
A Multimedia Tool for Teaching Reconfigurable Computing

Iouliia Skliarova

Department of Electronics, Telecommunications and Informatics / IEETA

University of Aveiro

3810-193 Aveiro, Portugal

e-mail: iouliia@ua.pt

Abstract—This paper proposes a method for efficient teaching

of reconfigurable computing. Nowadays, reconfigurable

systems, in general, and FPGA (Field-Programmable Gate

Array) based systems, in particular, constitute an essential part

of engineering practice. The paper argues importance of

reconfigurable systems in education and suggests a multimedia

tool augmented with an FPGA-based prototyping system,

which could contribute to productive teaching of

reconfigurable computing.

Keywords- reconfigurable computing; computer architecture,

FPGA, prototyping board, teaching

I. INTRODUCTION

In the recent years we witnessed a tremendous progress
in the scope of reconfigurable systems. FPGA (Field-
Programmable Gate Arrays) appeared on the market in 1985
[1] and now they are widely used in numerous applications.
For example, FPGAs, because of their processing throughput
and inherent reconfigurability, provide great value as
processing platforms in the area of software-defined radios
and cognitive radios [2]. FPGA have proven to be effective
for algorithm acceleration in high-performance computing in
the areas of biological sequencing, real-time video
processing, and gravity simulation, where significant speed
and power savings over traditional microprocessors and DSP
were achieved [3-4]. Besides, FPGA have been shown to be
very efficient in performing such functions as searching,
sorting, coding/decoding, signal processing,
audio/video/image manipulation, encryption, error
correction, random number generation, packet processing,
and many others. These functions are of great demand in
applications such as seismic processing, acoustics,
astrophysics FFT (Fast Fourier Transform), adaptive optics,
cryptography, graphics acceleration, HDTV (High Definition
Television), mobile radio, car multimedia systems, image
recognition, speech recognition, security, video format
translation, biotech applications, vehicular traffic simulation,
financial modeling, orbit, space, and extra-terrestrial
applications, and so on. Many of the mentioned tasks have to
be performed in real-time.

A wide variety of industries relies on programmable
logic to fuel quick innovation and product differentiation [5].
For instance, the automotive market uses a programmable
platform to address different market requirements in
automotive graphics systems [6]. The trend in the medical

industry is to use programmable logic as a consistent
hardware platform for a wide range of portable devices,
simplifying recertification and preventing obsolescence
issues [6]

Developing engineering systems on the basis of high
capacity FPGAs involves vast variety of design tools and
requires a large number of well-prepared engineers in the
relevant areas [7]. Hence new trends must be appropriately
reflected in the respective pedagogical activity and this
strongly demands an ongoing review of university curricula.
What happens in reality is that reconfigurable computing
education does not exist at all at many universities even
within electrical engineering and computer engineering
curricula [8]. Therefore, an enforcement should be done to
promote a positive image of reconfigurable systems by both
illustrating the real achievements of reconfigurable
computing and highlighting the links with other disciplines
illuminating the advantages that such links could provide.
We hope that these measures would make reconfigurable
computing discipline more attractive to students.

In particular, we would like to find new and better ways
of teaching that have greater visual appeal than the current
methods and allow engaging more students in active
learning. We have reported the results of our previous work
in this direction in [7] where we presented animated tutorials,
mini-projects, hardware templates, and course-oriented
libraries that are successfully employed in University of
Aveiro to assist the educational process. This paper
continues and extends that work by proposing a multimedia
tool and an FPGA-based prototyping board that could
additionally contribute to effective teaching of
reconfigurable systems.

The remainder of the paper is organized in four sections.
Section II makes a revision of available design specification
methods and discusses the future of reconfigurable systems.
Section III provides a brief overview of courses dedicated to
reconfigurable systems. In Section IV the proposed teaching
method is described. The conclusion is given in Section V.

II. THE PRESENT AND THE FUTURE OF RECONFIGURABLE

SYSTEMS

Designers of FPGA-based systems must wade through
several layers of design before programming the actual
device. The typical FPGA flow includes five major phases
illustrated in Fig. 1, which are design entry, synthesis,
mapping, placement and routing, FPGA programming, and

verification. The latter may occur at different levels such as
behavioral simulation, functional simulation, static timing
analysis, post-layout timing simulation and, in-circuit
verification. If we focus our attention on the design entry,
four different specification methods can be envisioned,
which are schematic entry, hardware description languages,
system-level specification languages (SLSL) and, finally,
general-purpose programming languages (GPPL).

The schematic-based approach is nowadays not very
appropriate for specifying the functionality of modern
systems because instead of thinking in terms of algorithms
and data structures it forces the designer to deal directly with
the hardware components and their interconnections.
Contrariwise, the hardware description languages - HDLs
(such as VHDL and Verilog) are widely used for design
specification since they typically include facilities for
describing structure and functionality at a number of levels,
from the more abstract algorithmic level down to the gate
level. Recently, commercial tools allowing digital circuits to
be synthesized from system-level specification languages,
such as Handel-C and SystemC, have appeared on the
market. In this area, C and C++ with application-specific
class libraries and with the addition of inherent parallelism
are emerging as the dominant languages in which system
descriptions are provided. This fact allows the designer to
work at a very high level of abstraction, virtually without
worrying about how the underlying computations are
executed. Consequently, even computer engineers with a
limited knowledge of the targeted FPGA architecture are
capable of producing rapidly functional, algorithmically
optimized designs.

SpecificationSpecification

VerificationVerification

ImplementationImplementation

FPGA

SynthesisSynthesis

behavioral

simulation

functional

simulation

timing

simulation

in-circuit

verification

Figure 1. Typical FPGA design flow.

Even higher level of abstraction is achieved with general-
purpose programming languages, such as C++ or Java.
During the last years commercial tools (for instance,
Catapult Synthesis from Mentor Graphics and CoDeveloper
from Impulse) started appearing on the market allowing the
respective high-level descriptions to be transformed
automatically to an HDL, which is further used for synthesis.
In this case the code portions that can be executed in parallel
are identified automatically by the design tools. Besides of
the mentioned design specification methods there exist other
opportunities such as vendor libraries, graphical finite state
machine editors, parameterizable IP cores and so on.

If we try to assess different design specification methods
according to such criteria as performance, FPGA resource
usage, portability, ease to learn, ease to change and
maintenance and, finally, the development time, we would
come to the following conclusions. Schematic-based
approach allows circuits with very good performance and
efficient resource usage to be created. However, when we
speak about portability and ease to learn, change and
maintenance and the associated development time, schematic
entry is an obvious outsider. As it was noticed in an EE
Times survey “The days of designing FPGA with schematics
are gone.” [9]. Hardware description languages are currently
the golden mean of the design entry methods. They allow
creating high-performance circuits, optimized from the
resource usage point of view, the development time is not so
long and providing changes to the design is not very
difficult. The only weak point is that HDLs are not so easy to
learn. Obviously, system-level and high-level languages
possess the highest portability and the highest level of
abstraction. Of course, the higher level of abstraction leads to
some performance degradation and not very efficient
resource usage. On the other hand SLSLs and GPPLs have
many advantages such as ease to learn, ease of change and
maintenance, and a very short development time. Therefore,
we can expect that as the tools responsible for generating
hardware (more specifically, either an EDIF – electronic
design interchange format file or an HDL file) from high-
level source code advance, the SLSLs and GPPLs may
become the predominant hardware description methodology,
in the same way as general-purpose high-level programming
languages have already supplanted microprocessor assembly
languages.

According to Moore’s law, chip complexity grows
exponentially with time. But what is important is that the
number of available transistors grows faster than the ability
to meaningfully design with them. This situation is a well
known design productivity gap, which was inherited by
FPGA from ASIC and which is increasing continuously.
Therefore the design productivity will be the real challenge
for future systems. It is believed that platform FPGA could
alleviate this problem since they offer the flexibility, time to
market and the bandwidth requirements to rapidly bring
electronic systems to market. With such highly
programmable platforms that include one or more
programmable processor(s) and/or reconfigurable logic,
derivative designs may be created without fabricating a new
system-on-chip (SOC) [10]. Platform customization for a
particular SOC derivative then becomes a constrained form
of design space exploration: the basic communications
architecture and platform processor choices are fixed, and
the design team is restricted to choosing certain
customization parameters and optional IP from a library [10].

In order to increase the design productivity the following
challenges must be met. First of all, design reuse must be
encouraged. Reusable, high-level functional blocks (such as
IP blocks) offer great potential for productivity gains because
design effort for the reused logic is only a portion of the
effort needed for newly designed logic. According to ITRS,

it is expected that reuse rate for system-level design will
increase from 38% in 2007 to 58% in 2022 [10].

The second point is that design abstraction levels must be
raised. Higher levels of abstraction allow many forms of
verification to be performed much earlier in the design
process, reducing time to market and lowering cost by
discovering problems earlier [11]. We have already
mentioned that tools are currently emerging allowing for
hardware design at a very high level of abstraction.

And finally, the third point is to increase the level of
automation which inevitably will allow the number of design
iterations to be reduced. In case of platform-based design,
further improvements in automated software/hardware
partitioning tools are strongly required.

Now it is clear, that reconfigurability will certainly be the
key aspect of future systems since it will be required for fault
tolerance, for example, for molecular-scale systems, and for
development of adaptive and self-correcting or self-repairing
circuits. In addition, reconfigurability increases reuse, since
existing devices can be reprogrammed to fulfill new tasks.
According to ITRS forecast more and more SOC
functionality will become reconfigurable [11].

III. OVERVIEW OF COURSES ON RECONFIGURABLE

SYSTEMS

In Aveiro University, disciplines on reconfigurable
computing are offered to students of two curricula: MIECT –
Integrated Master Degree in Computer Engineering and
MIEET – Integrated Master Degree in Electronics and
Telecommunications Engineering. Both curricula were
recently restructured due to Bologna process.

For MIECT students an obligatory “Reconfigurable
Computing” discipline is taught during the 4

th
 year and for

MIEET students two optional courses (“Reconfigurable
Digital Systems” and “Hardware Description Languages”)
are offered during the 5

th
 year of study. Within these

disciplines the following set of topics is considered:

• Overview of hardware description languages and
system level specification languages;

• Introduction to FPGAs (different Xilinx FPGA
architectures are analyzed, such as Spartan-II,
Spartan-IIE, Spartan-3, Spartan-3E, Virtex-EM,
Virtex-II, Virtex-II Pro, Virtex-4, Virtex-5);

• Synthesizable VHDL in detail;

• Statically and dynamically reprogrammable circuits;

• Methods and tools for generating parameterizable
circuits;

• Methods and tools for functional simulation;

• Methods and tools for synthesis, implementation,
and test of reprogrammable systems;

• Specification, design and implementation of
reprogrammable control circuits, which support
hierarchy, recursion, and parallelism;

• Design of practical applications in the areas of
computing, electronics, telecommunications, etc.

IV. MULTIMEDIA TOOL FOR TEACHING

RECONFIGURABLE COMPUTING

A. Prototyping System

The first course on reconfigurable computing in Aveiro
University was introduced into pedagogical plans in
1997/1998. Since that time until present different prototyping
boards have been used for laboratory works (see Fig. 2).

Annapolis

FireFlyTM

XC6216/6264

1997
-

2001

XESS

XS40

XC4010XL

1998
-

2002

Alpha Data

ADM-XRC

Virtex-EM XCV812E

2000
-

2003

XESS XSA100

Spartan-II XC2S100

2002
-

2004

Celoxica RC100

Spartan-II XC2S200

2002
-

2007

Trenz TE-XC2Se

Spartan-IIE XC2S400E

2002
-

2007

Alpha Data

ADM-XPL

Virtex-II Pro XC2VP7

2003
-

2005

Celoxica

RC200

Virtex-II XC2V1000

2003
-

2007

Spartan-IIE XC2S300E

DETIUA-S3

Spartan-3 XC3S400

2006
-

2008

Nexys 2

Spartan-3E XC3S500E

2008
-

2009

FX 12

Virtex-4 XC4VFX12

2008
-

2009

Virtex-5

OpenSPARC

Virtex-5 XC5VLX110T

2009
-

2010

Figure 2. Prototyping boards used within the courses on reconfigurable

computing in Aveiro University.

In 2005 we came up with a necessity to create our own
board [12] that was fully designed and tested by post-
graduate students [13]. Starting from 2006/2007 academic
year the board DETIUA-S3 is intensively used in
educational process.

The architecture of the developed prototyping system is
illustrated in Fig. 3. The basic hardware/software
components of the system are the following [13]:

• XC3S400-4-PQ208 FPGA of Spartan-3 family with
400.000 system gates [14].

• XC9572XL CPLD which is used for FPGA
reconfiguration.

• 16 Megabit Am29LV160D flash memory, which is
divided in three logical sections (see Fig. 3). The
first section stores the default configuration
bitstream that is downloaded to FPGA when data
have to be transferred to/from flash memory. The
first section is programmed just once during the
board manufacturing and after that is not accessible
to the user. The second logical section stores the user
bitstream. Finally, the third section allows keeping
up to 7 additional user bitstreams or any other user
data. As a result, the flash memory permits to use the
board as an autonomous device (which does not
have any connection to the host computer) and
provides support for implementing virtual systems.

• Power supply is provided either through USB
interface or from an external dedicated power
source.

• DLP-USB245M USB module which is used for
powering, programming and data exchange between
the host computer and the prototyping board. This
module can be replaced with a Bluetooth module
[13].

• 80 MHz clock oscillator.

• JTAG connector for external programming of CPLD
and FPGA (this is needed in particular when the first

logical section of flash memory becomes damaged
and needs to be reprogrammed).

• Expansion connectors for interacting with extension
boards.

• Prototyping Board Manager (PBM) which provides
user-friendly interface to the board through either
USB or Bluetooth interfaces. In particular, PBM
allows to replace the default bitstream in the first
section of flash memory, to download user
bitstreams to the second and the third sections of
flash memory, to erase selected memory sectors, to
exchange data with the board through USB (this is
very useful for testing/debugging user circuits).
Besides, PBM is also able to detect and report a
number of problems with the board.

Powering,

programming

and data exchange

External

power

connector

Flash memory

User-friendly

software interface

Extension connectors

for interacting with

application-specific

plug-in devices

Bitstream for

configuration

User bitstream

User data /

alternative

bitstreams

The first

section

The

third

section

FPGA XC3S400

CPLD

Interface socket

The

second

section

Figure 3. Architecture of DETIUA-S3 prototyping system.

B. Multimedia Tool

During laboratory classes within the courses on
reconfigurable computing, the students have to design,
synthesize, simulate, implement, and test a number of
proposed to them systems of medium complexity. Examples
of such systems are:

• A VGA controller;

• Interface with a mouse;

• Interface with a keyboard;

• An LCD controller;

• A simple calculator (allowing data to be entered
from a keyboard and visualizing the results on a
VGA monitor screen);

• A simple processor.
During the first weeks of the courses, when the students

have to become proficient in VHDL and the target FPGA
architecture, we propose to reuse the knowledge of computer
architecture to speed up the educational process. This is
possible, since the students of the courses on reconfigurable
computing have a good knowledge of computer architecture.
In particular, within “Computer Architecture I” discipline
they acquired a solid understanding of MIPS architecture
[15].

Therefore a fully synthesizable VHDL model of an
instruction subset of MIPS architecture [15] was created.
This work was done by a final year student within his M.Sc.
dissertation in 2007/2008. With the aid of the proposed

multimedia tool, the teacher has a possibility to generate a
VHDL model of the processor in which some components
(selected by the teacher) are missing (for example, an ALU
or a register file). It is possible to exclude different
components for different groups of students to diversify their
work and to eliminate the possibility of copying. Then the
students are asked to describe in VHDL just the omitted
components (all the interfaces between the processor
components are fixed and may not be altered), to
functionally simulate these components, and, finally, to
synthesize and implement in an FPGA the whole processor.

In order to be able to verify the correct functionality of
the processor, a multimedia tool iCmips [16] was developed
whose general interface (depicted in Fig. 4) is similar to
SPIM simulator [17], but the great difference is that
assembly language instructions are actually executed in real
hardware created by the students. The contents of the
registers as well as data memory are visible to the user and
updated in real time. It is possible to either execute assembly
language instructions step by step, run the user program until
a specified breakpoint, or execute the whole user code at
once. Currently, MIPS co-processors are not supported.

This teaching method has a number of advantages. First
of all, it allows to design and test in an FPGA a simple
circuit during the first laboratory classes, when the students
do not have yet enough knowledge of VHDL. Besides, with
the aid of the proposed multimedia tool the students are able
to appreciate the results of the work immediately through a
user-friendly interface. And, finally, it is well known that
students learn in different ways therefore a number of
learning activities should be provided. The suggested
multimedia tool enriches the set of teaching methods
employed within the courses on reconfigurable computing.

Figure 4. User interface of a multimedia tool iCmips.

C. Implementation Details

Single-cycle datapath have been implemented consisting
of the following major components: instruction memory,
program counter, ALU, data memory, control blocks,
multiplexers, adders, shifters, and sign extension blocks [15].
It is known that systems based on MIPS processors typically

divide memory into three parts: text segment, data segment,
and stack segment [15]. We followed this convention and
constructed the memory on the basis of Spartan-3 embedded
RAM blocks. Spartan-3 embedded memory blocks have a
capacity of 16384 bits and their depth/width aspect ratios are
programmable. We employed a block RAMB16_S36, which
is a single-port synchronous Block RAM with 32-bit data
bus (not counting parity bits) and 9-bit address bus.

The memory block was divided as follows. The text
segment, which holds the user program’s instructions, starts
at address 0x000. The data segment resides above the text
segment starting at address 0x100 and contains static data
followed by dynamic data. The stack segment occupies the
top of the address space (starting at address 0x1ff - the stack
grows in the direction of lower addresses). With this memory
organization, user programs can contain at most 256
assembly language instructions and exploit at most 256 32-
bit words of static and dynamic data. Of course, such an
implementation does not allow real-world programs to be
executed but, on the other hand, the available memory is
more than sufficient to check students’ knowledge of VHDL
and to test their projects. Besides, memory can easily be
expanded by using multiple embedded RAM blocks and this
could constitute one of the tasks given to the students.

The implemented single-cycle datapath is displayed to
the user on the host computer monitor screen. The user
interacts with the processor in the following way:

• Create an assembly program using the supported
MIPS instructions;

• Generate machine code with the aid of an embedded
into the tool assembler;

• Download the code to the text segment;

• Download static user data to the data segment;

• Optionally set a breakpoint;

• Execute the program using one the following modes:
single instruction, multiple instructions until the
specified breakpoint is reached, or the whole
program at once;

• The tool as well as the FPGA monitoring circuit
perform permanent observation of the contents of
registers, data memory and main control signals that
manage the flow of information in the datapath. All
these data are made available to the user through a
graphical interface (Fig. 4).

V. CONCLUSION

In this paper, we suggested a multimedia tool, which
could contribute to productive teaching of reconfigurable
computing. We hope that the tool is of great value since it
provides to the students an opportunity to construct,
physically implement, and test a quite complicated system
with a very limited knowledge of hardware description
languages.

Besides, there exist a lot of possibilities of extensions.
For example, it is known that the performance of single-
cycle implementation is low since the clock period is

determined by the longest possible path in the processor
whereas several instruction classes could fit in a shorter
clock cycle. Therefore, one possible extension to our work is
to implement a multi-cycle or a pipelined processor.
Comparing these three alternative MIPS implementations
would constitute an excellent exercise for the students.
Another opportunity of future work is implementing
different co-processors (for example for supporting floating-
point operations), that could enrich the experience of the
students.

ACKNOWLEDGMENT

The author would like to acknowledge contribution of
Bernardo Silva who developed reconfigurable hardware and
software for iCmips project.

REFERENCES

[1] History of Xilinx, Online:
http://www.xilinx.com/company/history.htm.

[2] M. Uhm, “Making the adaptivity of SDR and cognitive radio
Affordable”, DSP Magazine, issue 2, May 2006, pp. 25-27.

[3] M. Devlin, “Multi-FPGA systems for high performance computing
applications”, IEE Developers Forum, October 2005, Online:
http://www2.theiet.org/oncomms/sector/electronics/Articles/Heading/
512.

[4] S. Margerm, “Reconfigurable computing in real-world applications”,
FPGA and Structured ASIC Journal, February 2006, Online:
http://www.fpgajournal.com/articles_2006/20060207_cray.htm.

[5] J. Turley, “Survey: Who uses custom chips”, Embedded Systems
Programming, vol. 18, no. 8, August 2005.

[6] Altera, Programmable platform solutions, August 2006, Online:
http://www.altera.com/literature/wp/wp-01004.pdf.

[7] V. Sklyarov, I. Skliarova, “Teaching reconfigurable systems:
methods, tools, tutorials, and projects”, IEEE Trans. on
Education, vol. 48, no. 2, 2005, pp. 290-300.

[8] R. Hartenstein, “Reconfigurable computing (RC) being mainstream:
torpedoed by education”, keynote talk at Int. Conf. on
Microelectronic Systems Education, Anaheim, USA, June 2005.

[9] EE Times (2006, July 31), R. Goering, “FPGA users rank challenges,
tasks”.

[10] International technology roadmap for semiconductors, Design, 2007.

[11] International technology roadmap for semiconductors, System
Drivers, 2007.

[12] M. Almeida, V. Sklyarov, I. Skliarova, B. Pimentel, "Design tools for
reconfigurable embedded systems", Proc. of the 2nd Int. Conf. on
Embedded Software and Systems - ICESS'2005, IEEE Computer
Society, Xi'an, China, December 2005, pp. 254-261.

[13] V. Sklyarov, I. Skliarova, M. Almeida, B. Pimentel, "A prototyping
system for mobile devices", Proc. of the ACM 2007 Int. Wireless
Communications and Mobile Computing Conf. - IWCMC'2007,
Honolulu, USA, August 2007, pp. 505-510.

[14] Xilinx, Inc., products and services, Online: http://www.xilinx.com.

[15] J.L. Hennessy, D.A. Patterson, Computer Organization and Design.
The Hardware/Software Interface, Morgan Kaufmann Publishers,
Inc., 2004.

[16] iCmips, Online:
http://clientes.netvisao.pt/aliencod/iCmips_web/index.htm.

[17] SPIM – A MIPS32 Simulator, Online:
http://www.cs.wisc.edu/~larus/spim.html.

