the control condition (p<0.01). Also

progress tips and charts increased student focus in the math problem immediately after

the intervention, e.g., improved time spent on a problem (increased focus) was

displayed in the problem immediately following the intervention.

The interventions also influenced student learning. The raw learning gain (posttest-

pretest) for the experimental group (ProgressTips) was 9 % while students in the Tutor

Control group showed no improvement. Table 2 shows the pre- and posttest scores for

no-tutor control (students who did not use Wayang - top row); tutor control group

(students who used Wayang without the interventions - middle row) and the interven-

tion group (students who used Wayang with progress tips – bottom row). We analyzed

the difference in learning gains between the two groups (progress tips tutor and tutor-

control). A significant difference between the Tutor-Control and ProgressTip Tutor

groups (p<0.05) indicates that the interventions-enhanced group learned more. As

shown in Table 2, students who received ProgressTips passed the state standard exam

more frequently, 92 % vs. 79 % (or 76 % for students who did not use any tutor), see

Arroyo et al. (2007) for further details.

Note that, across all conditions, the learning gains are smaller than what we had

observed in previous studies with Wayang Outpost (the latter were typically 15 % in

about the same amount of time). We think this may be due to the fact that, in prior

studies, Wayang provided tailored problem selection based on student needs, following

the problem selection decisions in Table 1. During this study Wayang used a fixed

sequence of problems. Eliminating the adaptive sequencing was done to reduce

variation across conditions and across engaged/disengaged students.

Further unpublished results are described next. We analyzed how the target inter-

ventions impact student disengagement behaviors (gaming) and learning. Gaming is

defined as “attempting to succeed in an educational environment by exploiting prop-

erties of the system rather than by learning the material and trying to use that

knowledge to answer correctly” (Baker, R. S. J. d et al. 2006). Gaming can be a sign

of poor self-regulation and in some instances gaming harms learning. However, as

Baker et al. (2008) have pointed out, gaming is not always detrimental to learning, as

students might have a “gaming style” and can carry out non-harmful gaming that does

not impact their learning. Thus, we split students at their median gaming rate to classify

them as low vs. high gaming students (where gaming was identified as quick-guessing

on a problem, hint-abusing –reaching the last hint that gave the answer quickly– or

skipping problems without taking any action in the tutoring sessions). We then made a

Table 2 Students in the experimental group (last row) received tips and charts every 6 problems. Means and

standard deviations in performance measures before and after tutoring for the three groups

Group Math Pretest Math Posttest Passing Rate in State Standard Exam

No Tutor Control 76 % (N=38)

Tutor Control 40 % (20) (N=40) 40 % (28)* (N=40) 79 % (N=34)

ProgressTips Tutor 33 % (19) (N=36) 42 % (22)* (N=36) 92 % (N=24)
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comparison depending on gaming style. Would high gaming students also be harmful

gamers? Would progress charts with Charts and Tips benefit high gaming students or

low gaming students?

In general, gaming negatively impacted learning. High gamers’ performance im-

proved only very slightly (Fig. 12, left) whereas low gamers’ performance improved by

about 10 % from pre to posttest (Fig. 12, right). However, these Progress Reports had a

differential impact for high gaming students. When high-gamer students did not receive

charts and tips their performance decreased from pretest to posttest (Fig. 12, right, black

circle). On the other hand, high gaming students who received Progress Charts and Tips

(Fig. 12, right, clear circle) improved from pre- to posttest. These students also became

less-harmful gamers than students in the control group. High gamers had significantly

higher posttest score overall in the Progress Reports group F (1,76)=3.4, p=0.02

compared to the standard Tutor control group, after accounting for pretest as a

covariate. These results are similar to ones obtained with Scooter the Tutor (Baker,

R. S. J. d et al. 2006), where specific interventions especially benefitted high gamers. In

the case of Wayang Outpost, when high-gamers were shown Progress Reports, their

learning rates improved.

Because the experiment was carried out several days before a statewide-standardized

test exam in Massachusetts (MCAS), we collected standardized scores for students who

took the exam (only a subset of ~30 students in the experiment), and also collected scores

for a group of students (same level and same teachers) who did not useWayang. Thus, the

MCAS acts as a delayed posttest. Students in the ProgressTips tutor group obtained a

higher passing rate on the MCAS exam (92% vs. 79%) than did their counterparts in the

control group, and this difference approached significance (ChiSquare (1,62)=2.4,

p<0.12). This finding is further evidence that the ProgressTips interventions had an

impact on students’ mathematics problem-solving ability (note that the comparison of

tutor conditions vs. no-tutor condition are in Fig. 4, year 2006).

Last, we measured the affective impact of Progress Charts and Tips. Students in the

ProgressTips tutor group agreed more with a variety of statements that attributed a

positive human-like qualities to the tutoring system, such as “the Wayang tutor was

smart and friendly”. They also had significantly higher mastery learning orientation

scores, as measured by two survey questions based on ones by Mueller and Dweck

(1998), indicating that students who saw Progress Charts and Tips had a greater desire

to learn for the sake of learning.

Low gaming students
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Fig. 12 High gaming students improve math performance when they receive progress tips and interventions

(left) but not when they don’t receive interventions (right)
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Scaffolding Help Seeking Behavior towards Enhancing Self-Regulation

Another component in the Wayang tutor that targeted self-regulation was the teammate

effect, which we found supports help-seeking behavior. We believe that an important

connection exists among student self-monitoring, self-evaluation and help seeking.

Help seeking is an attribute of self-regulation, as described by learning science theories

(Butler and Winne 1995; Greene and Azevedo 2007). Help seeking occurs after a

student becomes aware of needing help, and is a proactive decision that enables

students to continue making progress in the problem solving process.

The decision to seek help is potentially related to students’ perceived competence

during the self-evaluation and forethought phases. Thus, some students may avoid

seeking help, probably in an effort to protect their self-perception of competence. Such

avoidance is detrimental to student learning (Aleven et al. 2006). In general, students

are challenged by asking for help when needed; often students engage in non-optimal

behaviors, such as quick guessing or abusing help, when they search for the answer

(Aleven et al. 2005, 2006).

Students’ relationship between their view of themselves and the act of help seeking

might well depend on students’mindset, e.g., their belief about intelligence being static

(fixed) vs. dynamic (can be increased) (Dweck 1999). If a student believes that

intelligence can be increased, the student might approach a task relentlessly and seek

help when needed; instead, if a student believes that intelligence and math ability are

fixed, he or she might feel threatened by the idea of needing help. Thus, it is pertinent to

design adaptive help scaffolds within intelligent tutoring systems that teach students

how to appropriately seek and utilize help (Aleven et al. 2006), and to promote a better

affective relationship toward help seeking in general.

While exploring ways to enhance students’ help seeking behaviors, we studied the

teammate effect, by manipulating the tutor’s interface to enhance students’ belief that

they were working in partnership with the tutor. We hypothesized that students who

thought they were working within a team that includedWayang Outpost might manifest

more positive help seeking and learning behaviors. This was based on the belief that a

basic factor in the relationship between students and the tutoring system is the students’

perception of the role of the tutoring system within their learning process: Is it a

substitute teacher, a helper, a friend? Do students treat the system as a human or as a

tool? Research has shown that by encouraging team relationships between humans and

computers, people can be influenced to think that the information from the computer is

of better quality and relayed in a more friendly way (Bickmore and Picard 2004; Nass

et al. 1996). Moreover, Ogan et al. (2011) further showed that social interactions in a

learning environment resulted in greater learning.

We explored these notions by investigating whether students who are encouraged to

build a teammate relationship with the computer by manipulating the tutor’s interface to

suggest that students were collaborating with it. We asked whether students using the

teammate approach are motivated to engage in more productive use of the system, with

more effective help-seeking behaviors. Specifically, we wondered whether students: 1)

would have better learning outcomes when they learned with Wayang Outpost in the

role of a teammate and 2) would engage in more effective help-seeking behaviors when

they worked as a team to solve problems with the computer. The following is a

summary of studies further described in Tai et al. (2013).

Int J Artif Intell Educ (2014) 24:387–426 411



Ninety-seven students from a small town middle school in the state of

Massachusetts, USA, were randomly assigned to experimental and control conditions.

Students in the experimental group were encouraged to relate to the tutor as a teammate

via a help button that was labeled “Work Together”. Students in the control condition

received a help button that was labeled “Help”. In order to enhance the team relation-

ship, students in the experimental condition also received a prompt at login time saying:

“Dear<student’s name>: we encourage you to solve math problems with the tutor

character as a teammate. Click on the “work together” button if you don’t know how to

solve the problem, so the tutor can help you”. Students in the control group were

prompted only with “Dear<student’s name>”, and they were told to ask for help by

clicking on the “Help” button if they did not know how to solve problems. Students in

both conditions received exactly the same content of step-by-step hints if they asked for

help from the tutor. They saw a prompt screen every time they logged in to remind

them to ask for help if they did not know how to solve a problem.

Results indicated that the teammate manipulation did not lead to improved learning,

but it did impact help-seeking behaviors, with a higher total amount of hints requested

by students in the experimental condition as compared to the control condition

(p<0.05). While students saw more hints, there was no significant difference between

the conditions in the frequency with which students quickly went to the bottom-out

hint, a key form of hint abuse.

These results suggest that when students are encouraged to consider the tutor as their

teammate, they will ask for more help and thus get more support from the tutor.

Students in the experimental condition also had a lower frequency of quick-guessing

on problems (quickly attempting an answer with not much time to even read the

problem). Students in the experimental group saw many more hints, and apparently

they used them in a positive way – as there was no significant difference with regard to

hint abuse across conditions (Tai et al. 2013).

These results are consistent with an earlier study that found improved help-seeking

behavior but no improvement in students’ learning outcomes (Roll et al. 2011).

Affective Scaffolds and Interventions

While previous sections described several components that target cognition and

metacognition and showed evidence that these components support a variety of

learning outcomes, other components in Wayang targeted students’ affective states.

Doing so could improve student engagement with the system and, as learning a

consequence, because students’ affective states and traits (e.g., frustration, bore-

dom) can bias the outcome of any learning situation, whether human or computer

based. The concept of student motivational states and traits comes from Dweck’s

theory of motivation and praise (Dweck 1999, 2002a, b). This theory holds that

students who view their intelligence as fixed and immutable (trait-based) tend to

shy away from academic challenges, whereas students who believe that intelligence

can be increased through effort and persistence (state-based) tend to seek out

academic challenges. Students who are praised for their effort are more likely to

view intelligence as being malleable, and their self-esteem will remain stable

regardless of how hard they have to work to succeed.
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Student emotions within a traditional classroom have been described as control or

value-oriented (Pekrun 2006; Pekrun et al. 2007, 2010). This control-value theory is

based on the premise that student appraisals of control and value of a task are central to

the arousal of achievement emotions, including activity-related emotions such as

enjoyment, frustration, and boredom experienced while learning, as well as outcome-

related emotions such as joy, hope, pride, anxiety, hopelessness, shame, and anger.

Students often use coping strategies, e.g., avoidance, humor, acceptance, and negation,

to regulate their emotions in stressful learning situations (Eynde et al. 2007).

Student emotions can be influenced in a variety of ways. For instance, the presence of

someone who cares, or at least appears to care, can make students’ experiences more

personal and help them persist at a task, even a computer task (Burleson and Picard

2007). Moreover, when people are in a certain mood, whether elated or depressed, that

mood is often communicated to others; thus a student might register joy or sadness from

someone nearby who exhibits those emotions. Feelings are contagious:when we register

a feeling from someone else, there are signals in our brain that imitate that feeling in our

bodies (Hartfield 1994). Empathic responses from a teacher or graphic character might

work when students do not themselves feel positive about a learning experience

(McQuiggan et al. 2008). Thus, a computer persona that appears to enjoy math experi-

ences could transmit these positive feelings to students. The literature suggests that

empathic responses from a teacher work well in situations were students do not feel

positive about the learning experience (Graham and Weiner 1986; Zimmerman 2000).

In general, if computers can model and understand students’ emotion in real time,

they can begin to act upon students’ emotional states, encouraging them to use more

productive coping strategies. Computers might further attempt to understand the causes

of negative affective states, as well as explore the utility of various responses that are

not necessarily affective in nature.

The field of AI and Education has made great strides in devising computational

models that recognize student emotion (Graesser et al. 2007; Lester et al. 1999;

Robison et al. 2009) and is starting to explore how to use that information to respond

to student emotion (D'Mello et al. 2010; Rai et al. 2013; Tai et al. 2013). We have

created a series of affect detectors, specifically classifiers based on linear regression

models that predict four different student emotions from recent student behavior with

the tutor. Initially, physical sensors (camera, seat cushion, etc.) were used to predict

students’ emotions within the software, see Fig. 13, (Arroyo et al. 2009a, 2010b;

Fig. 13 Four physiologic sensors used to measure student emotion. The emotion component measured (and

the physiologic sensor used) included: 1) facial expression (camera); 2) increasing amounts of pressure placed

on mice related to increased levels of frustration (mouse with accelerometers), 3) skin conductance (wireless

conductance bracelet based on an earlier glove developed at the MIT Media Lab); and 4) elements of a

student’s posture and activity (chair with pressure sensitive seat cushions and back pads with incorporated

accelerometers)
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Cooper et al. 2009, 2011). Currently, sensor-free detectors of student emotion have

been generated and scaled-up to new schools and populations (Wixon et al. 2014;

Baker, R.S.J.d et al. 2012) using information based on recent student behaviors,

patterns of behaviors and other trait-based student descriptors.

Foundations: Detection and Responding to Student Affect

At the time we started our research in 2004, no comprehensive, validated, theory of

emotion existed that addressed learning, explained which emotions are most important

in learning, or identified how emotion influenced learning (Picard et al. 2004), though

later work by Pekrun solidified that idea that our intuitions were headed in the right

direction (Pekrun 2006). At the time, we identified a subset of emotions based on

Ekman’s analyses of facial expressions that includes joy, anger, surprise, fear, disgust/

contempt, and interest (Ekman 1999), with the intention of recognizing these emotions

in student behavior and then providing interventions. We added a cognitive component

to ground this emotion categorization in an educational setting, resulting in four

orthogonal bipolar axes of cognition-affect (Arroyo et al., 2009a), and this resulted in

a set of emotions congruent with the control-value theory of achievement emotions

(Pekrun 2006). Two of the four axes of emotions were bipolar, in the sense that they

had emotions at each end: “confidence/hope…anxiety”, “interest….boredom”; the

other two were unipolar: “frustrated … not frustrated”, “excitement … not fun”. We

tend to refer to these emotions as confidence, interest, frustration, and excitement,

though the reverse of the first two are also anxiety and boredom.

Physiologic Sensors and Interaction Data to Measure Student Emotion

The first component in Wayang that detected student emotion was a suite of physical

sensors, see Fig. 13. We developed sensors that captured students’ physiological

responses while they interacted with Wayang; this data was then combined with

information coming from a student’s interaction with Wayang (Cooper et al. 2009).

The hardware (with the exception of the camera affective facial recognition software

that was developed at MIT) was advanced at Arizona State University based on

validated instruments and systems first developed by the Affective Computing group

at MIT (Picard et al. 2004). To evaluate the utility of the physical sensors for affect

detection, we invited high school and university students to interact with Wayang for 4–

5 days and outfitted them with all four sensors, see Fig. 13. Wayang iterated through

different mathematics topics and problems were chosen adaptively depending on

students’ ongoing math performance, as specified in previous sections (Arroyo et al.

2010b). We still needed a ‘gold standard’ of affect, information on how students were

feeling, to compare with the sensor data. Thus, every 5 min and after students finished a

problem, a screen queried them about their emotions, randomly asking about a single

emotion selected from a pre-specified list: “How [interested/excited/confident/frustrat-

ed] do you feel right now?” Students choose one of 5 points on a continuum, where the

ends were labeled (e.g. I feel anxious…Very confident) and where “3” corresponded to

a neutral value.

Results showed that our sensors in conjunction with the interaction data predicted

over 60 % of the variance of students’ emotional states. To illustrate, the variables that
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predicted confidence included Solved? (did the student eventually solve the problem

correctly?) and concentratingMax (the maximum probability that the student was

“concentrating”) a value provided by the facial expression software.

When we analyzed what emotions students said they experienced, we found that

these emotions were highly dependent on the tutoring scenario, particularly on indica-

tors of effort in the last problems seen (Arroyo et al. 2009a). These fluctuating student

reports were related to longer-term affective variables (e.g., value of mathematics and

expectancy of success) and these latter variables, in turn, are known to predict long-

term success in mathematics, e.g., students who value mathematics and have a positive

self-concept of their mathematics ability perform better in mathematics classes (Royer

and Walles 2007).

While physiological sensors helped to predict student emotion, our recent efforts

have moved away from sensors. In part, this movement is because bringing sensors into

classrooms does not port to other classrooms, nor scale to many classrooms; e.g., after

the sensors are built,

it costs the same amount of time (planning, management) and resources to reach

students in each new classroom. Thus we are now experimenting with a different

approach, specifically using log data to generate new features of emotion that would

allow for sensor-free affect detection, as was also investigated by Baker et al., (2012).

Sensor-free affect detection is a more scalable solution, particularly with large numbers

of students in public school settings across the country (Baker, R.S.J.d et al. 2012;

Wixon et al., in press).

Animated Affective Learning Companions

The second component in Wayang Outpost that targeted students’ emotion was a suite

of animated learning companions that responded to student emotion, see Figs. 1 and 14

(Arroyo et al. 2009b). These full-bodied animated agents acted like peers/study partners

who care about student progress, offer supportive advice, and promise to work together

with the student, while sitting behind their own desks (Arroyo et al. 2009b. Research

Fig. 14 Animated pedagogical agents display a range of emotions. Companions act out their emotion and

resolve negative ones, expressing full sentences of affective and metacognitive nature, to support growth of

mindset towards the view that intelligence is a state (and thus changeable)
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questions included: Can human-like learning companions improve motivation and

affect? Does the presence of learning companions impact student learning? Are

learning companions that resemble a student’s gender more effective? How should

pedagogical agents respond to affective states or traits of negative valence? Should

students be praised when they do well?

We based much of our implementation of the learning companions’ dialogue on

Dweck’s research on human motivation (Dweck 1999, 2002a, b). This theory holds that

students who view their intelligence as fixed and immutable (trait-based) tend to shy

away from academic challenges, whereas students who believe that intelligence can be

increased through effort and persistence (state-based) tend to seek out academic

challenges. Students who are praised for their effort are more likely to view intelligence

as being malleable, and their self-esteem will remain stable regardless of how hard they

have to work to succeed. Thus praise, when delivered appropriately, can encourage

students to view their intelligence as malleable and support students’ stable self-esteem.

However, stakeholders (e.g., teachers, parents) may lead students to accept a trait-based

view of intelligence by praising students’ intelligence, rather than effort, thus implying

that success and failure depend on something beyond the students' control.

Figure 15 presents a few of approximately 50 spoken messages that Wayang’s

learning companions say to motivate students and also provide metacognitive help.

The companions speak the messages either at the beginning of a new problem, or in

response to students problem-solving actions. Thus, the companions are non intrusive –

they work on their own “computer” (an animated image of a computer) trying to solve

the target problem, and react only after the student has entered the problem solution.

Some of the messages emphasize perseverance by addressing students’ effort in

challenging tasks; others debunk myths about the innateness of math ability. Also,

companions appear unimpressed or simply ignore students’ solutions when students do

not exert effort, regardless of success. Exertion of student effort is measured by several

variables in the log data, including time to read the problem, number of hints requested,

and answer submitted. Companions praise students who excerpt effort, even if the

answers are incorrect.

Fig. 15 Examples of a few of the 50 messages spoken in Wayang Outpost by animated learning companions
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Over 100 high school students were assigned to either a learning companion

condition (LC group) or to a no learning companion condition (no-LC). The gender

of the learning companion was randomly assigned for the LC group (Arroyo et al.

2011b; Woolf et al. 2010). For this study, companions acted upon the tutor’s assessment

of student effort as indicated in Table 1, and not the student’s emotional state. However,

emotion self-reports within the tutor were used for gathering additional data on

students’ emotions as they used Wayang. Both cognitive and affective pre-tests and

post-tests were provided to analyze the general impact of learning companions on

students’ performance and attitudes towards math and learning. The cognitive pre/

posttest consisted of math word problems from the MCAS state-wide standardized test

in Massachusetts, and the affective pre and posttest consisted of affective predisposition

towards problem solving “How [confident/frustrated/excited/interested] do you feel/get

when solving math problems?”

In all analyses, which consisted of between-subjects comparisons as part of

Analyses of Variance, we accounted for covariates that consisted of the corresponding

pretest baseline variables (e.g., we accounted for students’ pretest baseline confidence

towards problem solving, when analyzing a student’s self-report about their confidence

within the tutor). Independent variables corresponded to condition, specifically learning

companion (LC) present vs. absent, or LC type (Female-LC vs. Male-LC vs. no-LC)

depending on the analysis. We analyzed both main effects and aptitude-treatment

interaction effects for condition and achievement level (math ability, based on math

pretest score). In addition, because of the special affective needs of low-achieving

students, we repeated the ANCOVAs for the low-achieving student population only, by

analyzing a potential “targeted effect” for this group of students alone.

The main impact of learning companions was on affective and motivational out-

comes, such as increase of confidence (or reduction of anxiety), see Fig. 16. Students in

Fig. 16 Students reported their confidence before, during and after using the tutor. Low achieving students

(squares) showed larger gains in confidence when the companions were available than did high achieving

students (circles). High achieving students did not change much
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general reported more interest (less boredom) when learning companions were present

than when they were absent. Significant main effects also indicated that learning

companions had a positive impact for all students in general on some measures, e.g.,

students receiving the female companion in particular had significantly higher math

liking and appreciation (p<0.05) and self-concept of their math ability (p<0.05),

including expectancy of success, and belief in their current math ability, at posttest time.

Learning companions were especially important for the affective experiences of low

achieving students (median-split based on math pretest score). When learning compan-

ions were present, low-achieving students reported positive affect nearly twice as often

as low-achieving students who did not receive learning companions (for confidence,

p<0.01, for interest, p<0.1), and it was only when learning companions were absent

that a large affective gap existed between low and high achieving students. Similar

results that indicate a positive effect of affective characters on low achieving students

was found for several outcome variables, including posttest self-concept (p<0.1),

perceptions of learning (p<0.01), as well as confidence in their ability to solve math

problems (p<0.05). However, learning companions did not help to reduce the gap

between high and low achieving students in some respects: compared with high

achieving students, low-achieving students still engaged in more quick-guessing

(p<0.05) and reported less interest overall while using the tutor (p<0.1), across all

conditions.

Students in general improved their math problem-solving performance after working

with Wayang (i.e. math posttest score was significantly higher than the pretest,

p<0.05), with low-achieving students improving more than high achieving students

across all conditions (i.e., posttest – pretest gain comparison between low and high

achieving students, p<0.05). Learning companions did not impact student learning

directly, but rather induced positive help seeking behavior that had been found to be

predictive of student learning in previous studies (Arroyo and Woolf 2005) –specifi-

cally, students spent more time on hinted problems (p<0.1), thus either seeking deeper

for help, or paying more attention to help, or both. An interpretation of these results is

that low achieving students engage in more positive problem solving behaviors due to

an enhanced affective/motivational impact that encourages focus and perseverance,

which is instilled by the affective learning companions. Further details about these

results can be found at Woolf, Arroyo et al. (2010a).

Using Gender Differences to Impact Student Emotion

Another component in Wayang Outpost that targeted student emotion was manipula-

tion of the gender of the learning companion, as it was not clear which kind of character

would benefit each student. Gender differences were investigated by focusing on

cognitive and affective factors in learning, in relation to whether they were gender

matched or unmatched (between student and character gender); students were randomly

assigned to male and female companion characters and a no-LC condition.

In general, some of the results showed that characters were positive for both girls

and boys, but still some significant results showed that learning companions had

impacted only girls positively, but not boys (e.g. and males “quick-guessed” less when

characters were absent). Students (both boys and girls) who received the female

learning companion reported significantly higher self-concept and liking/appreciation
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of mathematics at posttest time as compared to students who received the male

character. After more detailed analyses of the data, the effect appeared mostly due to

the impact on female students, who scored a full standard deviation lower in frustration

within the tutor (d=0.99, p<0.001) compared to female students in the control (no-LC)

condition. Male students receiving the Jane character, instead, had zero effect regarding

frustration when receiving the female character (d=0.00) compared to male students in

the control (no-LC) condition.

It is important to note that there were no significant differences in mathematics

achievement across genders before using the tutor (i.e. math pretest). However, a

gender difference was still present for “How frustrated do you get when solving math

problems?” at pretest time. These high school girls consistently reported lower confi-

dence and higher frustration and anxiety toward solving mathematics problems at

pretest time (i.e. affective pretest). Thus, girls in particular especially needed the

affective support. In light of this, the results in the previous paragraph regarding the

benefit of the female affective character on female students were very welcome as the

female character helped to improve the affective reports of girls to a large extent.

In addition, self-reports for the emotion “excitement towards problem solving” at

posttest time was higher for female students who worked with companions than for

female students who did not receive companions (females in the no-LC condition); in

contrast, excitement among male students was higher when companions were absent

(males in the no-LC condition). Additionally, girls perceived the entire learning

experience with Wayang as significantly better than did boys, in particular when

learning companions were present, whereas the opposite was true for boys, who

reported better perceptions when the companions were absent. These results suggest

that, when the goal is to “reduce frustration” or “increase excitement/interest,” girls

should receive the female learning companion and boys should receive the male

character or no character at all.

This research into matching the gender of learning companions highlights how to

best support female students in intelligent learning environments, but leaves open

questions about how to support male students and the reasons for these differences.

Perhaps female students should work with female learning companions, male students

should receive a male learning companion and high-achieving male students should

receive no learning companion at all. This is because of the evidence that low-

achieving students (both male and female) benefited from affective learning compan-

ions (Woolf et al. 2010). Another possibility is that we should start running focus

groups to create new affective digital characters that are especially tailored for boys,

from scratch, attempting to understand their expectations of pedagogical agents and

avatars.

Discussion

This article described a landmark learning system, an intelligent adaptive tutor named

Wayang Outpost (now MathSpring), along with a variety of components used in the

system. One important take-home message from this work is that cognitive, affective

and metacognitive (CAM) factors can and should be modeled and supported by

intelligent tutoring systems. We have shown that a variety of these factors, and
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combinations of these factors, influence student behavior within the tutor and student

outcomes after using the software. This article also described several evaluations that

measured the impact of each component designed to provide a holistic array of

supports, based on the cognitive, metacognitive and affective states of the student.

This tutor has led to improved performance in mathematics and on state standardized

tests, as well as improved engagement and affective outcomes both for groups of

students as a whole, and for certain subgroups in particular, e.g., female students and

low achieving students.

Given that the Wayang Tutor is traditionally used for short periods of time (i.e., only

four or five 50 min sessions on average) the benefits to learning observed throughout

the years provides evidence of Wayang’s effectiveness, and also argues for its potential

use for longer time exposures (i.e., students using Wayang Outpost as a supplement to

daily math class).

Student cognition was addressed by using several interventions. For instance, a

mechanism was created to provide adaptive sequencing of math problems adjusted to

students’ recent levels of ability and effort exerted (Arroyo et al., 2010b). Despite substan-

tial research on modeling student knowledge, less work has explored how tutors can

enforce sequencing of content depending on students’ recent performance (with notable

exceptions, e.g., Brusilovsky and Vassileva (2003); Karampiperis and Sampson (2005)).

We suggest that our mechanism that adjusts problem selection to both student effort

and cognitive expertise is a key contribution to Wayang’s success. In addition, the use

of math facts retrieval training (MFR) software provided a valuable supplement to

Wayang Outpost, for students at all levels. After 3–4 days of tutoring, the MFR

software combined with Wayang effectively improved students’ performance on items

in a mock-standardized test, more than did the tutor alone, and specifically improved

performance on the most difficult problems in a math test. Difficult items on these tests

generally involved multiple steps and additional computation, and MFR training seems

to have freed up memory resources needed to solve those problems. We learned that

going back to already mastered pre-requisite topics is an efficient strategy as it can

facilitate student learning of more difficult topics later on. We believe that mechanisms

such as these, which are based on solid research into human cognition and memory, are

important and deserve further exploration by researchers.

Student affect was automatically predicted while students used the tutoring system.

Initially, this was achieved through information from physiological sensors and student

behavior within the tutor. We later created detectors (quantitative models and classi-

fiers) to predict student self-reported emotions. Our recent studies demonstrated detec-

tors that predicted affect without physiological sensors, relying only on behavior

patterns and baseline affective traits, which generalize across students in different

schools (Shanabrook et al. 2012; Wixon et al. 2014).

A variety of features in Wayang Outpost were designed to help improve students’

affective experience as they learn with the tutor. For example, affective learning

companions trained attributions for success/failure and emphasized the malleability of

intelligence and the importance of effort/perseverance. Companions were able to at

improve students’ affective states (e.g., frustration, confidence) while using Wayang

and motivational outcomes after using Wayang (e.g., math liking, expectancy of

success in math, self-efficacy), at least when the gender of the character was matched

to the gender of the student, and especially for girls and low achieving students. In
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addition, our results with the student progress pages suggest that tutoring systems can

promote students to transition into affective states of positive valence. Interestingly, this

was a metacognitive intervention that also helped to resolve and address an affective

problem.

Student metacognition was addressed through activities that encouraged students to

reflect on their progress, goals and self-evaluation while in the forethought phase before

rushing to the performance phase (Zimmerman and Moylan 2009). This was accom-

plished by presenting progress charts and tips between problems during the tutoring/

practice experience, and also by presenting a student progress page that helps students

to reflect on both their mastery and effort, and helps them to make informed choices

from there on. The impact of metacognitive supports resulted in improved performance

on posttest scores and standardized tests and improved affect and engagement with

Wayang.

Using cognitive, affective, and metacognitive teaching strategies is well known in

classrooms; teachers, tutors and parents typically consider all of these dimensions when

working with K-12 students. In addition, the next generation of intelligent tutoring

systems should contain interventions that act upon and respond to students’ cognitive,

metacognitive and affective states as they occur while they work with software, which

in turn, will help support cognitive, metacognitive and affective changes within

students. An important factor to consider is that the outcomes of specific interventions

may impact outcomes across all three areas. For instance, the impact of metacognitive

pedagogical moves might influence cognitive and affective outcomes as well as

metacognitive outcomes. Similarly, affective pedagogical moves might influence

metacognitive and cognitive student outcomes and behaviors/states. It is very likely

that an intervention that is specifically tailored to address one of these dimensions will

have a higher impact on that specific area (e.g., affective move on affective outcome),

and to a lesser extent to the other two areas (e.g., affective move on cognitive outcome);

however, cross-overs are a clear possibility as we have shown in this article.

We believe the next generation of intelligent tutoring systems should reason about

the complexities of multiple and sometimes competing goals and outcomes. For

instance, it is possible that decreasing the level of challenge of the learning activity

(e.g., math problem) might have the benefit of reducing a student’s anxiety (affective

outcome), but it might not be ideal from a cognitive perspective (as the student might

answer easy problems correctly, yet become bored, e.g., work outside their zone of

proximal development). We believe that these competing goals and outcomes, and how

to prioritize them, present a new set of research questions leading towards a higher level

of complexity. As modeling students becomes more complex, new issues become ripe

for exploration.

In sum, Wayang Outpost is an important landmark in learning technologies, as it has

been designed and evaluated for effectiveness within cognitive, affective and

metacognitive dimensions, showing benefits for all of them, and across them. The

system presents a rich research environment in addition to a unique adaptive tutoring

system that addresses an integral view of human learning, aggregating all three

perspectives. Wayang’s main pedagogical decision-making method integrates cogni-

tive, metacognitive and affective factors about the student before making a teaching

decision based on student learning needs. It provides a real opportunity to contribute to

the learning sciences and to our knowledge about human learning.
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The main limitation of our approach is the increased complexity of each component

design and evaluation. In the future, much more work is needed to conduct research at

the intersection of the metacognitive, affective and cognitive perspective, to develop

instructional technologies that approach the effectiveness of expert human teachers and

tutors, and to provide optimal experiences that instruct, encourage, and generate student

agency and promote positive experiences for students while learning new domains

about within one learning environment.
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